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In nature and engineering applications, water jet plunging acts as a key process causing
interface breaking and generating mixed-phase turbulence. In this paper, high-resolution
numerical simulations of the plunging of a water jet into a quiescent pool were
performed to investigate the statistical properties of mixed-phase turbulence, with a
special focus on the closure problem of the Reynolds-averaged equation. We conducted
phase-resolved simulations, with the air–water interface captured using a coupled level-set
and volume-of-fluid method. Various cases were performed to analyse the effects of the
Froude number and Reynolds number. The simulation results showed that the turbulence
statistics are insensitive to the Reynolds number under investigation, while the Froude
number influences the flow properties significantly. To investigate the closure problem
of the mean momentum equation, the turbulent kinetic energy (TKE) and turbulent mass
flux (TMF) and their transport equations were analysed further. It was discovered that
the balance relationship of the TKE budget terms remained similar to many single-phase
turbulent flows. The TMF is an additional unclosed term in mixed-phase turbulence over
the single-phase turbulence. Our simulation results showed that the production term in its
transport equation was highly correlated to TKE. Based on this finding, a closure model
for the production term of TMF was further proposed.

Key words: turbulence simulation, turbulence modelling, multiphase flow

1. Introduction

Mixed-phase turbulence is a common phenomenon in nature and engineering applications.
In contrast to two-phase turbulent flow without surface breaking (Brocchini & Peregrine
2001), mixed-phase turbulence is accompanied by violent surface deformations and
surface breakups, leading to complex mass and momentum transfers across the interface.
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Water jet plunging into a pool is a typical process that induces mixed-phase turbulence
(Kiger & Duncan 2012; Delacroix et al. 2016). Plunging jets were investigated early in
chemical engineering applications, such as wastewater treatment (van der Lans, Donk
& Smith 1979) and the mixing and reacting of liquids and gases (McKeogh & Ervine
1981). The research in this area has focused on the mechanism of air entrainment and
the characteristics of the resulting bubble flows. It was found that the impact velocity of
the liquid jet plays a dominant role in the air entrainment inception conditions. It was
reported that the impact velocity is a key criterion of air entrainment (Lorenceau, Quéré
& Eggers 2004). When the critical condition was reached, a minimum amount of energy
was available in the flow to do work against the surface tension and/or the potential energy
of gravity to entrap air. Laboratory experiments were conducted to analyse the critical
entrainment velocity for both high-viscosity liquids (Joseph et al. 1991; Jeong & Moffatt
1992; Biń 1993; Eggers 2001; Lorenceau, Restagno & Quéré 2003; Lorenceau et al. 2004)
and low-viscosity liquids (Sene 1988; Biń 1993; Lin & Reitz 1998; Chirichella et al. 2002;
El Hammoumi, Achard & Davoust 2002). Clanet & Lasheras (1997) proposed a model to
predict the penetration depth of the air bubbles entrained by a water jet impacting onto
a flat water surface. This model shows that the penetration depth is determined by the
initial jet momentum and the bubble terminal velocity as a function of the bubble size.
Comprehensive reviews of the related research can be found in Biń (1993) and Kiger &
Duncan (2012).

The aforementioned studies focused on the vertical plunging jet, and recently, horizontal
and shallow-angle plunging jets have also been investigated. Deshpande et al. (2012)
studied a shallow-angle plunging jet and revealed a periodic pattern of air entrainment,
which does not occur when the impingement angle is steep. Later, Deshpande & Trujillo
(2013) corroborated that the periodicity scaled linearly with the Froude number through
numerical simulations. They also studied, both computationally and analytically, the
underlying causes responsible for large cavity formation at shallow angles. They found
a strong stagnation pressure region that deflects the entire incoming jet flow radially
outwards, producing a large cavity and subsequently creating splashing events. Hsiao et al.
(2013) studied a stationary and moving horizontal jet plunging into a quiescent water pool.
Their numerical and experimental results showed that the frequency of air entrainment
depended on the jet diameter and relative velocity with respect to the free surface.

In addition to the plunging jet, mixed-phase turbulence with air entrainment also occurs
in many other flows. Chachereau & Chanson (2011) conducted experimental studies on
the air entrainment in hydraulic jumps and observed that air entrainment takes place
as the Froude number exceeds a critical value. They also found that the volume of air
entrainment increases with an increasing Froude number. Garrett, Li & Farmer (2000),
Deane & Stokes (2002), Wang, Yang & Stern (2016) and Deike, Melville & Popinet
(2016) studied the bubbles induced by breaking waves, and observed that the bubble
size spectrum is proportional to r−10/3, where r is the effective radius of the bubbles.
This power law of bubble size spectrum was explained by Garrett et al. (2000) using an
energy cascade theory. Yu et al. (2019) performed direct numerical simulations (DNS)
of a canonical three-dimensional two-phase viscous turbulent flow, with the turbulent
kinetic energy (TKE) supplied by an underlying near-surface shear flow. They investigated
the dependence of the air entrainment and bubble size on the Froude number and
Weber number. Moreover, they proposed a heuristic model that qualitatively matched and
explained the salient evolution behaviour of the bubble size spectrum. For some advanced
ships, the plunging jet adds another source of air entrainment in the transom region
and beyond (Hsiao et al. 2013). Hendrickson et al. (2019) performed implicit large-eddy
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simulations (LES) with a conservative volume-of-fluid interface-capturing method to
investigate the mixed-phase turbulent wake behind a dry transom stern of a surface ship.
They conducted a detailed analysis on the air entrainment to investigate air entrainment
parameters such as the entrainment rate and bubble size spectrum.

The above reviews indicate that the mechanism and physical process of air entrainment
and bubble generation have been studied extensively in mixed-phase turbulence. However,
studies on the statistical characteristics and transport mechanics of turbulence are limited
in the literature. As the most common phenomenon that induces two-phase turbulence in
nature, breaking waves modulate the transfer of mass, momentum and energy between the
ocean and atmosphere. Deike (2022) summarized the recent research on breaking waves.
Based on canonical experiments (Rapp & Melville 1990; Melville 1994; Melville, Veron
& White 2002; Banner & Peirson 2007; Drazen, Melville & Lenain 2008; Tian, Perlin &
Choi 2010), DNS (Chen et al. 1999; Iafrati 2009; Deike, Popinet & Melville 2015; Deike
et al. 2016; Wang et al. 2016; Yang, Deng & Shen 2018; Chan et al. 2021; Mostert, Popinet
& Deike 2022) and LES (Lubin & Glockner 2015; Derakhti & Kirby 2016), the dynamics
of wave breaking were investigated. However, since the turbulence induced by breaking
waves is a statistically unsteady process, it is infeasible to apply time averaging to define
turbulent statistics. To date, research on turbulent statistics corresponding to breaking
waves is limited to its impact on wind turbulence (Yang et al. 2018), and the study on the
mixed-phase region is limited. In terms of statistically stationary mixed-phase turbulence,
Deshpande et al. (2012) investigated the mean velocity, mean volume of fluid and TKE of
a plunging jet. Yu et al. (2019) investigated the characteristics of free-surface turbulence
and elucidated the qualitatively distinct characteristics of strong versus weak free-surface
turbulence. Strong anisotropy was found in weak free-surface flow, while mixed-phase
turbulence became almost isotropic in strong free-surface turbulence. Regarding the
statistical averaging of variable density fluid motion equations, an additional unclosed term
appears (Taulbee & Vanosdol 1991), that is, the turbulent mass flux (TMF). Modelling of
TMF was investigated previously in compressible flow (Jones 1979; Grasso & Speziale
1989; Nichols 1990). Comprehensive reviews can be found in Chassaing (2001). Recently,
Hendrickson & Yue (2019) studied the incompressible highly variable density turbulence
in the wake behind a three-dimensional dry transom stern. They developed an explicit
algebraic closure model for the TMF term.

The objective of the present study is to investigate the statistical characteristics of the
mixed-phase turbulence with air entrainment caused by a plunging jet. Specifically, we
aim to study in detail the basic statistics reflecting the turbulent characteristics, such as
TKE, TMF and their transport equations. The Froude number effect is examined through
different cases. The closure problem of TMF is also discussed. The remainder of this paper
is organized as follows. In § 2, the numerical method and physical set-up of the present
simulation of the plunging jet is described. Then the results are presented and discussed
in § 3. The conclusions are provided in § 4.

2. Details of the numerical simulations

2.1. Numerical method
To study a water jet plunging into a quiescent pool, we performed high-resolution LES
by solving the three-dimensional two-phase incompressible Navier–Stokes equations.
The coupled level-set (LS) and volume-of-fluid (VOF) method was used to capture
the air–water interface on a Cartesian grid. The three-dimensional incompressible
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Navier–Stokes equations with varying densities and viscosities are expressed as

∇ · u = 0, (2.1)

∂(ρu)
∂t

+ ∇ · (ρuu) = −∇p + ∇ · (2μS)+ ρg + f s, (2.2)

where ρ and μ are the density and dynamic viscosity, respectively, u = [u, v,w] is the
velocity, p is the pressure, S = (∇u + ∇uT)/2 is the strain-rate tensor, and g = [0,−g, 0]
is the gravitational acceleration. The last term in (2.2) is the surface tension force, which
is defined as

f s = σκ ∇H(φ), (2.3)

where σ is the surface tension, κ = ∇ · (∇φ) at φ = 0 is the interface curvature, with φ
being the LS function, and H(φ) is the Heaviside function, defined as

H(φ) =
{

0, φ ≤ 0,
1, φ > 0.

(2.4)

In LES, the dynamic viscosity is expressed as

μ = ρ(ν + νt), (2.5)

where ν is the kinematic viscosity, and νt is the subgrid-scale (SGS) eddy viscosity. In
the present work, the SGS model proposed by Vreman (2004) is used to determine νt for
cases with high Reynolds numbers. At low Reynolds numbers, νt is omitted, following
Hendrickson et al. (2019).

The interface between the two fluid phases is captured using the coupled LS and VOF
method. The following convection equations of the LS function φ and the VOF function
ψ are solved:

∂φ

∂t
+ ∇ · (φu) = 0, (2.6)

∂ψ

∂t
+ ∇ · (ψu) = 0. (2.7)

The LS function φ is defined as the signed distance from the fluid phase to the interface.
Its sign is negative and positive for air and water, respectively. The VOF function ψ is
defined as the volume fraction of water in a grid cell ranging from 0 to 1. Subscripts a and
w denote air and water, respectively. The density and viscosity are determined using the
LS function as follows:

ρ = ρa + (ρw − ρa)H(φ), (2.8)

μ = μa + (μw − μa)H(φ). (2.9)

As noted in the literature (Rudman 1998; Arrufat et al. 2018; Nangia et al. 2019; Yang,
Lu & Wang 2021), if the density is determined solely using (2.8), then the simulation is
unstable for two-fluid flows with a high-density contrast. A useful approach for improving
the numerical stability is to calculate the mass and momentum fluxes using a consistent
scheme and evolve the density by solving the following convection equation:

∂ρ

∂t
+ ∇ · (ρu) = 0. (2.10)

In the present study, (2.8) is used to determine the density at the beginning of each time
step, while (2.10) is evolved together with the momentum equation to provide the density
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Figure 1. Definition sketch of the computational model.

within a time step. Therefore, the interface is captured accurately, and the simulation is
stable. More details regarding the numerical method can be found in Yang et al. (2021).

2.2. Physical set-up
Figure 1 shows schematically the computational domain and definition of the key
parameters. As shown, a water jet spurts out horizontally and plunges into a quiescent
water pool. Except for the water column and pool, other spaces of the computational
domain are initially filled with air, some of which tends to be entrained into the water
with the jet and then evolves into air cavities and bubbles beneath the free surface.

We use the jet diameter D = 0.04 m as the characteristic length scale, and the
horizontal outlet velocity of the jet U = 4 m s−1 as the characteristic velocity scale.
The density of the water ρw = 1.0 × 103 kg m−3 is used as the density unit. Hereafter,
all variables are non-dimensionalized using U, D and ρw, unless stated otherwise.
The computational domain size is Lx × Ly × Lz = 75.0 × 27.0 × 13.0, where x, y and z
represent the streamwise, vertical and spanwise directions of the domain, respectively. The
water depth is h = 18.75. The distance between the centre of the jet orifice and the free
surface is δ = 1.0. The boundary condition indicates no penetration at the top, bottom,
front and back of the domain, while a constant inlet velocity is applied in the jet orifice
area of the left boundary, and a zero gradient condition is specified at the right outlet
boundary.

The entire computational domain is discretized using a uniform Cartesian grid. The
number of grid points is 1125 × 405 × 195, giving grid resolution 
x = 
y = 
z =
0.067. The jet diameter is resolved by 15 grid points. Because the strong shear around
the plunging points tears the interface, droplets and bubbles at very small sizes can be
generated. To capture droplets and bubbles at all scales using grids is infeasible with
the current computer power. There is no guarantee that the instantaneous dynamics of
small droplets and bubbles is realistic in the present simulations. However, although
small-scale dynamics of bubbles is not captured fully, turbulence statistics dominated
by large-scale motions can be obtained accurately. This point is verified in numerical
studies of single-phase turbulence. To ensure the reliability of the simulation results,
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Case Re Fr We

1 1.6 × 105 6.4 8.89 × 103

2 1.6 × 104 6.4 8.89 × 103

3 1.6 × 103 3.2 8.89 × 103

4 1.6 × 103 4.2 8.89 × 103

5 1.6 × 103 5.3 8.89 × 103

6 1.6 × 103 6.4 8.89 × 103

7 1.6 × 103 7.5 8.89 × 103

8 1.6 × 103 8.6 8.89 × 103

9 1.6 × 103 9.6 8.89 × 103

Table 1. Parameters in the simulations of the plunging jet.

this grid resolution is chosen through a careful mesh-convergence test. It is found
that a grid resolution of 1/10 jet diameter is sufficient to make accurate prediction
of the mean velocity and TKE, while the TMF requires a finer resolution of 1/15 jet
diameter to converge. The details of the mesh-convergence test are given in the Appendix.
Furthermore, we have also run all cases using a lower resolution of 1/10 jet diameter. We
find that the simulation with lower resolution reaches the same conclusions of this paper.
We present the results obtained from the finer resolution of 1/15 jet diameter to provide
more accurate reference data for future research.

To consider the effect of the Reynolds number Re = ρwUD/μw and the Froude number
Fr =

√
U2/gD, we conducted nine cases in the present study. The air–water density ratio

and viscosity ratio are ρa/ρw = 1.2 × 10−3 and μa/μw = 1.54 × 10−2, respectively. The
Weber number defined based on the water density and the surface tension between the
air and the water, We = ρwU2D/σ , is set to a constant. The key parameters are listed in
table 1. Cases 1, 2 and 6 were performed to examine the effect of the Reynolds number, and
cases 3–9 were conducted to investigate the Froude number effect. The Reynolds number
and Froude number for case 1 remained the same as the case considered in Deshpande
et al. (2012) to facilitate validation. At the lowest Reynolds number, Re = 1.6 × 103,
the SGS eddy viscosity is smaller than the fluid viscosity except for a thin layer around
the interface, where a cubic upwind interpolation (CUI) scheme is used to calculate the
momentum flux to ensure the stability of the simulation (Yang et al. 2021). The CUI
scheme provides additional numerical dissipation near the interface. If the SGS eddy
viscosity is added in this region, then the simulation is found to be overly dissipative.
Therefore, the SGS eddy viscosity is omitted in cases 3–9, following Hendrickson et al.
(2019) to perform implicit LES.

3. Results and discussion

3.1. Formation of the mixed-phase region
An instantaneous flow field under the statistically steady state is shown in figure 2, in
which the interface between air and water is visualized using the iso-surface φ = 0. This
figure illustrates entrained air pockets and bubbles under the surface, and water splash and
droplets above the surface. A large air pocket is entrained into the water near the plunging
point, and it breaks into small air pockets and bubbles downstream. Above the free surface,
water splashes and droplets hit the downstream surface, causing secondary plunging.
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y

x
z

Figure 2. Simulation result of instantaneous air–water interface visualized using the iso-surface φ = 0. The
result for case 6 is shown.

The plunging event results in violent breaking of the free surface and highly mixed
air–water turbulent flow. Movies for cases 3, 6 and 9 are provided as supplement materials,
which are available at https://doi.org/10.1017/jfm.2023.1081.

To better understand the mixed-phase turbulence in the near-surface region, we followed
Hendrickson & Yue (2019) to define a mixed-phase region as the variable density region,
in which the mean volume of the fluid ψ̄ satisfies 0.05 ≤ ψ̄ ≤ 0.95. Here, the overline
defines the time averaging, which is performed over a time duration T = 1200.0, after
the turbulence is fully developed. The sampling rate is 
T = 1.0, which provides 1200
samples for time averaging. Figure 3 shows the mixed-phase region and mean free surface
in case 6. As the streamwise coordinate x increases, the size of the mixed-phase region
increases and reaches a peak shortly after the jet plunging point, and then decreases
downstream. The mean free surface with ψ̄ = 0.5 is also shown in figure 3(a) using the
dash-dotted line. There exist a hollow mean free surface near the jet plunging point and
a hump shortly downstream. They correspond to air entrainment and water splash-up,
respectively.

3.2. The Reynolds number effect
The Reynolds number is an important parameter in turbulent flow. However, in many
previous studies of mixed-phase turbulence (Brocchini & Peregrine 2001; Deike et al.
2015; Yu et al. 2019), it was found that the Reynolds number effect was less significant
than the Froude number effect. To minimize the effect of LES modelling, it is common to
reduce the Reynolds number. In this study, we tested three Reynolds numbers to examine
their effects on turbulent statistics. Meanwhile, we compared these results with previous
experimental and numerical studies to validate our simulations.

Figure 4 shows the vertical profiles of the mean volume of the fluid ψ̄ and mean
streamwise velocity ū at the mid-span and different streamwise locations for the three
Reynolds numbers. As shown in figure 4(a), the mean volume of the fluid ψ̄ varies mainly
inside the mixed-phase region. The results for ψ̄ for different Reynolds numbers are close
to each other. They also agree with the numerical results of Deshpande et al. (2012).
Figure 4(b) shows that the results for the mean velocity for different Reynolds numbers
are also close to each other. This observation indicates that variation in the Reynolds
number (from 1.6 × 103 to 1.6 × 105) does not impose significant effects on the mean
flow. The results for mean velocity also agree with the experimental and numerical results
of Deshpande et al. (2012).
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Figure 3. Mixed-phase region in case 6: (a) contour of the mean volume of the fluid 0.05 < ψ̄ < 0.95 at the
mid-span; (b) transverse cuts of the mixed-phase region in different streamwise positions. The dash-dotted line
in (a) and iso-surface in (b) represent the mean free surface with ψ̄ = 0.5.

We also calculated the time-averaged bubble-size density spectra N̄(reff ), defined as

N̄
(
reff
) = 1

T

∫ t+T

t

n
(
reff , t; b

)
V × b

dt, (3.1)

where n(reff , t; b) is the number of bubbles, whose effective radii fall between reff and
reff + b in a given fluid volume V at time t. In the present work, b = 0.001 is chosen. The
fluid volume V for bubble statistics is a cuboid in the computational domain x ∈ [15, 45],
y ∈ [0, h], z ∈ [0, Lz], which contains most of the air cavities and bubbles beneath the
interface. The effective spherical radius is defined as

reff = [
(3/4π)ve

]1/3
, (3.2)

where ve is the volume of an individual bubble. To determine the number and volume
of each bubble, a connected component algorithm (Samet & Tamminen 1988) is used to
identify and label the entrained air cavities. Figure 5 shows the results for the bubble-size
density spectra N̄(reff ) for different Reynolds numbers. It can be seen that the results for
different Reynolds numbers are close to each other, indicating that the Reynolds number
effect on the bubble-size density spectra is negligible. The solid line in figure 5 represents
the r−10/3 power law, which is satisfied in cases at different Reynolds numbers.
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Figure 4. Vertical profiles of (a) the mean volume of the fluid and (b) the mean streamwise velocity at the
mid-span and different streamwise locations for different Reynolds numbers. Solid line indicates Re = 1.6 ×
105, dashed line indicates Re = 1.6 × 104, dotted line indicates Re = 1.6 × 103; circles and triangles represent
the numerical and experimental data, respectively, of the same case with Re = 1.6 × 105 in Deshpande et al.
(2012). Dash-dotted lines represent the edge of the mixed-phase region. The results for case 6 are shown.

The results for mean velocity, volume of the fluid, and bubble-size density spectra
for different Reynolds numbers (ranging from 1.6 × 103 to 1.6 × 105) indicate that the
Reynolds number imposes a limited impact on the turbulence statistics. We also examined
the Reynolds number effects on other turbulent statistics, including TKE and TMF. The
impact of the Reynolds number is found to be less significant than that of the Froude
number. Therefore, in the following context of this paper, we focus on the effect of the
Froude number.

3.3. Cross-sectional area of the mixed-phase region
We start the analyses of the Froude number effect from the size of the mixed-phase
region. Figure 6 shows the streamwise variation of the cross-sectional area SR(x) of the
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Figure 5. Bubble-size density spectra for cases at different Reynolds number. The Froude number is
Fr = 6.4.
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Figure 6. Streamwise variation of the mixed-phase region area for cases at different Froude numbers.

mixed-phase region. The streamwise location of jet plunging point xp varies with the
Froude number. We use x − xp as an independent variable to facilitate comparisons among
different cases. As shown in figure 6, the maximum cross-sectional area increases as the
Froude number increases. Figure 7 shows the variation in the maximum cross-sectional
area of the mixed-phase region, max(SR), with respect to the Froude number. It is seen that
max(SR) increases linearly with the Froude number. The observations from figures 6 and
7 indicate that as the Froude number increases, the mixing of air and water is enhanced.
A similar conclusion was drawn in previous studies of plunging jets (Chirichella et al.
2002; Kiger & Duncan 2012) and other mixed-phase turbulent flows, such as hydraulic
jumps (Chachereau & Chanson 2011; Ma et al. 2011) and mixed-phase turbulence induced
by shear near the interface (Yu et al. 2019).
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Figure 7. Maximum mixed-phase region area at different Froude numbers, and the linear fitting line.

3.4. Mean velocity
Figure 8 shows the contours of the mean streamwise and vertical velocities at the mid-span
for case 6 at an intermediate Froude number Fr = 6.4. The dotted lines show the upper and
lower edges of the mixed-phase region. Figure 8(a) shows that the jet plunging induces a
mean streamwise velocity ū near the free surface, and the large magnitude of ū is collocated
with the mixed-phase region. As shown in figure 8(b), the direction of the mean vertical
velocity v̄ varies along the streamwise direction in the mixed-phase region. Near the jet
plunging point, the fluid around the jet moves downwards with it. Shortly downstream, the
pool water moves upwards, and droplets are generated. Meanwhile, the air cavities under
the surface move upwards under buoyancy. As a result, the vertical velocity is positive
in this region. After the droplets reach the peak, they fall back to the pool and form a
secondary plunging, which causes another region with a negative vertical velocity.

Because the size of the mixed-phase region varies with the Froude number, to facilitate
comparison of the results for different cases, we followed Hendrickson & Yue (2019) to
define the conditioned average in the mixed-phase region as

〈 f R〉yz(x) = 1
SR(x)

∫
yz

f R( y, z; x) dSR. (3.3)

Here, f R represents the variable f inside the mixed-phase region. The integration denoted
by 〈·〉yz is performed over a cross-stream section ( y–z plane), and SR(x) represents the area
of the mixed-phase region in the corresponding plane.

Figure 9 compares the mean velocities 〈ūR
i 〉yz averaged in the mixed-phase region

for different Froude numbers. We note here that the results in the flow region for
x − xp = 0.0–4.0 show some uncertainty because the area of the mixed-phase region SR(x)
is small. Therefore, the following analyses focus mainly on the remaining flow region for
x − xp > 4.0, where the sampling number is sufficiently large to provide more reliable
statistics. This does not influence our understanding of the statistical properties of the
mixed-phase turbulence induced by the plunging jet, because active turbulence occurs
mainly downstream, where air and water are sufficiently mixed.
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Figure 8. Contours of time-averaged velocities (a) ū and (b) v̄ at the mid-span. Dotted lines represent the
edges of the mixed-phase region. Here, Re = 1600 and Fr = 6.4.

Figure 9(a) shows that 〈ūR〉yz near the jet plunging region (x − xp = 4.0–8.0) remains
almost unchanged at different Froude numbers. Noting that the outlet horizontal velocity
of the jet remain the same in all cases, the above observation indicates that the mean flow is
determined by the inflow in this region, while turbulent motion does not impose significant
influences. At approximately x − xp = 10.0, the magnitude of 〈ūR〉yz reaches a valley due
to the drag effect of the pool water. Downstream, 〈ūR〉yz shows a complex non-monotonic
response to the increase in the Froude number. At lower Froude numbers Fr ≤ 5.3, 〈ūR〉yz
increases with the Froude number. Regarding Fr ≥ 6.4, there exists intense vertical motion
that expands the size of the mixed-phase region, and as a result, the streamwise momentum
is diffused and 〈ūR〉yz decreases as the Froude number increases.

Figure 9(b) shows that a primary negative peak of 〈v̄R〉yz occurs at approximately x −
xp = 4.0 shortly downstream of the plunging point. The magnitude of this negative-valued
peak decreases as the Froude number increases because of the reduction of the
gravitational potential energy of the injected water, which is proportional to Fr−1.
Downstream of the plunging region, the vertical motion is weak at low Froude numbers
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Figure 9. Streamwise variation of the mean velocities averaged in the mixed-phase region for different
Froude numbers: (a) 〈ūR〉yz, (b) 〈v̄R〉yz.

Fr ≤ 5.3, resulting in a small magnitude of 〈v̄R〉yz. Regarding Fr ≥ 6.4, the water plunging
generates a large amount of droplets, which induce the first positive peak of 〈v̄R〉yz. When
the droplets reach the highest altitude, the vertical velocity becomes zero. Moreover, at the
corresponding streamwise location, the size of the mixed-phase region reaches a maximum
(figure 6). The secondary negative peak of 〈v̄R〉yz represents the downward motion of
droplets, which leads to secondary plunging. Downstream of the secondary plunging,
there is still a small magnitude of 〈v̄R〉yz at high Froude numbers. This indicates that the
increasing Froude number results in more intense vertical motions of the surface.

To perform a statistical study of turbulent properties, an instantaneous variable f is
decomposed as f (x, y, z; t) = f̄ (x, y, z)+ f ′(x, y, z; t), where f ′ is the fluctuation. The
mean momentum equation of incompressible variable-density flow can be expressed as

∂(ρ̄ūi)

∂t
= 0 = CMi + GMp

i + GMi + DMv
i + DMt

i + AMi. (3.4)
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Because all statistics are calculated at a statistical stationary stage of the flow, it is assumed
that the time derivative vanishes owing to a sufficiently long time duration used for
performing the time averaging. The budget terms on the right-hand side of (3.4) include the
convection term CMi, pressure gradient term GMp

i , gravity term GMi, viscous diffusion
term DMv

i , Reynolds stress term DMt
i , and TMF term AMi. These terms are defined as

CMi = −∂
(
ρ̄ūiūj

)
∂xj

, (3.5)

GMp
i = − ∂ p̄

∂xi
, (3.6)

GMi = − ρ̄

Fr2 δi2, (3.7)

DMv
i = ∂τ̄ij

∂xj
, (3.8)

DMt
i = −

∂ρu′
iu

′
j

∂xj
, (3.9)

AMi = −∂ρu′
i

∂t
− ∂

∂xj

(
ρu′

i ūj + ρu′
j ūi

)
, (3.10)

where τij = μ(ui,j + uj,i)/Re is the viscous stress tensor. There are unclosed terms on the
right-hand side of (3.4), namely the Reynolds stress ρu′

iu
′
j and TMF ρu′

i.
Figure 10 shows the streamwise variation of each budget term of (3.4) averaged in

the mixed-phase region. As shown in figure 10(a), the convection term CM1, Reynolds
stress term DMt

1 and TMF term AM1 make dominant contributions to the transport of the
mean streamwise momentum ρ̄ū. The convection term CM1 and Reynolds stress term DMt

1
balance each other near the jet plunging point. They decay downstream, and the TMF term
AM1 becomes a dominant term. It is seen from figure 10(b) that among the budget terms of
ρ̄v̄, the summation of the gravity term GM2 and mean pressure gradient term GMp makes
significant contributions. The TMF term AM2 is important near the jet plunging point and
decays to a small magnitude for x − xp ≥ 10.0. The Reynolds stress term DMt

2 plays an
important role for x − xp ≥ 10.0. The results shown in figure 10 indicate that the closure
of both the Reynolds stress and TMF is important in the mixed-phase turbulence induced
by jet plunging.

3.5. Turbulent kinetic energy

There are different strategies for closing the Reynolds stress ρu′
iu

′
j. In single-phase flows,

an important strategy is to use the dynamic equation of TKE k = 1
2ρu′

iu
′
i for closure, such

as the k–ε model (Chien 1982; Kaul 2010, 2011) and the k–ω model (Wilcox 1988, 2008;
Menter 1994; Spalart & Rumsey 2007). In the following context, we first analyse the effect
of the Froude number on TKE, followed by some discussions on its closure model in the
mixed-phase turbulence.

Figure 11 displays the contours of TKE at the mid-span for Fr = 6.4. The figure
demonstrates a collocation between the mixed-phase region and large magnitude of TKE.
The highest TKE is observed near the jet plunging point (x − xp = 4.0–12.0), where the
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Figure 10. Streamwise variation of the budget term of the mean momentum equation averaged in the
mixed-phase region. The results for Re = 1600 and Fr = 6.4 (case 6) are shown.

shear between the jet and the pool water is strong. At approximately x − xp = 24.0, there
is a secondary peak of TKE caused by the secondary plunging.

Figure 12 compares the streamwise variation of TKE averaged in the mixed-phase
region 〈kR〉yz for different Froude numbers. At all Froude numbers, a primary peak
occurs at approximately x − xp = 6.0. Regarding large Froude numbers (Fr ≥ 6.4), a
secondary peak of TKE occurs. Figure 13 compares the magnitudes of the two peaks
at different Froude numbers. At low Froude numbers, the magnitude of the primary
peak increases slightly as the Froude number increases. As the Froude number exceeds
Fr = 6.4, the magnitudes of both primary and secondary peaks decrease linearly with
an increasing Froude number. The observations from figure 13 indicate that the Froude
number imposes dual effects on TKE. At low Froude numbers, the entrained air volume
increases, and the shear is enhanced near the interface as the Froude number increases.
As a result, the magnitude of TKE increases with the Froude number for Fr ≤ 5.3. At
larger Froude numbers, Fr ≥ 6.4, the increase in the Froude number leads to a decrease in
the gravitational potential energy. Consequently, the vertical velocity and plunging angle

979 A27-15

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

10
81

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.1081


R. Li, Z. Yang and W. Zhang

x – xp
0

10

15

20

y

25

10 15

Primary peak of TKE

Primary peak of transverse

area of mixed-phase region

Secondary peak of transverse

area of mixed-phase region

Secondary peak of TKE

5 20 30

0.027

k

0.017

0.007

0.004

0.001

25

Figure 11. Contours of TKE at the mid-span. Dotted lines represent the edges of the mixed-phase region. The
results for Re = 1600 and Fr = 6.4 (case 6) are shown.
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Figure 12. Streamwise variation of TKE averaged in the mixed-phase region for various Froude numbers.

decreases when the jet hits the free surface. Furthermore, at higher Froude numbers,
more droplets are generated, resulting in secondary plunging. These effects lead to the
distribution of TKE in a wider streamwise range at higher Froude numbers, resulting in a
smaller peak value.

The transport equation of TKE in variable-density flows is expressed as (Chassaing et al.
2002)

∂k
∂t

= 0 = CK + DKt + PK + DKp + DKv + εK + AK. (3.11)

The budget terms on the right-hand side of (3.11) include the convection term CK,
turbulence diffusion term DKt, production term PK, pressure diffusion term DKp, viscous
diffusion term DKv , dissipation term εK, and the TMF correlation term AK. These terms
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Figure 13. Variation of the magnitudes of the primary peak (red circle symbols) and secondary peak (blue
square symbols) of TKE with respect to the Froude number.

are defined as follows:

CK = −∂
(
kūj
)

∂xj
, (3.12)

DKt = −
∂
(

1
2 ρu′

iu
′
iu

′
j

)
∂xj

, (3.13)

PK = −ρu′
iu

′
j
∂ ūi

∂xj
, (3.14)

DKp = −∂p′u′
i

∂xi
, (3.15)

DKv =
∂τ ′

iju
′
i

∂xj
, (3.16)

εK = −τ ′
ij
∂u′

i
∂xj
, (3.17)

AK = ρu′
i

Fr2 δi2 − ρu′
i

(
∂ ūi

∂t
+ ūj

∂ ūi

∂xj

)
. (3.18)

Figure 14 shows the streamwise variation of the budget terms of 〈kR〉yz averaged in
the mixed-phase region. The results for Re = 1600 and Fr = 6.4 are shown. Similar to
many single-phase flows, the balance between the production term PK and dissipation
term εK dominates the transport of TKE. The convection term CK is positive upstream
and becomes negative downstream, indicating the energy convection from upstream
to downstream. The magnitude of the TMF correlation term AK is smaller than the
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Figure 14. Streamwise variation of the budget terms in the transport equation of TKE averaged in the
mixed-phase region. The results for Re = 1600 and Fr = 6.4 (case 6) are shown.

production term PK. This indicates that the closure model of single-phase turbulence can
be referenced by the mixed-phase turbulence induced by a plunging jet.

3.6. Turbulent mass flux and its transports
It is understood from (3.4)–(3.10) that there are two unclosed terms in the mean momentum
equation of the mixed-phase turbulence. The first term is the Reynolds stress tensor, and it
is usual to consider its isotropic part (i.e. TKE) for closure problems. The analysis of the
TKE transport equation in § 3.5 shows that its budget remains similar to many single-phase
turbulent flows. The energy generated by the TMF correlation term is relatively small.
Thus the closure model single-phase flow can be adopted. However, § 3.4 shows that the
TMF term plays an important role in the transport of the mean momentum. Therefore, its
closure model also needs to be considered for industrial applications. Hendrickson & Yue
(2019) developed an algebraic model for TMF based on their LES data of the wake of a
three-dimensional dry transom stern. Their a priori tests showed that it is challenging to
obtain a high correlation coefficient between the model and LES data. Another strategy
to close the TMF term is to develop a dynamic model, which requires an analysis of its
transport equation. In this subsection, we investigate the effects of the Froude number on
TMF, followed by its transport equation.

Figures 15(a) and 15(b) show the contours of ρu′ and ρv′, respectively, at the mid-span
for Re = 1600 and Fr = 6.4. The upper and lower dotted lines represent the edges of the
mixed-phase region. The dash-dotted line in figure 15(a) represents the mean location of
the free surface corresponding to ψ̄ = 0.5. As shown in figure 15(a), ρu′ is positive above
the mean free surface, indicating the downstream transport of water droplets. Below the
mean free surface, ρu′ is negative valued, corresponding to the downstream transport of
bubbles. Figure 15(b) shows that near both the primary and secondary plunging points,
ρv′ is positive, indicating air entrainment. Shortly downstream of the plunging points, ρv′
changes its sign to negative, corresponding to bubble detrainment.

Figure 16 compares the streamwise variation of TMF averaged in the mixed-phase
region for different Froude numbers. Figure 16(a) shows that the negative value of ρu′
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Figure 15. Contours of (a) streamwise TMF component ρu′ and (b) vertical TMF component ρv′ at the
mid-span. The upper and lower dotted lines represent the edges of the mixed-phase region. The dash-dotted
line in (a) represents the mean location of the free surface. The results for Re = 1600 and Fr = 6.4 (case 6) are
shown.

dominates in the mixed-phase region. Recalling that negative and positive ρu′ correspond
to downstream convection of bubbles and droplets, respectively, the negative value
of 〈ρu′R〉yz indicates that the downstream transport of air beneath the free surface is

dominant. The primary peak of the negative-valued 〈ρu′R〉yz occurs downstream of the
plunging point. Its magnitude increases as the Froude number increases. This indicates
that more bubbles are convected downstream at higher Froude numbers. When Fr ≥ 6.4,
there exists a secondary peak in 〈ρu′R〉yz. However, it shows a different trend of the
secondary peak as the Froude number increases. This is because the convection of droplets
above the surface balances part of the bubble motion beneath the surface. At large Froude
numbers, water splash-up induces droplets, resulting in the decrease in the magnitude of
the secondary negative-valued peak of 〈ρu′R〉yz.

Figure 16(b) shows that 〈ρv′R〉yz is positive near the plunging point, indicating air

entrainment in this region. The magnitude of 〈ρv′R〉yz is small at Fr = 3.2 and 4.2.
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Figure 16. Streamwise variation of TMF 〈ρu′
i
R〉yz averaged in the mixed-phase region for various Froude

numbers: (a) streamwise component and (b) vertical component.

It increases as the Froude number increases from 4.2 to 6.4. As the Froude number
continues to increase, its magnitude decreases slightly, but the streamwise range with
positive 〈ρv′R〉yz expands. This indicates that the air entrainment takes place in a larger

streamwise region at a higher Froude number. A negative peak of 〈ρv′R〉yz occurs for
Fr ≥ 6.4, caused by the bubble detrainment after the secondary plunging. The magnitude
of this negative-valued peak of 〈ρv′R〉yz increases as the Froude number increases from
6.4 to 9.6, indicating that more bubbles are detrained at higher Froude numbers.

To investigate the closure of TMF, we examined the following transport equation of
TMF:

∂ρu′
i

∂t
= 0 = CTi + PT(1)i + PT(2)i + DTi + ETi. (3.19)

The budget terms on the right-hand side include the convection term CTi, the production
terms PT(1)i and PT(2)i corresponding to the velocity gradient and density gradient,
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respectively, the turbulent diffusion term DTi, and a combining term ETi. The definitions
of these terms are given as follows:

CTi = −
∂
(
ρu′

i ūj

)
∂xj

, (3.20)

PT(1)i = −ρu′
j
∂ ūi

∂xj
, (3.21)

PT(2)i = −u′
iu

′
j
∂ρ̄

∂xj
, (3.22)

DTi =
∂ρ̄ u′

iu
′
j

∂xj
−
∂ρu′

iu
′
j

∂xj
, (3.23)

ETi =
(
ρ̄

1
ρ

∂p
∂xi

− ∂ p̄
∂xi

)
+
(
∂τ̄ij

∂xj
− ρ̄

1
ρ

∂τij

∂xj

)
. (3.24)

The combining term ETi consists of a pressure gradient part and a viscous stress part. From
its expression, it is understood that this term is essentially the difference between their
time-averaged values (i.e. ∂ p̄/∂xi and ∂τ ij/∂xj) and their density-weighted time-averaged
values (i.e. ρ̄ρ−1 ∂p/∂xi and ρ̄ ρ−1 ∂τij/∂xj). To perform density-weighted time averaging,
the instantaneous density needs to be interpolated. Due to the use of sharp-interface
treatment in the present simulation, the instantaneous density ρ varies sharply across the
interface. As a result, the interpolation of ρ causes oscillations near the interface, resulting
in non-physical values. Therefore, in the present study, the pressure gradient and viscous
stress terms are combined into one term, ETi, and its value is determined indirectly as
the opposite number of the summation of other terms. This treatment is supported by the
assumption that ∂ρu′

i/∂t = 0 is attained, because a sufficiently long time duration is used
for performing time averaging.

Figure 17 shows the streamwise variation of the budget terms of TMF averaged in
the mixed-phase region for Re = 1600 and Fr = 6.4. Figure 17(a) shows that all budget

terms of 〈ρu′R〉yz are active near the jet plunging point. Downstream, the convection term
CT1, production term corresponding to the velocity gradient PT(1)1 and turbulent diffusion
term DT1 decay to a relatively small value, and the budget is balanced mainly by the
production term corresponding to the density gradient PT(2)1 and combining term ET1.
From figure 17, it is seen that the balance between the production term corresponding
to the density gradient PT(2)2 and combining term ET2 also dominates the budget of the

vertical component of TMF 〈ρv′R〉yz.
Regarding the closure of (3.19), the convection term CTi and production term

corresponding to the velocity gradient PT(1)i do not require modelling. The turbulent
diffusion term DTi, which can be seen as a diffusion effect of velocity fluctuations on
TMF, is important near the plunging point, where the turbulent fluctuations are strong.
This term can be modelled by estimating a characteristic diffusion velocity through TKE.
The combining term ETi is an important transportation term, but due to the lack of reliable
data and deeper understanding, it is currently difficult to develop a rational closure model
for this term. Since both the pressure and viscous stress fluctuations are induced by
the velocity fluctuations, ETi can be seen as a passive response of the flow field to the
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Figure 17. Streamwise variation of the budget terms in transport equation of (a) the streamwise component
and (b) the vertical component of TMF averaged in the mixed-phase region. The results for Re = 1600 and
Fr = 6.4 (case 6) are shown.

change in the other budget terms of TMF, and possibly it can be modelled as a diffusion
effect corresponding to an artificial viscosity. The production term PT(2)i is related to the
density gradient caused by the two-phase mixture, which is an important source of TMF.
Therefore, it is crucial to close PT(2)i in a dynamic model of TMF.

Figure 18 compares the streamwise variation of PT(2)i averaged in the mixed-phase
region at different Froude numbers. At lower Froude numbers (Fr ≤ 5.3), 〈PT(2)R1 〉yz shows
a sharp peak near the jet impact point, and its absolute value increases as the Froude
number increases. At higher Froude numbers (Fr ≥ 6.4), 〈PT(2)R1 〉yz shows two peaks
corresponding to the two plunging events, and their magnitudes both decrease with an
increasing Froude number. From the comparison between figures 18(a) and 18(b), it is
understood that despite the opposite sign, 〈PT(2)R2 〉yz is similar to 〈PT(2)R1 〉yz in terms of
both the variation in the streamwise direction and the Froude number effect.
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Figure 18. Streamwise variation of the production term corresponding to the density gradient PT(2)i averaged
in the mixed-phase region for various Froude numbers: (a) streamwise component and (b) vertical component.

The consistency between the production term PT(2)i and TKE is better than that
between TMF and TKE. Specifically, TKE shows two peaks at large Froude numbers
(Fr ≥ 6.4), and the magnitudes of both peaks decrease as the Froude number increases
(figure 12). Although TMF also shows two peaks at large Froude numbers (Fr ≥ 6.4), their
magnitudes show different trends as the Froude number increases (figure 16). Furthermore,
the secondary peak value of 〈ρv′R〉yz is negative, while both peaks of 〈PT(2)R2 〉yz are
positive. This indicates that PT(2)i can be modelled through TKE.

Based on the above analyses, we propose a closure model for PT(2)i as

PT(2)i = −Ci u′
ku′

k
∂ρ̄

∂xi
, (3.25)

where Ci is the model coefficient. A linear least squares fit between PT(2)i and
−u′

ku′
k ∂ρ̄/∂xi in the mixed-phase region is used to determine the model coefficient.
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Case Fr C1 R1 C2 R2

3 3.2 0.54 0.77 0.30 0.89
4 4.2 0.44 0.87 0.36 0.94
5 5.3 0.46 0.84 0.35 0.97
6 6.4 0.34 0.65 0.35 0.91
7 7.5 0.46 0.82 0.34 0.95
8 8.6 0.47 0.83 0.34 0.95
9 9.6 0.49 0.82 0.31 0.93

Table 2. Model coefficients in (3.25) and conditioned correlation coefficients between the two sides of
(3.25) in the mixed-phase region. The two columns of Ci and Ri correspond to the streamwise and vertical
components, respectively.

Case Fr R1 R2

3 3.2 0.43 0.30
4 4.2 0.11 0.28
5 5.3 0.20 0.28
6 6.4 0.15 0.42
7 7.5 0.25 0.10
8 8.6 0.22 0.04
9 9.6 0.25 0.07

Table 3. Correlation coefficients between the two sides of (3.26) in the mixed-phase region. The two
columns of Ri indicate the streamwise and vertical components, respectively.

The model coefficients and conditioned correlation coefficients Ri between the two
sides of (3.25) at different Froude numbers are listed in table 2. The coefficients of
the streamwise and vertical components of (3.25) are displayed, while the spanwise
component is not shown because the spanwise component of TMF is much smaller than the
other two components. The correlation coefficient of the vertical component exceeds 0.89,
and the model coefficient C2 varies little with the Froude number. This indicates that PT(2)2
can be well estimated by the proposed model. Although the accuracy of the streamwise
component estimated by the model is not as good as that of the vertical component, the
correlation coefficients of the streamwise components are all above 0.55, which is overall
higher than the correlation coefficient of the model that directly fits TMF using TKE in
Hendrickson & Yue (2019).

In the above discussion, the Reynolds stress (without density) u′
iu

′
j is modelled using

TKE (without density) u′
ku′

k. In single-phase turbulence, the Reynolds stress is modelled
conventionally by the strain-rate tensor S̄ij = (∂ ūi/∂xj + ∂ ūj/∂xi)/2 via an eddy viscosity.
In view of this, we also examine the feasibility of incorporating an eddy viscosity model
in the closure of PT(2)i . In this situation, the closure model for PT(2)i is expressed as

PT(2)i = 2νeS̄ij
∂ρ̄

∂xj
, (3.26)

where νe is the eddy viscosity. We calculate the correlation coefficients between the two
sides of (3.26), which are listed in table 3. By contrasting tables 2 and 3, it is understood
that the correlation coefficients between the two sides of (3.26) are smaller than those of
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(3.25), indicating that (3.25) is more appropriate for modelling PT(2)i in the mixed-phase
turbulence generated by a plunging jet.

4. Conclusion

In the present study, we performed high-resolution interface-resolved LES to study the
mixed-phase turbulence induced by a water jet plunging into a quiescent pool. Among
all simulation cases, the Reynolds number ranged from 1.6 × 103 to 1.6 × 105, and the
Froude number ranged from 3.2 to 9.6. Because the effect imposed by the Reynolds
number on the turbulent statistics was found to be less significant than that imposed by the
Froude number, we focused mainly on the effects of the Froude number on the turbulent
statistics in this paper. The simulation results showed that increasing the Froude number
led to an increase in the area of the mixed-phase region. To facilitate direct comparison
of turbulent statistics among different cases, a conditioned average inside the mixed-phase
region was adopted. The main findings of this study are summarized below.

The mean velocity averaged in the mixed-phase region varies non-monotonically with
the Froude number. Among all Froude numbers under investigation, the magnitude of the
mean streamwise velocity reaches its maximum at an intermediate value Fr = 6.4. The
mean vertical velocity shows a single negative-valued peak for low Froude numbers with
Fr ≥ 5.3. As the Froude number increases to Fr ≥ 6.4, water splash-up and secondary
plunging occur, causing a positive-valued peak and a secondary negative-valued peak. The
complex behaviour of the mean velocity is correlated to the nonlinear effects associated
with the mixed-phase turbulence, which requires an accurate closure model in industrial
applications.

To discuss the closure problem of the Reynolds-averaged mean momentum equation, we
analysed TKE, TMF and their transport equations. Our simulations show that TKE also
varies non-monotonically with an increasing Froude number. At low Froude numbers,
TKE shows a single peak near the plunging point. The magnitude of this peak increases as
the Froude number increases from 3.2 to 5.3. As the Froude number increases to Fr ≥ 6.4,
the secondary plunging induces a secondary peak in TKE. The magnitudes of both the
primary and secondary peaks of TKE decrease as the Froude increases from 6.4 to 9.6. The
analysis of the TKE transport equation shows that it is dominated by the balance between
the production and dissipation terms. The convection and turbulent diffusion terms are
mainly responsible for the spatial transport of the TKE. Although there exists a TMF
correlation term in the TKE transport equation, its magnitude is smaller than the above
dominant terms, indicating that the closure model of TKE for single-phase turbulence can
be used in the mixed-phase turbulence induced by the plunging jet.

Compared to the single-phase turbulence, the additional TMF term occurs in not
only the TKE transport equation, but also the mean momentum equation. Although the
importance of the TMF correlation term is found to be insignificant in the TKE transport
equation, its influence on the mean momentum transport is found to be important. The
streamwise component of TMF is positive above the mean water elevation, and negative
below the mean water elevation, corresponding to the streamwise convection of droplets
in the air and bubbles in the water, respectively. When the streamwise component of TMF
is averaged in the mixed-phase region, its value is negative, indicating that the convection
of bubbles dominates in the streamwise direction. As the Froude number increases, the
magnitude of the streamwise component of TMF increases, corresponding to enhanced
downstream convections of bubbles. The positive and negative vertical components of
TMF occur alternately along the streamwise direction. Due to air entrainment, the vertical
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component of TMF is positive near the plunging points. In the downstream, bubbles are
detained, causing a negative vertical component of TMF. As the Froude number increases,
the air entrainment is enhanced. This is characterized by the expansion of the streamwise
region with positive vertical TMF. Meanwhile, the downstream air detrainment is also
enhanced, as reflected by the magnitude of the increment in the negative peak of the
vertical TMF. In a further analysis of the TMF transport equation, it is discovered that
the production term corresponding to the density gradient shows high consistency with
the TKE in terms of both the streamwise variation and the response to the change in the
Froude number. Based on this finding, a model of this production term is proposed. The a
priori test shows a satisfactory correlation between the modelled value and LES data.

To finalize this paper, we compare the main findings of the present study on the
mixed-phase turbulence generated by the plunging jet with the results of Hendrickson &
Yue (2019) on the mixed-phase turbulence in a wake flow. The purpose of providing this
comparison is to evaluate whether the main conclusions of the present study are potentially
common for different types of mixed-phase turbulence, or they are special in plunging jets.
In the present study, it is discovered that the TKE transport is dominated by the balance
between the production and dissipation terms. This is similar to the wake flow. However,
the TKE generated by the TMF correlation term shows less significance in the plunging
jet than in the wake flow. As noted by Hendrickson & Yue (2019), the model for TMF is
needed to close the TKE transport equation in the mixed-phase wake turbulence. In terms
of the closure model of TMF, the results of both the present study and Hendrickson & Yue
(2019) show that the correlation between TMF and TKE is weak. We further investigated
the transport equation of TMF, and reached a new finding that the production term of
TMF corresponding to the density gradient is in good agreement with TKE, leading to a
closure model for the production term of TMF, which is potentially useful for the future
development of a dynamic model of TMF.

Supplementary movies. Supplementary movies for cases 3, 6 and 9 are available at https://doi.org/10.1017/
jfm.2023.1081.
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Appendix. Mesh-convergence test

In order to ensure that the results reported in this paper are independent of grid resolution,
case 6 (see table 1) is simulated on four different grids. The information about grids used
for conducting the mesh-convergence test is summarized in table 4. As shown, the grid
resolution is gradually refined from grid 1 to grid 4.

Figure 19 compares the results obtained from different grid resolutions. Figures 19(a– f )
show the results for the area of mixed-phase region SR, mean streamwise velocity 〈ūR〉yz,

mean vertical velocity 〈v̄R〉yz, TKE 〈kR〉yz, streamwise TMF 〈ρu′R〉yz, and vertical TMF

〈ρv′R〉yz, respectively. It is observed from figures 19(a–d) that the area of mixed-phase
region, mean velocity and TKE obtained from grids 2, 3 and 4 collapses. In comparison,
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Nx × Ny × Nz 
x 
y 
z Total grid number

Grid 1 570 × 210 × 100 0.132 0.129 0.130 11.97 million
Grid 2 750 × 270 × 130 0.100 0.100 0.100 26.32 million
Grid 3 1125 × 405 × 195 0.067 0.067 0.067 88.84 million
Grid 4 1500 × 540 × 260 0.050 0.050 0.050 210.60 million

Table 4. Information about grids used for resolution test.

SR

0 10 20 30 40

10

20

30
Grid 1
Grid 2
Grid 3
Grid 4

0 10 20 30 40
0.05

0.10

0.15

0.20

0.25

0.30

0 10 20 30 40

–0.05

0

0.05

0 10 20 30 40

0.003

0.006

0.009

0.012

0 10 20 30 40
–0.015

–0.010

–0.005

0

0.005

0 10 20 30 40
–0.005

0

0.005

0.010

0.015

x – x p x – x p

〈v
R 〉 y

z

〈k
R 〉 y

z
〈ρ

v′R
〉 yz

〈uR 〉 y
z

(e)

(b)(a)

(c) (d )

( f )

〈ρ
u′

R 〉 y
z

Figure 19. Streamwise variation of (a) area of mixed-phase region SR, (b) mean streamwise velocity 〈ūR〉yz,

(c) mean vertical velocity 〈v̄R〉yz, (d) TKE 〈〈kR〉yz, (e) streamwise TMF 〈ρu′R〉yz, and ( f ) vertical TMF 〈ρv′R〉yz,
obtained from different grids. Information about the different grids is given in table 4.

the TMF requires a finer grid resolution to converge. As shown in figures 19(e, f ), the

magnitude variations of 〈ρu′R〉yz and 〈ρv′R〉yz are respectively 25 % and 20 % between
grids 2 and 3, while they reduce to 5 % and 4 % as the resolution is further refined from
grid 3 to grid 4. This comparison indicates that grid 3 is needed to obtain accurate results
for 〈ρu′R〉yz and 〈ρv′R〉yz. Therefore, grid 3 is used for the simulations of other cases in the
present study.
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