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Abstract

In this paper we propose a P\ finite element preconditioning using the so-called 'hat-
function', to a collocation scheme constructed by quadratic splines for a 2nd-order separable
elliptic operator and we show that the resulting preconditioning system of equations is well
conditioned with the condition number independent of the number of unknowns.

1. Introduction

Let £2 be the unit square [0,1] x [0,1] and consider a uniformly elliptic operator given
by

Lau = -[uxx + uyy] + al(x,y)ux + a2(x, y)uy + ao(x, y)u, (x,;y)elntft (1.1)

with homogeneous boundary condition.
Let ANtM be a family of quadratic spline collocation discretizations based on

Gaussian points which arise from a variational or weak representation of the operator
La (see Section 5 and 6). Now consider the system of linear equations

ANMU = F (1.2)

which arise in the numerical solution of the boundary value problem

Lau = f (1.3)

using these collocation discretizations and the interpolating biquadratic basis for Ss 2

[see Section 2]. In this paper the proposed preconditioning of (1.2) we are interested
in is given by

fa]MWN,MAN,MU = rN]MWNMF, (1.4)

'Department of Mathematics, Teachers College, Kyungpook National University, Taegu, Korea.
© Australian Mathematical Society, 1996, Serial-fee code 0334-2700/96

549

https://doi.org/10.1017/S0334270000010869 Published online by Cambridge University Press

https://doi.org/10.1017/S0334270000010869


550 Sang Dong Kim [2]

where WNM is the diagonal matrix of the quadrative weights associated with the
Gaussian quadrature and where the matrix $NM is the stiffness matrix, constructed
by the piecewise bilinear basis for Sn<\ [see Section 2], of any symmetric positive
operator of the form

Ldu =-[uxx + uyy] + du infi, (1.5)

where d is a nonnegative constant with homogeneous boundary condition. In this
paper we will give an analysis of the ^NM -singular values of

LN.M = P^M^N,M^N,M- (1-6)

The result is contained in the following theorem.

THEOREM. Assume mi n(N, M) > N0for some integer No. Then there are two positive
constants 0 < a < ft, independent of N and M, such that we have, for any vector U,

(PN.M^N.MU, Lfj MU)I2

01 ~ (pN,Mu, u)h -
This result is important for the successful application of conjugate gradient methods for
the solution of the algebraic system (1.4). The case using cubic splines and Gaussian
points was analyzed in [14] and similar problems were discussed in [5], [16] and [18]
for the case where there is only one finite element space and ANiM and fiNM are finite
element discretizations. The collocation method using quadratic interpolatory splines
was used for the numerical solution of two point boundary value problems in [15] and
for linear second order elliptic partial differential equations in [6]. Some solvers for
quadratic spline collocation equations were developed in [7]. Our goal is to develop
the finite element preconditioning of (1.5) using piecewise linear shape functions to a
collocation scheme for a uniformly elliptic operator (1.1) using quadratic interpolatory
splines. When implementing the theory presented in Sections 5, 6, and 7, a spline
tool-box may be used. Such a software is available, for example, in the MATLAB
package [3]. Through repeated calls to the routines augknt, spapi, fnval, and fnder,
the symmetrized collocation matrix BN M associated with (1.1) is built and the so
called "hat-function" is used to construct the stiffness matrix f$NiM associated with
(1.5) (see Theorem 5). Finally, the spline tool box can be used to construct the linear
system (1.6), which is solved using the conjugate gradient method. The arguments
here follow the line of the arguments in [14] and [17]. However in this work we need
some basic estimates using the quadratic interpolatory spline basis. Some preliminary
ideas, notations, etc. are presented in Section 2 and the properties of the interpolatory
basis functions are studied in Section 3. Some basic one-dimensional estimates are
shown in Section 4. In Sections 5 and 6 we present some basic preconditioning results
and finally in Section 7, we extend the results in Section 5 and 6 to the general case.
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2. Preliminaries

Let / = [0, 1] be the unit interval and let n = / x / be the unit square. Let
A, = [x,:},t0 and Ay = {y, }fLo be two strict partitions of / withx0 = 0, xN = 1, y0 = 0
and yM = 1. Let /, = [*,_i, *,] or | j , - i , yi\ where / is a positive integer and let
n,-; = [jr,-_i, Xj] x [yi-i, 3>,-] form a partition n : Ax x Ay of Q. Let h = xt — x,_i and
5 = j , — 3>,-_i. Define for k > 1

5A l t = {/ € C*-'[0, 1], / | , , € P t , / (0) = / ( I ) = 0}.

Let Sn,k be the set of all functions f(x, y) e C*~'(£2) satisfying

(1) /In,, is a polynomial in x of degree /: or less and is a polynomial in y of degree
fc or less,

(2) / ( x , 3 0 = O f o r ( j c , 3 0 € 3 n .

In this paper, we will particulary make use of k = 1 or 2. Let {£,-}£., be the
set of all Gaussian points on / occuring from the first Legendre polynomial, that is,
£, = | + *,._, (or | + >>,_i). Recall a quadratic spline on R as

i/'(x):=x2 i f O < x < l

irm(x):=-3 + 6x -2x2 if 1 < x < 2

i/r(x):=9-6x + x2 i f 2 < x < 3

0 otherwise.

Using a linear transformation, define a normalized quadratic spline as V/0O =
\fr(i — / + 2), where i = 0, 1,2, • • • , Af + 1. Define the basis functions {#>,},t1 for
^2 using {Vri(̂ )},̂ =i a s follows.

Mx), k = 2,---,N-l. ( 2 . 2 a )

S e t f o r / = 1 , 2 , ••• ,N

f'i(x) = fi\li_l, ^ m W = ^ l / , and W(x) = fi\Il+r (2.2b)

Define on /

f'(x)=x2, irom(x) = -2x2 + 2x+l and for(x) = x2 - 2x + 1.
(2.2c)

Let us define the interpolatory basis functions {</>,},̂ =1 for S A 2 such that with | 0 = 0

= 1,

&(§,) = <*,,, j = 0, I , - - ,iV + l . (2.3)
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For the basis functions 5A,i, we will use the so-called "hat function " {0,}£L, (see
[13]) satisfying 0,(£,) = 8U, j = 0, 1, • • • , N + 1. Let (•, -)r be the usual L2 inner
product whose corresponding norm is || • ||0 = V(-> Or, where T is /, /,, Q or £2,;. For
simplicity we will use (•, •) for (•, ) r . Let / / ' ( / ) , H^{I), Hl(Q) and H^tt) be the
usual Sobolev spaces and || • || i the usual Sobolev norm. Since we use one Gaussian
point on each subinterval /,, it is the root of the first Legendre polynomial defined
on /,. Therefore on /,, i = 1, • • • , N, the Gaussian point is £, = x,_i + | and its
corresponding weight is u>, — h. Define

ii&Mfc), (2.4a)

N M

(u, v)NtM = Y,Ylhs' u&' 1jMb> »»;)• (2-4b)
i=i j=\

There are many occasions when we want to express the fact that two families of
positive quantities {aN}, [bN], [or [aNM}, {bNM}] are uniformly equivalent in the
sense that there are two positive constants, (a, fi), independent of N, [or (N, M)]
such that for all N

0 < aaN < bn

For this we will write aN ~ bN.

3. Properties of the interpolatory basis functions

In this section we will analyze the interpolatory basis functions to get a lower bound
on (u, v)N in terms of ||M||O for u € 5A>2- The basic idea comes from [1],[2].

LEMMA 1. Let {</>,},̂ , be the interpolatory basis for 5 A 2 - Then on Ij for i ^ j , we
have

- 3 -h

PROOF. Since &%) = 0 where £, = x-^-, 0,(x) = (x - ^){Ax + B) for x e
[xj-\,Xj]. Then

and
2 2

B = -Xj^ixj^) + rr(3-«/-i - xj)<l>i(Xj-i).
h h

Therefore (3.1) holds.
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COROLLARY 1. Under the same assumption as in Lemma 1, we have

4>i(.Xj)ti(Xj) > 0 for j < i, MxjWixj) < 0 for j > i.

PROOF. The proof proceeds by induction on j using (3.1).

COROLLARY 2. Under the same assumption as in Lemma 1, we have

(1) |</>,(*y_i)l < \\ct>i{Xj)\ for j<i,

(2) \4>iOcj)\ < fl0,(*y-i)l for j > i.

PROOF. The inequalities come immediately from Corollary 1 using (3.1).

LEMMA 2. Let [<pi}?=l be the interpolator)/ basis functions for 5A,2 • Then on /, we
have

-3 - * ) f * M + ( 4 \ (32)
-3j U-fe-i)/ w v •

PROOF. The proof is similar to that of Lemma 1.

I. Then the eigenvalues of D{h) are

-8//1 -5)

X, = - 3 + VS and X2 = - 3 - Vs. (3.3)

LEMMA 3. For the matrix D(h), there exist matrices Th and Sh such that

PROOF. We exhibit the matrices Th and Sh.

h

= I -ft Vs
\ 1 1

^ 1 and Sh = T_h.

LEMMA4. Let [<j>i}"=l be the interpolator/ basis for SA 2- Let aj = </>,(.*,) and
p. = <y,(Xj)for i = 1, 2, • • • , N and j = 0, 1, • • • , N. Then

(1) forO<k<i-l,
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(2) for i <k <N,

PROOF. For/: < /, from Lemma 1,

Therefore (1) is proved. In a similar way, we have (3.4b).

LEMMA 5. Under the same assumption and notations as in Lemma 4, there exist two
positive constants C\ and C2 independent ofh, i and N such that

0 < <*!_, < C, and 0 < a\ < C2.

PROOF. First choose a basis function 0,. Define for t e N ,

Pk = X\-kk
2 and qk = X\+Xk

2. (3.5)

By (3.4a) with k = i - 1 and a'o = 0,

Hence by (3.2)

G D -
By (3.4b) with ^ = / and a^ = 0,

\ - S (^ ° i 5"' ( ° l - / ^ " " ^ (3 8)

Solving (3.7) and (3.8) for ^ and pN, we have

. 16
Po = T Den h Den
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where

Den = (3\/2/?,-i - 4<7,_1)<7JV_, - (4p,_, - 3 \/2<?, _,)/?„_,

= 6V2pA,_1 - 8^_i / 0 by (3.5).

From (3.6) and (3.8),

CKJJ = ——pj_\f}n and of' = —-=pt^—iP'^. (3.10)

Note that from (3.3)

— < - — < 1 for keN. (3.11)
3 Qk

Then, using (3.9), (3.10) and (3.11), we see that there exist two positive constants
satisfying the conclusions.

REMARK. The existence and uniqueness of the interpolatory basis functions come
from Lemma 4 and 5. That is to say, for 0,, we determine uniquely fi'o and f}'N (see
(3.9)). Then, by (3.4), all a[ and p[ {k = 0, 1, . . . , N) are determined uniquely.

THEOREM 1. For the interpolatory basis functions [<pj}?=v {0iC**)}iLn ore uniformly
bounded for i and N.

PROOF. For any /, by Lemma 5, |$,(x,_i)| < cu |</>,(x,)| < c2. Then by Corollary 2,
the values at the knots decay exponentially toward the boundary. Therefore the proof
is completed.

4. Bounds

In this section we will prove that y/(u, u)N is bounded by the L2-norm of u. For
the lower bound we will use the uniform bounds property and the vanishing property
of the interpolatory basis functions and for the upper bound we will use the basis
functions

LEMMA 6. Let {<j),}^=l be the interpolatory basis functions. Then there exists a constant
C, independent ofh, such that for x € /, where j = 1, 2, • • • N,
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PROOF. Choose a basis function 0,. Since </>,(£,) = 5,,;, </>,(*) = (x — %j)(Ax + B)
on Ij (j ^ i), where A and B are defined in the proof of Lemma 1. Putting x =
*,_! +ah, (0 < a < 1), we have

(/>, (x) = (2

= (2 — 2a)(t>i(xj-i) — 2a<j>i(xj) by (3.1).

Therefore the conclusion holds on /,. On /,, using (3.2) and a similar argument, we
can verify the same conclusion.

PROPOSITION 1. Let GN be the matrix defined by GN(i, j) = ft fafydx and let Xm be
a maximal eigenvalue ofGN. Then there exists a positive constant C independent of
h and N such that

Xm<C-h.

PROOF. First, using Lemma 6 and Corollary 2, for x e Ik,

i-k

if k < i - 1, (4.1a)

k-i

if k > i + 1. (4.1b)

Now without loss of generality, assume i < j . On Ik, for k < i — 1, by (4.1a)

and for k > j , by (4.lb)

I<M*)</>,«I<C2
2Q) Q ) ' " ^ G T G ) ; > (4-2b)

and for i < k < j , by (4.1)

(4.2c)

( 1 \ '"* / 1 \ J~k / 1 \ J'~' /1 \ 2('~k)

3) (3) =c2\y ( j ) ' (4-2a)

Then by (4.2)

« • * • (

https://doi.org/10.1017/S0334270000010869 Published online by Cambridge University Press

https://doi.org/10.1017/S0334270000010869


[9] Preconditioning collocation method using quadratic splines

where c3 depends only on c{ and c2. Hence for either i > j or / < j ,

/

(1 \ L/~'1 / 1

' ; ~ \ 3 / \4

Then, fixing j ,

557

N \ r < c3 • h = CNh,

where
N / 1 \ J / I

converges as !\ —> oo.

Hence by GerSgorin's theorem, we have the conclusion.

Now we can get the lower bound of (u, u)N by ||u|||.

THEOREM 2. Let u e 5A,2- There exists a positive constant c such that

c\\u\\l< (u,u)N.

PROOF. Let u = £ , 1 i «,-0,-. Since (</>,, <j>j)N = hSu, we have

N N

(U, U)N = /^M,-My(0/, 4>J)N = h } U2.
j=l i = l

With U = («i, • • • , uN) , by Proposition 1, we have

u2dx = y^ UiUj I <t>i4>jdx = U GNU < c • h Y ^ u2 = c • (u, u}N,

where GN is defined as in Proposition 1.

PROPOSITION 2. For u € 5 A 2 there is a constant C independent ofh,i and N such

that,fori = 1 , 2 , ••• , N ,

<«,«>, <C| |K| |? ,

where

INI? = («, u)Ll, (u, u)i = u2(£i)h on /,.
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PROOF. Let us take the basis functions {Vo }?=l for SAi2. Assume that u is not identically
0. Since u e 5 A 2 , « = Ylh=i 4^ / - where each <i, is real. Hence its restriction to /, is
u = rf/.i^i, +</iVril" +di+lx//'i+l. Define u on / as u = (</,-_, V ^ W + {dt-sfhW" +
(<i,+1 y/h)x{r0'. Using linear transformations, we have

f u2dx = c [u2dx, (u,u)i=c{u,u)°N, (4.3)

where («, «)» = [«(|)]2.
Let rf(A) = (</,-_, VA, </,-VA", 4 + I \ / A ) and |d(/*)|2 = d«_,A + ^2/i + df+lh. Define,

with|a| = a\ + a\-Va\ = \,

v = u/d(h) = a,rr + a2V
m + azV- (4-4)

Then by (4.3) and (4.4)

(u,u)i (u,u)°N {v,v)°N= T "W = T T B G(fll,a2,a3)-

Since F and G are continuous on {a : |<z| = 1}, F has a maximum M and G has a
minimum AW which is nonzero. Therefore

< ^ i ^ = C forall /.

Hence we have the conclusion.

Therefore the upper bound of {u, u)N comes immediately from Proposition 2. We put
this as a theorem here.

THEOREM 3. Let u e 5 A 2 . There is a positive constant C independent of h and N
such that

{u, u)N < C||M||O-

PROOF. By Proposition 2, we have

N N

(u, u)N = ]T ( M , U), < C ̂  ||M||2 = C|M|2.
1=1 >=i
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5. Basic ID case

Consider a positive definite self-adjoint differential operator Ld defined on C2[0, 1]
and a differential equation given by

= -u"(x)+du(x) = f(x) on /, (5.1)

where / e C[0, 1] and d is a nonnegative constant with homogeneous Dirichlet
boundary conditions. Let V = H*(S2). Define b:VxV->Rby

b{u,v)= I u'v' + duv dx,

whose associated norm is \\u\\d which is equivalent to ||«||i.
Define bN(f, g) on 5A,2 x 5A,2 by

W . g) = <-/", 8)N + d(f, g)N (5.3)

and define bitN(u, v) on 5A,i x 5A,i by

b\N(u, v) = b(u, v). (5.4)

These bilinear forms induce operators BN and pN;

BN : 5A,2 -* 5A,2 by {BNf, g)N = bN(f, g), (5.5)

PN • SAA ->• SAA by (PNu, v)h = bUN(u, v). (5.6)

Let BN be the matrix representation of the operator BN with the basis {</>,} and pN

the matrix representation of the operator fiN with the basis {#,}. Let IN be the one-
dimensional quadratic spline interpolation operator

IN : SA?i -> 5A,2 (5.7a)

given by

UNU)&) = «(§,•). ' = 1, 2, • • • , N, that is (INu)(x) = Y^ M(&)0,-OO. (5.7b)

Using the well-known approximation result of [1], [4] or [11], we have the following
approximation result on 5A-2.
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LEMMA 7. SAi2 possesses the property that for any u e / / ' ( / ) there exists a v e SA<2

and a constant C independent ofh and u such that

| | « - W | | O + A | | ( « - W ) ' I I O < C - A | | M ' | | O . (5.8)

LEMMA 8. For u e 5Ai2 there is a positive constant C independent ofh and N such
that

PROOF. This comes from Theorem 3 (or see Lemma 5.1 in [14]).

LEMMA 9. Let u e SAj Then there exists a constant C independent ofh and N such
that

PROOF. Since(INu)' = (/ArM-H)'+H',itisenoughtoshowthat||(/,VM-M)'||o < c||«'||0
for some constant c. Since u e //o'(/), by Lemma 7, there is a v e SA,2 satisfying
(5.8). Then for such a v we have

II(« - W l l o < II(« - w)'llo + \ \ ( v - INu)'\\o

In the last inequality we used Lemma 7 and the inverse inequality [8]. Then using
Theorem 2, (5.7) and Lemma 8 we have, with the chosen v,

| | (u - INu)'\\0 < c\ Hu'llo + 7 ( | | u - K | | O + A||(w - M)'IIO) • (5 .9)

L " J
Therefore we have the conclusion by applying Lemma 7.

LEMMA 10. Let u e 5A,i. Then we have

ll«'llo ~ (~('A/«)"> 1NU)N-

PROOF. Let £0 = 0 and £/v+1 = 1. Then, by the boundary conditions and (5.7b), we
have (//yw) (£,•) = «(|,) for / = 0 , . . . , N + 1. Using the Fundamental Theorem of
Calculus and the Schwartz inequality, we have

')\2dt. (5.10)
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Therefore, by (5.10),

/

Finally Lemma 3.3 in [10] implies

\\u'\\l<(-(INu)",INu)N. (5.11)

On the other hand, Lemma 3.3 in [10] and Lemma 9 imply that

(-{INu)",INu)N<c\\u'\\l (5.12)

Hence (5.11) and (5.12) imply the conclusion.

LEMMA 11. Let u = Y^=\ afii e SA.I and v = Yi^=\ ai4>i e ^A,2- Then we have

\\U\\1~(V,V)N-

PROOF. Note that with a = (au • • • , aN) , \\u\\l = ha ANa, where AN(i, j) =

£ / , QjOjdx and (u, u>w = /ia a. Then the conclusion comes from GerSgorin's
Theorem [12] applied to the matrix AN.

Now we have a main result about the 1-dimensional case.

THEOREM 4. For a = (a{, • • • , aN) we have

(WNBNa,a)~(f}Na,a).

PROOF. Let u e SAA. Then

Thus the vector a represents both u and INu. By Lemmas 10 and 11,

<-(/„«)", INu)N ~ \\u'\\l and {INu, INu)N ~ \\u\\2
0,

and we have

bNVNU, INu) ~ \\u\\\. (5.13)

Since, by definition,

(WNBNa,a) = bNUNu,INu) and (fiNa,a) = b(u, u) ~ ||II||2,

the conclusion holds by (5.13).
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6. Basic 2D case

Consider the elliptic differential operator Ld denned on Q. and a differential equation
given by

Ldu = -[uxx + uyy] + du = f, (6.1)

where d is a nonnegative constant with homogeneous Dirichlet boundary condition.
In this section we will discuss the preconditioned matrix

QN.M = PN^WN^MBN.M, (6.2)

where J3NiM is the stiffness matrix of the finite element method of Ld and BNM is the
matrix representation of the collocation discretization of Ld. Let V = //^(fi).

Define b:VxV^-Rby

b(u, v) = (VII, Vv)n + d(u, v)Q, (6.3)

where the associated norm is \\u\\d which is equivalent to Hull). Define bNM(f, g) on

ST.2 x 5 ,̂2 by

bN,M(f, g) = {-nf, 8)N,M + d(f, g)N<M for f,ge S^2, (6.4a)

which defines the collocation discretization operator corresponding to Ld

BNM •• S,,2 - • 5 , , 2 (6.4b)

by

bNMf< 8) = {BN,iuf, g)N,M for / , g e Sn,2. (6.4c)

The finite element discretization operator fiN M of the operator Ld is defined by

PN,M •• S u -> 5,,, (6.5a)

and

b ( u , v) = (PNtMu, v)h for u,v e 5 A , i . (6.5b)

Let BNM and /3NJi be the matrix representation of the operator BN,M and P~N,M
respectively. Let INiM be the two-dimensional quadratic spline interpolation operator

INM • Sr,i -> 5̂ ,2 (6.6a)
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defined by

(/*.*«)(£/, nj) = «(&. Ij), i(J) = 1, • • • . # ( M ) , (6.6b)

that is,

N M

(INMu)(x, y) =

where (£,, jjy) are the Gaussian points on /, x /,.
Let us order the Gaussian points {(£,, ty)},^ *1, by vertical lines. Then we list the
Gaussian points as P\, P2, • • • , PNM. Put

(&.»?.•) = JV where /x = j + (i - 1)M. (6.7)

We order the basis functions in S^,2 and SnA in the same order. Using the tensor
product, we can define the biquadratic basis functions and bilinear functions for SK,2
and S,r,i respectively as

<M*. y) = <t>iW<t>j(y) 6 Sn.2, Q^x, v) = 6i(x)0j(y) e 5,, , . (6.8)

Let us decompose the operator Ld by

Ld = Lx + Ly, Lx = -uxx + (d/2)u and Ly = -uyy + (d/2)u. (6.9)

THEOREM 5. ([19, page 136], [17, Theorem 5.2])

(1) Let flx
N and fiy

M be the stiffness matrices associated with finite element discretiz-
ation ofLx and Ly respectively in the finite element space Snii. Let MN and MM

be the corresponding mass matrices. Then

PN,M=PXN®MM + MN®py
M. (6.10)

(2) Let B*N(i,m) = (Lx<pmm),By
M(j,n) = (Ly<pn)(r,j) and B*N = WNB*N,

BM = WMBM, BNM = WNiMBNiM.

Then the matrix representation of the collocation discretization BNM of the operator
Ld in Sni2 is given by

BN,M = Bx
N®IM + IN®By

M, (6.11)

and the symmetrized collocation matrix is given by

BN,M = Bx
N®WM + WN®By

M. (6.12)
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THEOREM 6. For every a = (au • • • , aN) , we have (MNa, a) ~ (WNa, a).

PROOF. Let u e 5A|1. Then \\u\\l = (MNa, a) and (INu,INu)N = (WNa, a)., By
Lemma 11, the conclusion holds.

LEMMA 12. For every vector a = (c^, • • • , aNM) we have

(1) (03* ® M,,)^, a) ~ «B*N <3> WM)a, a),
(2) ((MN ® ^ ) a , a) ^

PROOF. Because of Theorem 4 and Theorem 6, we have the conclusions following a
proof similar to Lemma 5.4 in [14].

Now we will close this section with one of the main results.

THEOREM 7. For every vector a =(al,--- , aNM) we have

(PN,Moi, a ) ~ (BN,Ma, a).

PROOF. By Lemma 12 and Theorem 5, we have the conclusion.

7. General preconditioning

For a uniformly elliptic operator with variable coefficients La defined in Section 1,
define aNM(u, v) on Sn,2 x Sny2 by

, V) = (Lau, U)W,M, (7.1)

which defines the operator

A N M : Sn,2 - • S,,2 (7.2a)

by

, v) = (AN,Mu, v)N<M for u, v € 5W,2. (7.2b)

Let ANiM be the matrix representation of the operator ANjM. Recall the uniformly
elliptic operators Ld defined in Section 6. Note that those two elliptic operators have
the same boundary conditions. In this section we will discuss the matrix

L\,M = PN,MWN,MAN,M = 0NiMANtM (7.3)

and its PN.M condition number.
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LEMMA 13. Let u, v e SA2- With the notation t — x or y we have for any e > 0 and
different constants C independent of N and M for each case satisfying

(1) \(u,v)NjM\ <

(2) \(u,,u,)N,M\ <C\fQu2dxdy ,

u*dxdy + l- fnv
2dxdy\

/ n u
2dxdy + € fa vfdxdy].

(3) |(K,, «)*.*#! < C

(4) \(-ult,v)N,M\<

PROOF. Inequality (1) follows from the definition of (•, -)N,M and the Schwartz in-
equality, and follows also from Theorem 3. For (2) note that, using a proof similar to
Lemma 3.1 of [9], we have (/ ' , f ' ) N < (/ ', / ' ) for / e SA,2. With this inequality,
(2) follows from the definition of (•, -)N,M and Theorem 3. For (3), first note that for
any positive e,

(7.4)

Then (3) follows from the Schwartz inequality, (7.4) and inequalities (1) and (2) of
this lemma. For (4) note that from Lemma 3.1 of [9] and [10], for / , g € 5 A 2

<-/". 8)N = (f'.g') + Pi (7.5a)

where p2 is a positive constant independent of h. Using the Schwartz inequality and
the inverse estimate (see [6]), we have a positive constant c independent of h such
that

(7.5b)

Then applying the Schwartz inequality to (/ ' , g'), we have from (7.5),

(7.6)
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Finally by the definition of (•, -)N,M, (7.6) (7.4) and Theorem 3,

[18]

M

M

{-uxx(x,r)j),v(x,r]j))N

M

cY s
j

(7.7)

IA
In order to discuss the operator

(7.8)

let us define a differential operator LK with the same boundary conditions as La,

LKu = — [uxx + uyy] + axux + a2uy + Ku, (7.9)

where K is a sufficiently large positive constant. Define an operator

-̂ W.M • ° T , 2 ^ ° T . 2

by

(AJJIMM, U)W,M = (LKu, v)NM.

THEOREM 8. For u e 5 ,̂2

(1) [ u2
x + u2dxdy~(-Au,u)N,M,

Jn

(2) / u2dxdy ~ (u, u)NM.
Jn

PROOF. By definition of (•, -)N,M, we have

(7.10a)

(7.10b)

(-uxx, u)N,M = ) , u(x, (7.11)
1=1

Then by Theorem 2 and the fact that ( see Lemma 3.3 in [10])

{-u",u)N> jw\2dx,
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we have

( -«« , ")N,M >C f u2
xdxdy. (7.12a)

Jn

Putting u = v and e = 1 in (7.7), we have

<-«„, «>*.« < C /" n'rfjcdy. (7.12b)

Hence by (7.12)

{-uxx,u)N,M ~ / u\dxdy. (7.13a)

In a similar way,

/ ^ (7.13b)

Therefore we have (1) by (7.13).
By the definition of (-, -)N,M< we have

M

(u, U)N,M = ^>2s(u(x, rji), u{x, r),))N. (7.14)

Then by Theorem 2,

M

(u,u)NtM >cY]s u2(x,r),)dx > c2 u2(x,y)dxdy. (7.15a)

By applying Theorem 3 to (7.14)

{u, u)N,M < c2 / u2(x, y)dxdy. (7.15b)
Jn

Hence we have (2).

Using the argument of Theorem 3.2 in [16] or following the argument of Theorem 6.1
in [14], we have the following result.

THEOREM 9. Let u e 5 >̂2- Ifmin(N, M) > N0for some positive integer No then
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PROOF. Let v = B~^l
MA* Mu. Then by Theorem 8 there is a constant c such that

{AK
N M u , v)N,M = (BNiMv, v)N<M (7.16a)

= (-Au, v)NiM + d(v, v)N,M

>c(\\Vv\\2
0 + \\v\\l).

On the other hand, by Lemma 13 and (7.4)

\{AK
NMu, v)NM\ < \(-Au, v)NiM\ + \{axux, v)NM\ (7.16b)

+ \(a2uy, v)N,M\ + K\{u, v)NM\

<c

Hence by (7.16)

£l%ll (7.17)

Since A* Mu = BNMv, we have

{AK
N Mu,u)NM = {BNMv,u)NM. (7.18)

Now by the fact that K is sufficiently large, Lemma 13, (7.17) and (7.18),

IMI^CIIB^AJ^Hll^CNI,. (7.19)

Therefore by (7.17) and (7.19) the conclusion follows.

REMARK. The existence of B^]M comes from Lemma 6.1 in [17] if min(N, M) > Af0
for some positive constant No.

Because of Theorem 9, we have the following lemma using the same argument of
Lemma 6.7, Theorem 6.2 in [14] verbatim.

LEMMA 14. For every u € SMi2, ifmin(N, M) > No then

| |H| | l~ | | f i ;VW«| | , .

Translating Lemma 14 into a statement about matrices, we have the following

THEOREM 10. For any £/ = («, , ••• , uNjM) let V = B^l
MANiMU. Then

(fiN,MU,U)~(pN,MV,V).

PROOF. Since \\u \\\ ~ (PN.MU, U\, by Lemma 14 we have the conclusion.
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Finally we will discuss the matrix

and its p~NiM condition number and fiNiM singular values. Since f$NiM is positive
definite, we can define an inner product (£/, V)pNU := (PN.MU, V). Let 5 be any
other real matrix. The j}NyM adjoint of S is that unique matrix 5* such that

• T — T ~

Then 5* = Pjj]MS fiN,M, where S is the transpose of 5. The y3jv,M-singular values
of LNM are the square roots of the eigenvalues of L*N MLNM. Now we have the main
theorem.

THEOREM 11. Assume min(N, M) > Af0. Then for every vector U = (u\, • • • uNiM)

,MU, U)I2 ~ (PNMLN,MU, LN,MU)I2.

That is, there are two positive constants a and ft, independent ofN and M, such that
the fiNM-singular values ofLNM, denoted by Oj{N', M), satisfy

0 <a <Oj(N,M) < p .

PROOF. Recall first QNM = P^l
MWNtMBN_M = P^]MBN:M which is similar to

P~N*MBN,MP~NM- Therefore by Theorem 4 we have

(fiNMU, U) ~ (PN,MQN,MU, QN,MU). (7.20)

Write

LN.M = QN,MSN,M, (7.21)

where SNtM is the matrix representation of the operator SNiM defined in (7.8). Let

V = SN,MU = BJMANMU. (7.22)

Then by (7.21) and (7.22),

O V M V, V) ~ (p~N,MLN,MU, LNMU). (7.23)

Hence by Theorem 10 and (7.23), we have

(PN.MU, U) ~ (PNJULN.MU, LNMU).

Therefore the proof is complete.
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