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LAPLACE TRANSFORMS OF PROBABILITY
DISTRIBUTIONS AND THEIR INVERSIONS
ARE EASY ON LOGARITHMIC SCALES

A. G. ROSSBERG,∗ IIASA

Abstract

It is shown that, when expressing arguments in terms of their logarithms, the Laplace
transform of a function is related to the antiderivative of this function by a simple
convolution. This allows efficient numerical computations of moment generating
functions of positive random variables and their inversion. The application of the
method is straightforward, apart from the necessity to implement it using high-precision
arithmetics. In numerical examples the approach is demonstrated to be particularly useful
for distributions with heavy tails, such as lognormal, Weibull, or Pareto distributions,
which are otherwise difficult to handle. The computational efficiency compared to other
methods is demonstrated for an M/G/1 queueing problem.
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1. Introduction

Moment generating functions (MGFs) are frequently used in probability theory. However,
computing an MGF from a given distribution, and, even more so, computing a distribution from
a given MGF, can be challenging. Here, a new numerical method for these transformations
is proposed. The method is particularly powerful for distributions that are well behaved on
a logarithmic scale, e.g. for lognormal and other heavy-tailed distributions. Sums of such
distributions are encountered in analyses of problems as diverse as radio communication [4],
[6], [7], [24], tunnel junctions [21], turbulence [13], biophysics [18], [29], and finance [12],
[19]. Sums of lognormals have so far been difficult to handle [4], [8], [19], [21]. Since the
MGF is a variant of the Laplace transform, and since the theory applies to Laplace transforms
in general, we shall first introduce it in this framework, and discuss its application in probability
theory, including numerical examples, later on.

As shown for two examples in Figure 1(a) and (b), the graphs of the Laplace transform

[Lf ](s) =
∫ ∞

0
e−stf (t) dt = F(s)

of a function f (t) and of its integral
∫ 1/s

0 f (t) dt with reciprocal upper bound s > 0 look quite
similar. The similarity becomes even more striking when going over to logarithmic scales,
i.e. when comparing H(y) := F(ey) with h(y) := ∫ e−y

0 f (t) dt (see Figure 1(c) and (d)). In

Received 21 August 2007; revision received 18 February 2008.
∗ Postal address: Evolution and Ecology Program, International Institute for Applied Systems Analysis (IIASA),
Schlossplatz 1, 2361 Laxenburg, Austria. Email address: axel@rossberg.net

531

https://doi.org/10.1239/jap/1214950365 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1214950365


532 A. G. ROSSBERG

0 2 4 6 8 10
s

0.0

0.2

0.4

0.6

0.8

1.0

0 2 4 6 8 10
s

0

1

2

3

4

10–2 10–1 100 101

s
10–4 10–2 100 102

s

0

1

2

3

4

(a) (b)

(c) (d)

0.0

0.2

0.4

0.6

0.8

1.0

Figure 1: Examples comparing the integral
∫ 1/s

0 f (x) dx (solid line) with the Laplace transform (dashed
line) of functions f (x). (a) f (x) = 1 for x < 1, f (x) = 0 otherwise, (b) f (x) = sin[ln(x + 1)]/x,
(c) f (x) same as (a), but on semi-logarithmic axes, and (d) f (x) same as (b), but on semi-logarithmic

axes.

fact, as is shown below, H(y) can be obtained from h(y) by a simple convolution. Conversely,
h(y), and therefore the inverse of the Laplace transform, can be computed from H(y) by
a deconvolution, which can be efficiently implemented numerically using fast Fourier trans-
forms (FFTs).

The problem of numerically inverting Laplace transforms has persistently attracted attention.
Valkó and Vojta [28] compiled a list of over 1500 publications devoted to it dating from 1795
to 2003. Important methods used today are, for example, the Gaver–Stehfest method [14],
[25] and its variants [27], the Euler algorithm [10], and the Talbot algorithm [26]. Abate and
Whitt [3] recently compared these methods within a generalized formal framework.

2. General theory

2.1. Main theorem

To see that, on a logarithmic scale, the Laplace transform and integral of a function are
related by a convolution, first recall the following simple fact not always stated precisely in the
textbooks.
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Lemma 1. Let f : R
≥0 → R (or a corresponding linear functional) and assume that its

Laplace transform [Lf ](s) is defined for all s > 0. Define g(x) := ∫ x

0 f (t) dt . Then

[Lf ](s) = s[Lg](s) for all s > 0. (1)

Proof. Formally, this is, of course, just an integration by parts:
∫ T

0
e−stf (t) dt = e−sT

∫ T

0
f (t) dt + s

∫ T

0
e−st g(t) dt. (2)

Subtle is only the question if the boundary term vanishes as T → ∞. It does, because
∣∣∣∣e−sT

∫ T

0
f (t) dt

∣∣∣∣ = e−sT /2
∣∣∣∣
∫ T

0
e−sT /2f (t) dt

∣∣∣∣
< e−sT /2

∣∣∣∣
∫ T

0
e−st/2f (t) dt

∣∣∣∣, (3)

and the last integral converges to [Lf ](s/2) as T → ∞, which is finite by assumption, while
the exponential factor goes to 0. Thus, (2) converges to (1) as T → ∞.

The following theorem immediately follows.

Theorem 1. Under the conditions of Lemma 1, with h(y) := g(e−y), H(y) := [Lf ](ey), and
K(y) := exp(−ey)ey for all y ∈ R,

H = K ∗ h, (4)

where ‘∗’ denotes the convolution operator.

Note that, in a less precise but more transparent notation, (4) reads as

[Lf ](ey) = [exp(−ey)ey] ∗
∫ e−y

0
f (z) dz.

Proof of Theorem 1. Apply Lemma 1 and then change variables by letting T = e−x :

H(y) = ey[Lg](ey)

= ey

∫ ∞

0
exp(−eyT )g(T ) dT

=
∫ ∞

−∞
exp(−ey−x)ey−xg(e−x) dx

=
∫ ∞

−∞
K(y − x)h(x) dx

= [K ∗ h](y).

2.2. Representation in Fourier space

The convolution in (4) and its inversion are efficiently computed in Fourier space. Define,
for any function g(x), its Fourier transform g̃(k) such that

g̃(k) =
∫ ∞

−∞
e−ikxg(x) dx, g(x) =

∫ ∞

−∞
eikx

2π
g̃(k) dk.
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(The function g̃(k) might have to be interpreted as a linear functional.) Then

H̃ (k) = K̃(k)h̃(k).

The Fourier transform of the kernel can be obtained by a change of variables u = ey as

K̃(k) =
∫ ∞

−∞
K(y)e−iky dy

=
∫ ∞

−∞
exp(−ey)eye−iky dy

=
∫ ∞

0
e−uu−ik du

= �(1 − ik).

Thus,

h̃(k) = H̃ (k)

�(1 − ik)
.

At this point it is interesting to note that 1/�(1 + z) is an entire function [20] and that the
coefficients dn of its Taylor series

1

�(1 + z)
=

∞∑
n=0

dnz
n

are known to be given by d0 = 1 and the recursion [15]

(n + 1)dn+1 = γEdn +
n∑

k=1

(−1)kζ(k + 1)dn−k for n ≥ 0,

where γE is Euler’s constant and ζ(x) = ∑∞
n=1 n−x denotes Riemann’s zeta function. The

coefficients dn have been shown to decay to 0 faster than (n!)−(1−ε) for any ε > 0 [17]. This
might sometimes be sufficiently fast to obtain a convergent series representation of h(x) as

h(x) = 1

2π

∫ ∞

−∞
eikx

∞∑
n=0

dn(−ik)nH̃ (k) dx

=
∞∑

n=0

dn

(
− d

dx

)n

H(x).

Numerically, this expansion has already been demonstrated to yield accurate results [22]. It
would be interesting to understand under which conditions and at what computational cost this
pointwise Laplace inversion formula will generally converge.

2.3. Application to probability theory

The MGF M(t) of a real-valued random variable (RV) U with cumulative distribution
function (CDF) P(u) = P[U ≤ u] is defined as the expectation value M(t) = E etU =∫ ∞
−∞ etu dP(u). Let p(u) = dP(u)/du denote the probability density of U (possibly defined

in the functional sense), and assume that U attains only positive values, i.e. p(u) = 0 for u ≤ 0.
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Then, obviously, M(−t) = [Lp](t). Note that M(−t) = E e−tU ≤ 1 for t ≥ 0, even if all
moments of U are undefined. Hence, the corresponding Laplace transform is always defined
for positive arguments, and the above considerations apply with

f (u) = p(u), h(y) = P(e−y), and H(y) = M(−ey).

Equation (4) then becomes
M(−ey) = K(y) ∗ P(e−y). (5)

Invertibility of the Laplace transform of p(u) implies that knowledge of M(t) for negative
arguments is sufficient to recover p(u). The standard procedure to compute moments of U

directly from derivatives of M(t) at t = 0 turns out to be numerically difficult when using (4),
but efficient methods exist to compute moments of the logarithm of U directly from M(t) [22].
These can be used, among others, to construct lognormal approximations of a RV from a given
MGF.

The fact that a convolution of densities on logarithmic scales corresponds to a multiplication
of RVs implies a close relationship between multiplication and Laplace transforms, which is
reflected by the following theorem.

Theorem 2. Let X and � be two independent RVs such that X is always positive and � is
exponentially distributed with E � = 1. Denote by MX the MGF of X and by PZ the CDF of

Z := �

X
. (6)

Then
MX(−t) = 1 − PZ(t) for any t > 0. (7)

Proof. Define z = ln Z, λ = ln �, and x = ln X, and denote by PX(t) the CDF of X.
Taking logarithms on both sides of (6) yields z = λ + (−x). The density of λ equals K(λ),
since e−� d� = exp(−eλ)eλ dλ = K(λ) dλ. The CDF of −x is 1 − PX(e−x). By the rule for
the distribution of sums of independent RVs, the CDF of z, i.e. P[z < y] = PZ(ey), equals
K(y)∗ (1−PX(e−y)) = 1−K(y)∗PX(e−y). Thus, by (5), 1−PZ(ey) = K(y)∗PX(e−y) =
MX(−ey), which proves (7) with y = ln t .

3. Numerical examples

3.1. General considerations

For the application to probability theory described above, it is not difficult to see that
h(y), H(y) → 0 as y → ∞ and h(y), H(y) → 1 as y → −∞. Thus, for any numerical
range of integration [y0, y1], direct FFTs of h(y) or H(y) would lead to artifacts because these
functions are not periodic.

With sufficiently small y0 and sufficiently large y1, approximate periodicity can, for example,
be achieved by splitting h(y) = h1(y) + h0(y), with

h0(y) = y − y1

y0 − y1
.

Then H = K ∗ h is obtained as the sum H(y) = H1(y) + H0(y), where H1 = K ∗ h1 is
computed numerically using FFTs over [y0, y1] and

H0(y) = [K ∗ h0](y) = y − y1 + γE

y0 − y1
.
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The calculations used to evaluate the numerical examples hereafter are therefore character-
ized by four parameters: the lower y0 and upper y1 end of the interval taken into account, the
number N of equally spaced mesh points in this interval at which h(y) and H(y) are computed,
and the numerical accuracy ε at which computations are done. High-precision arithmetics are
needed, just as for other methods of Laplace transform inversion [1].

While the implementation of the algorithm is straightforward when an arbitrary-precision
FFT library is available, there is no systematic method, yet, for setting the parameters to achieve
a desired accuracy of the output. Things to keep in mind when choosing the parameters are
that −y0 and y1 need to be large enough to avoid aliasing and N must be sufficiently large to
resolve h(y) on the scale (y1 − y0)/N . For an appropriate choice of ε, note the following:
after performing the desired manipulations of H(y), we obtain another generating function
H ′ for which the corresponding distribution is to be computed. The deconvolution of H ′(y)

(or H ′
1(y)) to obtain h′(y) (or h′

1(y)) is, as any deconvolution, sensitive to numerical errors in
H ′(y). A simple rule for suppressing artifacts from such errors is to set all the Fourier modes
of h̃′

1(k) = H̃ ′
1(k)/K̃(k) to 0 that lie beyond the absolute minimum of the power spectrum

of h′
1(y), estimated by some local averaging of |h̃′

1(k)|2. This procedure is justified, because
smoothness arguments suggest that |h̃′

1(k)|2 → 0 as |k| → ∞. The numerical value of the
minimum power gives a coarse estimate of the achievable accuracy (squared), and can be used
to tune ε.

3.2. Sum of two lognormals

As a first simple example, the CDF of the sum of two lognormal RVs exp(ξ1) and exp(2ξ2)

with independent standard normal ξ1 and ξ2 is computed. The MGF of the sum is obtained
as the product of the MGF of the two distributions. Using the method described above with
−y0 = y1 = 40, N = 256, and ε = 10−20, the CDF of the sum can be computed to a
numerical accuracy better than 2 × 10−12, as is illustrated in Figure 2. The precise CDF used
for comparison was obtained by a direct numerical convolution of the density of exp(ξ1) with
the CDF of exp(2ξ2) using a high-precision integration algorithm. The comparison shows that
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Figure 2: The CDF of the sum exp(ξ1)+exp(2ξ2) with independent standard normal ξ1 and ξ2, computed
using the methods described here. The black circles correspond to the numerical grid, the solid line is
a 5th order spline interpolation, and the dashed lines represent the CDF of the two addends. Absolute

numerical errors are indicated by the crosses.
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the numerical error is of the same order of magnitude at any point of the CDF. This observation
suggests that the accuracy at which the CDF and the MGF were computed by the algorithm can
be estimated a posteriori by the precision at which H(y) respectively h(y) converge to 0 or 1
in the tails.

3.3. Sums of 111 Weibull distributions

The next two examples are numerically more challenging. Consider sums S := ∑R
i=1 Xi of

R = 111 independent and identically distributed RVs Xi following a Weibull distribution:

W(x) := P[Xi > x] = exp(xβ).

First, the CDF corresponding to a shape parameter β = 0.5 is computed. Parameters for the
numerical Laplace transform are chosen as −y0 = y1 = 250, N = 213, and ε = 10−50. The
tail of the complementary CDF of the sum is shown in Figure 3. For S > 2000, numerical
errors (aliasing) dominate the result. The size of these errors (less than 10−16) indicates the
numerical accuracy achieved. Near its expectation value 222, the distribution of the sum is
well described by a normal distribution (standard deviation 47.1, dashed line in Figure 3). For
large S, it approaches the asymptote P[S > x] ∼ RW(x) (dash–dotted line in Figure 3). To
check if the result is also correct between these limits, the conditional Monte Carlo method
proposed by Asmussen and Kroese [5] was used. Specifically, P[Si > x] was estimated by the
average of 1000 pseudo-random realizations of

RW

(
max

(
X1, . . . , XR−1, x −

R−1∑
i=1

Xi

))
. (8)
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Figure 3: Complementary CDF of the sum S of 111 independent Weibull RVs with shape parameter
β = 0.5, as computed by the method described here (for negative numerical results, the absolute value is
shown). The black circles correspond to the numerical grid, the solid line is a 5th order spline interpolation
on a logarithmic scale, the dashed line corresponds to a normal approximation, and the dash–dotted
line corresponds to the tail approximation valid when the sum is dominated by the single largest term.
Simulation results are marked by crosses. Five independent results were obtained at x = 1000 and

x = 2000, which are visually indistinguishable here.
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Figure 4: Complementary CDF of the sum S of 111 Weibull RVs with shape parameter β = 0.8. Other
details are as in Figure 3. Compared to Figure 3, the simulation results (crosses at x = 200 and x = 240)

become inaccurate here.

As a consistency check, five realizations of this average were sampled. At x = 1000, values
ranged from 1.17 × 10−10 to 1.47 × 10−10, while the Laplace method yields 1.35 × 10−10.
Similarly, good agreement was achieved at x = 2000 (Figure 3), thus, confirming that the
complementary CDF is accurate down to probabilities of 10−16.

Next, the CDF for shape parameter β = 0.8 was evaluated. With the same values for y0,
y1, N , and ε as above, errors from aliasing are now approximately 10−9. In the range x = 150
to x = 240, as shown in Figure 4, neither the normal approximation nor the asymptotic tail
formula are reliable. Additionally, Monte Carlo simulations based on (8) (again averaged over
1000 samples) now scatter strongly. Equation (8) is known to become inefficient for large x

when β > 0.585 [5]. An independent verification of the CDF found here for β = 0.8 might
therefore be difficult.

3.4. Waiting times in M/P/1 queues

Finally, we take up one of the numerical examples used recently to demonstrate a new
method for computing waiting time distributions in M/G/1 queues with heavy-tailed service
time distributions [23]. In the example considered here, the service times Xi follow a Pareto
distribution of the form ∫ x

0
B(t) dt = P[Xi < x] = 1 − (x + 1)−α.

This case is, for example, important for questions of network design [11]. The Laplace
transforms of the distributions of waiting time W(t) and service time B(t) are known to be
related as (see, e.g. [16])

[LW ](s) = (1 − ρ)s

s − (1 − [LB](s))λ , (9)

where λ is the arrival rate and ρ = λ E X is the load. Formally, (9) corresponds to a mixture
of sums of Xi with a geometric distribution of the number of terms. Equation (9) can be used
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Table 1: Parameters, numerical results, and computation times for the CDF F(t) of waiting times in
M/P/1 queues. Parameters λ and α were chosen such that ρ ≈ 0.8 [23]. Computation times are given
in seconds normalized to a 1GHz clock frequency. Note that in [23] F(t) was computed on 25 points
linearly spaced between 0 and 250, while here 128 grid points geometrically spaced between 3.1 × 10−7

and 3.3 × 106 are used.

Problem 1 Problem 2 Problem 3

λ 1.00 0.866666 0.8161616
α 2.25 2.083333 2.0202020

Current work

F(30) 0.904 0.854 0.830
F(100) 0.983 0.964 0.952
CPU time F(t) 0.6 0.6 0.6

Reference [23]

F(30) 0.904 0.854 –
F(100) 0.984 0.964 –
CPU time F(30) 4 9 –
CPU time F(100) 2.5 5.5 –
CPU time F(t) 4.5 22 35

to compute W(t). The challenge [23] is to compute the cumulative waiting time distribution
F(t) = ∫ t

0 W(τ) dτ in the interval 0 ≤ t ≤ 250 to an accuracy of 0.0005 for parameters α and
λ as given in Table 1.

Two points need attention before applying the method introduced here to this problem. First,
since [LB](s) → 1 as s → 0, small inaccuracies in LB will produce artifacts when computing
LW from (9). These artifacts were removed here by correcting the values of [LW ](s), obtained
numerically on the grid s = sk (with sk < sk+1 for all k) as follows: iterating from large to
small s, [LW ](si) was set to [LW ](si+1) if it was smaller than [LW ](si+1) and to 1 if it was
larger than 1.

Second, the transformations suggested in Section 3.1 to obtain periodic functions for the
FFTs fail for the back transformation if applied directly to [LW ](s), because this function
converges to (1 − ρ) for −y = log(s) → ∞, and not to 0. One way to fix this is to follow [23]
in going over to the waiting time distribution of the nonidle queue Wb(t) = W(t)/ρ (for t > 0).
This yields [LWb](s) = ([LW ](s)−(1−ρ))/ρ, which has the desired limits. A corresponding
relation holds for the CDF.

The required accuracy is comfortably reached by setting −y0 = y1 = 15, N = 27 = 128,
and ε = 10−30 for all three cases in Table 1. A 5th order spline was used to interpolate
between grid points. The numerical results mostly coincide with [23]. For F(100) = 0.983
in problem 1, only the last digit differs from that of [23]. In calculations with more ambitious
parameter settings, we obtain F(100) = 0.98316 . . ., confirming the present result.

Marked differences can be found when comparing computation times. Calculations here
were performed using a general-purpose mathematical command language on an UltraSPARC
IV+ 1.5GHz CPU. The times given in Table 1 are adjusted to a 1GHz clock rate. Contrary
to [23], no attempts were made to invert the Laplace transform for individual values of t .
Instead, FFTs were used to compute convolutions and deconvolutions as above, which yields
F(t) over the full range of t = ey . Depending on the problem, the improvement in computation
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time over the already highly efficient methods of [23] was seven to 58 fold (Table 1). However,
to be fair, we have to point out that the algorithms used there automatically determined the
parameters required to reach a specified accuracy, while this was done by trial and error here.
Refinements of the methods of [23], for example by using continued fraction representations
of the forward transform [2], might also be possible.

4. Concluding discussion

The results of the foregoing section demonstrate that the method to compute and invert
Laplace transforms proposed here can efficiently be applied to problems in probability theory.
The method is particularly powerful in situations involving distributions with heavy tails, which
are naturally represented on a logarithmic scale.

The most important application of the method is probably the computation of the CDF or
sums, or mixtures of sums, of independent RVs. But correlated lognormal variables can be
handled as well, provided that the correlation can be factored out of the sum. This is, for
example, the case for the sum S = ∑R

i=1 exp(ξi), where the ξi follow a multivariate normal
distribution such that c = cov(ξi, ξj ) is the same for all i 
= j and var ξi ≥ c for all i. In
an insurance setting this would correspond to the plausible assumption that, when the claim
of client i was K times larger than usual, the claims of other clients can be predicted to be
typically a factor cK/ var ξi higher than usual. To evaluate the CDF of S, note that S has the
same distribution as eY

∑R
i=1 exp(Xi) for independent normally distributed Xi and Y such that

E Xi = E ξi and E Y = 0, and var Xi = var ξi −c and var Y = c. The CDF of S can be obtained
by first computing the CDF of

∑R
i=1 exp(Xi) (where R may be an RV or constant) and then

incorporating the multiplication with eY as an addition on logarithmic scales, i.e. by a convolu-
tion of the distributions of the logarithms. Another type of sum of correlated lognormals with
a factorizable structure is

∑R
i=1 exp(

∑i
j=1 ξi) = (· · · ((exp(ξ1) + 1) exp(ξ2) + 1) exp(ξ3) · · · )

with independent, normal ξi . Such expressions occur in certain applications in finance, where
the ξi represent relative changes in the value of an asset over subsequent time intervals.

Since computationally the most expensive steps of the method proposed here are computing
the two FFTs for the Laplace transform and the two FFTs for the backward transform, the
computational complexity of the algorithm increases as N log N with the number of mesh
points. Most Laplace inversion algorithms working on linear scales appear to be at least of
order N2 (but see [9]). Open problems are how to choose optimal parameters for the numerical
scheme and how this affects the complexity of the algorithm.
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