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The Enskog–Vlasov equation is a phenomenological kinetic equation that extends the
Enskog equation for the dense (non-ideal) hard-sphere fluid by adding an attractive soft
potential tail to the purely repulsive hard-sphere contribution. Simplifying assumptions
about pair correlations lead to a Vlasov-like self-consistent force field that adds to the
Enskog non-local hard-sphere collision integral. Within the limitations imposed by the
underlying assumptions, the extension gives the Enskog–Vlasov equation the ability to
give a unified description of ideal and non-ideal fluid flows as well as of those fluid
states in which liquid and vapour regions coexist, being separated by a resolved interface.
Furthermore, the Enskog–Vlasov fluid can be arbitrarily far from equilibrium. Thus the
Enskog–Vlasov model equation provides an excellent, although approximate, tool for
modelling processes with liquid–vapour interfaces and adjacent Knudsen layers, and
allows us to look at slip, jump and evaporation coefficients from a different perspective.
Here, a set of 26 moment equations is derived from the Enskog–Vlasov equation by means
of the Grad moment method. The equations provide a meaningful approximation to the
underlying kinetic equation, and include the description of Knudsen layers. This work
focuses on the – rather involved – derivation of the moment equations, with only a few
applications shown.
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1. Introduction

The work described in the present paper originates from the authors’ interest in the theory
of evaporation/condensation flows from the point of view of the kinetic theory of fluids.
Therefore, it is perhaps in order to summarize some of the relevant aspects behind the
motivation of the developments described below.
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In hydrodynamic modelling of flows in which liquid and vapour regions coexist, the
details of the liquid–vapour interface are often ignored, and the actual interface is replaced
by a sharp boundary between the two phases. Modelling of transport processes across the
interface then requires interface conditions that relate properties of the two adjacent phases
to supplement conservation of mass, energy and momentum across the interface (Hertz
1882; Knudsen 1915; Schrage 1953; Kjelstrup & Bedeaux 2008).

In classical hydrodynamics, which is applicable to a large number of engineering
problems, one typically assumes continuity of temperature and tangential velocity, so
that there is neither a temperature jump nor a tangential slip velocity. However, when
considering droplets or bubbles of size comparable to the mean free path in the vapour,
one has to consider gas rarefaction effects in the form of interfacial temperature jumps
and velocity slip. In the presence of evaporation/condensation, a more or less pronounced
Knudsen layer always develops, next to the liquid–vapour interface, irrespective of
the curvature/size of the condensed phase surface (Sone 2000). Depending on the
process (evaporation or condensation) and its intensity, more or less strong variations
of macroscopic quantities occur on the scale of the mean free path (Ytrehus 1975). All
such effects are well described by the Boltzmann equation, in a low-density vapour phase.
Since the Boltzmann equation cannot describe the liquid phase, it has to be supplemented
with a model describing the coupling of the vapour and liquid phases. Usually, the model
takes the form of a phenomenological boundary condition, specifying the distribution
function at the structureless liquid–vapour interface, as a function of a number of model
parameters, typically condensation/evaporation coefficients (Frezzotti 2011). On the basis
of the kinetic description, continuity of temperature and tangential velocity are replaced
by more elaborate jump and slip conditions incorporating Knudsen layer effects. In many
studies, particularly when dealing with intense evaporation/condensation flows, boundary
condition models are used to solve the nonlinear Boltzmann equation and resolve the
Knudsen layer structure (Pao 1971a,b; Cipolla, Lang & Loyalka 1974; Ytrehus 1975; Sone
2000).

Independent of the model – classical hydrodynamics or more elaborate theory for
rarefaction – interface conditions for the distribution function and the condensation/
evaporation coefficients are difficult to determine, since they can be measured not directly,
but only through their effects on the flow field properties (Bond & Struchtrup 2004).
The best known example for this is the evaporation/condensation coefficient of water,
for which reported measurements vary by several orders of magnitude (Eames, Marr &
Sabir 1997; Marek & Straub 2001). In spite of the phenomenological formulation of
kinetic boundary conditions and the general difficulties in determining their parameters
from comparisons with experiments, the Boltzmann equation provides a good description
of the Knudsen layer structure resulting from molecular dynamics (MD) simulations of
simple liquids (Frezzotti, Grosfils & Toxvaerd 2003; Barbante & Frezzotti 2017; Frezzotti
& Barbante 2020) and experiments (Mager, Adomeit & Wortberg 1989; Frezzotti &
Stefanov 1995). As an alternative to the direct solution of the Boltzmann equation, it
is possible to derive macroscopic transport models, such as hydrodynamics or extended
models, by appropriate methods, typically based on the Knudsen number as smallness
parameter (Chapman & Cowling 1970; Cercignani 1975; Struchtrup 2004, 2005; Kremer
2010). Macroscopic interface conditions can be derived from the interface conditions for
the Boltzmann equation within the same context (Torrilhon & Struchtrup 2008; Struchtrup
et al. 2017; Beckmann et al. 2018).

The above approach to liquid–vapour flows implies a heterogeneous model that adopts
Navier–Stokes–Fourier equations to describe the liquid bulk and kinetic theory to describe
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kinetic effects in the vapour, at various levels. The latter provides jump formulas to
bridge the hydrodynamic regions in the liquid and vapour phases across the discontinuity,
resulting from collapsing the liquid–vapour interface and the adjacent Knudsen layer onto
a structureless phase boundary surface (Schrage 1953; Kjelstrup & Bedeaux 2008; Caputa
& Struchtrup 2011). When the Knudsen layer thickness is of the order of the curvature
radius of the interface, the Navier–Stokes–Fourier equations have to be coupled to the
Boltzmann equation by the kinetic boundary condition mentioned above.

Apart from direct MD simulations, a unified treatment of liquid–vapour flows by a
single mathematical model is provided, for example, by diffuse interface models (DIM)
(Anderson, McFadden & Wheeler 1998), in which additions of Korteweg’s capillary
stress tensor to the classical Navier–Stokes contribution, and of a capillary heat flux to
the classical Fourier term, allows us to describe vapour and liquid phase as classical
Navier–Stokes–Fourier (NSF) fluids, connected by a diffuse interface, a few atomic
diameters thick and dominated by Korteweg stresses. Unfortunately, the model reduces
to the ordinary NSF equations outside the liquid–vapour interface and fails to reproduce
MD evaporation/condensation rates in the dilute vapour regime (Barbante & Frezzotti
2017; Frezzotti & Barbante 2020). On the contrary, DIM perform well when the vapour
becomes non-ideal, as the liquid temperature approaches the critical temperature and
kinetic effects in the dense vapour fade away (Frezzotti & Barbante 2020). It is worth
observing that recent results obtained from MD simulations of the Lennard-Jones fluid
suggest the existence of a ‘grey’ region in which the vapour cannot be modelled by the
Boltzmann equation because of its non-ideality, but DIM cannot be used because of the
persistence of kinetic effects (Frezzotti & Barbante 2020).

A kinetic model for non-ideal fluids is not easily formulated (Resibois & De Leener
1977), and Enskog’s theory of dense hard-sphere fluids remains a viable model to explore
kinetic effects in non-ideal gases (Enskog 1921). Its extension to fluids whose molecular
potential has an attractive contribution is known as the Enskog–Vlasov (EV) equation
(de Sobrino 1967). The EV equation provides a generalization of the Enskog equation
to include not only dense gas effects but also phase changes. This simplified model
considers binary collisions only for the repulsive hard-sphere interaction, and describes
the collective attractive interaction with the sea of molecules as a self-consistent force
field in the Vlasov term (Vlasov 1961). Excluded volume effects, due to the finite size of
molecules, are accounted for by the non-local Enskog collision term and the presence of
the pair correlation function Y (Enskog 1921; Resibois & De Leener 1977).

For equilibrium states, the EV model yields van-der-Waals-like equations of state,
an easily computed liquid–vapour coexistence curve below the critical temperature and
diffuse phase interfaces with surface tension (de Sobrino 1967; Grmela 1971; Frezzotti,
Gibelli & Lorenzani 2005). The interface is part of the continuous solution of the EV
equation, so that no additional interface conditions must be provided. In this respect, the
EV model can be considered as a kinetic extension of DIM (Piechór 2008; Giovangigli
2020). Actually, just as for the Boltzmann and Enskog equations, one can derive
macroscopic transport equations from the EV equation. Similarly to the EV equation itself,
these macroscopic transport equations describe the continuous interface between the liquid
and vapour phases, and the phases themselves, and there is no need for additional interface
conditions with ad hoc coefficients (Piechór 2008; Giovangigli 2020).

However, the formulation of transport equations for the EV equation cannot be limited
to the NSF level because of the need to describe Knudsen layers in low-density vapour
flows. In this case, the EV equation reduces to the Boltzmann equation for hard spheres,
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in the vapour. Hence it provides a consistent flow description, which is not possible for
NSF equations. The accuracy of a hydrodynamic-like approach can be improved when
higher-order terms in the Knudsen number are included in the modelling (Struchtrup
2005).

Macroscopic models at higher order are typically derived by means of Grad’s method
of moments, and variants thereof, which yield stable equations at any order (Grad 1949,
1958; Struchtrup 2005; Kremer 2010). This stands in contrast to the Chapman–Enskog
expansion, where the higher-order Burnett (Burnett 1936) and super-Burnett (Shavaliyev
1993) equations are unstable (Bobylev 1982). The best known set of Grad-type moment
equations is for 13 moments (Grad 1949), which do not exhibit any Knudsen layers
(Struchtrup 2005). Indeed, modelling of all relevant contributions to Knudsen layers
requires a Grad system with at least 26 moments (Struchtrup 2005). In the framework
of dilute gases, a systematic reduction of the 26 moment system leads to the regularized
13 moment equations (R13) (Struchtrup & Torrilhon 2003; Struchtrup 2005; Torrilhon
2016), the simplest moment model capable of describing Knudsen layers. However, the
arguments leading to the derivation of the R13 moment would not necessarily hold within
interfaces, where the distribution function suffers changes on the scale of the molecular
diameter. Hence in order to have macroscopic moment approximation for the EV equation
that includes resolution of the interface and the Knudsen layers, we have decided to
consider the 26 moments formulation – and this is what we will do in the following.
The 13 moment equations for the standard Enskog equation, that is, without the Vlasov
term, are available for the linearized case (Kremer & Rosa 1988). Below, we will not only
consider more moments and add the Vlasov term, but also include a number of nonlinear
terms that are necessary to describe the strong changes across the continuous interface.
The EV equation is a nonlinear partial-integro-differential equation with non-local terms.
Aiming for a macroscopic model, we will expand all non-localities into Taylor series,
which will give us gradient terms in all macroscopic quantities. Due to the inherent
difficulty of the derivation of moment equations for the EV equation, we consider only
equations for linear deviations from an equilibrium state that involves phase interfaces. The
equilibrium state exhibits homogeneous temperature, (zero) velocity, and bulk densities in
vapour and liquid, but steep density gradients in the liquid–vapour interface. With that,
the linearization around the equilibrium state yields seemingly nonlinear terms involving
equilibrium density gradients and true non-equilbrium terms.

The present paper focuses on the derivation of the moment equations. Deeper discussion
of the moment equations, as well as their solutions for a variety of problems, will be
presented elsewhere. With the phase interface resolved, we hope to be able in the future to
provide a rational link to the jump and slip conditions for discontinuous interfaces.

The remainder of the paper is structured as follows. The EV equation is introduced in
§ 2, and § 3 discusses how to obtain its moment equations and their closure by means of the
Grad method. Detailed technical aspects are found in the next sections: § 4 discusses the
Vlasov force and the corresponding Korteweg stress tensor, as well as the contributions to
the balance of energy; evaluation of the Enskog collision term for the 26 moment closure
is outlined in § 5. Non-locality is replaced by Taylor expansion, adding to the complexity –
essentially a large number of integrals must be solved and combined into the moments of
the collision term that are required to close the moment equations. The full set of closed
26 moment equations is presented in § 6. The paper ends with a brief discussion of the
equilibrium state, a first example of a non-equilibrium solution, and our conclusions and
outlook to future work on solution and discussion of the equations.
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2. Enskog–Vlasov equation

The EV equation provides an approximate description of a fluid composed by identical
molecules of mass m, interacting by forces directed along the line connecting their centres
and determined by the Sutherland potential (Sutherland 1893)

φ (r) =
{∞, r < a,

φ̂(r), r ≥ a,
(2.1)

which results from the superposition of a hard-sphere repulsive core and a soft attractive
tail. In (2.1), r = ‖x1 − x‖ is the distance between the centres of two molecules located
respectively at x1 and x. The hard-sphere diameter is denoted by a, whereas φ̂(r) denotes
the soft potential tail.

From the classical BBGKY hierarchy (Resibois & De Leener 1977), the following exact
equation for the one-particle distribution function f (1)(x, t, c) can be derived (Karkheck &
Stell 1981):

∂f (1)

∂t
+ ck

∂f (1)

∂xk
+ Gk

m
∂f (1)

∂ck
= 1

m
∂

∂ck

∫
dφ̂
dr

x1
k − xk

‖x1 − x‖ f (2)(x, c, x1, c1, t) dx1 dc1

+
∫

a2
[

f (2)(x, c′, x + ak, c1′, t)− f (2)(x, c, x − ak, c1, t)
]
(g · k)H(g · k) d2k dc1,

(2.2)

where H is the Heaviside step function.
Equation (2.2) expresses the rate of change of the density of molecules in the

one-particle phase space point (x, c) as the result of advection with velocity ck and
acceleration caused by an external body force Gk as well as of binary interactions. The
latter are described by the two integrals on the right-hand side. The first integral represents
the force acting on a molecule at (x, c) because of its interaction with any other molecule,
through the soft potential tail φ̂. The second integral gives the rate of change of f (1) due
to instantaneous and elastic binary collisions between two spheres whose centres are at
relative distance a, at the time of their impact. The hard-spheres collision term is the sum
of a loss and a gain contribution. In the former, molecules located at x, with pre-collision
velocity c, are removed from their phase space position by collision with molecules located
at x − ak, with velocity c1. The unit vector k specifies the relative position of the collision
pair at the time of their impact. Upon each collision, c and c1 are transformed into the
respective post-collision velocities c′ and c1′, according to the expressions

c′ = c + (g · k)k, c1′ = c1 − (g · k)k, g = c1 − c. (2.3a–c)

The gain term is obtained by considering ‘inverse’ collisions in which collision pairs
respectively occupy positions x and x + ak, having pre-collision velocities c′ and c1′ that
transform into post-collision velocities c and c1, as seen easily from (2.3a–c). For both
contributions, the integration is carried over all k and c1 such that the flux (g · k)H(g · k)
across the unit sphere element is positive (impacting molecules are approaching each
other). It should be noted that in both binary interaction terms, the two-particle distribution
function has to be used, since the exact evaluation of the corresponding terms requires the
knowledge of pair distributions, not available from f (1) alone.

Truncating the hierarchy at the level of f (1) requires assumptions about pair correlations.
The EV equation, first obtained by de Sobrino in 1967 (de Sobrino 1967), adopts
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Enskog’s (Enskog 1921) approximation of the hard-sphere contribution, while ignoring
pair correlations in the potential tail term. More precisely, in the second integral on the
right-hand side of (2.2), the pair distribution function at contact is written as

f (2)(x, c, x − ak, c1, t) = χhs(x, x − ak | n) f (1)(x, c, t) f (1)(x − ak, c1, t),

f (2)(x, c′, x + ak, c1′, t) = χhs(x, x + ak | n) f (1)(x, c′, t) f (1)(x + ak, c1′, t).

}
(2.4)

In the original Enskog formulation of the dense hard-sphere gas (Enskog 1921), named
standard Enskog theory (SET), the assumed velocity-independent pair correlation function
χhs is assigned as a function of the fluid number density n from the uniform-equilibrium
pair correlation function Y(n) at the contact position x ∓ (a/2)k. Hence the SET
approximation of the hard-sphere contribution in (2.2) takes the form

SEn = a2
∫ ∫ 2π

0

∫ π/2

0

⎧⎪⎪⎨
⎪⎪⎩

Y
[

n
(

x + ak
2

)]
f
(
x + ak, c1′) f (x, c′)

− Y
[

n
(

x − ak
2

)]
f
(
x − ak, c1) f (x, c)

⎫⎪⎪⎬
⎪⎪⎭

× g cos θ sin θ dθ dε dc1, (2.5)

where k = {cos ε sin θ, sin ε sin θ, cos θ}.
A further assumption about pair correlations is added to simplify the soft tail

contribution, where f (2) is written as

f (2)(x, c, x1, c1, t) = f (1)(x, c, t) f (1)(x1, c1, t), (2.6)

thus ignoring position and velocity correlations when pair distance is larger than the range
of repulsive forces. Taking into account (2.6), the soft potential tail contribution in (2.2)
takes the form of a Vlasov-like (Vlasov 1961) self-consistent force field given by

Fk (xl) =
∫
‖x1−x‖>a

dφ
dr

x1
k − xk

‖x1 − x‖ n(x1
j ) dx1, (2.7)

which determines the force acting on a molecule at position x and time t as a non-local
linear functional of the number density field n.

Within the assumptions listed above, the EV equation reads (now in index notation that
will be used in most of what follows)

∂f
∂t

+ ck
∂f
∂xk

+ [Fk(xl)+ Gk]
∂f
∂ck

= SEn. (2.8)

From the physical point of view, (2.8) describes a hard-sphere fluid, subject to a
self-consistent force field determined by the attractive part of the potential φ. Unlike
the Boltzmann equation (Cercignani 1975), which describes dilute gases, its approximate
one-particle distribution function extension to dense fluids requires a model for pair
correlations. In the framework of SET, a relationship between the uniform-equilibrium
pair correlation function Y(n) and the pressure equation of state is easily established, in
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the form of a generalized van der Waals equation (Balescu 1975), as

p(n, T) = phs(n, T)− αtn2,

phs(n, T) = nkB T
[

1 + 2π

3
a3n Y(n)

]
,

⎫⎪⎬
⎪⎭ (2.9)

where phs is the hard-sphere term contribution and αt is a coefficient depending on φ̂.
As shown by Frezzotti, Barbante & Gibelli (2019), the critical density ncrit of the EV
fluid in equilibrium is determined only by the hard-sphere potential, through the assumed
Y function. In contrast to this, the critical temperature, Tcrit depends as well on the soft
potential tail φ̂(r). Since in this work it is not necessary to tune Y(n) and αt on a specific
fluid, it has been decided to derive Y(n) from the Carnahan–Starling hard-sphere fluid
equation of state (Carnahan & Starling 1969), as

Y [n] = 1
2

2 − η

(1 − η)3
, (2.10)

where η = πa3n/6 is the fluid reduced density. It is to be noted that the Carnahan–Starling
equation provides a very accurate approximation of the hard-sphere equation of state, up
to a reduced density of about 0.4, where the hard-sphere fluid suffers a liquid–solid phase
transition (Balescu 1975). The attracting part of the potential has been chosen as a power
potential of order γ ,

φ̂ (r) = −φa

(a
r

)γ
, (2.11)

with γ = 6, in order to mimic the attractive contribution of the Lennard-Jones potential
(Jones 1924).

The brief description of the assumptions leading to (2.8) clearly show its
phenomenological nature. Over the years, several studies have addressed correcting some
of its deficiencies. In particular, van Beijeren and Ernst (Van Beijeren & Ernst 1973)
have proposed replacing the local uniform-equilibrium pair correlation function Y with
the exact pair correlation function of a hard-sphere fluid in non-uniform equilibrium,
χ(r, r ∓ k|n). The latter, unlike Y(n), is a non-local functional of the density, formally
defined by a cluster expansion (Van Beijeren & Ernst 1973; Balescu 1975) and difficult to
use in applications. Yet the resulting revised Enskog theory (RET) has several advantages
over SET. First, RET becomes exact when the hard-sphere fluid is in equilibrium with
an arbitrary density field. Second, RET extension to mixtures makes it compatible with
irreversible thermodynamics, whereas SET is not (Van Beijeren & Ernst 1973). Third, the
H-theorem has not been proved for SET, whereas a proof is available for RET (Resibois
1978). The modifications of Enskog’s theory mentioned above are related to Enskog’s
hard-sphere term in (2.8); a discussion of the theoretical properties of the extension to the
EV equation can be found in Benilov & Benilov (2018).

In spite of the improved formulations mentioned above, in this paper the original SET
form of the hard-sphere interaction contribution has been used, for various reasons. First,
the derivation of the moment equations described below is rather complex, and the use
of the simpler SET does not add further difficulties. Moreover, previous results (Kremer
2010) that limited Grad’s 13 moment formulation of the Enskog equation are available for
comparisons and cross-checks. Second, in spite of its theoretical drawbacks, numerical
solutions of the SET version of the Enskog equation have shown very good agreement
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with exact molecular dynamics simulations of the dense hard-sphere fluid, for highly
non-equilibrium flows (Frezzotti 1998, 1999). When the self-consistent Vlasov field is
added to simulate two-phase flows, computed evaporation coefficients and flow fields
compare very well to molecular dynamics simulations (Frezzotti et al. 2005).

3. Transport equations for 26 moments

3.1. Definition of moments
Moments are weighted averages of the distribution function, some of which have direct
physical meaning, such as the mass density ρ, or the bulk velocity vi. Following Struchtrup
(2005), we consider the usual central moments of the distribution function defined as

uα〈i1···in〉 = m
∫

C2αC〈i1 · · · Cin〉f dc, (3.1)

where Ci = ci − vi is the peculiar velocity and m is particle mass; indices between angular
brackets indicate trace-free and symmetric tensors. Experience from the Boltzmann
equation (Struchtrup 2005; Torrilhon 2016) shows that the following 26 variables serve
well to describe gas flows at not too large Knudsen numbers:

ρ = mn = u0,

ρvi = m
∫

cif dc,

ρε = 3
2ρRT = 3

2ρθ = 1
2 u2,

σij = u0
〈ij〉,

qi = 1
2 u1

i ,

mijk = u0
〈ijk〉,

Δ = u4 − 15ρθ2,

Rij = u1
〈ij〉 − 7θσij.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3.2)

Above, for the first five moments, ρ, ρvi and ρε are mass density, momentum density, and
density of thermal energy, where θ = RT is the temperature in units of specific energy,
R = kB/m is the gas constant, kB is the Boltzmann constant, and T is thermodynamic
temperature. The other variables are all non-equilibrium moments, that is, they vanish in
equilibrium states. Stress tensor σij and heat flux qi are the kinetic contributions to overall
stress and energy flux; there will be additional contributions from the Enskog and Vlasov
terms that will emerge further below. The order of magnitude method for classical rarefied
gas dynamics for Maxwell molecules shows that stress and heat flux are of first order in the
Knudsen number, while the variables mijk, Δ and Rij are constructed to be of second order
(Struchtrup 2004, 2005). Since we expect a close relationship between moment equations
from the EV theory and classical kinetic theory, we prefer to use the same variables.

3.2. Grad distribution function
Moment equations result from multiplying the kinetic equation with appropriate tensor
combinations of microscopic velocity, and integration. The moment equations are coupled,
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since higher moments always appear under space derivatives. When one has chosen a
certain set of moments as variables, the corresponding set of moment equations contains
higher moments that must be related somehow to the chosen variables. In the Grad method,
this closure problem is solved by constructing a distribution function that reproduces the
variables, and allows us to determine all other moments through the variables (Grad 1949,
1958; Struchtrup 2005; Kremer 2010).

Just as for the Boltzmann equation, the Grad distribution is constructed as a deviation
from a local Maxwellian, whose macroscopic parameters coincide with the corresponding
moments of f . With the 26 moments listed above, closure is performed by the 26 moment
distribution function (Struchtrup 2005), which reads

f|26 = f̂M (ρ +Φ) , (3.3)

with the reduced Maxwellian

f̂M = 1

m
√

2πθ
3 e−(C2/2θ), (3.4)

and the non-equilibrium deviation Φ expressed as a polynomial in the peculiar velocity,

Φ = σij

2θ2 C〈iCj〉 + 2
5

qk

θ2 Ck

(
C2

2θ
− 5

2

)

+ mijk

6θ3 C〈iCjCk〉 + Rij

14θ3 C〈iCj〉
(

C2

2θ
− 7

2

)
+ Δ

8θ2

(
1 − 2

3
C2

θ
+ 1

15
C4

θ2

)
. (3.5)

Here, the first two terms correspond to Grad’s classical 13 moments closure. In
equilibrium, all higher moments vanish, 0 = Δ = qk = σij = Rij = mijk, hence the
equilibrium solution is the Maxwellian fM = ρ f̂M . More precisely, it is worth observing
that the equilibrium solution of the EV equation is a Maxwell distribution function with
uniform θ and v. Depending on the equilibrium value of θ , the equilibrium density ρ is not
generally uniform, obeying an integral equation expressing the local balance of mean field
and hard-sphere pressure tensor contributions. Also, for later reference, we emphasize that
the non-equilibrium correction Φ is independent of mass density.

This distribution (3.3) reproduces the 26 moments of the theory (see (3.2)), and the
higher moments required for closure are determined as (Struchtrup 2005)

u2
i|26 = 28θqi, u1

ijk|26 = 9θmijk, u0
ijkl|26 = 0. (3.6a–c)

This distribution will also be used for determining the Enskog production terms, which
result from taking appropriate moments of the collision term.

A distribution function should be positive. Due to its polynomial structure, for the Grad
approximation this is not the case, sinceΦ becomes negative for large values of Ci. For not
too large values of the moments in (3.5), the multiplying Maxwellian in (3.3) suppresses
these negative values, and the resulting equations remain meaningful.

The entropy inequality – also known as the H-theorem – results from integration of
the kinetic equation against ln f , which does not exist for the Grad distribution, due to
the non-positivity. Evaluation of the entropy therefore must rely on Taylor expansion of
lnΦ in terms of the moments. This implies that for Grad-type moment equations, an
H-theorem can be only approximated, but not guaranteed for all values of the moments.
One can show that fully linearized Grad equations as derived from the Boltzmann
equation are accompanied by a quadratic entropy; see Struchtrup & Torrilhon (2007).
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H. Struchtrup and A. Frezzotti

While an H-theorem for nonlinear moment equations cannot be proved, Grad-type moment
equations remain stable and give meaningful results also outside the linear regime; e.g.
see the review by Torrilhon (2016). The same behaviour is expected from the moment
equations derived below. An examination of the accompanying H-theorem, at least for the
fully linearized equations, is planned for the future.

3.3. Moment equations

3.3.1. General form
Moment equations are formed by multiplying the kinetic equation with the appropriate
polynomial in velocity, and subsequent integration. The general moment equation for
arbitrary moments (3.1) was presented in Struchtrup (2005) for the Boltzmann equation.
Since EV differs only in the Vlasov force and the details of the collision term, we can take
the general moment equation from Struchtrup (2005), add the Vlasov force Fk, and keep
the general notation for production terms, so that

Duαi1···in
Dt

+ 2αuα−1
i1···ink

[
Dvk

Dt
− Fk − Gk

]

+ n (2α + 2n + 1)
2n + 1

uα〈i1···in−1

[
Dvin〉

Dt
− Fin〉 − Gin〉

]

+ ∂uαi1···ink

∂xk
+ n

2n + 1

∂uα+1
〈i1···in−1

∂xin〉
+ 2αuα−1

i1···inkl
∂vk

∂xl

+ 2α
n + 1
2n + 3

uα〈i1···in
∂vk〉
∂xk

+ 2α
n

2n + 1
uαk〈i1···in−1

∂vk

∂xin〉
+ nuαk〈i1···in−1

∂vin〉
∂xk

+ uαi1···in
∂vk

∂xk
+ n(n − 1)

4n2 − 1
(2α + 2n + 1) uα+1

〈i1···in−2

∂vin−1

∂xin〉
= Pαi1···in . (3.7)

Here, D/Dt = ∂/∂t + vk(∂/∂xk) is the convective time derivative, Gi is the external body
force, e.g. from gravity, and Fi is the Vlasov force from above. The so-called production
terms on the right-hand side are integrals over the Enskog collision term,

Pαi1···in = m
∫

C2αC〈i1 · · · Cin〉SEn dc. (3.8)

The general moment equation contains time derivatives of velocity that enter through
derivatives of the peculiar velocity Ci = ci − vi; the balance of momentum will be used
to replace these contributions. Equations for particular moments follow by choice of
particular values of the velocity power α and the tensor rank n, and replacing moments
uα〈i1···in〉 through the variables listed in (3.2). Details of the Vlasov force and production
terms will be discussed in later sections.

3.3.2. Conservation laws
We begin with the conservation laws, in which we have to write production terms for
energy and momentum, since there will be flux contributions (in divergence form for the
full conservation laws) from the Enskog terms for momentum and energy. This accounts
for the fact that in a hard-sphere collision, energy and momentum are transferred over the
distance of the colliding particles’ centre of mass. Since mass is not transferred between
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Twenty-six moment equations for the Enskog–Vlasov equation

the particles, so that there is no production of mass, m
∫
SEn dc = 0, and the production

of momentum is m
∫

ciSEn dc = m
∫

CiSEn dc = P0
i .

The conservation laws for mass and momentum, and the balance of thermal energy, read

Dρ
Dt

+ ρ
∂vk

∂xk
= 0,

ρ
Dvi

Dt
+ ∂ρθ

∂xi
+ ∂σik

∂xk
= ρ (Fi + Gi)+ P0

i ,

3
2
ρ

Dθ
Dt

+ ∂qk

∂xk
= −ρθ ∂vk

∂xk
− σkl

∂vk

∂xl
+ 1

2
P1.

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(3.9)

Here, and further below, we removed the velocity time derivative from (3.7) by means of
the momentum balance, which also removes the contributions of external body force and
Vlasov force. Hence the force terms will appear only in the momentum balance, but not in
the other equations for central moments.

3.3.3. Balance for Δ
The conservation laws are used to simplify the equations for other variables, by eliminating
the time derivative of velocity, and use of the energy equation and mass balance where
required. We proceed through several tensor orders, beginning here with the scalar
equation for Δ = u2 − 15ρθ2, which requires not only the moment equation for u2, but
also mass and energy balances to eliminate time derivatives of 15ρθ2. Omitting all detail
of computation, we simply state the final result, based on the 26 moments closure (3.3).
We obtain the same equation as in Struchtrup (2005), only with additional terms in the
production, which come from the Enskog contributions to energy and momentum and will
be discussed later:

DΔ
Dt

+ 8θ
∂qk

∂xk
+ 8θσkl

∂vk

∂xl
+ 20qk

∂θ

∂xk
− 8qkθ

∂ ln ρ
∂xk

− 8qk

ρ

∂σkl

∂xl
+ 4Rkl

∂vk

∂xl
+ 7

3
Δ
∂vk

∂xk

= P2 − 20θ
P1

2
− 8qk

ρ
P0

k . (3.10)

3.3.4. Balance for qi
The equation for the kinetic contribution to energy flux, qi, is the same as in standard
kinetic theory (Struchtrup 2005), except that the Enskog term yields additional production
terms:

Dqi

Dt
+ 5

2
ρθ

∂θ

∂xi
+ 5

2
σik

∂θ

∂xk
+ θ

∂σik

∂xk
− σikθ

∂ ln ρ
∂xk

+ 7
5

qk
∂vi

∂xk
+ 2

5
qk
∂vk

∂xi
+ 7

5
qi
∂vk

∂xk

+ 1
2
∂Rik

∂xk
+ 1

6
∂Δ

∂xi
+ mikl

∂vk

∂xl
− σik

ρ

∂σkl

∂xl
= 1

2
P1

i − 5
2
θP0

i − σik

ρ
P0

k . (3.11)

3.3.5. Balances for σij and Rij
Also, the balances for stress σij and the variable Rij agree with results in (Struchtrup 2005),
except that additional production terms appear. We find

Dσij

Dt
+ 2ρθ

∂v〈i
∂xj〉

+ σij
∂vk

∂xk
+ 4

5
∂q〈i
∂xj〉

+ 2σk〈i
∂vj〉
∂xk

+ ∂mijk

∂xk
= P0

ij , (3.12)
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and with the trace-free velocity gradient Sij = ∂v〈i/∂xj〉,

DRij

Dt
+ 28

5
θ
∂q〈i
∂xj〉

+ 28
5

q〈i
∂θ

∂xj〉
− 28

5
θq〈i

∂ ln ρ
∂xj〉

− 28
5

q〈i
ρ

∂σj〉l
∂xl

+ 8σk〈iSj〉k

− 14
3
σij

ρ

∂qk

∂xk
− 14

3
σijσkl

ρ

∂vk

∂xl
+ 14

15
Δ
∂v〈i
∂xj〉

− 2mijk

ρ

∂σkl

∂xl
− 2mijkθ

∂ ln ρ
∂xk

+ 7mijk
∂θ

∂xk
+ 2θ

∂mijk

∂xk
+ 8

7
Rk〈iSj〉k + 2Rk〈i

∂vk

∂xj〉
+ 5

3
Rij
∂vk

∂xk

= P1
ij − 7θP0

ij − 14
3
σij

ρ

P1

2
− 2

mijk

ρ
P0

k − 28
5

q〈i
ρ

P0
j〉. (3.13)

3.3.6. Balance for mijk
Finally, for the third moment we find

Dmijk

Dt
+ 3θ

∂σ〈ij
∂xk〉

− 3θσ〈ij
∂ ln ρ
∂xk〉

+ 12
5

q〈i
∂vj

∂xk〉
− 3σ〈ij

ρ

∂σk〉l
∂xl

+ 3
7
∂R〈ij
∂xk〉

+ 3ml〈ij
∂vk〉
∂xl

+ mijk
∂vl

∂xl
= P0

ijk − 3σ〈ij
ρ

P0
k〉. (3.14)

4. Vlasov force

4.1. Smooth density approximation
As shown in (2.7), the Vlasov force Fk depends solely on the density distribution of the
particles, independent of their velocities. Therefore, the full distribution function f is not
required for its computation. Assuming that the number density n is sufficiently smooth
anywhere, including at the phase interface, we can expand the number density in the
integral, so that

Fk(xl) = ∂n
∂xs

∫
r>a

dφ
dr

rkrs

r
dr + 1

6
∂3n

∂xr ∂xs ∂xt

∫
r>a

dφ
dr

rkrrrsrt

r
dr, (4.1)

where rk = x1
k − xk is the distance vector between the interacting particles, and we have

switched integration variables (with x1
k = xk + rk, we find dx dx1 = dx dr); anisotropic

contributions of the integrals vanish, since we integrate over a sphere.
Integration yields the Vlasov force in the form

Fk(xl) = 4πa3

3
φa

m
χ1

∂ρ

∂xk
+ 2πa5

15
φa

m
χ3

∂3ρ

∂xk ∂xs ∂xs
, (4.2)

where for power potentials

χ1 = γ

γ − 3
, χ3 = γ

γ − 5
, (4.3a,b)

and for the exponential tail

χ1 = 6
ϕ3 + 6

ϕ2 + 3
ϕ

+ 1, χ3 = 120
ϕ5 + 120

ϕ4 + 60
ϕ3 + 20

ϕ2 + 5
ϕ

+ 1. (4.4a,b)
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Twenty-six moment equations for the Enskog–Vlasov equation

4.2. Korteweg stress tensor
In the balance of momentum, the Vlasov force Fk is multiplied by mass density ρ. It is a
simple exercise to rewrite the force term as the divergence of the potential tail contribution
to the Korteweg stress tensor, i.e.

ρFk = −∂T
K

ks
∂xs

, (4.5)

with

T K
ks = −2πa3

3
φa

m
χ1ρ

2δks − 2πa5

15
φa

m
χ3

[(
ρ

∂2ρ

∂xr ∂xr
+ 1

2
∂ρ

∂xr

∂ρ

∂xr

)
δks − ∂ρ

∂xs

∂ρ

∂xk

]
.

(4.6)

The first term is a van-der-Waals-like contribution describing pressure reduction through
attractive forces, and the second term describes extra stress due to density gradients,
including surface tension effects in phase interfaces (Anderson et al. 1998).

4.3. Korteweg/Vlasov energy
The potential energy due to the attractive forces between particles is a contribution to
the overall energy, and appears in the overall energy balance. Energy for the Korteweg
stresses has a van-der-Waals-like contribution and a contribution due to density gradients
(Anderson et al. 1998)

εK = −2πa3

3
φa

m
χ1ρ + πa5

15
φa

m
χ3

1
ρ

∂ρ

∂xs

∂ρ

∂xs
, (4.7)

which obeys the non-conservation law

ρ
DεK

Dt
+ ∂qK

k
∂xk

= −T K
rs
∂vr

∂xs
, (4.8)

where

qK
i = 2πa5

15
φa

m
χ3ρ

∂ρ

∂xi

∂vr

∂xr
(4.9)

is an extra contribution to energy flux (Giovangigli 2020).
The balance of kinetic energy results from multiplying the momentum balance with

velocity:

ρ
D 1

2v
2

Dt
+ ∂(ρθδik + σik + T K

ik )vi

∂xk
= (ρθδik + σik + T K

ik )
∂vi

∂xk
+ ρviGi + viP0

i . (4.10)

Adding balances for thermal (third equation of the set (3.9)), potential (4.8) and kinetic
(4.10) energies yields the balance of total energy in intermediate form:

ρ

D
(

3
2
θ + 1

2
v2 + εK

)
Dt

+ ∂
[
qk + qK

k + (ρθδik + σik + T K
ik )vi

]
∂xk

= ρviGi + 1
2
P1 + viP0

i . (4.11)

The energy balance still contains the energy and momentum contributions from the
Enskog collision term, which will turn out to be of divergence form (Resibois & De Leener
1977), that is, these are additional contributions to stress and heat flux.
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5. Enskog collision term

The last – and major – step in the derivation of higher-order macroscopic equations for the
EV equation is finding explicit expressions for the collision productions

Pαi1···in = m
∫

C2αC〈i1 · · · Cin〉 SEn dc (5.1)

from the Enskog collision term SEn (see (2.5)).
Evaluation of the Enskog collision term for the Grad closure is, in principle,

straightforward, but extremely cumbersome. The non-localities are replaced by Taylor
series in space, which leads to a large number of individual contributions to the collision
integrals. We aim to provide sufficient detail, but omit most intermediate steps. For
the calculations, we mixed integration through appropriate software packages (Wolfram
MathematicaTM) with calculations by hand. The final results of this section are the
collision terms for the transport equations (3.10)–(3.14).

The presentation in this section is rather technical, and aims to show the many steps
that one has to go through to find the final expressions used. Readers not interested in
computational detail are welcome to skip forward, and just study the resulting equations
as presented in § 6.

5.1. Moment productions
We write in compact notation

Pψ =
∫
ψ(c)SEn dc. (5.2)

Due to symmetry of collision details, we can use the same standard arguments on exchange
and renaming of integration variables as for the Boltzmann equation (Struchtrup 2005;
Kremer 2010) to compact the expression for the production terms into

Pψ = a2
∫ ∫ ∫ 2π

0

∫ π/2

0

{
ψ ′ − ψ

}
Y
[

n
(

xr − akr

2

)]
f
(

xs − aks, c1
s

)
f (xt, ct)

× g cos θ sin θ dθ dε dc1 dc, (5.3)

where ψ ′ = ψ(c′). Apart from the non-localities in the arguments of n and f , this agrees
with (3.18) in Struchtrup (2005) for the Boltzmann equation. The production term for the
mass balance is obtained for ψ(c) = m, so that ψ ′ − ψ = 0, hence we see immediately
that mass is conserved, Pm = P0 = 0, as anticipated above.

The last step is insertion of the Grad distribution (3.3) into (5.3), and evaluation of the
integral. We need to integrate over the collision vector k = {cos ε sin θ, sin ε sin θ, cos θ},
which occurs in the non-local argument of n and f . To make this integration accessible,
we perform expansions of the functions Y[n(xr − akr/2)] and f (xs − aks, c1

s ) around the
point x, as outlined in the following subsections. As noted by Frezzotti et al. (2005), it
is necessary to retain terms up to a5 in the Vlasov force, in order to obtain the correct
soft tail contribution to the Korteweg capillary stress tensor. In the production terms, we
have already the factor a2 in front, hence, for consistency, we expand the integrand up to
third-order terms in a.
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Twenty-six moment equations for the Enskog–Vlasov equation

5.2. Expansion of correlation function
We expand the function Y[n(xr − akr/2)]. The Taylor series around n(xr) reads

Y
[

n
(

xr − akr

2

)]

 Y − Yrakr + Yrsa2krks − Yrsta3krkskt, (5.4)

with

Y = Y [n(xr)] , Yr = 1
2
∂Y
∂xr

, Yrs = 1
8

∂2Y
∂xr ∂xs

, Yrst = 1
48

∂3Y
∂xr ∂xs ∂xt

, (5.5a–d)

where Yrs and Yrst are fully symmetric.

5.3. Expansion of the distribution function
Also, the expansion of the distribution function is, in principle, straightforward:

f (xs − aks, cs) = f − ∂f
∂xu

aku + 1
2

∂2f
∂xu ∂xv

a2kukv − 1
6

∂3f
∂xu ∂xv ∂xw

a3kukvkw. (5.6)

To proceed, we have to insert f|26 from (3.3) and consider the derivatives carefully. Since
f|26 depends explicitly on the 26 variables {ρ, vi, θ,Δ, σij, qi,Rij,mijk}, the derivatives of
f|26 give rise to a large number of linear and nonlinear terms. We will aim for a mainly
linear theory, and ignore all nonlinear terms in the non-equilibrium moments and the
derivatives of all variables, except density. Density changes strongly over the equilibrium
phase interface, and its gradient terms appear in the Vlasov force. For consistency, we have
to have the same level of density gradient terms in the Enskog contributions. However,
from (3.3), where the non-equilibrium contribution φ is independent of density, it is clear
that f|26 is linear in mass density.

From (3.3), for the first derivative of f|26 we have

∂f|26

∂xu
= ∂ f̂M
∂xu

(ρ +Φ)+ f̂M

(
∂ρ

∂xu
+ ∂Φ

∂xu

)
, (5.7)

where
∂ f̂M
∂xu

= f̂M

[(
C2

2θ
− 3

2

)
1
θ

∂θ

∂xu
+ Ci

θ

∂vi

∂xu

]
. (5.8)

The term (∂ f̂M/∂xu)Φ is nonlinear in the non-equilibrium moments and gradients of
temperature and velocity, hence will be dropped in linearization. Within the linearization,
the derivative ofΦ is simply the same expression forΦ as in (3.5), except that the moments
Δ, σij, qi, Rij, mijk are replaced by their gradients.

Explicitly, we find for the first derivative (semi-linearized)

∂f|26

∂xu
= f̂M

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂ρ

∂xu
+ ρ

θ

∂vi

∂xu
Ci + ρ

θ

∂θ

∂xu

(
C2

2θ
− 3

2

)

+ 1
8θ2

∂Δ

∂xu

(
1 − 2

3
C2

θ
+ 1

15
C4

θ2

)

+ 2
5

1
θ2
∂qk

∂xu
Ck

(
C2

2θ
− 5

2

)
+ 1

2θ2
∂σij

∂xu
C〈iCj〉

+ 1
14θ3

∂Rij

∂xu
C〈iCj〉

(
C2

2θ
− 7

2

)
+ 1

6θ3
∂mijk

∂xu
C〈iCjCk〉

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (5.9)
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Generalization to higher derivatives yields (we require this for n = 1, 2, 3)

∂nf|26

∂xu1 · · · ∂xun

= f̂M

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂nρ

∂xu1 · · · ∂xun

+ A[u1···un]i
Ci

θ
+ 1
θ
B[u1···un]

(
C2

2θ
− 3

2

)

+ 1
8θ2

∂nΔ

∂xu1 · · · ∂xun

(
1 − 2

3
C2

θ
+ 1

15
C4

θ2

)

+ 2
5

1
θ2

∂nqk

∂xu1 · · · ∂xun

Ck

(
C2

2θ
− 5

2

)
+ 1

2θ2
∂nσij

∂xu1 · · · ∂xun

C〈iCj〉

+ 1
14θ3

∂nRij

∂xu ∂xv ∂xw
C〈iCj〉

(
C2

2θ
− 7

2

)
+ 1

6θ3
∂nmijk

∂xu1 · · · ∂xun

C〈iCjCk〉

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(5.10)

where

A[u]i =
(
∂ρvi

∂xu
− vi

∂ρ

∂xu

)
=
(
ρ
∂vi

∂xu

)
,

A[uv]i =
(
∂2ρvi

∂xu ∂xv
− vi

∂2ρ

∂xu ∂xv

)
,

A[uvw]i =
(

∂3ρvi

∂xu ∂xv ∂xw
− vi

∂3ρ

∂xu ∂xv ∂xw

)
,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(5.11)

and

B[u] =
(
∂ρθ

∂xu
− θ

∂ρ

∂xu

)
=
(
ρ
∂θ

∂xu

)
,

B[uv] =
(
∂2ρθ

∂xu ∂xv
− θ

∂2ρ

∂xu ∂xv

)
,

B[uvw] =
(

∂3ρθ

∂xu ∂xv ∂xw
− θ

∂3ρ

∂xu ∂xv ∂xw

)
.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(5.12)

Here, square brackets around indices are just a notational convenience, used for
identification of different index groups.

5.4. Expansion of the production terms
We now insert the above expansions into the expression (5.3) for the moment productions,
and consider contributions up to fifth-order terms in particle diameter a. We sort by order
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in a, to write the moment production (where f stands for f|26) as

Pψ = a2Y
∫ ∫

f 1f

[
g
∫ 2π

0

∫ π/2

0

(
ψ ′ − ψ

)
cos θ sin θ dθ dε

]
dc1 dc

− a3
∫ ∫ (

Yrf 1f + Y
∂f 1

∂xr
f
)[

g
∫ 2π

0

∫ π/2

0

(
ψ ′ − ψ

)
kr cos θ sin θ dθ dε

]
dc1 dc

+ a4
∫ ∫ (

Yrsf 1f + Yr
∂f 1

∂xs
f + 1

2
Y

∂2f 1

∂xr ∂xs
f
)

×
[

g
∫ 2π

0

∫ π/2

0

(
ψ ′ − ψ

)
krks cos θ sin θ dθ dε

]
dc1 dc

− a5
∫ ∫

⎛
⎜⎜⎜⎝

Yrstf 1f + Yrs
∂f 1

∂xt
f

+ 1
2

Yr
∂2f 1

∂xs ∂xt
f + 1

6
Y

∂3f 1

∂xr ∂xs ∂xt
f

⎞
⎟⎟⎟⎠

×
[

g
∫ 2π

0

∫ π/2

0

(
ψ ′ − ψ

)
krkskt cos θ sin θ dθ dε

]
dc1 dc. (5.13)

There will be further linearization in the terms quadratic in the distribution functions and
their derivatives, where we will ignore nonlinear terms in non-equilibrium contributions.
The first line above is the standard production for hard-sphere molecules; the others are
correction terms from the Enskog term.

The Vlasov force has fifth-order terms that remain in equilibrium, and are required for
the computation of the interface. For our first approach to moment equations for EV,
in our linearization of Pψ we will consider only those fifth-order terms that remain in
equilibrium, while non-equilibrium contributions will be considered only up to fourth
order in a.

The evaluation of these integrals is rather involved, and it is impossible to discuss all
the details. In the following sections, we outline the main steps for the computation of the
Pψ .

5.5. Velocity transformation
Computation of the production integrals is a standard procedure in kinetic theory; here, it
is just more involved, due to the larger number of contributions to the productions. Solution
of all integrals implies change of variables from C,C1 to

gi = C1
i − Ci, Gi = 1

2 (Ci + C1
i ), (5.14a,b)

or the inverse,

Ci = Gi − 1
2 gi, C1

i = Gi + 1
2 gi. (5.15a,b)

Use of the peculiar velocity implies that we look at the collision terms from the rest frame
of the gas, which is natural when we use central moments.
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We also have

C2 = G2 − Gigi + g2

4
, (C1)2 = G2 + Gigi + g2

4
, C2 + (C1)2 = 2G2 + g2

2
(5.16a–c)

and

dc dc1 = dC dC1 =
∥∥∥∥∥∂(C, C1)

∂(G, g)

∥∥∥∥∥ dG dg =
∥∥∥∥∥ δij −1

2δij

δij +1
2δij

∥∥∥∥∥ dG dg = dG dg. (5.17)

5.6. k-integration
We have ψ(Ck) = mCi1 · · · Cin and C′

i = Ci + kig cos θ . In (5.13), the direction vector
ki appears only in ψ ′ and in the integrals in square brackets, but not in the distribution
function terms. Therefore, we can deal with the k-integrals first.

The explicit dependence of ψ on k is as follows. For ψ(Ck) = m,

1
m

(
ψ ′ − ψ

) = 0; (5.18)

for ψ(Ck) = mCi,

1
m

(
ψ ′ − ψ

) = g cos θki; (5.19)

for ψ(Ck) = mCiCj,

1
m

(
ψ ′ − ψ

) = 2C(ikj)g cos θ + kikjg2 cos2 θ; (5.20)

for ψ(Ck) = mCiCjCk,

1
m

(
ψ ′ − ψ

) = 3C(iCjkk)g cos θ + 3C(ikjkk)g2 cos2 θ + kikjkkg3 cos3 θ; (5.21)

for ψ(Ck) = mC2CiCj,

1
m

(
ψ ′ − ψ

) = 2CiCjCkkkg cos θ + 2C2C(ikj)g cos θ + CiCjg2 cos2 θ

+ 4CkC(ikj)kkg2 cos2 θ + C2kikjg2 cos2 θ + 2C(ikj)g3 cos3 θ

+ 2Ckkikjkkg3 cos3 θ + kikjg4 cos4 θ. (5.22)
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Twenty-six moment equations for the Enskog–Vlasov equation

Insertion of the above into the production terms shows that we are facing integrals, for
n ≤ 3 and m ≤ 3, of the type

[
Iαm,n

]
i1···in+m

= gn+α+1
∫ 2π

0

∫ π/2

0
ki1 · · · kin+m cosn+α+1 θ sin θ dθ dε, (5.23)

where kk = {cos ε sin θ, sin ε sin θ, cos θ}k and kkgk = g cos θ . Explicit expressions for the
integrals required are given in Appendix A.

5.7. Explicit productions
The next step is to insert the integrals [Iαm,n]i1···in+m into (5.13), which gives explicit
integrals of f 1f and (∂nf 1

|26/∂xu1 · · · ∂xun) f over polynomials in gi and Ci; for these
integrations, Ci must be expressed through gi and Gi. These integrals were evaluated on the
computer, using Wolfram MathematicaTM. Results are inserted and simplified to produce
the final expressions for the production terms.

5.7.1. Density, ψ(Ck) = m
As we have seen already, there is no contribution to mass balance:

Pm = P0 = 0. (5.24)

5.7.2. Momentum, ψ(Ck) = mCi
The production terms for momentum and energy do not vanish, since in the collision
momentum and energy are transferred across the diameter, a, that is, the distance between
the centres of mass of the colliding hard spheres. However, for collision invariants,
non-local production terms can be recast in divergence form (Karkheck & Stell 1981).
This property is inherited by the local expansion at any order, of course.

We take a closer look at the computation of the momentum production term, but for
the other productions we will just present the results. After insertion of the integrals
[Iαm,n]i1···in+m , the momentum production term reads

PmCi = P0
i = π

2
ma2Y

∫ ∫
f 1f {ggi} dG dg

− 2π

15
ma3

∫ ∫ (
Yrf 1f + Y

∂f 1

∂xr
f
){

g2δir + 2gigr

}
dG dg

+ π

12
ma4

∫ ∫ (
Yrsf 1f + Yr

∂f 1

∂xs
f + 1

2
Y

∂2f 1

∂xr ∂xs
f
){

3gδ(irgs) + gigrgs

g

}
dG dg

− 2π

35
ma5

∫ ∫ ⎛
⎜⎜⎝

Yrstf 1f + Yrs
∂f 1

∂xt
f

+ 1
2

Yr
∂2f 1

∂xs ∂xt
f + 1

6
Y

∂3f 1

∂xr ∂xs ∂xt
f

⎞
⎟⎟⎠

×
{

g2δ(irδst) + 4δ(irgsgt)

}
dG dg. (5.25)

Obviously, there is a larger number of integrals over f 1f and (∂nf 1/∂xn) f that must
be determined and inserted; see Appendix B for a brief discussion and some results.

940 A40-19

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

98
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2022.98


H. Struchtrup and A. Frezzotti

Inserting the integrals, and making use of (5.5a–d), we finally find the momentum collision
term, as expected in divergence form:

PmCi = − ∂

∂xr

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[
2π

3
ρa3

m
Y
(
ρθδir + 2

5
σir

)]

−

⎡
⎢⎢⎣2π

3
a4

m
√

πθ
ρ2Y

6
5

⎛
⎜⎜⎝θ ∂δ(irvs)

∂xs
+ 1

10

∂
δ(irqs)

ρ

∂xs
+ 1

42

∂
mirs

ρ

∂xs

⎞
⎟⎟⎠
⎤
⎥⎥⎦

+
[

π

60
a5

m

(
∂2Yρ2θ

∂xs ∂xt
+ 3Y

∂2ρ2θ

∂xs ∂xt
− 12Y

∂ρ

∂xs

∂ρθ

∂xt

)
δ(irδst)

]

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

.

(5.26)

We emphasize that to reach the above, we have ignored nonlinear terms between
non-equilibrium contributions. Moreover, as stated before, we have kept only those
fifth-order terms that contribute in equilibrium, where the density gradient is non-zero in
the interface, while we removed fifth-order terms that contribute only in non-equilibrium,
assuming that their influence is decidedly smaller.

5.7.3. 2-tensor, ψ(Ck) = mCiCj

The Enskog contribution to energy is half of the trace, ψ(Ck) = 1
2 mC2, and the

contribution to the stress tensor is the trace-free part, ψ(Ck) = mC〈iCj〉; we list both
contributions separately. Moreover, for more transparent presentation of the results, we
show contributions of different orders in the expansion.

Order a2

The leading terms correspond to results from the Boltzmann collision term for hard
spheres, except that the correlation function Y appears as a correction factor. There is no
contribution to energy, only to stress:

P(2)
(1/2)mC2 = 0, (5.27)

P(2)mC〈iCj〉 = −16
5
ρ
√

πθa2

m
Y
(
σij + 1

28
Rij

θ

)
. (5.28)

With the relaxation time τ defined through

1
τ

= 16
5
ρ
√

πθa2

m
Y, (5.29)

we can write the last expression as P(2)mC〈iCj〉 = −(1/τ)
(
σij + 1

28 (Rij/θ)
)

. The same

relaxation time will appear in other second-order expressions below.
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Twenty-six moment equations for the Enskog–Vlasov equation

Order a3

To third order, there is a contribution to thermal energy, which is related to energy
transfer over the distance a of the colliding particles:

P(3)
(1/2)mC2 = −2π

3
a3

m

{
ρ2θY

∂vr

∂xr
+ 3

5
∂ρYqr

∂xr

}
, (5.30)

P(3)mC〈iCj〉 = −2π

3
a3

m

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

4
5
ρ2θY

∂v〈i
∂xj〉

+ 12
25
∂ρYq〈i
∂xj〉

+ 6
25

q〈i
ρ

∂ρ2Y
∂xj〉

+ 6
35
∂ρYmijr

∂xr
+ 8

35
mijr

ρ

∂ρ2Y
∂xr

.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭
. (5.31)

The contribution to total energy results from adding the corresponding term for kinetic
energy; see (4.11). Within the linearizations performed, the contribution to total energy
can be written in divergence form as

P(3)
(1/2)mC2 + viP(3)mCi

= − ∂

∂xr

{
2π

3
a3

m
ρY
[
ρθvr + 3

5
qr + 2

5
viσir

]}
. (5.32)

This form is shown to give evidence that the Enskog collision term leads not to an
actual energy production, but rather to energy transfer, as described by the flux under
the divergence.

Order a4

The contributions to energy and stress equations to fourth order read

P(4)
(1/2)mC2

= ∂

∂xr

{
2π

15
a4

m
√

π
ρ2Y

[
5
√
θ
∂θ

∂xr
+ 1

12
1√
θ

∂

∂xr

(
Δ

ρ

)
+ 2

√
θ
∂

∂xs

(
σrs

ρ

)
+ 1

7
1√
θ

∂

∂xs

(
Rrs

ρ

)]}
,

(5.33)

P(4)mC〈iCj〉 = 4
105

√
πa4

m
1√
θ

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

14θ
∂

∂x〈i

(
ρ2Y

∂θ

∂xj〉

)
+ 7

30
∂

∂x〈i

(
ρ2Y

∂

∂xj〉

(
Δ

ρ

))

+ 2θρ
∂

∂xr

(
Y
∂σij

∂xr

)
− 12θσij

∂

∂xr

(
Y
∂ρ

∂xr

)
− 5

2
ρθσij

∂2Y
∂xr ∂xr

+ 8θρ
∂

∂x(r

(
Y
∂σr〈iδj〉s
∂xs)

)
− 20θσr〈iδj〉s

∂

∂x(r

(
Y
∂ρ

∂xs)

)

− 3ρθσr〈iδj〉s
∂2Y
∂xr ∂xs

+ 1
7
ρ
∂

∂xr

(
Y
∂Rij

∂xr

)
− 1

2
Rij

∂

∂xr

(
Y
∂ρ

∂xr

)
− 5

56
ρRij

∂2Y
∂xr ∂xr

+ 4
7
ρ

∂

∂x(r

(
Y
∂Rr〈iδj〉s
∂xs)

)
− Rr〈iδj〉s

∂

∂x(r

(
Y
∂ρ

∂xs)

)

− 3
28
ρRr〈iδj〉s

∂2Y
∂xr ∂xs

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(5.34)
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Within the linearizations performed, we find the fourth-order contribution to energy
as P(4)

(1/2)mC2 + viP(4)mCi

 P(4)

(1/2)mC2 , which is of divergence form. Obviously, the
linearization removed terms that bring the full expression to divergence form.

All fifth-order terms vanish in equilibrium, and are ignored.

5.7.4. 3-tensor, ψ(Ck) = mCiCjCk

For the Enskog contribution to energy flux, we need half of the trace, ψ(Ck) = 1
2 mC2Ci,

and for the contribution to the third moment we need the trace-free part, ψ(Ck) =
mC〈iCjCk〉; we list both contributions separately. The overall contribution to the heat flux
equation (3.11) is the combination

PHF
i = 1

2
P1

i − 5
2
θP0

i − σik

ρ
P0

k = P(1/2)mC2Ci
− 5

2
θPmCi − σik

ρ
PmCk , (5.35)

and for the contribution to the equations for mijk we need the combination P0
ijk −

3σ〈ij/ρP0
k〉. These will be given as well.

Again, for more transparent presentation of the results, we show contributions of
different orders in the expansion.

Order a2

The leading terms correspond to results from the Boltzmann collision term for hard
spheres, except that the correlation Y function appears as a correction factor:

P(2)
(1/2)mC2Ci

= −2
3

16
5
ρ
√

πθa2

m
Yqi, (5.36)

P(2)mC〈iCjCk〉 = −3
2

16
5
ρ
√

πθa2

m
Ymijk. (5.37)

With the relaxation time τ introduced for the stress contribution, we can write these as
P(2)
(1/2)mC2Ci

= −2
3 (qi/τ) and P(2)mC〈iCjCk〉 = −3

2(1/τ)mijk; these have the same factors 2
3 and

3
2 that one finds for hard spheres and Maxwell molecules; see Gupta & Torrilhon (2012).

Order a3

We find

P(3)
(1/2)mC2Ci

= −2π

3
a3

m

⎧⎪⎪⎨
⎪⎪⎩

4θ
∂Yρ2θ

∂xk
− 3

2
θ2 ∂ρ

2Y
∂xk

+ 1
10
∂ρYΔ
∂xk

+ 1
30
Δ

ρ

∂ρ2Y
∂xk

+ 8
5
∂ρYθσkr

∂xr
+ 1

10
θσkr

ρ

∂ρ2Y
∂xr

+ 6
35
∂ρYRkr

∂xr
+ 11

140
Rkr

ρ

∂ρ2Y
∂xr

⎫⎪⎪⎬
⎪⎪⎭ ,

(5.38)

P(3)mC〈iCjCk〉 = −2π

3
a3

m

⎡
⎢⎢⎢⎣

18
35
∂ρYθσ〈ij
∂xk〉

+ 9
5
θσ〈ij
ρ

∂ρ2Y
∂xk〉

+ 36
245

∂ρYR〈ij
∂xk〉

+ 93
490

R〈ij
ρ

∂ρ2Y
∂xk〉

⎤
⎥⎥⎥⎦ . (5.39)
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The corresponding production term in the heat flux equation (3.11) reads, after appropriate
linearization,

PHF(3)
i = −2π

3
a3

m

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

3
2
ρ2Yθ

∂θ

∂xi
+ 1

10
∂ρYΔ
∂xi

+ 1
30
Δ

ρ

∂ρ2Y
∂xi

+ 3
5
∂ρYθσir

∂xr
− 9

10
σik

ρ

∂ρ2θY
∂xk

+ 6
35
∂ρYRir

∂xr
+ 11

140
Rir

ρ

∂ρ2Y
∂xr

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (5.40)

The contribution for the mijk equation (3.14) becomes

P0
ijk − 3σ〈ij

ρ
P0

k〉 = −2π

3
a3

m

⎡
⎢⎢⎢⎣

18
35
θ
∂ρYσ〈ij
∂xk〉

− 6
5
θσ〈ij
ρ

∂ρ2Y
∂xk〉

+ 36
245

∂ρYR〈ij
∂xk〉

+ 93
490

R〈ij
ρ

∂ρ2Y
∂xk〉

⎤
⎥⎥⎥⎦ . (5.41)

Order a4

For the fourth-order contribution to heat flux, we find the full production as

PHF(4)
k =

√
πa4

m

√
θ

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−19
15
θ

[
∂

∂xr

(
ρ2Y

∂vk

∂xr

)
+ 2

∂

∂x(k

(
ρ2Y

∂vr

∂xr)

)]

− 53
70
ρ
∂

∂xr

(
Y
∂qk

∂xr

)
− 1

2
qk

∂

∂xr

(
Y
∂ρ

∂xr

)
− 2

25
ρqk

∂2Y
∂xr∂xr

− 7
15

qr
∂

∂x(k

(
Y
∂ρ

∂xr)

)
+ 169

105
ρ

∂

∂x(k

(
Y
∂qr

∂xr)

)
− 2

75
ρqr

∂2Y
∂xr ∂xk

+ 9
70
ρ
∂

∂xr

(
Y
∂mkrs

∂xs

)
− 1

6
mirs

∂

∂xr

(
Y
∂ρ

∂xs

)
− ρ

1
105

mkrs
∂2Y
∂xr∂xs

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

(5.42)
The total contribution to the fourth-order terms for the mijk equation (3.14) reads

Pmijk =
√

πa4

m

√
θ

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

4
35
θ
∂

∂x〈i

(
ρ2Y

∂vj

∂xk〉

)

− 22
35
ρ
∂

∂x〈i

(
Y
∂qj

∂xk〉

)
− 2

5
q〈i

∂

∂xj

(
Y
∂ρ

∂xk〉

)
− 4

175
ρq〈i

∂2Y
∂xj ∂xk〉

+ 2
70
ρ
∂

∂xr

(
Y
∂mijk

∂xr

)
− 3

5
mijk

∂

∂xr

(
Y
∂ρ

∂xr

)
− 1

7
ρmijk

∂2Y
∂xr ∂xr

+ 6
70
ρ
∂

∂xr

(
Y
∂mr〈ij
∂xk〉

)
+ 6

70
ρ
∂

∂x〈i

(
Y
∂mjk〉r
∂xr

)
− 3

7
mr〈ij

∂

∂xk〉

(
Y
∂ρ

∂xr

)

− 3
7

mr〈ij
∂

∂xr

(
Y
∂ρ

∂xk〉

)
− 6

35
ρmr〈ij

∂2Y
∂xk〉 ∂xr

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(5.43)

5.7.5. Trace of 4-tensor, ψ(Ck) = mC2CiCj
Again, we distinguish the trace and trace-free parts, at different orders. These are the
contributions to equations (3.10) and (3.13) for higher moments Δ and Rij.
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H. Struchtrup and A. Frezzotti

Order a2

The leading terms correspond to results from the Boltzmann collision term for hard
spheres, except that the correlation function appears as a correction factor:

P(2)mC4 = −2
3

16
5

a2ρ
√

πθ

m
YΔ, (5.44)

P(2)mC2C〈iCj〉
= −16

5
a2ρ

√
πθ

m
Y
[

15
2
θσij + 247

168
Rij

]
. (5.45)

Once more, we find the hard-sphere relaxation time 1/τ = 16
5 (ρ

√
πθa2/m)Y . The

coefficients ( 2
3 ,

15
2 ,

247
168 ) agree with the results for hard spheres by Gupta & Torrilhon

(2012).
Order a3

The third-order contributions are

P(3)mC4 = −2
3

πθa3

m

{
84
5
∂Yρqr

∂xr
+ 8

5
qr

ρ

∂Yρ2

∂xr
+ 20Yθρ2 ∂vr

∂xr

}
, (5.46)

P(3)mC2C〈iCj〉
= −2π

3
a3

m
θ

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

132
25

∂ρYq〈i
∂xj〉

+ 112
25

q〈i
ρ

∂ρ2Y
∂xj〉

+ 28
5

Yθρ2 ∂v〈i
∂xj〉

+ 66
35
∂Yρmijr

∂xr
+ 71

35
mijr

ρ

∂Yρ2

∂xr

⎫⎪⎪⎪⎬
⎪⎪⎪⎭
. (5.47)

For the balance laws (3.10), (3.13) for Δ and Rij, we find the required combinations up
to third order, after linearization:

P2 − 20θ
P1

2
− 8qk

ρ
P0

k = −2
3

[
16
5

a2ρ
√

πθ

m
Y

]
Δ

− 2π

3
a3

m
θ

[
24
5
∂ρYqr

∂xr
− 32

5
qk

ρ

∂Yρ2

∂xk

]
, (5.48)

P1
ij − 7θP0

ij − 14
3
σij

ρ

P1

2
− 2

mijk

ρ
P0

k − 28
5

q〈i
ρ

P0
j〉

= −16
5

a2ρ
√

πθ

m
Y
[

1
2
θσij + 205

168
Rij

]
− 2π

3
a3

m
θ

[
48
25
∂ρYq〈i
∂xj〉

− 14
5

q〈i
ρ

∂ρ2Y
∂xj〉

+ 24
35
∂ρYmijr

∂xr
− 11

7
mijk

ρ

∂ρ2Y
∂xk

]
. (5.49)

The fourth-order contributions are not shown separately, but are included in the full
equations shown below.

6. Linearized transport equations up to fourth order

Next, we combine the above results, that is, we insert all Enskog and Vlasov terms into the
transport equations, and simplify as much as possible.
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Twenty-six moment equations for the Enskog–Vlasov equation

We remind the reader that the equations were derived based on several simplifying
approximations, as follows.

(a) All equations are linearized for small deviations from equilibrium. Nonlinear
terms involving density gradients were retained, since equilibrium states for phase
equilibrium include density gradients in the interface.

(b) Non-localities in the Enskog collision term were replaced with gradient terms by
means of Taylor expansions with the particle diameter a as the relevant smallness
parameter. To include equilibrium capillary pressures properly, terms of fifth order
are included in the balance of momentum. Indeed, the balance of momentum is
the only equation in which fifth-order equilibrium terms appear, while in the other
equations, terms of fifth order appear only as non-equilibrium contributions. For
this first approach to moment equations for EV, we considered non-equilibrium
contributions only to fourth order in a.

The complete equations are presented with some comments in the sections below.

6.1. Mass balance
The mass balance is not affected by the Enskog collision term; it has the usual form,

∂ρ

∂t
+ ∂ρvk

∂xk
= 0. (6.1)

6.2. Momentum balance
The momentum balance is best written in conservative form, with the total momentum
flux in the divergence. For order a5, we consider only equilibrium contributions:

ρ
Dvi

Dt
+ ∂

∂xk

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

[
ρθ

(
1 + 2π

3
a3

m
ρY
)

− 2πa3

3
φa

m
χ1ρ

2
]
δik

+
[

1 + 2
5

2π

3
a3

m
ρY
]
σik

− 4
5

a4√π

m
ρ2Y√
θ

⎛
⎜⎜⎝θ ∂δ(ikvs)

∂xs
+ 1

10

∂
δ(ikqs)

ρ

∂xs
+ 1

42

∂
miks

ρ

∂xs

⎞
⎟⎟⎠

+ π

60
a5

m

(
∂2Yρ2θ

∂xs ∂xt
+ 3Y

∂2ρ2θ

∂xs ∂xt
− 12Y

∂ρ

∂xs

∂ρθ

∂xt

)
δ(ikδst)

− 2π

15
a5

m
φaχ3

[(
ρ

∂2ρ

∂xr ∂xr
+ 1

2
∂ρ

∂xr

∂ρ

∂xr

)
δik − ∂ρ

∂xi

∂ρ

∂xk

]

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= ρGi.

(6.2)
This equation has the usual form of the momentum balance,

ρ
Dvi

Dt
+ ∂ (pδik +Πik)

∂xk
= ρGi, (6.3)
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with a generalized stress tensor pδik +Πik that has many contributions that can be read
from (6.2). The first line describes the van-der-Waals-like pressure

p = ρθ

(
1 + 2π

3
a3

m
ρY
)

− 2πa3

3
φa

m
χ1ρ

2, (6.4)

with a volume correction stemming from the Enskog term, and the pressure-reducing
Vlasov contribution. The remainder is the non-equilibrium stress Πik, where the second
line is the contribution from kinetic stress σij with a correction due to the Enskog term.
The last line is the fifth-order Korteweg stress, which is corrected by the fifth-order
Enskog terms in the preceding line. The third line describes higher contributions to stress,
including a Navier–Stokes-like contribution from the velocity gradient, a Burnett-like term
with the gradient of the kinetic heat flux (i.e. thermal stress), and a higher contribution with
mijk.

In equilibrium, we have vi = σik = qk = mijk = Δ = Rik = 0. Then the equilibrium
density field follows from the first, fourth and fifth lines of (6.2). The solution allows
for smooth phase interfaces, where the Korteweg stress stabilizes the non-monotonic
van-der-Waals-like pressure. Details of one-dimensional interfaces are presented by
Frezzotti et al. (2005) .

6.3. Balance of thermal energy
The balance of thermal energy includes terms up to fourth order, with frictional heating:

3
2
ρ

Dθ
Dt

+ ∂

∂xk

⎡
⎢⎢⎢⎢⎢⎢⎣

(
1 + 3

5
2π

3
a3

m
ρY
)

qk

− a4√π

m
ρ2Y√
θ

⎛
⎜⎜⎝2

3
θ
∂θ

∂xk
+ 4

15
θ

∂
σks

ρ

∂xs
+ 1

90

∂
Δ

ρ

∂xk
+ 2

105

∂
Rks

ρ

∂xs

⎞
⎟⎟⎠

⎤
⎥⎥⎥⎥⎥⎥⎦

= −
(
Πkl − T K

rs

) ∂vk

∂xl
. (6.5)

This has the usual form of the balance of internal energy,

3
2
ρ

Dθ
Dt

+ ∂Qk

∂xk
= −Π̂kl

∂vk

∂xl
, (6.6)

with a generalized heat flux Qk that has several contributions that can be read from
(6.5). The first line is the contribution from kinetic heat flux qi with a correction due
to the Enskog term. The second line describes higher contributions to heat flux, including
a Fourier-like contribution from the temperature gradient, a Burnett-like term with the
kinetic stress tensor σij (non-Fourier heat flux), and higher-order contributions related to
Δ and Rij.

The energy exchange term on the right-hand side contains only the non-Vlasov stress
tensor contribution Π̂kl = (Πkl − T K

rs ) and not the full stress tensorΠkl that appears in the
balance of momentum. As discussed earlier, the Vlasov stresses appear in the balance of
Korteweg energy (see (4.8)), but do not contribute to frictional heating.
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Twenty-six moment equations for the Enskog–Vlasov equation

As written in (6.5), the right-hand side contains nonlinear terms related to friction, but
in the linear approximation used throughout, these are ignored, and the energy exchange
reduces to the work for volume change:

− Π̂kl
∂vk

∂xl
= −

(
Πkl − T K

rs

) ∂vk

∂xl

 −ρθ

(
1 + 2π

3
a3

m
ρY
)
∂vk

∂xk
. (6.7)

The balance of total energy has balance law form, with the total energy flux under the
divergence. Within the EV model, one has to account for thermal, kinetic and Vlasov
energy, and the equation reads, in compact form,

ρ
D
(

3
2θ + 1

2v
2 + εK

)
Dt

+ ∂(Qk + qK
k +Πikvi)

∂xk
= ρviGi. (6.8)

6.4. Stress balance
The linearized balance for the kinetic stress tensor includes a larger number of terms up to
fourth order:

∂σij

∂t
+ 2

[
ρθ

(
1 + 2

5
2π

3
a3

m
ρY
)]

∂v〈i
∂xj〉

+ 4
5

∂

∂x〈i

[(
1 + 3

5
2π

3
a3

m
ρY
)

qj〉
]

+ ∂

∂xk

[(
1 + 6

35
2π

3
a3

m
ρY
)

mijk

]
+ 2π

3
a3

m

[
6
25

q〈iδj〉r + 8
35

mijr

]
1
ρ

∂ρ2Y
∂xr

−
√

πa4

m

√
θ

[
8
15
ρ2 ∂

∂x〈i

(
Y
∂θ

∂xj〉

)
+ 16

15
ρY

∂ρ

∂x〈i
∂θ

∂xj〉

]

−
√

πa4

m
√
θ

[
2

225
ρ
∂

∂x〈i

(
Y
∂Δ

∂xj〉

)
− 2

225
Δ

∂

∂x〈i

(
Y
∂ρ

∂xj〉

)]

−
√

πa4

m

√
θ

[
8

105
ρ
∂

∂xr

(
Y
∂σij

∂xr

)
− 16

35
σij

∂

∂xr

(
Y
∂ρ

∂xr

)
− 2

21
ρσij

∂2Y
∂xr ∂xr

]

−
√

πa4

m

√
θ

⎡
⎢⎢⎣

16
105

ρ
∂

∂x〈i

(
Y
∂σj〉r
∂xr

)
+ 16

105
ρ
∂

∂xr

(
Y
∂σr〈i
∂xj〉

)

− 8
21
σr〈i

∂

∂xj〉

(
Y
∂ρ

∂xr

)
− 8

21
σr〈i

∂

∂xr

(
Y
∂ρ

∂xj〉

)
− 4

35
ρσr〈i

∂2Y
∂xj〉 ∂xr

⎤
⎥⎥⎦

−
√

πa4

m
√
θ

[
4

735
ρ
∂

∂xr

(
Y
∂Rij

∂xr

)
− 2

105
Rij

∂

∂xr

(
Y
∂ρ

∂xr

)
− 1

294
ρRij

∂2Y
∂xr ∂xr

]

−
√

πa4

m
√
θ

⎡
⎢⎢⎣

8
735

ρ
∂

∂x〈i

(
Y
∂Rj〉r
∂xr

)
+ 8

735
ρ
∂

∂xr

(
Y
∂Rr〈i
∂xj〉

)

− 2
105

Rr〈i
∂

∂xr

(
Y
∂ρ

∂xj〉

)
− 2

105
Rr〈i

∂

∂xj〉

(
Y
∂ρ

∂xr

)
− 1

245
ρRr〈i

∂2Y
∂xj〉 ∂xr

⎤
⎥⎥⎦

= −
[

16
5
ρ
√

πθa2

m
Y

](
σij + 1

28
Rij

θ

)
. (6.9)
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6.5. Heat flux balance
The linearized balance for kinetic energy flux also includes many terms up to fourth order:

∂qi

∂t
+ 5

2
ρθ

(
1 + 3

5
2π

3
a3

m
ρY
)
∂θ

∂xi
+ θ

∂

∂xk

[(
1 + 3

5
2π

3
a3

m
ρY
)
σik

]

+ 1
2
∂

∂xk

[(
1 + 12

35
2π

3
a3

m
ρY
)

Rik

]
+ 1

6
∂

∂xi

[(
1 + 3

5
2π

3
a3

m
ρY
)
Δ

]

− σik

ρ
θ
∂

∂xk

[(
1 + 9

10
2π

3
a3

m
ρY
)
ρ

]
+ 2π

3
a3

m

[
1
30
Δ

ρ
δik + 11

140
Rik

ρ

]
∂ρ2Y
∂xk

−
√

πa4

m

√
θ

[
−19

15
θ
∂

∂xr

(
ρ2Y

∂vi

∂xr

)
− 38

15
θ
∂

∂x(i

(
ρ2Y

∂vr

∂xr)

)]

−
√

πa4

m

√
θ

[
9
50
ρ
∂

∂xr

(
Y
∂qi

∂xr

)
− 1

2
qi

∂

∂xr

(
Y
∂ρ

∂xr

)
− 2

25
ρqi

∂2Y
∂xr ∂xr

]

−
√

πa4

m

√
θ

[
9
25
ρ
∂

∂x(i

(
Y
∂qr

∂xr)

)
− 11

15
qr

∂

∂x(i

(
Y
∂ρ

∂xr)

)
− 2

75
ρqr

∂2Y
∂xr ∂xi

]

−
√

πa4

m

√
θ

[
9
70
ρ
∂

∂xr

(
Y
∂mirs

∂xs

)
− 1

6
mirs

∂

∂xr

(
Y
∂ρ

∂xs

)
− 1

105
ρmirs

∂2Y
∂xr ∂xs

]

= −2
3

[
16
5
ρ
√

πθa2

m
Y

]
qi. (6.10)

6.6. mijk balance
The linearized transport equation up to fourth order reads

∂mijk

∂t
+ 3θ

∂

∂x〈i

[(
1 + 6

35
2π

3
a3

m
ρY
)
σjk〉
]

− 3
θσ〈ij
ρ

∂

∂xk〉

[
ρ + 2

5
2π

3
a3

m
ρ2Y

]

+ 3
7
∂

∂x〈i

[(
1 + 12

35
2π

3
a3

m
ρY
)

Rjk〉
]

+ 93
490

2π

3
a3

m
R〈ij
ρ

∂ρ2Y
∂xk〉

−
√

πa4

m

√
θ

[
4
35
θ
∂

∂x〈i

(
ρ2Y

∂vj

∂xk〉

)]

−
√

πa4

m

√
θ

[
54
175

ρ
∂

∂x〈i

(
Y
∂qj

∂xk〉

)
− 2

5
q〈i

∂

∂xj

(
Y
∂ρ

∂xk〉

)
− 4

175
ρq〈i

∂2Y
∂xj ∂xk〉

]

−
√

πa4

m

√
θ

[
2
70
ρ
∂

∂xr

(
Y
∂mijk

∂xr

)
− 3

5
mijk

∂

∂xr

(
Y
∂ρ

∂xr

)
− 1

7
ρmijk

∂2Y
∂xr ∂xr

]

−
√

πa4

m

√
θ

[
6
70
ρ
∂

∂x〈i

(
Y
∂mjk〉r
∂xr

)
− 3

7
mr〈ij

∂

∂xk〉

(
Y
∂ρ

∂xr

)
− 3

35
ρmr〈ij

∂2Y
∂xk〉 ∂xr

]

940 A40-28

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

98
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2022.98


Twenty-six moment equations for the Enskog–Vlasov equation

−
√

πa4

m

√
θ

[
6
70
ρ
∂

∂xr

(
Y
∂mr〈ij
∂xk〉

)
− 3

7
mr〈ij

∂

∂xr

(
Y
∂ρ

∂xk〉

)
− 3

35
ρmr〈ij

∂2Y
∂xk〉 ∂xr

]

= −3
2

[
16
5
ρ
√

πθa2

m
Y

]
mijk. (6.11)

6.7. Δ balance
The linearized transport equation up to fourth order reads

DΔ
Dt

+ 8θ
∂

∂xk

[(
1 + 3

5
2π

3
a3

m
ρY
)

qk

]
− 8θ

qk

ρ

∂

∂xk

[(
1 + 4

5
2π

3
a3

m
ρY
)
ρ

]

− a4√π

m

√
θ

[
4
3
ρ2θ

∂

∂xr

(
Y
∂θ

∂xr

)
+ 8

3
θρY

∂ρ

∂xr

∂θ

∂xr

]

− a4√π

m

√
θ

⎡
⎢⎣ 8

15
ρ2θ

∂

∂xr

(
Y
∂ σrs
ρ

∂xs

)
− 32

3
ρθY

∂ρ

∂xr

∂
σrs

ρ

∂xs

⎤
⎥⎦

− a4√π

m

√
θ

[
1
3
ρ
∂

∂xr

(
Y
∂Δ

∂xr

)
− 31

45
Δ

∂

∂xr

(
Y
∂ρ

∂xr

)
− 4

45
Δρ

∂2Y
∂xr ∂xr

]

− a4√π

m

√
θ

[
4
7
ρ
∂

∂xr

(
Y
∂Rrs

∂xs

)
− 76

105
Rrs

∂

∂xr

(
Y
∂ρ

∂xs

)
− 4

105
ρRrs

∂2Y
∂xr ∂xs

]

= −2
3

[
16
5

a2ρ
√

πθ

m
Y

]
Δ. (6.12)

6.8. Rij balance
The linearized transport equation up to fourth order reads

∂Rij

∂t
+ 28

5
θ
∂

∂x〈i

[(
1 + 12

35
2π

3
a3

m
ρY
)

qj〉
]

− 28
5
θ

q〈i
ρ

∂

∂xj〉

[(
1 + 1

2
2π

3
a3

m
ρY
)
ρ

]

+ 2θ
∂

∂xk

[(
1 + 12

35
2π

3
a3

m
ρY
)

mijk

]
− 2

mijkθ

ρ

∂

∂xk

[(
1 + 11

14
2π

3
a3

m
ρY
)
ρ

]

−
√

πa4

m

√
θ

[
8
15
ρ2θ

∂

∂x〈i

(
Y
∂θ

∂xj〉

)
+ 16

15
ρθY

∂ρ

∂x〈i
∂θ

∂xj〉

]

− a4√π

m

√
θ

[
2
15
ρ
∂

∂x〈i

(
Y
∂Δ

∂xj〉

)
− 38

225
Δ

∂

∂x〈i

(
Y
∂ρ

∂xj〉

)
− 2

225
ρΔ

∂2Y
∂x〈i ∂xj〉

]

− a4√π

m

√
θ

[
8

105
ρθ

∂

∂xr

(
Y
∂σij

∂xr

)
− 4

15
θσij

∂

∂xr

(
Y
∂ρ

∂xr

)
− 1

21
ρθσij

∂2Y
∂xr ∂xr

]
940 A40-29

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

98
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2022.98


H. Struchtrup and A. Frezzotti

− a4√π

m

√
θ

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

16
105

ρθ
∂

∂x〈i

(
Y
∂σj〉r
∂xr

)
+ 16

105
ρθ

∂

∂xr

(
Y
∂σr〈i
∂xj〉

)

− 4
15
θσr〈i

∂

∂xj〉

(
Y
∂ρ

∂xr

)
− 4

15
θσr〈i

∂

∂xr

(
Y
∂ρ

∂xj〉

)

− 2
35
ρθσr〈i

∂2Y
∂xj〉 ∂xr

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

− a4√π

m

√
θ

[
4
49
ρ
∂

∂xr

(
Y
∂Rij

∂xr

)
− 149

245
Rij

∂

∂xr

(
Y
∂ρ

∂xr

)
− 129

980
ρRij

∂2Y
∂xr ∂xr

]

− a4√π

m

√
θ

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

8
49
ρ
∂

∂x〈i

(
Y
∂Rj〉r
∂xr

)
+ 8

49
ρ
∂

∂xr

(
Y
∂Rr〈i
∂xj〉

)

− 257
735

Rr〈i
∂

∂xj〉

(
Y
∂ρ

∂xr

)
− 257

735
Rr〈i

∂

∂xr

(
Y
∂ρ

∂xj〉

)

− 137
1470

ρRr〈i
∂2Y
∂xj〉∂xr

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

= −
[

16
5

a2ρ
√

πθ

m
Y

](
1
2
θσij + 205

168
Rij

)
. (6.13)

6.9. Ideal gas limit
The above equations are valid, within the limitations of the underlying theory, for all states
from compressed liquid over two-phase flows and real gas, to ideal gas. For the case of the
latter, they agree with the Grad 26 moment equations as presented in Struchtrup (2005)
within the limits of the performed linearizations. Indeed, the ideal gas case of the above is
obtained from (6.1)–(6.13) by removing all terms with powers a3 and higher, and setting
Y = 1 (with p = ρθ , 1/τ = 16

5 (ρ
√

πθa2/m)), as

∂ρ

∂t
+ ∂ρvk

∂xk
= 0,

ρ
Dvi

Dt
+ ∂

∂xk
(ρθδik + σik) = ρGi,

3
2
ρ

Dθ
Dt

+ ∂qk

∂xk
= −ρθ ∂vk

∂xk
,

∂σij

∂t
+ 2ρθ

∂v〈i
∂xj〉

+ 4
5
∂q〈i
∂xj〉

+ ∂mijk

∂xk
= − 1

τ

(
σij + 1

28
Rij

θ

)
,

∂qi

∂t
+ 5

2
ρθ

∂θ

∂xi
+ θ

∂σik

∂xk
− θσik

∂ ln ρ
∂xk

+ 1
2
∂Rik

∂xk
+ 1

6
∂Δ

∂xi
= −2

3
qi

τ
,

∂mijk

∂t
+ 3θ

∂σ〈ij
∂xk〉

+ 3
7
∂R〈ij
∂xk〉

− 3θσ〈ij
∂ ln ρ
∂xk〉

= −3
2

mijk

τ
,

∂Δ

∂t
+ 8θ

∂qk

∂xk
− 8θqk

∂ ln ρ
∂xk

= −2
3
Δ

τ
,

∂Rij

∂t
+ 28

5
θ
∂q〈i
∂xj〉

− 28
5
θq〈i

∂ ln ρ
∂xj〉

− 2mijkθ
∂ ln ρ
∂xk

+ 2θ
∂mijk

∂xk
= − 1

τ

(
1
2
θσij + 205

168
Rij

)
.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(6.14)
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Comparison with the equations in Chapter 9 of Struchtrup (2005) shows that the above
without the underlined terms are the linearized version of the Grad 26 equations for the
ideal gas. The underlined terms are nonlinear with the density gradient and appear in the
nonlinear Grad 26 equations, which, however, contain other nonlinear terms that were
removed during the above derivation. The collision terms here are for a hard-sphere gas,
while in Struchtrup (2005) they are given for Maxwell molecules.

6.10. Wall boundary conditions
The EV26 equations presented above ((6.1), (6.2), (6.5), (6.9)–(6.13)) contain many terms
with higher derivatives. For the computation of boundary-value problems, they must be
furnished with appropriate boundary conditions.

Development of boundary conditons for the ideal gas moment equations is well
understood; e.g. see Torrilhon & Struchtrup (2008) and Torrilhon (2016), with moment
boundary conditions developed from boundary conditions for the Boltzmann equation and
the Grad distribution function.

A similar approach is expected to find boundary conditions for EV26. However, due to
the higher-order derivatives appearing in the equations, as a result of the Taylor expansions
(essentially the terms with a4), it is expected that EV26 requires a larger number of
boundary conditions than Grad26 (or R13).

Sufficiently far from the interface and walls, the bulk liquid and vapour behaviour are
governed by the classical NSF laws. For studying non-equilibrium phase interfaces far
from walls, it suffices to impose the NSF equations at the system boundary. This approach
is used in results presented below.

Classical kinetic theory boundary conditions are effectively based on impulsive wall
scattering models (Cercignani 1975), and do not consider Vlasov like long-distance
interaction between wall and a vapour or liquid particle. Hence both the kinetic boundary
conditions for the EV equation and the development of a complete set of boundary
conditions for its 26 moments approximation will require further thought.

7. Two-phase processes

The above list (6.1)–(6.13) of transport equations is rather rich. Analytical and numerical
solutions for a variety of problems are required to evaluate the physics described. Such
detailed solutions of the equations for processes involving interfaces, and their discussion,
will be presented elsewhere.

For solutions of the 26 moment equations for the EV equation, it is convenient to chose
units such that

a = m = φa = 1. (7.1)

With this, length x is measured in multiples of a, density ρ in multiples of
m/a3, temperature θ = RT in multiples of φa, and time t in multiples of a/

√
φa.

Moreover, data and figures shown below are for power potentials with γ = 6, such that
χ1 = γ /(γ − 3) = 2 and χ3 = γ /(γ − 5) = 6.

7.1. Equilibrium
For additional context, we will have a brief look at equilibrium rest states, where
all time derivatives vanish, and we expect homogeneous temperature, and vanishing
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non-equilibrium variables, so that

∂θ

∂xi
= vi = σij = qi = mijk = Δ = Rij = 0. (7.2)

Then apart from the momentum balance, all equations are identically fulfilled. In a
one-dimensional setting, where ρ = ρ(x), the momentum balance reduces to an equation
for density (no body force Gi):

∂

∂x

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ρθ

(
1 + 2π

3
ρY
)

− 2πa3

3
χ1ρ

2

+ π

60
θ

[
∂2Yρ2

∂x ∂x
+ 3Y

(
∂2ρ2

∂x∂x
− 4

∂ρ

∂x
∂ρ

∂x

)]
− 2π

15
χ3

(
ρ
∂2ρ

∂x ∂x
− 1

2
∂ρ

∂x
∂ρ

∂x

)
⎫⎪⎪⎪⎬
⎪⎪⎪⎭

= 0.

(7.3)

That is, the divergence of the overall normal stress {•} (the expression between the braces
in (7.3)) vanishes. This equation allows phase equilibrium between saturated liquid and
vapour phases, with continuous density variation across the interface.

For the case without interface, that is, for a single phase, the gradients of density vanish,
and the pressure

p = ρθ

(
1 + 2π

3
ρY
)

− 2π

3
χ1ρ

2 (7.4)

is homogeneous.
It is well known that van-der-Waals-like equations of state such as this are

non-monotonic, and allow for phase equilibrium (Struchtrup 2014). We denote the specific
volume as v = 1/ρ. The critical point is found from the condition for a horizontal
inflection point in the p–v diagram,(

∂p
∂v

)
θ,crit

=
(
∂2p
∂v2

)
θ,crit

= 0, (7.5)

as
θcrit = 0.7546, pcrit = 0.06748, vcrit = 4.014. (7.6a–c)

For subcritical temperatures, θ < θcrit, equilibrium solutions exist, where a continuous
interface connects two homogeneous regions at different mass densities – these are the
states of saturated liquid and vapour, which both are at the unique saturation pressure
psat(θ). As an example, figure 1 shows the liquid–vapour equilibrium for a system of length
L = 40 at temperature θ = 0.65, obtained from numerical solution of (7.3). The location
of the interface depends on the average density ρ̄ = (1/L)

∫ L
0 ρ dx of the system, which

must lie between the saturated liquid and vapour densities, ρV < ρ̄ < ρL.
According to (7.3), the overall normal stress is a constant. The pressure p(θ, ρ) of (7.4),

however, varies throughout the interface, as shown in figure 2, where it is balanced by the
Korteweg stresses. The pressure in the bulk phases, and hence the overall stress, equals the
saturation pressure psat, as indicated in the figure.

Solving (7.3) at other subcritical temperatures gives a complete set of data for saturation
pressure psat(θ) and the corresponding saturated liquid and vapour volumes vL(θ) =
1/ρL(θ) and vV(θ) = 1/ρV(θ). These are collected in the p–v diagram of figure 3, which
shows the saturated liquid and vapour lines.
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Figure 1. Density profile in liquid–vapour equilibrium for θ = 0.65.
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Figure 2. Pressure profile p(θ, ρ) over the interface. The density curve is underlaid to identify the location of

the liquid–vapour interface.

The p–v diagram also shows the isotherms of pressure p(θ, v) of (7.4) with
the well-known non-monotonic shape of the subcritical isotherm (e.g. θ = 0.65).
Thermodynamic stability requires (∂p/∂v)θ < 0 (Struchtrup 2014), hence the pressure
(7.4) alone is not stable. The interface is stabilized through the Korteweg stresses in
(7.3), which balance the non-monotonic parts of the pressure, resulting in the continuous
interface structure shown in figure 1.

We note that the determination of the saturation state for the EV gas relies on the
evaluation of the balance of momentum (7.3). The typical thermodynamic argument
employs Maxwell’s equal area rule (Struchtrup 2014), where the saturation state follows
from the condition ∫ V

L
p(θ, v) dv = psat (vV − vL) . (7.7)

For θ = 0.65, the equal area rule gives psat = 0.03098, ρL = 0.5205, ρV = 0.06552; in
comparison, the EV results have minute relative errors of 0.09 %, 0.13 %, 0.005 %.
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Figure 3. Saturation curve (blue) and three isothermal lines p(θ, v) (red) in the p–v diagram. Saturated liquid
and vapour volumes vL and vV , and saturation pressure psat, are indicated for θ = 0.65. The black dot is the
critical point.

Thermodynamic equilibrium requires that the Gibbs free energies of both phases agree,
and this implies the equal area rule (Struchtrup 2014). Hence the equations as derived
stand in (slight) contradiction to thermodynamics. Aifantis & Serrin (1983) presented a
condition on capillary stress terms to agree with the equal area rule. Evaluation shows that
the capillary stresses from the Vlasov term fulfil the condition, but the fifth-order Enskog
contributions do not. A small ad hoc correction to the Enskog stress term of the form

Pij,correction = π

60
a5

m

(
−1

2
θρ2 d2Y

dρ2
∂ρ

∂xs

∂ρ

∂xt

)
δ(ikδst) (7.8)

suffices to retrieve the equal area rule; see Appendix C.

7.2. Isothermal Couette flow
As a first test for the set of 26 moment equations for the EV equation, we show a
numerical solution for the case of a steady two-phase and isothermal Couette flow (Rah
& Eu 2001; Frezzotti & Rossi 2012), along a liquid–vapour interface, where we compare
results to a direct simulation Monte Carlo (DSMC). In the considered test problem, an
infinite and planar liquid film, of nominal thickness xl, is in contact with its vapour,
through the liquid–vapour interface. A shear flow is induced in the two-phase system
in such a way that, everywhere in the flow field, the velocity has a constant direction,
parallel to the vapour liquid interface. Specifically, we use a coordinate system such that
the interface normal points in the x1 direction and the liquid film occupies the region
L = {(x1, x2, x3) ∈ R3 : 0 ≤ x1 < xl}. The velocity, which only has component v2(x1), is
assumed to be zero at x1 = 0, and to have constant gradient ∂v2/∂x1 = α far from the
interface. Frictional heating is proportional to α2 and can be ignored in the linearized
approximation, assuming infinitely small shear rate. Hence the transport equations can be
solved for the isothermal case, where specifically,

∂θ

∂x
= Δ = 0. (7.9)
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Then the only non-vanishing variables are

{ρ(x), v2(x), σ12(x), q2(x),m112(x), R12(x)} . (7.10)

Within the approximations used, the density ρ(x) is undisturbed and remains at the
equilibrium solution, as given by (7.3), solely determined by the assumed temperature
and liquid film thickness. The other variables assume non-equilibrium values, governed
by the following set of linear differential equations, in which x1 has been renamed x.

Momentum conservation, direction x2:

∂

∂x

[(
1 + 2

5
2π

3
a3

m
ρY
)
σ12

− a4√π

m
ρ2Y√
θ

(
4
15
θ
∂v2

∂x
+ 2

75
∂

∂x

(
q2

ρ

)
+ 2

105
∂

∂x

(
m112

ρ

))]
= 0. (7.11)

Balance equation for kinetic shear stress σ12:[
ρθ

(
1 + 2

5
2π

3
a3

m
ρY
)]

∂v2

∂x
+ 2

5
∂

∂x

[(
1 + 3

5
2π

3
a3

m
ρY
)

q2

]

+ ∂

∂x

[(
1 + 6

35
2π

3
a3

m
ρY
)

m112

]
+ 2π

3
a3

m

[
3
25

q2 + 8
35

m112

]
1
ρ

∂ρ2Y
∂x

−
√

πa4

m

√
θ

[
8
35
ρ
∂

∂x

(
Y
∂σ12

∂x

)
− 88

105
σ12

∂

∂x

(
Y
∂ρ

∂x

)
− 16

105
ρσ12

∂2Y
∂x2

]

−
√

πa4

m
√
θ

[
4

245
ρ
∂

∂x

(
Y
∂R12

∂x

)
− 4

105
R12

∂

∂x

(
Y
∂ρ

∂x

)
− 4

735
ρR12

∂2Y
∂x2

]

= −
[

16
5
ρ
√

πθa2

m
Y

](
σ12 + 1

28
R12

θ

)
. (7.12)

Balance equation for kinetic heat flux component q2:

θ
∂

∂x

[(
1 + 3

5
2π

3
a3

m
ρY
)
σ12

]
− σ12

ρ
θ
∂

∂x

[(
1 + 9

10
2π

3
a3

m
ρY
)
ρ

]

+ 1
2
∂

∂x

[(
1 + 12

35
2π

3
a3

m
ρY
)

R12

]
+ 2π

3
a3

m
11

140
R12

ρ

∂ρ2Y
∂x

+
√

πa4

m

√
θ

19
15
θ

[
∂

∂x

(
ρ2Y

∂v2

∂x

)]

−
√

πa4

m

√
θ

[
9
50
ρ
∂

∂x

(
Y
∂q2

∂x

)
− 1

2
q2

∂

∂x

(
Y
∂ρ

∂x

)
− 2

25
ρq2

∂2Y
∂x2

]

−
√

πa4

m

√
θ

[
9
70
ρ
∂

∂x

(
Y
∂m112

∂x

)
− 1

6
m122

∂

∂x

(
Y
∂ρ

∂x

)
− 1

105
ρm112

∂2Y
∂x2

]

= −2
3

[
16
5
ρ
√

πθa2

m
Y

]
q2. (7.13)
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Balance equation for kinetic third-order moment m112:

8
5
θ
∂

∂x

[(
1 + 6

35
2π

3
a3

m
ρY
)
σ12

]
− 8

5
θσ12

ρ

∂

∂x

[
ρ + 2

5
2π

3
a3

m
ρ2Y

]

+ 8
35

∂

∂x

[(
1 + 12

35
2π

3
a3

m
ρY
)

R12

]
+ 124

1225
2π

3
a3

m
R12

ρ

∂ρ2Y
∂x

−
√

πa4

m

√
θ

[
32
525

ρθY
∂ρ

∂x
∂v2

∂x
+ 16

525
ρ2θ

∂

∂x

(
Y
∂v2

∂x

)]

−
√

πa4

m

√
θ

[
72
875

ρ
∂

∂x

(
Y
∂q2

∂x

)
− 8

75
q2

∂

∂x

(
Y
∂ρ

∂x

)
− 16

2625
ρq2

∂2Y
∂x2

]

−
√

πa4

m

√
θ

[
3
25
ρ
∂

∂x

(
Y
∂m112

∂x

)
− 37

35
m112

∂

∂x

(
Y
∂ρ

∂x

)
− 41

175
ρm112

∂2Y
∂x2

]

= −24
5
ρ
√

πθa2

m
Ym112. (7.14)

Balance equation for kinetic fourth-order moment R12:

14
5
θ
∂

∂x

[(
1 + 12

35
2π

3
a3

m
ρY
)

q2

]
− 14

5
θ

q2

ρ

∂

∂x

[(
1 + 1

2
2π

3
a3

m
ρY
)
ρ

]

+ 2θ
∂

∂x

[(
1 + 12

35
2π

3
a3

m
ρY
)

m112

]
− 2

m112θ

ρ

∂

∂x

[(
1 + 11

14
2π

3
a3

m
ρY
)
ρ

]

− a4√π

m

√
θ

[
8
35
ρθ

∂

∂x

(
Y
∂σ12

∂x

)
− 8

15
θσ12

∂

∂x

(
Y
∂ρ

∂x

)
− 8

105
ρθσ12

∂2Y
∂x2

]

− a4√π

m

√
θ

[
12
49
ρ
∂

∂x

(
Y
∂R12

∂x

)
− 704

735
R12

∂

∂x

(
Y
∂ρ

∂x

)
− 131

735
ρR12

∂2Y
∂x2

]

= −
[

16
5

a2ρ
√

πθ

m
Y

](
1
2
θσ12 + 205

168
R12

)
. (7.15)

The system of five linear second-order ordinary differential equations (7.11)–(7.15)
defines a boundary-value problem, once it is prescribed that at x = 0 and far from the
interface the Navier–Stokes solution for a uniform shear flow holds.

The linearity allows us to consider approximations of intermediate complexity, with
respect to the above full set of five equations. The simplest one, named 2-modes
approximation, consists in forcing q2 = m112 = R12 = 0 and describing the flow by (7.11)
and (7.12). It is interesting to note that the 2-modes approximation provides the correct
Navier–Stokes solution in the regions of uniform density but it does not coincide with the
isothermal DIM description of the interface flow.

Grad’s 13-moments approximation is obtained by describing the flow by the fields v2(x),
σ12(x), q2(x), governed by (7.11)–(7.13) with m112 = R12 = 0.

The equations associated with the approximations described above have been solved
by turning them into linear algebraic systems, through quite standard discretization
methods. The coefficients of the unknowns and their derivatives have been computed by
approximating the unperturbed density profile by a hyperbolic tangent profile, matched to
the solution of (7.3) (Frezzotti et al. 2005).
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Twenty-six moment equations for the Enskog–Vlasov equation

Moment equations solutions have been compared to DSMC (stochastic) solutions of the
EV equation, tailored to the considered Couette flow configuration.

In DSMC, two infinite planar and parallel walls are located at positions x = ±xw,
where x is the coordinate spanning the direction normal to the walls. The central part
of the gap between the walls is occupied by a liquid slab of width 2xl, surrounded by
two symmetrically located gas regions of width xw − xl. A simple steady shear flow is
generated in the two-phase fluid by assigning velocities ±Uwŷ to the walls at x = ±xw,
where ŷ is a unit vector parallel to the walls. It is further assumed that gas molecules hitting
walls are re-emitted with velocities distributed according Maxwellians characterized by
wall velocities ±Uwŷ and temperature Tw. A thermostat keeps the central part of the
liquid slab at temperature Tw, thus absorbing the energy dissipated into the system by
shear stresses.

The results presented below have been obtained by time-averaging the velocities of 24
million particles over about 105 time steps, after the onset of a steady solution. The large
sample size is necessary to resolve the small deviation from equilibrium required by the
comparison of the DSMC solution of the nonlinear EV equation with solutions of the
linearized moment equations. In this respect, it is worth mentioning that although the
DSMC shear rate, tuned by Uw, has been set as small as permitted by the noise-to-signal
ratio, the DSMC solution is not exactly isothermal. In the preliminary example shown
below, the normalized equilibrium temperature has been set equal to 0.6. The DSMC
shows a slight temperature maximum of 0.605 next to the liquid–vapour interface.
Although further numerical work is required, we believe that the present accuracy level
is sufficient to judge the quality of the moment formulation described above.

We proceed with comparing results from EV26 and DSMC. Due to the large sample
size required, the computational time for DSMC is relatively large, about 24 hours, on
a workstation equipped with a 10-core CPU. We note that DSMC requires unsteady
three-dimensional simulations (with periodic boundaries in the y, z directions). In contrast,
this one-dimensional problem can be solved in about one minute with the moment
equations, which benefit from a lower number of variables, the dimensional reduction,
steadiness and linearity of the problem formulation.

Figure 4 shows velocity v2, kinetic shear stress σ12, kinetic heat flux q2, and moments
m112, R12 for dimensionless temperature θ = 0.6 
 0.8 × θcrit, as computed from the 26
moment system, the reduced system with 13 moments (variables ρ, v2, σ12, q2), and the
further reduced 2-mode system (variables ρ, v2, σ12). The results are compared with the
DSMC solution of the EV equation itself (Frezzotti 1997) that serves as a reference.

The main features of the flow field can be seen in figure 4(a), where the velocity
field exhibits the structure of two uniform shear flows in the liquid and vapour regions,
respectively, connected by the interface flow region. The macroscopically sharp change
in velocity over the interface is a resolved slip effect, which would be dealt with as
a slip boundary condition in a traditional hydrodynamic context. As can be seen from
figures 4(a) and 4(b), moment theories with 26 and 13 moments give very good agreement
to DSMC for velocity v2 and kinetic stress σ12. The 2-mode model does not succeed in
approximating the velocity change across the interface, predicting a too-weak velocity slip.

The kinetic heat flux q2 shown in figure 4(c) is due to forced gas motion, and not driven
by a temperature gradient. Such a contribution to heat flux does not occur in classical
hydrodynamics (Navier–Stokes–Fourier), but is well known in rarefied gas dynamics
(Struchtrup 2005). The heat flux computed from the 26 moment system is in reasonably
good agreement with the DSMC result, while the 13 moments theory clearly overpredicts
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Figure 4. Two-phase Couette flow: comparison of EV DSMC and linearized moment equations, in the case
θ = 0.6. (a) Shear velocity v2; (b) kinetic shear stress σ12; (c) kinetic heat flux component q2; (d) third- and
fourth-order moments m112 and R12.

the heat flux. This indicates the importance of including higher-order moments (m112,R12),
which have clear influence on process detail around the interface. As can be seen in
figure 4(d), the 26 moment system gives a good approximation for m112, while somewhat
overpredicting the value of R12 in the vapour in front of the interface. While velocity
and stress variations are confined to the interfacial region as defined through the density
variation, the higher moments (q2,m112,R12) exhibit variations further into the vapour –
these are Knudsen layer contributions.

8. Conclusions

In this contribution we have presented the derivation of a set of 26 moment equations from
the Enskog–Vlasov equation, (6.1)–(6.13). The moment equations describe liquids and
vapours, either alone or in contact through one or several continuous phase interfaces. If
considered for single phases, then the equations describe either a somewhat compressible
liquid, or a non-ideal gas of van-der-Waals-type. In the limit of small densities, the
equations reduce to the (linearized) 26 moment equations for rarefied ideal gases.

Just as with higher-order moment equations for ideal gases, the equations describe
higher-order transport effects, such as thermal stresses, non-Fourier heat flux and Knudsen
layers. While 13 moment equations for Enskog gases were presented before (Kremer &
Rosa 1988), this appears to be the first time that a moment system for the EV equation was
developed. We note that for ideal gases, 13 moments do not suffice to describe Knudsen
layer effects, which, however, can be approximated with 26 moments.
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Twenty-six moment equations for the Enskog–Vlasov equation

We emphasize that in this first approach to a set of macroscopic equations with
resolved phase interface and Knudsen layers, we relied on linearizations as well as Taylor
expansions with the particle size. Specifically, we ignored all nonlinear terms involving
non-equilibrium properties, so that only nonlinear terms with the density gradient – which
is significant in the interface – remain in the equations.

The resolved interface has a thickness of the order of 10 atomic diameters a, with
larger values closer to the critical point. Hence tracking of property changes across the
interface requires high resolution. As of now, our expansions in particle size account for
non-equilibrium terms up to fourth order, while fifth-order contributions are included only
for the equilibrium terms in the capillary stresses. Our results so far indicate that agreement
with DSMC solutions of the EV equations is good not too far from the critical point, where
the interface is wider, and differences between liquid and vapour equilibrium states are
smaller (recall that all differences vanish at the critical point).

Further from the critical point, where the interface is thinner, and differences between
vapour and liquid are stronger, we observe more marked deviations. It might well be
that to capture these states, higher-order terms – fifth- or higher-order in a – should be
included in the equations. This option will be considered in the future, based on a careful
analysis of the equations, and the expansion procedure. Deriving and several rounds of
double-checking of the (mainly) fourth-order equations led us to develop better strategies
that in the future will allow us to add higher-order terms in a more efficient manner
compared to our first steps towards the equations presented above.

The EV26 moment equations open an array of avenues for future work. Further
comparison with DSMC solutions is required to understand their appropriate range of
applicability as well as which additional higher-order terms (from expansion, or nonlinear
terms) should be added to increase their range.

DSMC and molecular dynamics solutions are expensive computationally and affected
by stochastic noise, in particular for flows exhibiting small deviations from equilibrium.
In contrast to this, the EV26 moment equations require far fewer resources for
their deterministic noise-free solutions. With that, they offer the opportunity to study
a wide variety of single-phase and two-phase flows with evaporation/condensation,
such as Couette flow, heat transfer and forced evaporation, all for a wide range of
parameters.

Our preliminary results show the expected steep gradients in the interface, which lead to
effective velocity slip phenomena across the interface. Detailed accounts of solutions, the
discussion of interface phenomena, and the determination of jump, slip and evaporation
coefficients in dependence of state of the interface and process parameters, are planned for
the future. Another line of work will consider the equations in the bulk phases – liquid and
vapour – with questions concerning model reduction (Struchtrup & Torrilhon 2013), wave
speed and damping, and the development of wall boundary conditions.
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Appendix A. k-integrals

The integrals [Iαm,n]i1···in+m of (5.23) must be symmetric linear combinations of the unit
tensor δij and gi = {0, 0, g}, and here we show those integrals that were required in the
process of finding our final transport equations for 26 variables. For n = m = 0:

Iα0,0 = 2π

α + 1
gα. (A1)

For n + m = 1 (with m = 0, 1):

[
Iαm,1−m

]
i = g2+α−m

∫ 2π

0

∫ π/2

0
ki cos2+α−m θ sin θ dθ dε = 2π

4 + α − m
gi

gm−1−α . (A2)

For n + m = 2 (with m = 0, 1, 2):

[
Iαm,2−m

]
ij = 2π

(6 + α − m) (4 + α − m)

(
δij

gm−3−α + (3 + α − m)
gigj

gm−1−α

)
. (A3)

For n + m = 3 (with m = 0, 1, 2, 3):

[
Iαm,3−m

]
ijk = 2π

(8 + α − m) (6 + α − m)

(
3
δ(ijgk)

gm−3−α + (3 + α − m)
gigjgk

gm−1−α

)
. (A4)

For n + m = 4 (with m = 1, 2, 3):

[
I0
m,4−m

]
ijkl

= 2π

(10 − m) (8 − m) (6 − m)

⎛
⎜⎝ 3

δ(ijδkl)

gm−5 + 6 (5 − m)
δ(ijgkgl)

gm−3

+ (
15 − 8m + m2) gigjgkgl

gm−1

⎞
⎟⎠ . (A5)

For n + m = 5 (with m = 2, 3):

[
Iαm,5−m

]
ijklr = 2π

(12 + α − m) (10 + α−m) (8 + α − m)

×
(

15
δ(ijδklgr)

gm−5−α + 10 (5 + α − m)
δ(ijgkglgr)

gm−3−α + (5 + α − m) (3 + α − m)
gigjgkglgr

gm−1−α

)
.

(A6)

For n + m = 6 (we needed only one integral):[
I0
3,3

]
ijkrst

= 2π

231
g4δ(ijδkrδst) + 8π

77
g2δ(ijδkrgsgt) + 16π

231
δ(ijgkgrgsgt). (A7)

Appendix B. Integrals for momentum balance

B.1. Integrals over f 1f

With the 26 moment distribution, f|26 = f̂M(ρ +Φ), the product f 1f is of the form, after
linearization in non-equilibrium quantities,

f 1f = f̂ 1
Mf̂M

(
ρ2 + ρ

(
Φ +Φ1

))
. (B1)

The resulting integrals are tensors that are linear combinations of the unit tensor and the
tensorial moments, with coefficients that depend on density and temperature.
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We show only integrals required for the momentum balance:∫ ∫
f 1f {ggi} dc1 dc = 0, (B2)

∫ ∫
f 1f {gigr} dc1 dc = 2

ρ2θ

m2 δir + 2
ρ

m2 σir. (B3)

The trace of this gives ∫ ∫
f 1f
{

g2δir

}
dc1 dc = 6

ρ2θ

m2 δir. (B4)

This 3-tensor vanishes: ∫ ∫
f 1f
{

gigrgs

g

}
dc1 dc = 0. (B5)

B.2. Integrals over ∂nf1/∂xnf
The derivative of f|26 is given in (5.10). In compact notation, we write

∂nf1
∂

= f̂ 1
MDΨ 1, (B6)

where DΨ is a polynomial in Ci with factors that depend on the derivatives of all variables
that can be identified from (5.10). The semi-linearized product is

∂nf1
∂

f = f̂ 1
MfM (ρ +Φ)DΦ1 = f̂ 1

MfM
(
ρDΨ 1 +ΦDρ

)
. (B7)

In the results, we keep nonlinear terms of non-equilibrium quantities with density gradient,
but linear terms otherwise. Again, we show only integrals required for the momentum
balance.

In the compact notation, introduced above, we find∫ ∫
∂nf 1

∂
f {ggs} dc1 dc = 16

3
ρθ

m2
√

πθ
A[·],s + 8

15
ρ

m2
√

πθ

∂nqs

∂
− 8

15
ρ

m2
√

πθ

qs

ρ

∂nρ

∂
.

(B8)

To clarify the compact notation, we show the case of the second derivative, where∫ ∫
∂2f 1

∂xi ∂xj
f {ggs} dc1 dc = 16

3
ρθ

m2
√

πθ
A[ij],s + 8

15
ρ

m2
√

πθ

∂2qs

∂xi ∂xj

− 8
15

ρ

m2
√

πθ

qs

ρ

∂2ρ

∂xi ∂xj
. (B9)

Other integrals used, shown in compact notation only, are∫ ∫
∂nf 1

∂
f {gigr} dc1 dc = ρ

m2

(
2θ
∂ρ

∂
+ B[·]

)
δir + ρ

m2

(
∂σir

∂
+ σir

ρ

∂ρ

∂

)
, (B10)
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with trace ∫ ∫
∂nf 1

∂
f
{

g2
}

dc1 dc = 3
ρ

m2

(
2θ
∂ρ

∂
+ B[·]

)
, (B11)

and∫ ∫
∂f 1

∂
f
{

gigrgs

g

}
dc1 dc = 16

5
ρ

m2
√

πθ
θδ(irA[·],s)

+ 8
25

ρ

m2
√

πθ

(
δ(ir

∂qs)

∂
− δ(irqs)

ρ

∂ρ

∂

)
+ 16

35
ρ

m2
√

πθ

(
∂mirs

∂
− mirs

ρ

∂ρ

∂

)
. (B12)

Appendix C. Correction for equal area rule

For the one-dimensional case, Aifantis & Serrin (1983) write the capillary pressure terms
in general notation as

Pcap = α
∂2ρ

∂x2 + β
∂ρ

∂x
∂ρ

∂x
, (C1)

where α and β depend on local density. They find that for validity of the equal area rule,
these coefficients must be related as

β = 1
2
ρ2 d

dρ

(
α

ρ2

)
= 1

2
dα
dρ

− α

ρ
. (C2)

The relationship between α and β is linear, so that common factors can be taken out of the
discussion, as below.

In the EV momentum balance (6.2), we find (in one dimension) the normal capillary
stress from the Vlasov contribution as

PVlasov = −2π

15
a5

m
φaχ3

[
ρ
∂2ρ

∂x2 − 1
2
∂ρ

∂x
∂ρ

∂x

]
, (C3)

from which we identify α = ρ, β = −1
2 , which fulfil the condition (C2):

1
2

dα
dρ

− α

ρ
= 1

2
− 1 = −1

2
= β. (C4)

The Enskog contribution mixes density and temperature effects as, in one dimension,

PEnskog = π

60
a5

m

[
∂2Yρ2θ

∂x2 + 3Y
∂2ρ2θ

∂x2 − 12Y
∂ρ

∂x
∂ρθ

∂x

]
. (C5)

In equilibrium, temperature is a constant, and the above reduces (with Y ′ = dY/dρ, etc.)
to

PEnskog = π

60
a5

m
θ

[
(8ρY + ρ2Y ′)

∂2ρ

∂x2 + (4Y ′ρ + ρ2Y ′′ − 4Y)
∂ρ

∂x
∂ρ

∂x

]
, (C6)

and we identify

α = 8ρY + ρ2Y ′, β = 4Y ′ρ + ρ2Y ′′ − 4Y. (C7a,b)
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We evaluate
1
2

dα
dρ

− α

ρ
= 4ρY ′ + 1

2
ρ2Y ′′ − 4Y = β − 1

2
ρ2Y ′′ = β̂. (C8)

That is, there is a mismatch (−1
2ρ

2Y ′′) with respect to the condition (C2), hence the
Enskog contribution violates the equal area rule.

To reinstate the equal area rule, we can simply replace β by β̂ as introduced above, so
that for the isothermal case (Barbante 2016),

PEnskog = π

60
a5

m
θ

[
∂2Yρ2

∂x2 + 3Y
∂2ρ2

∂x2 − 12Y
∂ρ

∂x
∂ρ

∂x
− 1

2
ρ2Y ′′ ∂ρ

∂x
∂ρ

∂x

]
. (C9)

For the non-isothermal case, we just use the same term, i.e.

PEnskog = π

60
a5

m

[
∂2Yρ2θ

∂x2 + 3Y
∂2ρ2θ

∂x2 − 12Y
∂ρ

∂x
∂ρθ

∂x
− 1

2
θρ2Y ′′ ∂ρ

∂x
∂ρ

∂x

]
. (C10)

All original terms have temperature under space derivatives. Considering the ad hoc nature
of the correction, we best use the above, which does not alter the thermal response to
non-equilibrium. The extension to three dimensions in (7.8) is based on the form of the
original Enskog contributions.
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