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Abstract

A ring R is said to be a Baer (respectively, quasi-Baer) ring if the left annihilator of any nonempty subset
(respectively, any ideal) of R is generated by an idempotent. It is first proved that for a ring R and a
group G, if a group ring RG is (quasi-) Baer then so is R; if in addition G is finite then |G|~' s R.
Counter examples are then given to answer Hirano's question which asks whether the group ring RG is
(quasi-) Baer if R is (quasi-) Baer and G is a finite group with |G|"' 6 R. Further, efforts have been
made towards answering the question of when the group ring RG of a finite group G is (quasi-) Baer,
and various (quasi-) Baer group rings are identified. For the case where G is a group acting on R as
automorphisms, some sufficient conditions are given for the fixed ring RG to be Baer.

2000 Mathematics subject classification: primary 16S34; secondary 16E50.

1. Introduction

Throughout this paper R is assumed to be an associative ring with unity. For a
subset X of R, let IR(X) denote the left annihilator of X in R. A ring R is said to be
a Baer (respectively, quasi-Baer) ring if for any nonempty subset (respectively, any
ideal) X of R we have IR(X) = Re where e2 = e e R. The concept of a Baer ring
was introduced by Kaplansky in [9] to abstract properties of rings of operators on a
Hilbert space, while the notion of a quasi-Baer ring was first used by Clark [5] in 1967
to characterize when a finite dimensional algebra with unity over an algebraically
closed field is isomorphic to a twisted matrix units semigroup algebra. The definitions
of Baer and quasi-Baer rings are indeed left-right symmetric by [9] and [5]. For the
development and an up-to-date account of the study of quasi-Baer and Baer rings, we
refer to the article of Birkenmeier, Kim and Park [1].
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The objective of this paper is to consider the question of when a group ring is
(quasi-) Baer. Several related results can be recalled. If R is a quasi-Baer ring and Cx

is the infinite cyclic group and H is the discrete Heisenberg group, then the group
rings RCoo and RH are quasi-Baer. This result was obtained in [2], following the
authors' result that a ring R is quasi-Baer if and only if R[x] is quasi-Baer, and if and
only if R[x, x~l] is quasi-Baer. For an ordered monoid G, it was proved in Hirano [7]
that if R is a quasi-Baer ring then the monoid ring RG is quasi-Baer and that RG is a
reduced Baer ring if and only if the same is true of R. It was proved in [6] that if R
is a reduced ring and G is a so called 'u.p.' semigroup then the semigroup ring RG is
Baer if and only if the same is true of R. In [3], the authors proved that for a so-called
'u.p.' monoid G, the monoid ring RG is quasi-Baer if and only if the same is true
of R. The main idea in proving all these results is similar to that used in the cases of
(Laurent) polynomial rings and it does not help for the question of when a group ring
is (quasi-) Baer (which was raised in [1, Question 2.12]). In the Open Problem Section
of the Third International Symposium on Ring Theory (Kyongju, South Korea, 1999),
Hirano asked whether the group ring RG is quasi-Baer if R is quasi-Baer and G is a
finite group with IGT1 € R.

The group ring of a group G over a ring R is denoted by RG. Write Cn for the
cyclic group of order n. The following results are obtained: If RG is (quasi-) Baer
then so is R; if RG is quasi-Baer and G is a finite group then \G\~l e R. As a response
to Hirano's question, two integral domains Ru R2 with 2"1 6 R\ and 3"1 6 R2 are
constructed such that /?,C2i and /?2C3i are not quasi-Baer for any k > 2 or any / > 1.
We also construct a Baer ring R with 6"1 e R such that /?S3 is not Baer. In addition,
we prove that Hirano's question has a positive answer when G = C2 or G = S3 and
that if £>„ is the infinite dihedral group then RDoo is quasi-Baer if and only if R is
quasi-Baer. Two sufficient conditions are obtained for a fixed ring to be Baer.

For any finite subgroup H of a group G, we let H = J^heH h. If g e G has finite
order, we define g = H where H = (g). We write 1 for the ring of integers and ln

for the ring of integers modulo n. As usual, Q is the field of rationals and C denotes
the field of complex numbers. The imaginary unit is denoted by i. The n x n matrix
ring over R is denoted Mn(R).

2. Necessary conditions

We start by proving the following.

THEOREM 2.1. Let Rbea sub ring of a ring S such that both share the same identity.
Suppose that S is a free left R -module with a basis G such that 1 e G and ag = ga
for all a e R and all g e G. IfS is (quasi-) Baer then so is R.
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PROOF. We give the proof for the case of quasi-Baer rings and the proof for the case
of Baer rings is similar. Let / be an ideal of R. Since 5 is quasi-Baer, ls(SI) = Se
where e2 = e e S. Write e = aogaiO) -\ h anga{n) where ga(m = 1 and the ga(i) e G
are distinct and a, 6 R. Then for all a e / we have

0 = ea = (<zoga(O) + • • • + anga(n))a = aoagaiO) H 1- anaga(n),

which shows that ata = 0. There fo re a , / = 0 for / = 0, . . . , « . T h u s

UiSI = a,(®gfGRg)I = a, £](fl/)g = J^^Ig = 0.

So a, 6 \s(SI) — Se, which implies that a, = a,e. It follows that a\ = a0 e R.

Because aol — 0, we have Ra0 e lR(I). If r e lR(I) then

rSI = r(®geCRg)I = r £ ( * / ) * = J^r/g = 0.
So r e h(SI) = Se. This shows that

r = re = r(aoga(O) -\ h anga(n)) = raoga(O) -\ (- ranga(n).

So r = ra0 e ?̂a0- Hence lR(I) = Rao- d

COROLLARY 2.2. Le? R be a ring and G be a group. If the group ring RG is
(quasi-) Baer then so is R.

PROOF. Note that S = RG = ®g£GRg is a free left ^-module with a basis G
satisfying the assumptions of Theorem 2.1. •

COROLLARY 2.3. [2] IfR[x] or R[x, *- ' ] is (quasi-) Baer then so is R.

PROOF. R[X] and R[x, x~l] are free /?-modules with bases [x' : i = 0, 1,...} and
{x'' : i = 0, ±1, . . .} satisfying the assumptions of Theorem 2.1. •

THEOREM 2.4. If G is a finite group and the group ring RG is quasi-Baer then
\G\~*eR.

PROOF. It is well known that the augmentation ideal is co(RG) = J2g€C R^ ~ 8)
and IRC(CD(RG)) = RGG (see [11, Lemma 1.2, p.68]). Since RG is quasi-Baer, we
have

(2.1) RGG = RGe

where e2 = e € RG. There exists J2rg8 e RG s u c n t n a t e = {Hrg8)G =
)G. Thus(X;^)G = e = e2 = \G\( X>«)2G, which shows that
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Since RGG ^ 0, we have e ^ 0, so \G\ ^ 0. Hence the following claim has been
proved.

CLAIM 2.5. If a group ring of a finite group is quasi-Baer then the order of the
group is not zero in the coefficient ring.

Now let n = \G\ and r = £ r s . By (2.1), G =
Applying augmentation mapping to both sides yields

(2.3) n

By (2.2) and (2.3), it suffices to show that lR(n) = 0. Suppose that lR(n) ^ 0. Then
na = 0 for some nonzero a 6 R. Thus n(Ra) = R(na) = 0, so n e \R(Ra). Since R
is quasi-Baer by Corollary 2.2, lR(Ra) = Rf where f2 = f e R. Clearly / ^ 1, so
1 - / ^ 0 . Moreover, n(l - / ) = 0. But

(1 - f)(RG)(l - / ) = (1 - f)R(l - f)G.

Since RG is quasi-Baer, it follows by Clark [5] that (1 - f){RG){\ - / ) is quasi-Baer.
Therefore, SG is quasi-Baer where S = (1 - f)R(l - / ) • So n ^ 0 in S by the
Claim. This contradicts the fact that n(l — / ) = 0. Hence lR(n) = 0. The proof is
complete. •

The next fact is an immediate consequence of Theorem 2.4.

EXAMPLE 1. ZG is not quasi-Baer for any nontrivial finite group G.

EXAMPLE 2. Let G be a finite group and n be an integer with n > 1 . Then the
following are equivalent:

(1) ZnGisBaer.
(2) ZnG is quasi-Baer.
(3) gcd(n, |G|) = 1 and n is square-free.

PROOF. (1) clearly implies (2).
Suppose that (2) holds. Write n = p\' • • • ps

k
k where all pt are prime numbers

and st > 0. Then ln = ~lpn x • • • x Zp*, and ZnG = Z^. G x • • • x Zp>* G. It follows
from (2) that each Zp'. G is quasi-Baer. So Zp'( is quasi-Baer by Corollary 2.2 and pf
does not divide \G\ by Theorem 2.4. It follows that s, = 1 and p, does not divide \G\.
Hence (3) holds.

If (3) is satisfied then Z,,G is a semisimple ring by Maschke's Theorem, so (1)
holds. •

https://doi.org/10.1017/S1446788700036909 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700036909


[5] Baer and quasi-Baer group rings 289

3. Group rings of finite groups and Hirano's question

Let R be a ring and G be a finite group. If RG is (quasi-) Baer then R is (quasi-)
Baer and |G|~' e R. Thus it is natural to ask whether the converse holds true.
This question on quasi-Baer rings has been raised by Hirano [8]. In this section,
counter-examples to these questions are given and various (quasi-) Baer group rings
are identified.

LEMMA 3.1. If 2~l e R, then RC2 = R x R.

PROOF. Write C2 = {1, g}. If 2 ' 1 e R, then the mapping RC2 -> R x R given by
a + bg >-+ (a + b, a — b) is a ring isomorphism. •

COROLLARY 3.2. If 2"1 e R, then RC2 is (quasi-) Baer if and only if the same is
true of R.

LEMMA 3.3. // 2"1 6 R then RC4 = Rx Rx R[x]/(x2 + 1).

PROOF. Write C4 = {1, g, g2, g3} and let e = (1 + g2)/2. Since e is a central idem-
potent of RC4, we have RC4 = RC4e x RC4(l — e). Direct calculation shows that
RC4e = [re + sge : r, s <= R] and RC4{\ - e) = {r(l - <?) + sg(l - e) : r, s e R).
The mapping RC4e -*• R[x]/(x2 — 1) given by re + sge i->- r + sx is a ring
isomorphism. Similarly, the mapping RC4{\ — e) -» 7?[J:]/(A:2 + 1) given by
/•(I - e) + sg(l — e) (->• r + 5i is a ring isomorphism. Moreover, by Lemma 3.1
R[x]/(x2 - 1) = RC2 = R x R . D

COROLLARY 3.4. //" 2~' e /? r/i^n RC4 is (quasi-) Baer if and only if the same is
trueofR[x]/(x2+ 1).

LEMMA 3.5. Let Rbea ring with 3"1 € R and C3 = {l,g, g2}. Then the following
statements hold:

(1) e = \g is a central idempotent of RC3 and RC3 = (RC3)e x (RC3)(l - e),
where (RC3)e = {re : r e R) = R and

(RC3)(l -e) = {r + sg + ( - r - s)g2 : r, s e R).

(2) IfR£Cthen

RC3 = R[x]/(x* - 1) S *[*]/(* - 1) x R[x]/(x2 + x + 1)

= R x R[x]/(x2 + x + 1).
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PROOF. The verification of (1) is straightforward. If 1/3 6 R c C, then the ideals
(x — 1) and (x2 + x + 1) are coprime in R[x], so (2) follows by Chinese Remainder
Theorem. D

It follows that if R is a subring of C with 1/3 e R then RC3 is Baer if and only if
the same is true of R[x]/(x2 + x + 1).

THEOREM 3.6. Let Rbea subring ofC and let Q(R) denote the quotient field ofR.
Consider the polynomial x2 4- ax + b € R[x] with a2 — 4b ^ 0. Let w be a solution
of x2 + ax + b = 0 in C Then R[x]/(x2 + ax + b) is (quasi-) Baer if and only if
either w € R or Rw n R = 0 (that is, w <£ Q(R)).

PROOF. Let 5 denote the ring R[x]/{x2+ax+b). Letx2+ax + b = (x-w)(x-v)
where w, v e C. By hypothesis, w £ v. First suppose that w £ Q{R). Then S
is a subring of C and hence is a domain. In particular, S is Baer. Next suppose
that io € Q{R). Then v e Q{R). Define the map <p : R[x] -> Q(R) x <2(fl) by
y(f{x)) = (f(w), f(v)). Then the kernel of <p is (*2 + ax + b). Hence S can be
regarded as a subring of Q(R) x Q(R). Clearly S is not a domain. We can easily see
that S is Baer if and only if 5 contains the idempotent (1,0) e Q(R) x Q(R) and that
(1,0) e Sif and only if there exists rx+s € R[x] such that rw+s — 1 andru+s = 0.
Since x2 + ax + b = (x — w)(x — v), we deduce that (ar — l)s = [—(w + v)r — l]s =
[-(l-2s)-\]s = 2s(s-l) =2{-rv){-rw) = 2r2b. This implies that s is divisible
by r in R. Hence v = — s/r 6 R and so w — —a — v e R. •

Next we give counter-examples to Hirano's question for G = C3 and C4.

EXAMPLE 3. Let Ro = (n/2k : n e 2, k & non-negative integer}. Then Ro is a
subring of Q. Set

R - {a + 3bi:a,b e Ro).

Then /? is a subring of C with 1/2 e R. Because R is a domain, it is certainly Baer.
Clearly i £ /?. Moreover, for r = 3 and 5 = 3i, we have s = ri e Rin R. So,
by Theorem 3.6, R[x]/(x2 + 1) is not quasi-Baer. Hence RC4 is not quasi-Baer by
Corollary 3.4.

EXAMPLE 4. Let Ro — {n/3k : n € 1, k a non-negative integer}. Then Ro is a
subring of Q. Set

R = {a + bj3\ : a, b € fl0}-

Then # is a subring of C with 1/3 e i?. Because R is a domain, it is certainly Baer.
Let a = 2\/3i, b = - ( 3 + V3i) and w = 6/a. Then a, fc 6 /? and w = ( -1 + v/3i)/2
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is a root of x2 + x + 1. So Rw n R ^ 0 . Moreover, it is easy to verify that the equation
x2 + x + 1 = 0 is not solvable in R. Hence it follows by Theorem 3.6 and Lemma 3.5
that RC3 is not quasi-Baer.

THEOREM 3.7. If RG is Baer then so is RH for every subgroup H ofG.

PROOF. Let A be a nonempty subset of RH. Because RG is Baer and RH c RG,
we have \RG(A) = RGe, where e2 = e e RG. Write e = £A e W

 a>>n + £«*# bg8-
Then for all /3 e A,

(3.1)

Note that if h e H and g £ H then hg £ H. This shows that the support of
(X p̂rf// bgi)P is contained in G\// . So it follows by (3.1) that if a = J2hen a^ t n e n

a e \RH(A) C IRCC^) = RGe, and hence

heH \heH I Wtf / \heH / \g?H

Therefore a2 = a = cue and RHa C 1R//(A). If y e IRH(A) then y/i = 0. So
Y = ye = y(EheHahh) + y(£4*H*>«*). hence y = y(E*6w«*A) = yet. So
RHa = IRH(A). Hence /? is Baer. D

EXAMPLE 5. If R is the ring in Example 3 and G is a group containing a subgroup
isomorphic to C4, then RG is not Baer by Theorem 3.7. In particular, for all k > 2
the group ring RCIK is not Baer and hence not quasi-Baer. Similarly, if R is the ring
in Example 4 and G is a group containing a subgroup isomorphic to C3, then RG is
not Baer. In particular, for all & > 1 the group ring RCy is not quasi-Baer.

LEMMA 3.8. [4, Lemma 4.7] // 6~' e /?, fAen RS3 = R x R x M2(R).

A new family of quasi-Baer rings can be obtained as group rings of 53.

COROLLARY 3.9. Let 6"' e R. Then RS} is quasi-Baer if and only if the same is
true of R, and RS3 is Baer if and only if the same is true ofM2(R).

By Pollingher and Zaks [12, p. 134], there exists a Baer ring R such that 6"1 6 R
and M2(R) is not Baer, so /?53 is not Baer.

The next theorem gives another family of quasi-Baer group rings.
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THEOREM 3.10. Let D^ = {x, y : o(x) = 2, o(y) = oo, xyx = y~l) be the infinite
dihedral group. Then RDX is quasi-Baer if and only if R is quasi-Baer.

PROOF. The implication in one direction follows from Corollary 2.2. To prove the
converse, suppose that R is quasi-Baer. First notice that RD,*, = S[x;cr]/(x2 — 1)
where 5 = R[y, y~]] and a e Aut(/?) with <r(y) = y"1 and a{r) = r for all r e R
(see [10, p.22]). Let T = S[x; a]/{x2 - 1). We next show that T is a quasi-Baer ring.
Let A be a nonzero ideal of T and set

/ = {a e S : a + bx e A for some b e S),

J = [b e S : a +bx e A for some a e S).

Then / = J is an ideal of S. Because R is quasi-Baer, S is quasi-Baer by [2,
Theorem 1.2]. Thus l s ( / ) = Se where e2 = e e 5. We verify next that lr(A) = Te.
Because el = 0, we have eA = 0, soTe c lr(A). Letc + <lx: e lr(A) where c, <i € S
and let a0 e I. Then there exists 60 6 / such that aQ + box e A. Therefore, for all
a e S, we have

0 = (c + dx)a(a0 + box) = (c + dx)(aa0 + abox)

= [caa0 + da(a)a(^o)] + [cab0 + da{a)a(ao)]x.

It follows that, for all a e S,

caa0 + da(a)a(b0) = 0 and cab0 + da (a)a (a0) = 0.

Thus, letting a = y" (n € Z) yields

cyna0 + dy-"a(b0) = 0 and cy"b0 + dy-"a(a0) = 0.

Since y" is in the center of 5, it follows that

(3.2) v2nca0 = -da(b0) and y^cbo = -da(a0).

Because (3.2) holds for all n e Z and because c, d, a0, b0 are fixed elements of 5, we
obtain

cao = da(aQ) = 0.

Thus a~1(d)aQ — 0 = ca0- Since flo is an arbitrary element of /, we deduce that c
and <r~\d) are in ls(7) = Se. Write c = sxe, cr~l(d) = s2e where su s2 e S. Then
d — a{s2)cr(e) and so c + dx = s^e + o{s2)o{e)x = [s\ + a(s2)x]e e Te. Hence
lr(A) = Te and T is a quasi-Baer ring. •

REMARK 1. (1) RDOQ may not be Baer even for an integral domain R: becauseZC2

is not Baer (Example 1), it follows, by Theorem 3.7, that ZD^ is not Baer.
(2) Since ID^ is quasi-Baer but 1C2 is not, the quasi-Baer analog of Theorem 3.7
does not hold. In Example 8 below, an integral domain R is given such that RC3 is
not quasi-Baer but /?S3 is quasi-Baer (so 6"1 e R).
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REMARK 2. In view of Corollary 3.9 and Theorem 3.10, it would be interesting to
know when the group ring RDn of the dihedral group Dn of order 2n is quasi-Baer.
The method used in proving Theorem 3.10 can be used to show that if RCn is quasi-
Baer and 2"' e R then RDn is quasi-Baer, but the converse does not hold because of
Remark 1(2).

4. Fixed rings

Let G be a group acting on a ring R as automorphisms and let RG be the fixed ring
of G acting on R. Here we study the conditions under which RG becomes (quasi-)
Baer.

THEOREM 4.1. Let R be a ring and G be a group acting on R as automorphisms
such that either (i) eeg = egefor all g e G and all e2 = e € R or (ii) G is finite with
\G\-! 6 R. IfRis Baer then so is RG.

PROOF. Let A be a nonempty subset of RG. Since R is Baer, we have \R(A) = Re
where e2 = e e R. For g e G we have Re* = Rgeg = (Re)g = (lR(A))g =
\Rs(A

g) = lR(A) = Re. It follows that

(4.1) eg = e g e a n d e = e e s f o r a l l g e G .

Suppose that (i) holds. It follows from (4.1) that e = eg for all g e G, so e e RG.
Since eA = 0, we have that RGe C \Ra{A). For r e lRo(A), we have rA = 0, so
r e \R(A) = Re. Thus, r = re e Rce. Hence \Ra{A) = RGe.

Suppose that (ii) holds. Let / = (1/|G|) J2gec eS- N o t e tnat> for all g, ft e G,
(4.1) implies eheg = (ehe)eg = eh(ees) = ehe = eh. This shows that

1 \—\ x—^ , „ 1

\G\
h<=G geG ' ' AeC geG

Moreover, fs - f for all geG. So / € R G . Because eA = 0 and / 6 Re (by
(4.1)), we have RGf c lRc(A). Note that lRc(A) c lR(A) = Reg for all geG.
Thus, for r e lRc(A), we have r = reg for all geG. Hence

So Iga (A) = RGf. So RG is Baer. D
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The next example shows that the assumptions (i) and (ii) in the previous theorem
are necessary.

EXAMPLE 6. [13, Example 6.4] Let K be a field of characteristic p > 0. Let
R = M2(K) and G = (g) where g : R -»• R, r i-+ u~lru, with u = (l

0 J). Then R is
Baer (indeed simple Artinian). Direct calculation shows that RG = {(o*) -a,b e K}.
So J(RC) = {(°o

b
o) :b e K}.lfx= (»>) then 1*0(JC) = J(RG). Because 7(f lG)

cannot be generated by an idempotent, R° is not Baer. I f e = ( o J ) e f t then e2 = e
and e* = (o i )• It is clear that eeg = e ^ es = ese. Moreover, \G\ = p is zero in R.

The next example shows that R being Baer is not necessary for Rc to be Baer.

E X A M P L E 7. Let K be a field with 2~' e *: and # = { ( g * ) : a, fc e ^ } .
Let g : R -+ R be given by ( g j ) t-+ (l~a

b), and G = (g). It is seen that
RG = { {ao°a) •• a € K} = K. So RG is Baer but /? is not quasi-Baer.

In contrast to Theorem 4.1 , we give in our concluding example a quasi-Baer ring S
and a finite group G acting on 5 as automorphisms such that |G | " ' € 5 and SG is not
quasi-Baer.

LEMMA 4.2. Suppose that R is a ring with 3"1 € R. Let g = (123) e S3 and
G = (y) where y : /?53 ->• /?53 is given by % \-> g'^g. Then \G\ = 3
(RSi)G = R x /?C3.

PROOF. It is clear that \G\ = 3. Let / = (12) + (13) + (23) e /?S3. Then

(/?S3)C = {£ 6 /?53 : £g = g|} = {a + bf + eg + dg2 : a,b,c,d e /?} .

Let e = (l/3)g. Then e2 = e e (/?53)c and ef = fe = / . So e is a central
idempotent of (/?53)

G. This shows that

where

- e) = {(a + bf + cg+ dg2)(l -e):a,b,c,d& R)

2a-c-d -a + 2c - d -a - c + Id ,
+ g g + 3 g2 :a,c,deR

= {r + sg + ( - r - s)g2 :r,s e R],

(RS3)
Ge = {(a + bf + cg +dg2)e :a,b,c,deR}

= {(a + c + d)e+bf : a,b, c,d € R] = Ire + ^f : r, s e R \

= RC2 = R x R.
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The last isomorphism is by Lemma 3.1. To see the second last isomorphism, note
that f2 = 9e and fe = ef = f, so re + (5/3)/ \-+ r+sh (where C2 = {1, h}) is the
required isomorphism. Therefore, it follows by Lemma 3.5 that

(/?S3)
C = R x RC3. D

EXAMPLE 8. Let ?̂0 = {"/6* : n e Z , k anonnegative integer} and set

R = {a + 5bV3\ :a,be RQ).

Then R is a subring of C and 6~' e R. It is easy to see that x2 + x + 1 = 0
is not solvable in R. Moreover, if w = (— 1 ± v/3i)/2 (a root of *2 + x + 1), then

= - 5 ± 5\/3i € /?. So Rw D 7? ^ 0. Hence, by Lemma 3.5 and Theorem 3.6,
is not quasi-Baer. Let G be the group in Lemma 4.2. Then \G\ = 3 and

(/?S3)
C = /? x /?C3 by Lemma 4.2. So it follows that IGT1 e #S3 and (/?53)

G is
not quasi-Baer. However, RS3 is quasi-Baer by Corollary 3.9. In summary, (1) RS3

is quasi-Baer (so 6"1 e i?), (2) i?C3 is not quasi-Baer, (3) (RS^)G is not quasi-Baer
where \G\ = 3 is a unit of RS3.
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