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A heat flux in a high-β plasma with low collisionality triggers the whistler
instability. Quasilinear theory predicts saturation of the instability in a marginal
state characterized by a heat flux that is fully controlled by electron scattering off
magnetic perturbations. This marginal heat flux does not depend on the temperature
gradient and scales as 1/β. We confirm this theoretical prediction by performing
numerical particle-in-cell simulations of the instability. We further calculate the
saturation level of magnetic perturbations and the electron scattering rate as functions
of β and the temperature gradient to identify the saturation mechanism as quasilinear.
Suppression of the heat flux is caused by oblique whistlers with magnetic-energy
density distributed over a wide range of propagation angles. This result can be
applied to high-β astrophysical plasmas, such as the intracluster medium, where
thermal conduction at sharp temperature gradients along magnetic-field lines can
be significantly suppressed. We provide a convenient expression for the amount of
suppression of the heat flux relative to the classical Spitzer value as a function of
the temperature gradient and β. For a turbulent plasma, the additional independent
suppression by the mirror instability is capable of producing large total suppression
factors (several tens in galaxy clusters) in regions with strong temperature gradients.
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1. Introduction
Thermal conduction in a hot magnetized turbulent astrophysical plasma has been

an active research topic since its potential role in the thermodynamics of galaxy
clusters was appreciated (the so-called cooling flow problem; see, e.g. Ruszkowski
& Begelman (2002), Zakamska & Narayan (2003), Voigt & Fabian (2004), Dennis
& Chandran (2005)). It is often assumed to be significantly reduced relative to the
unmagnetized Spitzer conductivity by magnetic fields, an assumption mainly based
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on observations of various temperature substructures in the intracluster medium
(ICM): fluctuations on scales of the order of 100 kpc (Markevitch et al. 2003;
Wang, Markevitch & Giacintucci 2016), sharp gradients at contact discontinuities
(the so-called cold fronts; e.g. Ettori & Fabian (2000), Markevitch et al. (2000),
Vikhlinin, Markevitch & Murray (2001), Markevitch & Vikhlinin (2007), Ichinohe
et al. (2015)) and filamentary structures (e.g. in the Coma cluster; see Sanders et al.
(2013)). However, the exact physics of such suppression remain to be understood. To
some extent, the persistence of temperature fluctuations could be explained by the
turbulent topology of magnetic-field lines that favours perpendicular orientation of
temperature gradients and field lines (Komarov et al. 2014), while cold fronts likely
survive for long times due to field-line draping, which has similar effect by stretching
field lines along a cold front interface (Lyutikov 2006; Asai, Fukuda & Matsumoto
2007; Dursi & Pfrommer 2008).

It is in general more problematic to suppress parallel thermal conduction along
magnetic-field lines. In order to inhibit parallel electron transport, small-scale magnetic
fluctuations that presumably exist in the ICM due to various kinetic instabilities
should be either in the form of transverse perturbations on electron Larmor scales
(e.g. Levinson & Eichler 1992), or in the form of magnetic mirrors (i.e. longitudinal
waves) on larger scales (e.g. Chandran & Cowley 1998). The latter may be provided
on ion Larmor scales by the mirror instability, driven by anisotropy in the plasma
temperature that is biased perpendicularly with respect to the local magnetic-field
direction (Parker (1958), Hasegawa (1969); see also Kunz, Schekochihin & Stone
(2014) and Rincon, Schekochihin & Cowley (2015) for the saturation mechanism).
Suppression factors estimated for this case are rather modest, of the order of 1/3–1/5
of the Spitzer value (Komarov et al. 2016).

The transverse whistler instability seems to be the most promising candidate for
scattering electrons at the scale of their Larmor radii. It has long been known that a
heat flux in a weakly collisional magnetized plasma causes whistler instability under
certain conditions and thus can, possibly, inhibit itself (Levinson & Eichler (1992);
see also Ramani & Laval (1978) for the unmagnetized case). This problem presents
significant theoretical interest, even outside of the context of galaxy clusters. Levinson
& Eichler (1992) first described the linear heat-flux-induced whistler instability and
estimated the suppression of thermal conduction by assuming that saturation of the
instability is controlled by nonlinear mode coupling. In their work, they employed the
simple isotropic Krook operator in order to describe electron scattering off whistler
perturbations. Pistinner & Eichler (1998) (hereafter PE98) questioned the validity of
this assumption and demonstrated that in the framework of quasilinear theory (QLT),
the marginal electron distribution function in fact generates oblique whistlers able to
scatter heat-carrying electrons efficiently. Both Levinson & Eichler (1992) and PE98
stressed the fact that strictly parallel whistler modes do not interact with heat-carrying
electrons intensively, because the Doppler-shifted circular rotation of the E-vector of
these modes in the frame moving with the electrons along the mean magnetic field is
opposite to the gyration of the electrons. The elliptical polarization of oblique modes,
on the other hand, alleviates this problem and enables resonant interaction with the
heat-carrying particles. The resulting heat flux in PE98 turns out to be independent of
the temperature gradient and scales as the inverse electron plasma βe.

In this work, we study the heat-flux-induced whistler instability with the aid of
particle-in-cell numerical simulations. By performing runs with different values of βe
and temperature gradients, we arrive at qualitatively the same conclusion as PE98:
the saturated whistler modes are oblique and, therefore, successfully inhibit the
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electron heat flux, restricting it to the β−1
e scaling regardless of the magnitude of the

temperature gradient. We also show that the saturated magnetic-field energy, as well
as the pitch-angle scattering rate follow the same functional form as predicted by
QLT.

During the final stage of preparation of this paper, Roberg-Clark et al. (2018)
published a very similar numerical result (see also Roberg-Clark et al. (2016) for
their previous work on this subject). Our work can be considered as an independent
confirmation of their main result, namely, the fact that the heat flux controlled by the
instability scales as β−1

e . However, we propose a rather different physical approach to
the interpretation of this result, based on quasilinear saturation near marginal stability.
In addition, we discuss some of the aspects of the instability in more detail, e.g. the
structure of the electron distribution function in the marginal state and the scaling
of the pitch-angle scattering rate and saturation level of magnetic perturbations with
βe and the temperature gradient. We also provide a convenient expression for the
suppression factor of the heat flux applicable to clusters of galaxies. This model could
be easily incorporated into hydro- and magnetohydrodynamic numerical simulations.

The rest of this paper is organized as follows. In § 2, we present a qualitative
explanation of the physics behind the heat-flux suppression by whistler turbulence
based on the marginality criterion. We then turn to numerical results (§ 3) to support
this model. We proceed with discussion of the relevance of our results to galaxy
clusters and the limitations of our model in § 4. We summarize our findings in § 5.

2. Theoretical considerations
2.1. General remarks

Let us assume that due to a certain anisotropy of the electron distribution function
in a weakly collisional magnetized plasma, it becomes unstable and triggers
electromagnetic modes propagating in some direction with phase velocities ω/k, where
ω is the wave frequency and k is the wavenumber. We assume also that the electrons
are fast compared to the wave (as tends to be the case for for low-frequency modes
in a hot plasma), so the electron Landau resonance is ineffective and wave–particle
interactions mostly happen via gyroresonances k‖v‖ = ±Ωe, where k‖ is the parallel
(to the mean magnetic field) wavenumber, v‖ the parallel electron velocity, and Ωe
the electron Larmor frequency. Let the unstable modes have random phases and
a sufficiently broad spectrum, viz., 1k/k ∼ 1. This allows electrons within a wide
range of parallel velocities to resonate with different uncorrelated wave modes. For
an electromagnetic wave, the perpendicular electric field δE′⊥ in the reference frame
moving at the parallel phase velocity of the wave is zero:

δE′⊥ = δE⊥ −ω/(k‖c)δB⊥ = δE⊥ − [ω/(k‖c)](c/ω)k‖δE⊥ = 0, (2.1)

where δB⊥ and δE⊥ are the perpendicular magnetic and electric fields of the wave in
the laboratory frame, and c is the speed of light. The parallel electric field (unaffected
by the change of the reference frame) can be safely assumed unimportant because
it only interacts with electrons via Landau resonance, but because the wave is slow
compared to the electron thermal speed, such interaction is weak, and there is no
secular change in a particle’s energy1. Resonant particles, which are the ones that

1More precisely, it can be shown by a calculation similar to (2.1) that the vector potential A of the wave
is zero in the frame of reference moving with the parallel phase velocity, while the electrostatic potential φ is
typically very small. For whistlers, φ& (v/c)A only close to the resonant cone whose opening angle approaches
π/2 at low frequencies far below the electron plasma frequency. Such quasielectrostatic modes should not be
excited by electron distribution functions with a negative velocity-magnitude derivative.
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mostly contribute to the initial anisotropy (the instability drains free energy from
the anisotropy by resonant wave–particle interactions), are scattered elastically by
magnetic perturbations in the moving frame. Eventually, this leads to isotropization of
their distribution function in the ‘wave frame’ and quenching of the instability. Thus,
an excess of particles at parallel momenta in the direction of the wave propagation
larger than of the order of meω/k‖ in the laboratory frame are not allowed.

Let us assume for illustrative purposes that the electrons have a non-zero mean
momentum in the direction of the wave, causing an asymmetry in the electron
distribution function. We may define the anisotropy of such distribution simply
as ε = 〈p‖〉/pth, where 〈p‖〉 is the mean parallel momentum and pth = (2meT)1/2
the electron thermal momentum (we use energy units of temperature everywhere).
Then, the instability limits such anisotropy by εmax∼ω/k‖vth, where vth is the electron
thermal velocity. A parallel heat flux is, in fact, characterized by a similar perturbation
of the distribution function2 at parallel velocities v‖ ∼ ±vth. We can approximately
estimate the heat flux as

q‖ ∼menv2
th〈v‖〉 ∼ εmenv3

th, (2.2)

where n is the electron density. For the heat-carrying particles, the resonant scale is
simply the electron Larmor radius ρe= vth/Ωe, which follows from the gyroresonance
condition k‖v‖ =±Ωe. The frequency of whistler waves at this scale is

ω∼ (Ωe/ω
2
p)k

2c2 ∼ (kρe)
2Ωe/βe ∼Ωe/βe. (2.3)

Thus, the whistler phase velocity is vth/βe, and, immediately, if whistler turbulence
saturates by electron pitch-angle scattering, it limits the maximum anisotropy to
∼1/βe. Equivalently, the marginal heat flux should be

q‖ ∼ β−1
e menv3

th, (2.4)

provided that such flux turns out to be smaller than the initial heat flux with no
instability. Already from these simplified arguments, one gets a heat flux that is
fully controlled by the plasma β and is independent of the imposed temperature
gradient. This is exactly the conclusion made by PE98 via a more rigorous quasilinear
derivation.

2.2. Whistler instability
It is most convenient to establish the connection between the electron distribution
function and the growth rate with the help of basic semi-classical concepts (Melrose
1980). This method is physically equivalent to the usual derivation based on the
Landau–Laplace procedure. We prefer this derivation because it provides a quick
shortcut to the expression for the growth rate in a form that allows one to study
marginal distribution functions without knowing the complicated details of the
dispersion relation in the general case of oblique wave propagation. We also believe it
is clearer for a reader less familiar with plasma kinetics, because it does not introduce
from the start the dispersion relation, which is often hard to interpret physically.

2With the important exception that a plasma produces a flow of colder particles opposite to the direction of
the heat flux to cancel the electric current and make 〈p‖〉 = 0. The part of the distribution function associated
with such backflow, however, does not play a key role in the instability, as will be shown in § 2.3. We
therefore use a simplified model with 〈p‖〉 6= 0 in this section for illustrative reasons.
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Let an electron with momentum p gyrating in a magnetic field emit a photon with
momentum h̄k. The change in the electron’s parallel momentum is

1p‖ =−h̄k‖. (2.5)

Conservation of energy implies

1
p2
‖

2me
+1 p2

⊥
2me
+ h̄ω= 0. (2.6)

The perpendicular kinetic energy of an electron in a magnetic field is quantized as
E⊥ = jh̄Ωe, where j is a non-negative integer (we can ignore the electron’s spin and
ground-state energy here as we are interested in the classical limit j� 1). Then the
change in the perpendicular momentum of the electron is

1p⊥ =−sh̄Ωe/v⊥, (2.7)

where s is an integer. From (2.6), using (2.5), we get

ω− k‖v‖ = sΩe. (2.8)

This is just the normal resonance condition, which is in fact the statement of energy
conservation.

The number of emitted photons with wave vector k per unit time between two
electron states with momenta p and p− h̄k is set by the difference between the rates
of stimulated emission and stimulated absorption. The former should be proportional
to the electron distribution function at the higher momentum p, f ( p), and the latter
to f ( p− h̄k). Assuming that the emitted/absorbed momentum is small and using (2.5)
and (2.7), we get

1f ( p, k)= f ( p)− f ( p− h̄k)=−1p⊥
∂f
∂p⊥
−1p‖

∂f
∂p‖
= h̄

(
sΩe

v⊥

∂

∂p⊥
+ k‖

∂

∂p‖

)
f ( p).

(2.9)

Now we can obtain the rate of energy transfer from the electrons to the wave by
integrating over electron momenta:

dE(k)
dt
=
∫

d3p w( p, k)1f ( p, k)E(k), (2.10)

where E(k) is the density of energy contained in the wave, w( p, k)=W( p, k)δ(p‖−
p‖r) is the probability of stimulated emission/absorption of a photon with wave vector
k by an electron with momentum p per unit of time, and p‖r = me(ω − sΩe)/k‖ is
the resonant parallel momentum. The non-negative function W( p, k) contains all the
information about the dispersion relation of the particular emitted mode. The wave
energy growth rate γs(k) is then

γs(k)=
∫

d3p w( p, k)1f ( p, k). (2.11)

Here and in what follows, the subscript s indicates that the growth rate γs is given
for a single-s resonance (2.8), while the total growth rate is an infinite sum over s.
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Using (2.9), we finally arrive at a general expression for the growth rate of an arbitrary
electromagnetic mode in the form

γs(k)=
∫

d3p δ(p‖ − p‖r)W( p, k)h̄
(

sΩe

v⊥

∂

∂p⊥
+ k‖

∂

∂p‖

)
f ( p). (2.12)

Expression (2.12) is convenient in the sense that it is valid for waves propagating at
arbitrary angles, and it allows one to link the sign of the growth rate to properties of
the distribution function without knowing the complicated dispersion relation for the
general case of oblique propagation. The sign of γs(k) is determined by function

Γs(p⊥, k)=
(

sΩe

v⊥

∂

∂p⊥
+ k‖

∂

∂p‖

)
f ( p)|p‖=p‖r . (2.13)

Switching to velocity derivatives and using the resonance condition (2.8), we get

Γs(v⊥, k)∝ k‖
|k‖|

[
−
(
v‖ − ω

k‖

)
∂

∂v⊥
+ v⊥ ∂

∂v‖

]
f (v)|v‖=v‖r . (2.14)

Note that the sum of the partial derivatives in (2.14) is a derivative taken along
semicircles (v‖ −ω/k‖)2 + v2

⊥ = const. This represents the fact that electron energy is
conserved in the frame moving with the parallel phase velocity of the wave (because
the perpendicular electric field is zero there). Equation (2.14) can be cast in a compact
form:

Γs(v⊥, k)∝ k‖
|k‖| l̂ ·

∂f
∂v

∣∣∣∣
v‖=v‖r

, (2.15)

where l̂ = (sin φ, −cosφ) is a unit vector pointing clockwise along the contours of
constant energy in the wave frame, and φ is the polar angle in coordinates (v‖ −
ω/k‖, v⊥). Let us choose k‖ > 0 without loss of generality. We see that instability
occurs when the distribution function near the resonant parallel momenta increases
in the clockwise direction along the equi-energy contours in the wave frame. For the
resonance at v‖≈−Ωe/k‖, a parallel momentum deficiency (or, equivalently, a surplus
of particles with high v⊥) is needed for the instability to occur, while at v‖ ≈Ωe/k‖
one needs an excess of parallel momentum (see figure 1 for an illustration). The case
of k‖ < 0 is analogous and described by the oriented contours of constant energy in
figure 1 mirror reflected with respect to the y-axis, i.e. the direction of positive wave
growth changes to counterclockwise.

2.3. Marginal heat flux
Provided that the spectrum of excited modes is sufficiently broad (1k‖/k‖ ∼ 1),
particles in a wide range of parallel velocities are scattered by magnetic perturbations,
and their isotropization in the wave frame leads to marginal stability.

A parallel heat flux introduces an asymmetry in the electron distribution function,
and the perturbed distribution can be expanded in small parameter ε= λmfp/LT , where
λmfp is the electron mean free path (either classical Spitzer or one associated with
scattering off magnetic fluctuations) and LT is the scale length of the temperature
gradient. The heat flux is

q‖ ∼ nλmfpvth∇T ∼ εnvthT ∝ ε, (2.16)

where n and T are the electron density and temperature.
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FIGURE 1. An illustration of the mechanism of the whistler instability and marginality of
the electron distribution function. The coloured contours show Maxwell’s distribution on
the left and the anisotropic perturbation associated with a heat flux on the right (the heat
flux is along the v‖ axis). The left and right dashed vertical lines in (a,b) indicate the
positions of the gyroresonances, while the central dashed lines correspond to the parallel
phase velocity of a whistler. The solid circles demonstrate the contours of constant energy
in the frame moving with the parallel phase velocity of the wave. We choose to use
vz instead of v⊥ = (v2

y + v2
z )

1/2 for the vertical axis solely because it is allowed to be
negative, which makes for a more natural visual representation of the distribution function.
The instability grows when the distribution function near the resonances increases in the
clockwise direction (for vz > 0) along the solid circles, as for the heat-flux perturbation
on the right. Driving by the anisotropy is balanced by cyclotron damping on the bulk
of isotropic particles (a). If the wave spectrum is broad enough (1k‖/k‖ ∼ 1), electrons
are scattered within a wide range of parallel velocities, and marginality is reached when
electrons become isotropic in the wave frame. Both negative and positive resonances are
only enabled for oblique whistlers, as described in the text.

The electron distribution function is

f (v, ξ)= f0(v)+ εf1(v, ξ), (2.17)

where f0(v) is the unperturbed isotropic Maxwell distribution and f1(v, ξ) is an
anisotropic perturbation that depends on ξ , the cosine of the electron pitch angle. Both
of the components are shown in figure 1 with equi-energy contours superimposed.
For f1 we use the shape of distortion that arises from the Knudsen expansion of the
Boltzmann equation with the simplest Krook operator describing isotropic collisions
(e.g. Levinson & Eichler 1992):

f1(v, ξ)= ξv

2vth

(
v2

v2
th
− 5
)

f0(v). (2.18)

This is done only for illustrative purposes, and in fact any perturbation by a heat flux,
with the proviso that no electron current is produced, can be used instead. All such
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perturbations will have similar features, namely, an excess of parallel momentum in
the direction of the heat flux at ∼2vth, its deficiency in the opposite direction, and a
backflow of colder particles (the central dipole-shaped pattern in figure 1b) to cancel
the electron current. Figure 1 demonstrates that the Maxwellian part (a) absorbs
energy from the wave (see (2.15)), while the anisotropy associated with the heat flux
provides the free-energy source driving the instability. To make it clearer, we can
estimate the parallel phase speed of resonant whistlers in (2.14). By taking |v‖r| ∼ vth
(see the resonances in figure 1) and, therefore, k‖ ∼ ρ−1

e , we get

ω/k‖ = k‖c2Ωe/ω
2
p ∼ vth/βe. (2.19)

Let us also change variables in (2.14) to (v, ξ) and use the fact that ω�|k‖v‖|. This
leads to

Γs(v, k)∝
(
vth

βe

∂

∂v
+ ∂

∂ξ

)
f (v, ξ)|v‖=v‖r ≈

(
vth

βe

∂f0

∂v
+ ε ∂f1

∂ξ

)
v‖=v‖r

. (2.20)

It is manifest now that the growth rate consists of two terms: the damping term that
describes suppression of waves by the bulk of isotropic particles (electron cyclotron
damping), and the driving term proportional to the anisotropic distortion of the
distribution function, i.e. to the heat flux. Note that (2.20) is written for k‖ > 0; for
k‖ < 0 there is no instability because Γs reverses its sign in (2.15), and the driving
term in (2.20) becomes negative, while the damping term proportional to the phase
speed remains negative because the phase speed also changes its sign.

By estimating ∂f0/∂v∼−f0/vth, ∂f1/∂ξ ∼ f1, f1∼ f0 and demanding marginal stability
γ = 0, we get

εβe ∼ 1. (2.21)

Thus, the marginal heat flux is

qm
‖ ∼ β−1

e nvthT. (2.22)

We have achieved the result anticipated in (2.4): the marginal heat flux is limited by
the value of the phase speed of resonant whistlers and, therefore, is fully controlled
by the electron plasma βe.

It is helpful for further discussion to go back and estimate the order of magnitude of
the driving and damping terms, as we have so far been interested only in the sign of
the growth rate. Ignoring the angular dependence, W( p, k) in (2.12) can be estimated
as W(v, k)∼m2

ev
3/h̄n (see Melrose 1980, equation (7.46)). Then, using (2.12), (2.13),

(2.20) and the resonance condition k‖ ∼ ρ−1
e , we get

γgrow/Ωe ∼ ε, (2.23)
γdamp/Ωe ∼ 1/βe. (2.24)

2.4. Resonant wave–particle interaction: need for oblique whistlers
So far we have completely ignored the details of the resonant interaction between the
heat-carrying electrons and whistler waves. Namely, we have simply considered that
both gyroresonances are active, and particles with both negative and positive parallel
velocities are scattered by the magnetic perturbations. However, because the whistler
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wave is an electromagnetic wave modified by gyrating electrons, it is right-hand
polarized. Whistlers that propagate along the mean magnetic field have a right-hand
circular polarization. This means that they strongly interact only with electrons
moving opposite to the wave (and the field) because those are the ones that co-rotate
with the electric-field vector of the wave in the frame moving with the parallel
electron velocity v‖. The corresponding resonance condition for parallel propagation
is ω− k‖v‖≈−k‖v‖=Ωe, where the positive sign before Ωe is fixed by the right-hand
polarization of the wave. This is the left gyroresonance in figure 1. Analysis of the
linear whistler growth rate done by substitution of the whistler dispersion properties
into the function W( p, k) in (2.12) and using the Knudsen expansion of the electron
distribution function in the presence of a small collisional heat flux (set by isotropic
Coulomb collisions) is a difficult task for whistlers with arbitrary propagation angles.
It is drastically simplified for the case of near-parallel propagation, and predicts that
the maximum growth rate is reached for strictly parallel whistlers that resonate, as
we have noted, with electrons moving opposite to the heat flux (see PE98). Such
whistlers are not expected to scatter the heat-carrying electrons.

From figure 1(b), it can be seen that it is regions of high v⊥ and negative v‖ that
drive the parallel whistlers. Scattering off the parallel modes modifies the electron
distribution, and it evolves to a new current-free distribution, different from the
initial state obtained from the Knudsen expansion. Because such scattering is not
isotropic, the dependence of the new marginally stable distribution function on the
cosine of the electron pitch angle ξ no longer has to be in the simple dipole form
f1 = ξφ1(v) as in the Knudsen expansion (see (2.18) and figure 1). The new state
may be characterized by more depletion of the anisotropy at negative v‖ ∼ −2vth

compared with the one at v‖ ∼ 2vth associated with the heat flux. We will further
show in § 3.2.2 that such state is indeed seen in our numerical simulations. In this
state, the maximum growth rate can be achieved for oblique whistler propagation
instead. Oblique modes, in contrast with parallel, are right-hand elliptically polarized,
which can be represented as a combination of right- and left-hand circularly polarized
waves. Thus, both positive and negative resonances, k‖v‖ =±Ωe, become active (see
figure 1), and efficient scattering of the heat-carrying particles is possible. PE98 used
quasilinear equations to predict that the final marginal state is indeed characterized
by whistlers propagating at a large angle to the mean magnetic field. However, their
result is not fully self-consistent because they still relied on the approximation of the
whistler dispersion relation for near-parallel propagation, while the resulting angle of
propagation was found to be large. In the face of significant analytical complexity
of even the quasilinear treatment of the instability, numerical simulations are vital in
order to test the expectation that oblique whistlers will dominate the marginal state.

2.5. Saturated magnetic field
Let us assume that electron orbits are only weakly perturbed by the unstable whistlers,
nonlinear effects can be neglected due to the smallness of the saturated magnetic
fluctuations, and saturation is quasilinear (an assumption that will be confirmed in
§ 3.2.4). The scattering rate νscatt of resonant electrons can be expressed via ε (see
the beginning of § 2.3) as

νscatt = vth

λmfp
= ε−1Ωe

ρe

LT
, (2.25)
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or, using the marginality condition (2.21),

νscatt

Ωe
∼ βe

ρe

LT
. (2.26)

Given that the resonant magnetic perturbations arise at the electron Larmor scale,
both gyroresonances are available (assuming oblique propagation), and the whistler
spectrum is sufficiently broad to scatter particles isotropically, we can estimate the
effective pitch-angle scattering rate from Bohm diffusion:

νscatt

Ωe
∼ δB

2

B2
0
, (2.27)

where δB is the saturated magnitude of the magnetic perturbations at the resonant
parallel wavelength k‖r =Ωe/ξv and B0 the mean magnetic field. This allows one to
obtain the saturated magnetic field:

δB2

B2
0
∼ βe

ρe

LT
. (2.28)

Note that this quasilinear saturation level is extremely low for astrophysical plasmas.
For galaxy clusters, ρe/LT . 10−13 at temperature T = 10 KeV, magnetic field
B0 = 1 µG and LT & 10 kpc, while βe ∼ 100. The resulting saturation level then is
δB2/B2

0 ∼ 10−11.

3. Numerical simulations
By performing numerical simulations with different βe and ρe/LT , we will now

check the validity of our assumptions and qualitative results: the oblique propagation
of whistlers, the expressions for the marginal heat flux (2.22), effective pitch-angle
scattering rate (2.26) and the saturated level of magnetic fluctuations (2.28), all as
functions of βe and ρe/LT .

3.1. Numerical set-up
We use the relativistic electromagnetic particle-in-cell code TRISTAN (Buneman 1993,
Spitkovsky 2005). Our simulation domain is an elongated two-dimensional (2-D) grid
of size Nx × Ny = 2560 × 512 with the number of particles per cell varying from
200 to 500 depending on the run to obtain convergence and an acceptable signal-
to-noise ratio. The simulation is 2.5-dimensional, meaning that particle velocities are
three dimensions. The ions are motionless and form a charge-neutralizing background
(see, however, § 4.2.1 on the role of ions). The mean magnetic field B0 points in
the positive x direction, while the initial temperature gradient is set in the negative
x direction. The grid size measured in the electron Larmor radii ρe1 at the left (hot)
end of the box is fixed at Lx × Ly ≈ 125 × 25ρe1, and ρe1 ≈ 20 cells. The electron
temperature at the hot wall is such that the ratio of the thermal electron speed to the
speed of light is vth1/c ≈ 0.33. We vary the initial electron plasma βe = 8πnT/B2

0 =
(10, 15, 25, 40). For the run with βe= 40, we increase the grid resolution by a factor
of 1.5 to better resolve the electron skin depth de. At the hot wall, where the particle
density is the smallest (see below), de1≈ (6.5, 5.4, 4.2, 4.9) cells for the corresponding
range of βe, which gives ρe1/de1 ≈ (3.1, 3.7, 4.8, 6.1).
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For the electrons’ initial conditions in velocity space, we employ the isotropic
Maxwell distribution with temperature T0(x) that decreases linearly from T1 to
T2 along x. T1 is kept constant in all the runs, while T2 is varied. We vary
T1/T2= (1.5, 2, 3) in runs with the same βe= 15, while the scan over βe is performed
at the same T1/T2 = 2. The mean electron density n0 is distributed so as to keep
the electron pressure p uniform across the box, i.e. n0(x) ∝ 1/T0(x), and does not
evolve in time (the electrons are bound to the ions by quasineutrality). This way,
the initial distribution is close to what we expect to observe when the instability
saturates by scattering and isotropizing the electrons, making the plasma effectively
collisional. While the temperature gradient evolves in the simulation and is not strictly
linear at saturation, setting the particle density n0(x)∝ 1/T0(x) largely reduces spatial
variations of pressure and, consequently, βe. Alternatively, we could have used a
collisionless initial condition with uniform density and counterstreaming electrons
at temperatures T1 and T2, represented in velocity space by two (‘hotward’ and
‘coldward’) Maxwellian hemispheres with densities chosen so that the net electron
current is zero. In this case, electron scattering would have led to formation of an
additional mean electric field to compensate for the temperature (and, due to uniform
density, pressure) gradient. We have tried both types of initial conditions and observed
no significant differences in the properties of the saturated state, and thus use the
former way in what follows.

Proper boundary conditions are essential for simulations of an instability constantly
driven by a sustained temperature gradient. For the particles, we use periodic boundary
conditions along y and reflective boundary conditions along x. A particle reflected
from a wall acquires a random velocity drawn from the velocity distribution function
f0(v, T1,2)vx, where f0 is Maxwell’s distribution at temperature T1,2. This ensures that
the incoming flux of particles colliding with a wall is equal to the flux of the reflected
particles with new velocities. The reflected flux corresponds to a flow of Maxwellian
particles at temperature T1,2 from an infinite half-space through the plane of a wall.

For the electric and magnetic fields, we introduced absorbing boundary conditions
to reduce reflection of the wave modes generated by the instability from the walls.
We put thermal reservoirs of particles behind the walls. The reservoirs have width
LD = 192 cells (∼ the typical wavelength of whistlers, i.e. several electron Larmor
radii ρe1). In the reservoirs, which serve as absorbers, the fields B and E are evolved
to decay as (Umeda, Omura & Matsumoto 2001)

Bn+1/2(x) = αM(x){Bn−1/2(x)− c1t∇×En(x)}, (3.1)
En+1/2(x) = αM(x){En−1/2(x)−1t[4πjn(x)− c∇×Bn(x)]}, (3.2)

where j is the current density, c the speed of light and 1t the time step. The masking
parameter αM(x)<1 gradually decreases into the reservoirs in order to avoid numerical
reflections at the absorber boundary:

αM(x)= 1−
(

r
|x− x1,2|

LD

)2

, (3.3)

where x1,2 are the walls’ positions. The parameter r ≈ 0.02 regulates the gradient of
the masking function and is adjusted to utilize the width of the absorbing regions most
effectively for a given group velocity of the waves (Umeda et al. 2001). One must put
particles in the absorbers to reduce wave reflection by matching the impedance of the
absorbers with the one of the plasma in the main domain near the walls. This provides
good absorption for perpendicular wave incidence. For off-axis waves, however, some
reflection is still present as can be seen at higher wave amplitudes in figure 2.
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FIGURE 2. The spatial structure of the z-component of the magnetic field generated by
the heat-flux-induced whistler instability. The magnetic-field lines are shown as the black
contours. The temperature gradient points opposite to the x axis, i.e. the heat flux is in the
positive direction. The whistlers propagate in the direction of the heat flux from the hot
(left) to the cold (right) wall. The walls are located ≈10ρe1 away from the edges of the
box. The regions behind the walls are used to dissipate the energy of the incident waves.
The saturated state of the instability is characterized by oblique whistler propagation in a
wide range of angles.

3.2. Results
3.2.1. Field structure

In the absence of scattering, the initial isotropic electron distribution with a
temperature gradient in the negative x direction is unstable to generation of whistlers
propagating with a group velocity vg ∼ vth/βe opposite to the temperature gradient,
i.e. in the direction of the heat flux. The unstable right-hand polarized modes grow at
the scale of ∼10ρe, practically independent of βe and T1/T2

3. The instability saturates
in the state shown in figure 2. The presence of oblique modes in the final state is
manifest.

The waves grow as they travel away from the hot wall and reach full saturation in
the right half of the box. We plot the evolution of the mean magnetic-energy density

3Linear theory predicts a very weak, kmax‖ ρe ∼ (εβe)
1/6, dependence of the wavenumber of maximum

growth on βe and ε = λmfp/LT , where λmfp here is set by isotropic Coulomb collisions (see Levinson &
Eichler 1992, PE98).
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FIGURE 3. Evolution of the mean perpendicular magnetic-energy density in whistler
modes for runs with different βe and T1/T2.

in the perpendicular component of the magnetic field in figure 3. The time required
by the instability to saturate completely is rather long, only a few times smaller than
the time it takes the waves to cross the box, tcrossΩe ∼ Lxβe/ρe ∼ 1000–4000. This
leads to the magnetic perturbations at saturation noticeably growing along x, reaching
a plateau past the centre of the box. The final amplitude of these perturbations
can be determined purely by quasilinear saturation only where the field becomes
spatially homogeneous, whereas before that, wave advection likely plays a significant
role, removing energy before quasilinear saturation fully comes into play. This is
a consequence of non-periodic boundary conditions, and to alleviate the problem,
one can either increase the box size, or simply calculate all the important quantities
required to check theoretical assumptions in regions where the magnetic field is
spatially homogeneous. Because the former route is quite computationally expensive,
we have chosen the latter. We shall see that this does allow us to confirm our
predictions.

The 2-D power spectrum of the z component (perpendicular to the picture plane
in figure 2) of the magnetic field on scales larger than the electron Larmor radius
is shown in figure 5 for runs with different βe. The power spectrum peaks at
k‖maxρe ≈ 0.7, corresponding to the scale of ≈10ρe, mostly independently of βe.
There is substantial power at all propagation angles, which confirms the hypothesis
that the saturated marginal state is not restricted to parallel whistlers (as conjectured
by Levinson & Eichler (1992) and shown using quasilinear theory by PE98). The
width of the excited spectrum of whistlers can be seen to be 1k‖/k‖max ∼ 1.

The profiles of electron temperature in the saturated state are shown in figure 4.
They are seen to be close to linear, with the exception of the cases with the lowest and
the highest βe, thus producing only minor variations of electron pressure over the box.
The difference between the calculated temperature near the walls and the temperatures
of the walls (and of the absorbing regions) is caused by the anisotropy of the electron
distribution function: a larger anisotropy produces a bigger difference between the
temperature of particles moving away from the wall with new thermal velocities and
the temperature calculated by averaging over all directions of particle motion (as in
the profiles). A larger βe leads to stronger magnetic perturbations, therefore a more
isotropic electron distribution and smaller temperature difference between the plasma
and the walls.
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FIGURE 4. Temperature profiles normalized by the temperature T1 of the hot wall
at saturation.

FIGURE 5. The logarithm of the 2-D power spectrum of the z component of the magnetic
field produced by the whistler instability for different values of βe and fixed T1/T2 =
2. The contours correspond to logarithmic increments ≈2.4. The spectrum has been
calculated for the right third of the box, where the field power is even along x in all the
runs, and averaged over several time snapshots. The spectrum peaks at k‖ρe∼ 0.7, largely
independently of βe, as predicted by the linear theory. The magnetic energy is distributed
over a broad range of angles rather than being concentrated along the parallel direction,
thus potentially allowing effective scattering of particles propagating at any angles.

3.2.2. Marginal electron distribution
Let us analyse the perturbed part of the electron distribution function in our

simulations. To do so, we calculate the distribution function in the right third of
the box, average it over electron pitch angles, and subtract the averaged part from
the calculated distribution. We do so for several time snapshots and average the
distribution functions over them. In this manner, we obtain the perturbation associated
with the heat flux and the instability. The shape of the perturbation is similar to the
one we used as an illustrative example of the anisotropy produced by a heat flux
in § 2.3, and is presented in figure 6 on the right, along with the total distribution
function on the left. The distribution that we show here is a function of vx and vz,
i.e. it has been integrated over vy. The central region of the perturbation ensures the
current-free condition4. The outer parts, on the other hand, are those that drive the
instability (recall figure 1). It is clear that larger βe reduce the overall anisotropy.

4It also provides additional damping at low resonant parallel velocities v‖ . vth: the term associated with
the heat-flux perturbation in (2.20) becomes negative and adds to the negative term associated with the cyclotron
damping by the isotropic part of the distribution function. Such damping is balanced by driving at the same
v‖ but higher v⊥, where the ξ -derivative of the perturbation is positive.
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FIGURE 6. The marginal electron distribution functions obtained from the simulations. The
left column shows the total distribution function and demonstrates the isotropization of the
distribution at higher βe. The right column shows the anisotropic part of the distribution
function driven by the heat flux. Depletion of particles with negative (hotward) parallel
velocities is clearly seen.

As we mentioned in § 2.4, for the dipole-shaped distribution resulting from the
Knudsen expansion of the Boltzmann equation with an isotropic collision operator,
parallel whistlers grow the fastest, while they do not interact with the coldward (right)
heat-flux-carrying part of the distribution. A modification of the perturbation caused
by scattering off the unstable modes, however, can result in a state favourable for
generation of oblique modes, which brings both positive and negative gyroresonances
into action. This may happen if initially the dipole perturbation generates parallel
whistlers that resonate with the hotward-streaming electrons, which depletes the
hotward part of the distribution. Then the final state becomes germane to oblique
whistlers that grow and resonate with the coldward electrons. The asymmetry in the
morphology of the perturbed distribution seen in figure 6 can be an indication of such
a shift of marginal stability to oblique propagation5. It is especially vivid at larger βe:
the hotward part of the distribution is significantly more depleted than the coldward
part associated with the heat flux. This final state of the electron distribution function
obtained in our simulations therefore can support the above picture.

3.2.3. Heat flux
Now we are in a position to examine whether the heat flux is indeed governed by

the instability and limited by the marginal anisotropy. The fluxes are averaged over
the computational domain (there is no systematic spatial variation of the heat flux at
saturation, otherwise a build-up of energy would occur) and several time snapshots.
As we anticipate suppression of the heat flux given by (2.22), it is convenient to
normalize the flux by q0 = 〈menv3

th〉 ≈ 2n1T1〈vth〉, where the angle brackets indicate

5It can be shown using QLT under the approximation of small propagation angles that an asymmetry of
the scattering operator leads to a non-zero propagation angle of the fastest growing whistlers (see PE1998).
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FIGURE 7. The heat fluxes measured in the numerical simulations as functions of δTβe,
where δT = T1/T2− 1. The pluses represent the runs with the same plasma βe= 15, while
the crosses of the same colours as in figure 3 show the runs with the same temperature
gradient T1/T2= 2. We have made corrections for the small variation of the mean thermal
pressure (and, therefore, the effective βe) in different runs.

averaging over the box, and we have taken the pressure nT to be close to uniform
across the box.

The heat flux as a function of δTβe, δT =T1/T2−1, is shown in figure 7. At constant
βe = 15 but different T1/T2, there is only a small scatter in the heat flux as δT is
varied by a factor of 4. This agrees with the qualitative expectation that the flux has no
dependence on the imposed temperature gradient when the marginal state is reached
(§ 2.1).

The heat fluxes taken at constant δT and different βe are well fitted by q‖/q0 ≈
1.5β−1

e . We also show the collisionless Knudsen heat flux (also normalized by
q0) at the fixed T1/T2 = 2 to demonstrate the relative amount of suppression in
the simulation. This heat flux corresponds to a velocity distribution composed of
two Maxwellian hemispheres associated with two opposite electron fluxes from the
respective walls with even electron density and no electric field. The Knudsen heat
flux is the maximum flux attainable in any configuration with fixed T1 and T2, and
is equal to

qK = 1√
π

men0[αv3
th1 − (1− α)v3

th2], (3.4)

where n0 is the mean electron density (density is even in a completely collisionless
plasma), α and 1− α represent the fractions of particles moving in the coldward and
hotward directions respectively in order to make for zero net electron current, viz.,

α(T1, T2)=
[

1+
(

T1

T2

)1/2

exp
T1 − T2

T1T2

]−1

. (3.5)

We see that if our fit of the β dependence is correct, no suppression below βe ∼ 10
should be present. This could be the reason why the data point at βe≈ 10 is a slight
outlier.

Clearly, the simple argument in § 2 based on saturation in the marginal state of
the whistler instability indeed leads to conclusions supported by numerical simulations.
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FIGURE 8. The electron scattering rate multiplied by LT/ρe (which varies in different
runs because of the different final temperature profiles and equals ∼100 on average) as a
function of βe. The temperature scale length LT =T/∂xT and the electron Larmor radius ρe
have been averaged over the simulation domain. We have corrected for the small variation
of the effective βe in different runs, as in figure 7. The dashed line shows the prediction
(2.26) based on Bohm diffusion combined with the whistler marginality condition.

Thus, we expect the heat flux to be fully controlled by the instability and not being
able to exceed its marginal value (2.22): for the general case of a plasma with a small
temperature gradient,

qmax
‖ ≈ 1.5β−1

e nv3
th. (3.6)

3.2.4. Scattering rate and saturated magnetic field
In § 2.5, based on Bohm diffusion and the whistler marginality condition (2.21),

we estimated the effective pitch-angle scattering rate as a function of βe and the
ratio of the electron Larmor radius ρe and temperature scale length LT . In order
to test this prediction, we obtain the scattering rate νscatt from the simulations by
tracing a large number (∼10 000) of test electrons, calculating their mean spatial
spread along the mean magnetic field, and estimating the parallel diffusion coefficient
D‖ = (1/3)v2

th/νscatt for runs with different βe as follows:

D‖ = 1
2

d〈[xi(tdiff)− xi(0)]2〉
dt

, (3.7)

where xi is the x coordinate of particle i and time tdiff is taken sufficiently long for
diffusion to settle. We then average LT = T/∂xT and ρe over the computation domain
for each run and plot νscattLT/ρe as a function of βe. The result is shown in figure 8.
There is a good agreement with the qualitative prediction that testifies in favour of
quasilinear saturation. Calculating the diffusion coefficient the way we do for the run
with the highest βe = 40 is likely not fully consistent due to the large variations of
magnetic perturbations across the box and their large amplitude.

We can also check if the simple estimate of the saturated magnetic field (2.28)
based on Bohm diffusion applies to the simulated field. We average the perpendicular
magnetic-energy density over the right third of the box, where it is fully saturated
and homogeneous in all the runs, and over several time snapshots. LT and ρe are
again averaged analogously. Similar to the scattering rate, we plot the magnetic-energy
density multiplied by LT/ρe in figure 9. The Bohm formula describes the simulation
results well for practically all βe.
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FIGURE 9. The saturated perpendicular magnetic-field energy density multiplied by LT/ρe
(different in different runs, ∼100) as a function of βe. The field is averaged over the right
third of the computation domain, where it is fully saturated and homogeneous, and also
over several time snapshots. The temperature scale length LT = T/∂xT and the electron
Larmor radius ρe are averaged similarly. We have corrected for the effective βe in the
averaging region. The dashed line is a comparison with the prediction (2.28) based on
Bohm diffusion combined with the whistler marginality condition.

4. Discussion
4.1. Relevance to clusters of galaxies

The intracluster medium (ICM) is a hot rarefied plasma with the typical range of βe

(recall that the total βtot=βe+βi often used in literature is approximately twice larger)
between several tens and several hundred (see, e.g. Kuchar & Ensslin 2011). Thermal
conduction may or may not play a role in several contexts. One is affecting global
radial temperature profiles, the knowledge of which is necessary to calculate cluster
masses from X-ray observations. In this case, temperature gradients are small, i.e.
temperature scale lengths are long, of the order of several hundreds of kpc. Another
is the possibility of existence of smaller-scale temperature substructure, including cold
fronts, where temperature gradients can be rather large (e.g. Ichinohe et al. 2015;
Wang et al. 2016), with the temperature scale length approaching the classical Spitzer
mean free path (∼1–10 kpc).

The suppression of heat flux caused by whistlers is important only if the upper
limit on the flux imposed by the instability, q‖w, turns out to be smaller than the
Spitzer heat flux (Spitzer & Härm 1953). The modified Spitzer heat flux q‖S, which
includes saturation of the flux when large gradients are present on scales smaller than
the electron Coulomb mean free path, can be expressed conveniently as (Cowie &
McKee 1977; Sarazin 1988)

q‖S ≈ 0.5menv3
th

λe

LT + 4λe
, (4.1)

where LT is the parallel temperature gradient scale, and λe is the mean free path
for the electron energy exchange. Equation (4.1) interpolates between the classical
collisional regime λe�LT and the collisionless saturated flux at an infinite temperature
gradient. The latter is obtained by assuming a hot plasma adjoining a cold absorber,
with a self-consistent electric field set up to stop the current. The free molecular
conductivity in this case is taken to be reduced by the electric field by the same
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factor of 0.4 as in the classical case (Spitzer & Härm 1953). Other estimates give
values of saturated flux by a factor of a few larger (see Cowie & McKee 1977). Thus,
our estimate of suppression compared to the unmagnetized saturated heat flux may be
considered conservative. The ratio of the two fluxes is the suppression factor Sw < 1,

Sw = q‖w
q‖S
≈ 3
βe

(
LT

λe
+ 4
)
. (4.2)

It is easy to write an expression for the effective parallel heat flux q‖eff that
interpolates between the Spitzer flux, when the suppression factors are close to
unity, and the flux controlled by whistlers, when suppression is large:

q‖eff = q‖S
1+ βe/3(LT/λe + 4)−1

≈ 0.5menv3
th

LT/λe + βe/3+ 4
. (4.3)

Equation (4.3) can be used for heat-flux estimates in problems where plasma kinetic
effects are otherwise ignored, or as a simple subgrid model in numerical simulations.

For the typical parameters of the hot ICM, the energy-exchange electron mean free
path is (e.g. Sarazin 1988)

λe ≈ 20 kpc
(

T
108 K

)2 ( n
10−3 cm−3

)−1
. (4.4)

Let us assume βe ∼ 100 to estimate the maximum suppression of thermal conduction
possible. The maximum suppression is reached at LT � λe where Sw ∼ 1/10. Such
small scale lengths of the temperature gradient along the mean magnetic field,
however, are unrealistic in galaxy clusters. Even in cold fronts, where LT . λe, the
magnetic field is very likely draped perpendicular to the gradient, and thus the
parallel gradient scale should be appreciably larger. At larger scales, suppression
drops linearly: Sw ∼ 1/4 at 100 kpc, Sw ∼ 1/2 at 300 kpc, and no suppression at
∼600 kpc. We conclude, therefore, that in general, the suppression factors caused
by the whistler instability are rather modest, and are unlikely to affect global radial
temperature profiles strongly, or, e.g. cutoff cool cores from the heat supply from
the outer hot regions in the absence of other suppression mechanisms. The effect
can become more important if there are strong thermal gradients on intermediate and
small scales .100 kpc, where it becomes of the same order as the suppression by
the mirror instability (Komarov et al. 2016) in case these scales are turbulent. The
combination of the two effects is capable of producing suppression of order 1/30,
which is sufficient to explain the variety of substructures typically observed in the
ICM.

Finally, we comment on the possible relevance of the heat-flux suppression by
whistlers to the thermal instability in galaxy clusters. Cold (T ∼ 104 K) Hα filaments
are ubiquitously found in cluster cores (e.g. McDonald et al. 2010). Such structures
are thought to be produced either by dragging the cold material out from central
galaxies by buoyant radio bubbles (e.g. Churazov et al. 2001; Fabian et al. 2003), or
by runaway cooling in the ICM (e.g. McCourt et al. 2012). In the latter case, during
the early phase of a local thermal instability, when the plasma is not yet significantly
compressed, so β is still large, the extra suppression provided by whistlers could
promote the development of the instability along the magnetic-field lines (see
Boehringer & Fabian (1989) for a model of spherical cold clump formation in a
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FIGURE 10. The spatial structure of the z-component of the magnetic field generated by
the heat-flux-induced whistler instability in the run with ions. The mass ratio is mi/me =
225, the electron plasma βe = 15, so the ions are roughly in Landau resonance with the
whistlers. This run can be compared with the corresponding electron-only run (second
panel from the top in figure 2).

non-magnetized plasma and Sharma, Parrish & Quataert (2010) for the magnetized
case). The spatial scale at which cooling is balanced by thermal conduction is
known as the field length λF (Field 1965). Assuming an initial spectrum of density
perturbations dominated by small scales (.1 kpc), thermal conduction begins to
smear the perturbations along the magnetic-field lines on scales below λF, producing
filamentary structures (alternatively, the elongated shape can be produced by motions
in a stratified atmosphere with no magnetic field and no conduction; see, e.g. McCourt
et al. 2012). While later in the evolution the density perturbations can continue to
fragment into much shorter segments due to the decrease of λF, the large-scale
coherence (see Fabian et al. (2008) for a high-resolution observational example)
set by the parallel heat fluxes during the early phase should be preserved. In the
perpendicular direction, there is no conduction, and the gas is compressed until it is
stabilized by, e.g. the pressure support of cosmic rays or magnetic fields. Therefore,
if the length of filaments in the thermal instability scenario is set mainly by parallel
conduction, its suppression may lead to shorter filaments.

4.2. Limitations of the model
4.2.1. Importance of ions

In our simulations and theoretical model, ions do not participate in the instability
and form a charge-neutralizing background. However, the phase speed of the unstable
whistlers, vph ∼ vthe/βe, approaches the ion thermal speed, vthi = (me/mi)

1/2vthe, at
βe ∼ 40. Therefore, oblique whistlers with non-zero parallel electric field may be
damped by the ions via Landau resonance.

In order to test how important the ion physics might be, we have performed a run
with mass ratio mi/me = 225, βe = 15, and T1/T2 = 2, i.e. with the ions roughly in
resonance with the unstable modes. All the other parameters of the simulations have
been kept unchanged compared with the corresponding main electron-only run. Note
that the ion Larmor radius in the new run is rather large, ρi≈ 300 cells. For studying
the effect of Landau resonance, however, the ion Larmor scale should not be important
as long as k⊥ρi� 1.

The ions do produce a noticeable change in the evolution of the instability. Namely,
they somewhat delay full saturation. However, the final spatial structure of the
magnetic field looks similar to the corresponding electron-only run, with the saturated
field amplitude only ∼15 % smaller (see figure 10). The heat flux at saturation is
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roughly 20 % larger. We have not explored the full range of βe and T1/T2 including
the ions, but our test run gives us some confidence that even close to the Landau
resonance, the ions do not seem to choke the instability, and our main results remain
correct within factors of order unity.

In addition to the above, at sufficiently high βe ∼ mi/me, the cyclotron resonance
with the ions, ω ∼ Ωe/βe ∼ Ωi comes into play, and our theoretical assumptions
may break down. But even in this case, simple qualitative arguments based on the
analysis of the whistler dispersion relation for the case of small propagation angles
can be made to show that such damping should not exceed the electron cyclotron
damping, and, therefore, the suppression of heat flux should not be affected radically.
First, it is safe to assume that the real part of the whistler dispersion relation
D(ω, k)= 0 is largely dominated by the electron contribution (see, e.g. Treumann &
Baumjohann 1997). Then, we can compare the imaginary parts Dim,e and Dim,i (that
lead to damping) due to the electrons and ions respectively (Treumann & Baumjohann
1997):

Dim,e =
π1/2ω2

pe

k‖vthe‖ω
exp

[
−
(
Ωe −ω
k‖vthe‖

)2
]
, (4.5)

Dim,i =
π1/2ω2

pi

k‖vthi‖ω
exp

[
−
(
Ωi +ω
k‖vthi‖

)2
]
. (4.6)

Using (Ωi + ω)/k‖vthi‖ ∼ Ωi/k‖vthi‖ ∼ (me/mi)
1/2 � 1 and (Ωe − ω)/k‖vthe‖ ∼

Ωe/k‖vthe‖ ∼ 1, we can obtain the ratio

Dim,e/Dim,i ∼ (mi/me)
1/2e−1 ∼ 10. (4.7)

We see now that the ion cyclotron damping term is significantly smaller than the
electron one. This can be understood if one notes that in cyclotron resonance
ω ∼ Ωi, an ion travels parallel distance ∼ρi � ρe ∼ k−1

‖ over one gyration period,
thus intersecting many parallel whistler wavelengths and significantly reducing the
efficiency of the wave–ion interaction compared to the electron cyclotron resonance.
This quick calculation indicates that even at βe∼ 2000 our model may still be usable6.

We should stress that the above discussion does not deny the need for proper
numerical modelling of the heat-flux-induced whistler instability with ion physics, but
is aimed to support at least the qualitative usefulness of our model in light of the
seemingly problematic issue of ion resonances appearing already at modest βe . 100.

4.2.2. Reaching regime of small magnetic perturbations
In astrophysical environments, temperature-gradient scales exceed electron Larmor

radii by many orders of magnitude. Therefore, the heat-flux-induced whistler
instability in these environments saturates at a very low level, as described by
(2.28). Numerically, such a regime is demanding to simulate. First, if one needs to
study suppression of thermal conduction by the instability, βe should be sufficiently
large, at least βe > 10, as we have shown first in § 3.2.3, and then, in relation to
galaxy clusters, in § 4.1. Then either the temperature difference between the hot and
cold walls should be set small, or the computation domain should be made long to

6As a side note, in the limit of a non-magnetized plasma the whistler instability transforms into the
Weibel-like Ramani–Laval instability (Ramani & Laval 1978; Levinson & Eichler 1992).
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minimize ρe/LT . The former is problematic because the initial collisionless Knudsen
heat flux in the absence of electromagnetic fields can be already too small, below the
marginal level of the instability. Thus, we are left with the need to use a rather long
simulation box. This is also dictated by the requirement that wave advection should
not affect the saturation level in most of the box, as we have discussed in § 3.2.1.
Our simulations show, however, that even the rather long box that we use provides
only a narrow range of βe in which magnetic perturbations could be assumed small.
Already at βe= 25 perturbations reach amplitudes δB/B0∼ 1. In this regard, we need
to be confident that the suppression mechanism in the simulation has been identified
correctly.

4.2.3. Possibility of alternative saturation mechanisms
Different nonlinear saturation mechanisms can by ruled out to a certain extent by

comparison of nonlinear wave damping rates with the quasilinear damping rate (2.24).
Additionally, one can compare the behaviour of the predicted nonlinear saturation
levels as functions of βe by equating the linear growth rate and nonlinear damping rate.
Such predictions are usually only possible under a number of drastically simplifying
assumptions.

Let us consider nonlinear mode coupling first. Levinson & Eichler (1992) proposed
it as a saturation mechanism of the instability. Levinson (1992) calculated the
rate of nonlinear whistler mode coupling by using a perturbation approach in the
approximation of near-parallel, k⊥/k‖ � 1, propagation (which is a questionable
assumption at best in our case, but also the one that permits us to obtain a qualitative
estimate):

γMC ∼ νscatt

βe
∼ vth

εβeLT
, (4.8)

where we have used νscatt= vth/λmfp= vth/εLT and ε= λmfp/LT . By requiring the linear
growth rate γlin ∼ εΩe to be balanced by nonlinear damping, we get

ε = (ρe/βeLT)
1/2, (4.9)

and

γMC ∼ vth

(βeρeLT)1/2
. (4.10)

The quasilinear damping rate is γQL ∼ β−1
e Ωe, and is seen to be a factor of

γQL

γMC
∼
(

LT

βeρe

)1/2

(4.11)

larger than the rate of mode coupling. This factor is very large in astrophysical
plasmas. In the simulation, however, it approaches unity at higher βe. In order to
make a more detailed comparison, we can estimate the saturation level of magnetic
perturbations from Bohm diffusion, δB2/B2

0 ∼ νscatt/Ωe, and substitute νscatt using
equations (4.8) and (4.9):

δB2

B2
0
∼
(
βeρe

LT

)1/2

. (4.12)
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We see that the saturation level scales differently with βe and ρe/LT than in our
simulation. This gives us some confidence that the saturation is not regulated by
mode coupling in our results. The nonlinear Landau damping rate can also be
estimated in the same approximation, but is found to be an order of β2

e smaller than
the mode coupling term (Levinson 1992).

Alternatively, when magnetic perturbations grow large and electron orbits become
distorted, the instability may saturate by resonance broadening. Resonance broadening
leads to leakage of particles out of the resonance until saturation is reached. This is
modelled by the delta function in (2.12) substituted by the Lorenz function with a
width set by electron scattering off magnetic perturbations. Using frequencies in place
of momenta,

δ(ω− k‖v‖ ±Ωe)−→ δr

(ω− k‖v‖ ±Ωe)2 + δ2
r

, (4.13)

where δr = (k2
‖D/3)

1/3 is the frequency half-width of the particle resonance and D is
the electron velocity diffusion coefficient (see, e.g. Treumann & Baumjohann 1997).
The instability is stabilized when the resonance broadens beyond the width of the
region of resonant particles in velocity space 1v‖, which can be roughly estimated
as 1v‖∼ vth (recall that the spectrum of excited waves is wide, 1k‖/k‖∼ 1, and so is
the resonant region in velocity space). Taking D∼ v2

thνscatt ∼ v2
thΩeδB2/B2

0 from Bohm
diffusion (assume that only the direction of electron velocity changes during scattering)
as before, we are able to obtain the saturation level from the condition δr ∼ k‖vth:

δB2

B2
0
∼ k‖vth

Ωe
∼ 1, (4.14)

where we have used the fact that the resonant scale is virtually independent of the
temperature gradient and βe. Thus, resonant broadening should lead to a saturated
magnetic field whose amplitude does not depend on βe, in contradiction with our
numerical results.

The above qualitative arguments appear to strengthen our point that the main
saturation mechanism of the heat-flux-induced whistler instability both in astrophysical
environments and our simulations has been identified correctly.

5. Conclusions
Aided by numerical simulations, we have demonstrated that, in the presence of

a temperature gradient, a weakly collisional high-β plasma is susceptible to the
whistler instability. The instability quickly develops a spectrum of oblique modes
that are able to scatter the heat-flux-carrying electrons. We have also confirmed the
quasilinear result that at saturation, the marginal level of the heat flux is set by the
inverse plasma β rather than by the imposed temperature gradient. The numerical
results have been shown to be in agreement with simple quasilinear arguments, such
as the linear scaling of the pitch-angle scattering rate and the saturation level of
magnetic perturbations with βe. In the context of galaxy clusters, the instability
can introduce moderate suppression factors of thermal conduction ∼1/4 on scales
∼100 kpc if significant variations of temperature are found there. We have given a
simple expression (4.3) for the amount of suppression of the heat flux as a function
of the temperature gradient scale length and the plasma β. This expression can
be applied to models in which kinetic effects are difficult to implement directly.
Combined with the suppression by the mirror instability in a turbulent high-β plasma,
the two effects add up causing large suppression factors (several tens in the case of
galaxy clusters).
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