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Abstract

In this paper we propose a P, finite element preconditioning using the so-called ‘hat-
function’, to a collocation scheme constructed by quadratic splines for a 2"-order separable
elliptic operator and we show that the resulting preconditioning system of equations is well
conditioned with the condition number independent of the number of unknowns.

1. Introduction

Let Q be the unit square [0, 1] x [0, 1] and consider a uniformly elliptic operator given
by
Lau = _[uxx + uyy] + al(x, y)ux + az(-xy y)uy + aO(x7 )’)u, (x9 }’) € IntQ (1'1)

with homogeneous boundary condition.

Let Ay » be a family of quadratic spline collocation discretizations based on
Gaussian points which arise from a variational or weak representation of the operator
L, (see Section 5 and 6). Now consider the system of linear equations

AvmU=F (1.2)
which arise in the numerical solution of the boundary value problem
Lu=f (1.3)

using these collocation discretizations and the interpolating biquadratic basis for S, ,
[see Section 2]. In this paper the proposed preconditioning of (1.2) we are interested
in is given by

BE,IM WN.MAN,MU = B;]M Wy nF, (1.4)
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where Wy s is the diagonal matrix of the quadrative weights associated with the
Gaussian quadrature and where the matrix By, is the stiffness matrix, constructed
by the piecewise bilinear basis for S, ; [see Section 2], of any symmetric positive‘
operator of the form

Lau = —[u, +uy,]l+du in$, (1.5)

where d is a nonnegative constant with homogeneous boundary condition. In this
paper we will give an analysis of the By y-singular values of

Lyuy= BN_,L WN.MAAN.M- (1.6)

The result is contained in the following theorem.

THEOREM. Assume min(N, M) = N, for some integer Ny. Then there are two positive
constants 0 < a < B, independent of N and M, such that we have, for any vector U,

o < (5N,MLN,MU: Ly yU)y,
B (Bn.mU, U)y,

This result is important for the successful application of conjugate gradient methods for
the solution of the algebraic system (1.4). The case using cubic splines and Gaussian
points was analyzed in [14] and similar problems were discussed in [5], [16] and [18]
for the case where there is only one finite element space and AN, u and BN, u are finite
element discretizations. The collocation method using quadratic interpolatory splines
was used for the numerical solution of two point boundary value problems in [15] and
for linear second order elliptic partial differential equations in [6]. Some solvers for
quadratic spline collocation equations were developed in [7]. Our goal is to develop
the finite element preconditioning of (1.5) using piecewise linear shape functions to a
collocation scheme for a uniformly elliptic operator (1.1) using quadratic interpolatory
splines. When implementing the theory presented in Sections 5, 6, and 7, a spline
tool-box may be used. Such a software is available, for example, in the MATLAB
package [3]. Through repeated calls to the routines augknt, spapi, fnval, and fnder,
the symmetrized collocation matrix BN, u associated with (1.1) is built and the so
called “hat-function" is used to construct the stiffness matrix By 4 associated with
(1.5) (see Theorem 5). Finally, the spline tool box can be used to construct the linear
system (1.6), which is solved using the conjugate gradient method. The arguments
here follow the line of the arguments in [14] and [17]. However in this work we need
some basic estimates using the quadratic interpolatory spline basis. Some preliminary
ideas, notations, etc. are presented in Section 2 and the properties of the interpolatory
basis functions are studied in Section 3. Some basic one-dimensional estimates are
shown in Section 4. In Sections 5 and 6 we present some basic preconditioning results
and finally in Section 7, we extend the results in Section 5 and 6 to the general case.
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2. Preliminaries

Let I = [0, 1] be the unit interval and let = [ x I be the unit square. Let
A, =[x} and A, = {y;}}, betwostrict partitions of / withxo =0, xy =1, 0 =0
and yyy = 1. Let I; = [x;—y, x;] or [y;—1, y;] where i is a positive integer and let
Q;; = [xi—1, x;1 X [yi=1, y;] form a partition 7 : A, x Ay of Q. Leth = x; —x;_; and

§ =y; — yi—1. Define for k > 1

Sax={f € C¥Y0,1), fl, € Pi, F(0) = f£(1) =0).
Let S, x be the set of all functions f(x, y) € C*¥'(R) satisfying

(1) flq, is a polynomial in x of degree k or less and is a polynomial in y of degree
k or less,
2) f(x,y)=0for(x,y) € 3.

In this paper, we will particulary make use of k = 1 or 2. Let {§]}Y, be the
set of all Gaussian points on / occuring from the first Legendre polynomial, that is,
& = g + x;_y (or 5 + yi_1). Recall a quadratic spline on R as

Y!(x) i= x? ifo<x<1
mx):=-34+6x—-2x> ifl<x<?2
VOTS Mt . @.1)
Y(x)=9—6x+x if2<x<3
0 otherwise.

Using a linear transformation, define a normalized quadratic spline as y;(x) =
2y (3 —i+2),wherei =0,1,2,---, N + 1. Define the basis functions {¢;}/_, for
Sa. using {¥; ()}, as follows.

01 (x) =¥ (x) — Yolx), on(x) = Yn(x) — Y (x)
o (x) =Y (x), k=2,---,N -1 (2.2a)

Setfori =1,2,---,N
¥l (x) = ¥ili,s Y7 (x) =Y, and ¢ (x) = ¥il,,,. (2.2b)
Define on /

Vi) =x% Y"(x)=-2x"4+2x+1 and Y (x)=x>—2x+1.
2.2¢)

Let us define the interpolatory basis functions {¢;}¥_, for S, , such that with § = 0
and éy4 = 1,

$:¢)=28; j=01---,N+1 (2.3)
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For the basis functions S,,;, we will use the so-called “hat function " {6}, (see
[13]) satisfying 6;(§;) = &5, j =0,1,---, N + 1. Let (-, -)r be the usual L? inner
product whose corresponding normis || - [lo = +/(:, -)r, where T is I, I;, Q or §;;. For
simplicity we will use (-, -) for (-, )r. Let H'(I), Hj(I), H () and H}(S2) be the

usual Sobolev spaces and || - ||; the usual Sobolev norm. Since we use one Gaussian
point on each subinterval [;, it is the root of the first Legendre polynomial defined
on ;. Thereforeon I;,i = 1,---, N, the Gaussian point is § = x;_; + ’2—’ and its
corresponding weight is w; = h. Define
N
=) h-u@E)vE), (2.42)
i=1
N M
W, Vv =) Y h-s-u n)vE, ). (2.4b)

i=1 j=1

There are many occasions when we want to express the fact that two families of
positive quantities {ay}, {by}, [or {an u}, {by.x}] are uniformly equivalent in the
sense that there are two positive constants, (¢, 8), independent of N, [or (N, M)]
such that for all N

0 <aay < by < Bay.

For this we will write ay ~ by.

3. Properties of the interpolatory basis functions

In this section we will analyze the interpolatory basis functions to get a lower bound
on (u, v)y in terms of ]Iullg for u € Sa ;. The basic idea comes from [1],[2].

LEMMA 1. Let {¢;}\., be the interpolatory basis for Sa ;. Then on I; for i # j, we

have
¢i(xj)) - ( -3 —h) (¢i(xj—1))

(¢:<x,~> —s/n -3) i) G-
PROOF. Since ¢;(§;) = 0 where & = %ﬁ, ¢i(x) = (x — §)(Ax + B) forx €
[x;-1, x;]. Then

4 2,
A= _ﬁ¢i(xj-l) - Z¢,’(Xj—l)
and
2 , 2
B = ij—1¢,-(xj-1) + ;l—2(3xj-1 — x;)@i(x;-1).

Therefore (3.1) holds.
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COROLLARY 1. Under the same assumption as in Lemma 1, we have
$i(x))¢/(x;) =0 for j<i, ¢ixpei(x;) <0 for j>i.

PROOF. The proof proceeds by induction on j using (3.1).

COROLLARY 2. Under the same assumption as in Lemma 1, we have
(H ;i Cxj1)] < §|¢i(xj)| for j<i,
3] [ (x)| < %|¢i(xj—1)| for j>i

PROOF. The inequalities come immediately from Corollary 1 using (3.1).

LEMMA 2. Let {¢:}, be the interpolatory basis functions for Sa,. Then on I; we

have
¢i (x;) _ -3 —h ¢i(xi-1) 4
(o) = (5rn 23) () + (orn): G2
PROOF. The proof is similar to that of Lemma 1.

-3 -k

For convenience, let D(k) = (—8 /h =3

). Then the eigenvalues of D (k) are

AM=-3++8 and A,=-3-+/8. (3.3)

LEMMA 3. For the matrix D(h), there exist matrices T, and S}, such that

T,'D(W)T, = S;' D(—h)S; = (AO‘ f) .
2

PROOFE. We exhibit the matrices T, and S;.

h

kA
T;, = ( l‘/g ‘ig) and S;, = T_h.

LEMMA 4. Let {¢;}[_, be the interpolatory basis for Sx». Let af = ¢;(x;) and
ﬂl‘f =¢/(x;))fori=1,2,--- ,Nand j =0,1,---,N. Then

Q1) forO<k<i-—1,
o\ (A 0N (o
(ﬂf;) =T (01 Aé) g (ﬂz;)’ 42
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o B ANk 0 » ol
(ﬂ:) _s,,( ‘0 AQ"") S; ( ﬁ:) (3.4b)

PROOF. For k < i, from Lemma 1,
a ali:—l k g
)= (3) - 3
(ﬁk) ﬂk—l ﬂO
_ )"f 0 ~1 "‘(i)
- T”(o )7 ()

Therefore (1) is proved. In a similar way, we have (3.4b).

(@) fori <k=<N,

LEMMA 5. Under the same assumption and notations as in Lemma 4, there exist two
positive constants Cy and C, independent of h, i and N such that

O<a,‘f_] <C, and 0<af < C,.
PROOF. First choose a basis function ¢;. Define for k € N,
pe=r -2 and q =Af+AL (3.5)

By (3.4a) with k = i — 1 and &}, =0,

al, i o) _,(0) (“—}pi-lﬂa)
: =T i 1T =14 - 3.6
( i—l) h( 0 A ) Bo %qi—lﬂo )

Hence by (3.2)

o o 4 GHPi-1 — 39i-0hBy + 4
Ll =D i-1 — [ ‘a2 2 0 . 3
(ﬂ:) " ( ;-1) * <8/h) ((\/ipi—l - %qi—l)ﬂ(l) + % ) 3.7

By (3.4b) with k = i and o, = 0,

o A0 (0 Ly ﬂi)
il—g 1 . =y =(42 NY. 3.8
(B:) ( 0 x) S (ﬂ'N) (q 8 38)

Solving (3.7) and (3.8) for B} and i, we have

Bl = EﬁPN—i — 2qn-i
© 7 h Den

}E (—2pi_1 +2gi1)

h Den (39)

. Byv=
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where

Den = (3‘/51’1‘—1 —4q;_1)gn-i — (4piy — 3\/§qi—l)pN—i
= 6v2py-1 —8qy-1 #0 by (3.5).

From (3.6) and (3.8),
L =——piyB. and o = —— Bt (3.10)
. = i P = i . .
i-1 /2 tFo 1ﬁpN N

Note that from (3.3)

V8 Py g ke 3.11)

3 dk
Then, using (3.9), (3.10) and (3.11), we see that there exist two positive constants
satisfying the conclusions.

REMARK. The existence and uniqueness of the interpolatory basis functions come
from Lemma 4 and 5. That is to say, for ¢;, we determine uniquely B} and B, (see
(3.9)). Then, by (3.4), all o} and B} (k =0, 1, ..., N) are determined uniquely.

THEOREM 1. For the interpolatory basis functions {¢;},, {¢:(xx)}2_, are uniformly
bounded for i and N .

PROOF. For any i, by Lemma §, |¢;(x;_))| < ¢, |¢:(xi})| < c,. Then by Corollary 2,
the values at the knots decay exponentially toward the boundary. Therefore the proof
is completed.

4. Bounds

In this section we will prove that +/{u, )y is bounded by the L,-norm of u. For
the lower bound we will use the uniform bounds property and the vanishing property
of the interpolatory basis functions and for the upper bound we will use the basis
functions {y;}Y.,.

LEMMA 6. Let {¢;}_, be the interpolatory basis functions. Then there exists a constant
C, independent of h, such that for x € I; where j = 1,2,---N,

[: ()| < max{le;(x;_1)l, 1¢: (x;)I}C.
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PROOF. Choose a basis function ¢;. Since ¢;(§;) = 6, ;, ¢i(x) = (x — &)(Ax + B)
on I; (j # i), where A and B are defined in the proof of Lemma 1. Putting x =
xi_1 +ah, 0 <a <1),wehave

@i(x) = (2 +4a)pi(x;-1) + 2ah¢ (x;_1)
= (2 - 2a)¢i(x;-1) — 2a¢;(x;) by (3.1).

Therefore the conclusion holds on /;. On [;, using (3.2) and a similar argument, we
can verify the same conclusion.

PROPOSITION 1. Let Gy be the matrix defined by G y (i, j) = f, ¢, ¢;dx and let A,, be
a maximal eigenvalue of G . Then there exists a positive constant C independent of
h and N such that

Am <C -h.

PROOF. First, using Lemma 6 and Corollary 2, for x € I,
1 i~k
|gi ()| < cl(g) if k<i-—1, (4.1a)

k—i
lé: (x)] < Cz(%) if k>i+1. (4.1b)

Now without loss of generality, assume i < j. On [, fork <i — 1, by (4.1a)

INE /1) 1N/~ 71\ 200
|¢i(x)¢j(x)|50f<§> (5) =Cf<'3') (5) ) (4.2a)

and for k > j, by (4.1b)

IV 1\ K 1N 1\ 2D
|¢i(x)¢j(x)|SC§(§> (5) =C§(§) (§> , (4.2b)

and fori <k < j,by (4.1)

INET 71\ 1\
I¢.-(x)¢,~(x)|5cl-cz(§) (5) =c,c2(-§) . 4.20)

Then by (4.2)

’[¢i¢jdx

i1 i N
< ;/{: |¢:p;ldx + kZﬂ:/h |idildx + Z i |dx

k=j+1v I
1\ 71
<o (3) (3+7-1)
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where ¢; depends only on ¢, and c,. Hence for eitheri > jori < j,

1 17=il 1
f,¢,-¢,»dxsc3-h-(3) (Z*”"")'

N 1 1j—il 1
/;¢i¢jdx Sca'h';(g) (Z+|j—i|)=CNh,

N s
i 1
Cy=cs- E (—5) (Z + s) convergesas N — o0.

s=1

Then, fixing j,

N
i=l

where

Hence by GerSgorin’s theorem, we have the conclusion.

Now we can get the lower bound of (u, u)y by ||ul|3.

THEOREM 2. Let u € S, . There exists a positive constant ¢ such that
2
cllully < (u, u)n.

PROOF. Let u = Y1 u;;. Since (¢, ¢;)n = hé;;, we have
N N
(, u)y = Zuiuj((piv ¢j)N =h Zu,z
j=1 i=]
WithU = (uy, - - -, uN)T, by Proposition 1, we have
N T N
fuzdx = Zuiujf¢i¢jdx =U GyU < c~hX:u,.2 =c-(u,u)y,
U ij=1 U i=1
where Gy is defined as in Proposition 1.

PROPOSITION 2. For u € Sa, there is a constant C independent of h,i and N such
that,fori =1,2,--- N,
(us u)i =< C"u",27

where
lull? = (u, wr,, (u,u); =u*Eh on L.
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PROOF. Let us take the basis functions {1}~ , for S, ,. Assume that is not identically
0. Since u € S, u = Z,N=1 d;r;, where each d; is real. Hence its restriction to /; is
u=d\Yy_,+dy" +din ,-’+1. Defineuzon [ asu = (d,--.ﬁ)l/f"’ + (d,-«/ﬁ)llf"’" +
(dis1v/h) Y. Using linear transformations, we have

/uzdx = c/ﬁ2dx, (u,u)i = cla, 0)%, 4.3)
I; 1

where (i, )% = [#(3)1%
Let d(h) = (di-;v/h, di/h, diy/B) and |[d(R)? = d? h + d?h + d?,, h. Define,
with |a| = a} +a; +a} =1,

v = G/d(h) = @y + e + asy. (4.4)
Then by (4.3) and (4.4)
(u, u)i — (ﬁa ﬁ)(])v _ (vv v)([)v — F(aly as, a3)
wess, lull? a  lald o (VI3 ai=1 G(ai, @z, a3)

Since F and G are continuous on {a : |a| = 1}, F has a maximum M and G has a
minimum m which is nonzero. Therefore
{u,u); M

sup -~ <—=C forall i
u€ESa,2 ||u||, m

Hence we have the conclusion.

Therefore the upper bound of (u, u)y comes immediately from Proposition 2. We put
this as a theorem here.

THEOREM 3. Let u € Sa ;. There is a positive constant C independent of h and N

such that

(u,u)y < Cllull3.

PROOF. By Proposition 2, we have

N N
(w, wdy =Y (u,u); <C Y llull? = Cllull2.
i=l1 i=1
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5. Basic 1D case

Consider a positive definite self-adjoint differential operator L, defined on C?([0, 1]
and a differential equation given by

Lju=—u"(x)+du(x) = f(x) on I, (&R

where f € C[0, 1] and d is a nonnegative constant with homogeneous Dirichlet
boundary conditions. Let V = H, (2). Defineb: V x V — Rby

1
b(u,v) =/ u'v' +duv dx,
0

whose associated norm is ||u||; which is equivalent to [|u||;.
Define by (f, g) on Sp 2 X Sa2 by

by(f,8) =(—f",8)n+d(f, gn (5.3)
and define b, y(u, v) on Sp, X Sa; by
by ny(u,v) = b(u,v). 64
These bilinear forms induce operators By and Sy;

By :Sa2— Saz by (Bnf, gln=bn(f 8), (5.5)

By :Sai1— San by (Bwu, V), = by n(u, v). (5.6)

Let By be the matrix representation of the operator By with the basis {¢;} and By
the matrix representation of the operator By with the basis {6;}. Let Iy be the one-
dimensional quadratic spline interpolation operator

Iy :Sa1—> Sap (5.7a)

given by

N

(Uyw)) =u), i=12,---,N, thatis (Iyu)(x)= Zu(&)fﬁi(X)- (5.7b)

i=1

Using the well-known approximation result of [1], [4] or [11], we have the following
approximation result on Sy ,.
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LEMMA 7. S, , possesses the property that for any u € H'(I) there existsav € S »
and a constant C independent of h and u such that

llu —vllo +hll(u — vYllo < C - hllu'llo. (3.8)

LEMMA 8. For u € S, 5 there is a positive constant C independent of h and N such
that

(u, )y < C -[lluflo + Rl llo)-

PROOF. This comes from Theorem 3 (or see Lemma 5.1 in [14]).

LEMMA 9. Let u € S, Then there exists a constant C independent of h and N such
that

l(Iyu) llo < Cllad'|lo-
PROOF. Since (Iyu) = (Iyu—u)'+u', itisenoughtoshow that || (Iyu—u) |lo < c|lu']lo

for some constant ¢. Since u € Hj(I), by Lemma 7, there is a v € S, satisfying
(5.8). Then for such a v we have

e — InuYllo < 1w —v)llo + (v — Inu)llo

, c
<c (||u llo + Z”U - IN“”O) .

In the last inequality we used Lemma 7 and the inverse inequality [8]. Then using
Theorem 2, (5.7) and Lemma 8 we have, with the chosen v,

Il — Inu)llo < C[Ilu'llo + %(Ilv —ullo +Ali(v - u)’llo)]- (5.9

Therefore we have the conclusion by applying Lemma 7.

LEMMA 10. Let u € Sa,;. Then we have
' ll5 ~ (=(Unw)", Inu)n.

PROOF. Let § = 0 and £y, = 1. Then, by the boundary conditions and (5.7b), we
have (Iyu) (§) = u(§) fori = 0,..., N + 1. Using the Fundamental Theorem of
Calculus and the Schwartz inequality, we have

&
(&) —uE- )P =1Unu)(E) — Un)E-DIP< 1& — &) | |Uvu) @) de. (5.10)

&in

https://doi.org/10.1017/50334270000010869 Published online by Cambridge University Press


https://doi.org/10.1017/S0334270000010869

[13] Preconditioning collocation method using quadratic splines 561

Therefore, by (5.10),

N+l pg N+1 g
llu'llg = ;/e.-_‘ ' (0)1* dt < ,Z;/sl |(Inw) () > de = [[(Inu) 15
Finally Lemma 3.3 in [10] implies
Wi < (—Uyu)”, Inu)n. (.11)
On the other hand, Lemma 3.3 in [10] and Lemma 9 imply that
(—Unw)", Iyu)y <c ||u'||(2). (5.12)

Hence (5.11) and (5.12) imply the conclusion.

LEMMA 11. Let u = Z,N=1 a;0; € Sphandv = E‘A’:l a;¢; € Sa. Then we have
Nelly ~ (v, v)u.

PROOF. Note that with @ = (a1, -+, ), llul2 = ha' Aya, where Ay(i, j) =

% f,9,-0,-dx and {v,v)y = haTa. Then the conclusion comes from Gerdgorin’s
Theorem [12] applied to the matrix Ay.

Now we have a main result about the 1-dimensional case.

THEOREM 4. Fora = (a;, - - - ,aN)T we have
(WyBya, @) ~ (Bre, @).
PROOE. Let u € Sa ;. Then

N N
u(x) =Y @6:(x) and (yu)(x) =) i (x) € Sa.
i=1 i=1

Thus the vector « represents both u and /yu. By Lemmas 10 and 11,
(—Unw)", Iyuyy ~ 'lly and  (Iyu, Iyu)y ~ llull,
and we have
by (Inu, Iyu) ~ |lu|)?. (5.13)
Since, by definition,
(WyBya, @) = by(yu, Ivu) and  (Bye, @) = b(u, u) ~ |ulf,
the conclusion holds by (5.13).
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6. Basic 2D case

Consider the elliptic differential operator L, defined on Q and a differential equation
given by

Ldu = _[uxx + uyy] +du = f, (6.1)

where d is a nonnegative constant with homogeneous Dirichlet boundary condition.
In this section we will discuss the preconditioned matrix

Onvwm= BE,IM Way.m éN,M, (6.2)

where ﬁN, u is the stiffness matrix of the finite element method of L, and LA?N' M is the
matrix representation of the collocation discretization of L,. Let V = Hy (S2).
Defineb:V xV — Rby

b(u, v) = (Vu, Vv)g +d(u, v)q, (6.3)
where the associated norm is ||u||; which is equivalent to ||«||,. Define by a(f, g) on
S7r.2 X Szr,2 by

bym(f.8)=(—nf,gvm+d{f . gvu for f, g€ S:,, (6.4a)

which defines the collocation discretization operator corresponding to L,
By i Sxp—> S (6.4b)
by
bvu(f.8) = (Bvuf.8nm for f, g€ Spa. (6.4¢c)
The finite element discretization operator Sy » of the operator L, is defined by
Byt Szt = Sz (6.52)
and
b(u,v) = (Byyu,v), for u,veS,,. (6.5b)

Let lA?N'M and EN'M be the matrix representation of the operator By and B’N‘M
respectively. Let Iy » be the two-dimensional quadratic spline interpolation operator

Inm 2 Sxy = Sza (6.6a)
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defined by
Un )& n) = uE,np), i) =1,---, N(M), (6.6b)
that is,
N M
Un ), y) =D ulEi, n))d: (0)d; (), (6.6¢)
i=1 j=1

where (&;, n;) are the Gaussian points on /; x I
Let us order the Gaussian pomts {(&, n)YL, /L, by vertical lines. Then we list the
Gaussian points as Py, P, ---, Pyy. Put

&.n)="P, where pu=j+G—-1)M. 6.7

We order the basis functions in S,, and S, ; in the same order. Using the tensor
product, we can define the biquadratic basis functions and bilinear functions for S; »
and S, respectively as

D,(x,y) = ¢i(X)P;(y) € Szas Oulx, y) = 60;(x)6;(y) € Sz,1- (6.8
Let us decompose the operator L, by
Li=L,+Ly, Li=-uy,+d/Du and L,=—u, +d/2u. (6.9

THEOREM 5. ([19, page 136], [17, Theorem 5.2])

(1) Let ﬁ,’f, and B}, be the stiffness matrices associated with finite element discretiz-
ation of L, and L, respectively in the finite element space S, . Let My and My
be the corresponding mass matrices. Then

By = B5 ® My + My ® By (6.10)

(2) Let B’(l m) = (L:pn)(&), BL(j,n) = (Ly#a)(n;) and B = Wwéﬁ,
B = WMBM, Bym = Wy, MBNM

Then the matrix representation of the collocation discretization éN_ u Of the operator
L, in S, , is given by

Byw=By®In+1Iyv® B, (6.11)
and the symmetrized collocation matrix is given by

Bym=Bi®@ Wy +Wy® B}, (6.12)
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THEOREM 6. For everyx = (a,, -+ , aN)T, we have (Mya, a) ~ (Wya, a).

PROOF. Let u € Sa,. Then [[ul|} = (Mya, @) and (Iyu, Iyu)y = (Wya, @).. By
Lemma 11, the conclusion holds.

T
LEMMA 12. For every vector e = (@, - -- , yy) we have

(1) (B ® My)a, @) ~ (B ® Wi, ),
Q) (My ® B, @) ~ (Wy ® BY)a, ).

PROOF. Because of Theorem 4 and Theorem 6, we have the conclusions following a
proof similar to Lemma 5.4 in [14].

Now we will close this section with one of the main results.
T
THEOREM 7. For every vector a = (¢, - -- ,any) we have

(Bv.mat, @) ~ (By ya, ).
PROOF. By Lemma 12 and Theorem 5, we have the conclusion.

7. General preconditioning

For a uniformly elliptic operator with variable coefficients L, defined in Section 1,
define ay p (1, v) on S;; X Sy by

an.u(u, v) = (L,u, v)n u, (7.1)
which defines the operator
Aym t Sz2 = San (7.2a)
by
an m(u,v) = (Ayyu, vy for u,ve S,,. (7.2b)

Let A ~,m be the matrix representation of the operator Ay y. Recall the uniformly
elliptic operators L, defined in Section 6. Note that those two elliptic operators have
the same boundary conditions. In this section we will discuss the matrix

Lyw = E;‘IM Wy mAnm = ﬁ;'lMAN,M (7.3)

and its By, » condition number.
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LEMMA 13. Let u, v € Sa,. With the notationt = x or y we have for any € > 0 and
different constants C independent of N and M for each case satisfying

1
2

(1) N, v)yuml < c[ Jo uzdxdy]%[ Jo vzdxdy] ,
) Nu,ulwml =C [ Ja u?dxdy],

B) Nu, Vivyl < C[e Jouldxdy + 1 [, vzdxdy],
@ N—wu, vyl < c[g o uldxdy + € |, vzdxdy].

PROOF. Inequality (1) follows from the definition of (-, -}x » and the Schwartz in-
equality, and follows also from Theorem 3. For (2) note that, using a proof similar to
Lemma 3.1 of [9], we have (f', f)\v < (f’, f') for f € S, ,. With this inequality,

(2) follows from the definition of (-, -)» » and Theorem 3. For (3), first note that for
any positive ¢,

1
ab < %az 50 (7.4)

Then (3) follows from the Schwartz inequality, (7.4) and inequalities (1) and (2) of
this lemma. For (4) note that from Lemma 3.1 of [9] and [10], for f, g € Sa»

N
(__f//, g)N — (fl, gl) + P, megmhs, (753)
i=1

where p, is a positive constant independent of 4. Using the Schwartz inequality and
the inverse estimate (see [6]), we have a positive constant ¢ independent of # such
that

< cll f'llollg’llo- (7.5b)

N
> g
i=1

Then applying the Schwartz inequality to (f’, g’), we have from (7.5),

K—f" ginl < C(/If’(X)IZdX)Z(/Ig'(X)IZdX)Z- (7.6)
1 1
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Finally by the definition of (., -}y 4, (7.6) (7.4) and Theorem 3,

M
<)s

Jj=1

‘<—ux.n v)N,M (—uxx(x’ nj)a v(x, nj))N

M % 2
< czs[fui(x,n,.)dx] Uuﬁ(x,n,.)dx] (1.7)
= 1 1

j=1

1 & M
C[Z /Zsui(x, nj)dx + G/sti(x, nj)dx]
Ij=1 Ij=1

1
C[—/ui-}—e/vf]. :
€ Ja Q

In order to discuss the operator

IA

IA

Snm = By'yAvm i Sxz2 = Saas 1.8)
let us define a differential operator L x with the same boundary conditions as L,
Lxu = —[usx + uyy)] + a1ty + ayuy + Ku, (7.9)
where K is a sufficiently large positive constant. Define an operator
Aﬁ,u 2 8p2 = S (7.10a)
by
(AN, VIwm = (Lgu, v)yu. (7.10b)
THEOREM 8. Foru € S,

(1) / i + uidxdy ~ (—Au, u)y m,
Q

) /uzdxdy ~ (U, u)n.m-
Q

PROOF. By definition of (-, -)» 4, we have

M

(—thes Wnw = Y S{—tec (e, M), uCE, M)y (7.11)
i=1

Then by Theorem 2 and the fact that ( see Lemma 3.3 in [10])

(—u", uhy > f W2 dx,
1
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we have

(—ttxx, Un.m = C/ uldxdy.

Q

Putting # = v and € = 1 in (7.7), we have

(—tex, Wnm < C/ uldxdy.
Q

Hence by (7.12)

(—un,u)N_MN/uidxdy.
Q

In a similar way,

(—uyy,u)N,M~Au§dxdy.

Therefore we have (1) by (7.13).
By the definition of (-, -}y 4, we have

M

(b =Y s(uCx, m), uCx, m)w-

1=1

Then by Theorem 2,

M
(U, uyy p > ch /uz(x, n)dx > ¢* / u(x, y)dxdy.
1=1 I Q

By applying Theorem 3 to (7.14)

(u, ulnm < Cz/ u*(x, y)dxdy.
Q

Hence we have (2).

567

(7.12a)

(7.12b)

(7.13a)

(7.13b)

(7.14)

(7.15a)

(7.15b)

Using the argument of Theorem 3.2 in [16] or following the argument of Theorem 6.1

in [14], we have the following result.

THEOREM 9. Let u € S, ,. If min(N, M) > N, for some positive integer Ny then

- K
"u ”l ~ "BN,IMAN,Mu"l-
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PROOF. Let v = By AX , u. Then by Theorem 8 there is a constant ¢ such that

(Af,,Mu, Vinm = (Bymv, V)wm (7.16a)
= (—Av, V)yu +d{v, V)ym
> c(IVvlly + IIvlI).

On the other hand, by Lemma 13 and (7.4)

I(Aﬁ,Mu, Vinuml < {—Au, v)y ml + Haiux, V) ul (7.16b)
+ [{aauy, v)nml + K|{u, v)y ul
<c(Vully + Nelld).

Hence by (7.16)
lvlly = 1By AR wtells < cllulh. (7.17)
Since A¥ ,,u = By uv, we have
(A;Kq,Mu, wnm = (Byuv, u)n.m- (7.18)
Now by the fact that X is sufficiently large, Lemma 13, (7.17) and (7.18),
lully < CIBY ANyl = Cllvlly. (7.19)

Therefore by (7.17) and (7.19) the conclusion follows.

REMARK. The existence of B;fM comes from Lemma 6.1 in [17] if min(N, M) > N,
for some positive constant No.

Because of Theorem 9, we have the following lemma using the same argument of
Lemma 6.7, Theorem 6.2 in [14] verbatim.

LEMMA 14, For every u € S, 5, if min(N, M) > N, then
lHully ~ I By Aw mtellr-
Translating Lemma 14 into a statement about matrices, we have the following

THEOREM 10. Forany U = (uy, -+ , ) let V = By Ay.syU. Then
(ﬁN.MU’ U) ~ (ﬂN.MV, V)'

PROOF. Since ||u||f ~ (EN_MU , U),, by Lemma 14 we have the conclusion.
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Finally we will discuss the matrix
. N a—-1 %
Lym= ,BN_IM Wy mAnm = .BN,MAN,M

and its BN,M condition number and /.‘?N_M singular values; Since By u is positive
definite, we can define an inner product (U, V), , = (BxuU, V). Let § be any
other real matrix. The 5,,, u adjoint of § is that unique matrix S* such that

(SU, V)ﬁN_M = (U’ S*V)ﬁN.M'

Then §* = B',;_'MSTB'N,M, where S is the transpose of S. The By y-singular values
of Ly u are the square roots of the eigenvalues of L}, ,, Ly ». Now we have the main
theorem.

THEOREM 11. Assume min(N, M) > N,. Then for every vector U = (uy, - - - uN'M)T

(EN.MU, U)z2 ~ (EN,MLN,MUy LN,MU)Iz-

That is, there are two positive constants a and B, independent of N and M, such that
the By y-singular values of Ly y, denoted by o;(N, M), satisfy

0<a<o;(N,M) <B.

PROOF. Recall first Oy y = By'yWwmByvm = By'yBw.y which is similar to

B,;%M Byu B,;%M Therefore by Theorem 4 we have
BvmU, U) ~ (By.uQumU, QumU). (7.20)
Write
Lyu = QvmSn.m, (7.21)
where .§N‘ u is the matrix representation of the operator Sy » defined in (7.8). Let
V =8vmU = By, Ay nU. (7.22)
Then by (7.21) and (7.22),
BrmV, V)~ BymLnmU, LyuU). (7.23)
Hence by Theorem 10 and (7.23), we have
(5N.MUy U) ~ (BN,MLN,MU, Ly mU).

Therefore the proof is complete.
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