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ON NILPOTENT GROUPS OF ALGEBRA

AUTOMORPHISMS

G. LEGER AND E. LUKS1

Introduction

The main purpose of this paper is to derive conclusions about the

structure of a nilpotent group of algebra automorphisms and, in the case

of a Lie algebra, about the influence of this nilpotence on the structure of

the algebra. A motivation for this study is a well known theorem due to

Kolchin: A unipotent linear group can be triangularized and is thus

nilpotent. The converse is manifestly false, but we have (as an immediate

consequence of Theorem 2.7):

THEOREM (*). Let G be the automorphism group of an n-dimensional nilpotent

Lie algebra over a perfect field, nψl. If G is nilpotent then it is unipotent.

This theorem does not generalize completely to non-associative algebras. We

exhibit (Remark 2.3), in fact, a nilpotent four-dimensional algebra whose

automorphism group is nilpotent and yet contains a semi-simple element of

period two. However, the example pinpoints precisely what can happen

for we have (from Theorem 2.2):

THEOREM (**). Let G be the automorphism group of an n-dimensional nilpotent

algebra over a perfect field, nψ\. If G is nilpotent then it is the direct product

of a finite cyclic group and a unipotent group.

Section 2 continues with some consequences of Theorem (*). It includes,

also, the following theorem (see Theorem 2.11) which appeared in [7] where

the ground field was assumed algebraically closed:

THEOREM (***). Let L be a finite dimensional Lie algebra over any field of

characteristic 0. Then L is characteristically nilpotent if and only if every semi-simple
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automorphism is of finite order.

Section 3 contains examples which illustrate, among other things, that

(i) A nilpotent Lie algebra, even over an algebraically closed field, can have a

nilpotent automorphism group and yet have a non-nilpotent derivation algebra.

(ii) The property of nilpotence of the automorphism group of a Lie algebra

is not independent of extensions of the base field, even in characteristic 0.

(iii) The automorphism group of a non-nilpotent Lie algebra over an algebra-

ically closed field need not contain a torus of positive dimension. (This answers

a question of Winter [9, p. 141]).

Unlike derivation algebras, automorphism groups are difficult to compute

and section 3 may also be considered as an illustration of techniques which

may be used in this regard.

It is our pleasure to thank Professor G. Hochschild for reading an earlier

draft of this paper and for his valuable suggestions.

1. Preliminaries

By an algebra, in this paper, we mean a finite dimensional non-associ-

ative algebra. If S is a subset of an algebra, B, Sr is the subspace spanned

by all products of r elements of S, no matter how associated. B is called

nilpotent of index r if Br~x ψO, Br = 0. Δ(B) denotes the Lie algebra of

derivations of B. Λ(B) is the automorphism group of B; At(B), for t>2,

the subgroup of A(B) of automorphisms which induce the identity on BjB1

if B is nilpotent, At{B) consists of unipotent transformations.

If G is a linear group over a field k, i.e., a subgroup of some GL(n,k),

Gu denotes the set of all unipotent elements in G, Gs the set of all semi-

simple elements, and G the smallest fc-closed subgroup of GL{n, k) containing

G. We denote by Gκ the algebraic iΓ-group deduced from an algebraic

fe-group G by an extension to K of the base field [4, p. 105]. If G is al-

gebraic, Go denotes the connected component of the identity.

We call a fc-linear transformation absolutely semi-simple if the natural

extensions, σκ, of σ are semi-simple for all extensions, K, of k. If G is a

nilpotent linear group over k then Gu is a subgroup of G and is centralized

by any absolutely semi-simple element σ e G. (To see this, note we may

assume, by the hypothesis on σ, that k is algebraically closed and since G

is nilpotent, that G is algebraic. The assertions then follow from well-known

theorems [8, section 6]).
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2. The Main Theorems

The proof of the following lemma is immediate, yet it will be a most useful

result.

2.1 LEMMA. If D is a nilpotent derivation of an algebra, B, such that {D(B))2

= (0) then I + D is a unipotent automorphism of B.

2.2 THEOREM. Let B be a nilpotent algebra of index r + 1, r ;> 2, over a

perfect field k. Suppose G is a nilpotent group of automorphisms of B containing

Ar(B). Then Gs is a finite cyclic group whose order divides r — 1 and its elements

induce scalar multiples of the identity on BjB2.

Proof Since GUQ(G)U, Gs Q (G)s and G is nilpotent, we may assume G is

fc-closed. Let σ e Gs. Choose a σ-stable subspace, U, of B such that U Π

B2 = (0). Then B = U + U2 + + Ur with Ur non-zero and contained in

the annihilator of B. Let H be the subspace of Ί5omk(B, B) consisting of

transformations which are zero on B2 and map U to Ur. Then H c Δ{B)f

and by Lemma 2.1, if h e H, I + h <Ξ Λr{B) c Gu which is centralized by

σ. Thus σ centralizes H and is necessarily a scalar, a, times the identity on

U + Ur. It follows that σ is β* times the identity on U\ t = 1, 2, , r,

in particular, #r = a, i.e., a r - 1 = 1. Since σ induces a scalar multiple of the

identity on BjB2

9 one has for τ e G, (TΓ^-^-1 G G Π Λ(-B) £ Gtt. Then, by

[1, Lemma 9.7], σ centralizes G. But now Gs is an abelian subgroup of G,

and therefore U may have been chosen to be a G5-stable subspace. Since

each element of Gs must be an (r — l)st root of unity times the identity on

U, the assertion follows.

We observe that Theorem (**) of the introduction follows immediately.

2.3 Remark. In view of the stronger statement to be proved below

(Theorem 2.7) in the case of a Lie algebra, it is worth exhibiting an ex-

ample in which Gs is not trivial. Let B be the four-dimensional algebra

over any field of characteristic not 2 with basis xl9 x2, x&9 #4 and multipli-

cation determined by xλxx = x3, xxx2 = #4, x2x2 = #4, #3#3 = x* and all un-

listed products, XiXj, zero. Then A(B) is nilpotent. In this case A(B)S =

{/, σ] where, with respect to the given basis, σ = diag (—1, —1, 1, 1). It is

interesting to note also that A(B)U is comprised entirely of the automor-

phisms, / + h e Ai(B), which were employed in the proof of Theorem 2.2.

(See also 2.6 (ii)).
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3. 4 THEOREM. Let L be a nilpotent Lie algebra over any field k, dim L > 1,

G a nilpotent group of automorphisms of L containing A(L)U. Then every absolutely

semi-simple element of G is the identity.

Proof Let a be an absolutely semi-simple element of G. Choose a

<7-stable subspace, U, of L such that L = U + L2, U Π L2 = (0). L2 ψ (0) since

the subgroup of GL(n, k), for n > 1, generated by the unipotent elements is

not nilpotent. As in the proof of Theorem 2.2, there is a non-zero a e k

such that a is at times the identity on each U\ and, if r + 1 is the index

of nilpotency of L, ar~x = 1. We must show a — 1. If r — 2, we already

have β1 = 1. Suppose r>?>. Choose x in £/r~2 and not in the center of L.

By Lemma 2.1, / + (ad a;) is in Λ(L)U and therefore commutes with σ. Thus

ad x = ff(ad x)σ~ι = ad<;(#) = ad (ar~2x), which implies ar~2 = 1 and so a = 1.

It is customary to call nilpotent Lie algebra of index r + 1 quasi-cyclic,

if, for some subspace U, L — U + U2 + 4- Ur (where + denotes vector

space direct sum).

2.5 COROLLARY. Let L be a quasi-cyclic Lie algebra over a field, k, with

more than two elements, dim L > 1. Then Λ(L) is not nilpotent.

Proof Let U be as above. Then, for any non-zero a&k, the linear

transformation <τα, such that σa(x) = aίx for x e Ui

9 is an automorphism of

L. By Theorem 2.4, A(L) could not be nilpotent.

2.6 Remarks, (i) We shall construct (see 3.5) an example indicating

the necessity in 2.5 of hypothesizing k to have more than two elements.

(ii) The corollary almost extends to general non-associative algebras. For,

recalling again the proof of 2.2, one finds, assuming a nilpotent automor-

phism group, the order of each σa must divide r — 1. Thus, if k is infinite

or if the order of the multiplicative groups, fc*, does not divide r — 1, the

automorphism group cannot be nilpotent. Note, however, that if B is the

four dimensional algebra over Z3 with basis xl9 x2y xz, x± such that the only

non-zero products of these are xxxx = #3, x2x* — x^Xt = #4, then, letting U =

(xu x2), B= U+U2+U3; nevertheless, A(B) is nilpotent.

Recalling Kolchin's Theorem, we restate Theorem 2.4 as follows:

2.7 THEOREM. Let L be a nilpotent Lie algebra, dim L > 1, over a perfect

field kf G a subgroup of A(L) containing A(L)U. Then G is nilpotent if and only if
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G = A(L)U.

2.8 Remarks, (i) If the group, G, in the theorem is A(L) (as in Theo-

rem (*) of the introduction), and k has characteristic 0, then the hypothesis

of nilpotence of L is superfluous. For, in characteristic 0, Δ(L) is the Lie

algebra of A(L) and, if A(L) is nilpotent, Δ(L) is nilpotent. But letting Z(L)

denote the center of L, LjZ(L) is isomorphic to the algebra of inner deri-

vations, whose nilpotence then implies the nilpotence of L. The assertion

fails in characteristic p > 0; for example, the automorphism group of the

two-dimensional non-abelian Lie algebra, S, over a two element field is

nilpotent although S is not. Furthermore, it will be seen in 3.2 that such

examples can exist over an algebraically closed field. Note, we are still

unable to justify the aforementioned hypothesis since the automorphism

groups of these examples are, in fact, unipotent. Incidently, the statement

"A{L) nilpotent implies Δ(L) nilpotent" may fail in characteristic J J ^ O

even for a nilpotent L over an algebraically closed field as will also be il-

lustrated in 3.2.

(ii) A Lie algebra, L, is called characteristically nilpotent if all its deriva-

tions are nilpotent. It is shown in [7, Theorem 1] that this is equivalent

for dim L ψ 1 to the nilpotence of Δ{L). The first example of such an

algebra was given by Dixmier-Lister [5], It is remarked in [6] that, although

the Dixmier-Lister example has a nilpotent derivation algebra, its automor-

phism group is not nilpotent. We note that this is an immediate conse-

quence of 2.7 for the example was shown in [5] to have a semi-simple auto-

morphism of period 2.

(iii) Professor G. Hochschild mentioned, in a personal communication, his

interest in the question of when the automorphism group of a nilpotent

Lie algebra is connected, having noticed this is not the case for the Dixmier-

Lister example. This too follows from Theorem 2.7, for, in characteristic

0, all the unipotent automorphisms are in the connected component of the

identity which is nilpotent, since Δ(L) is nilpotent, and so it could not

contain the automorphism of period 2. In a positive direction, we can

conclude from 2.7 that, in characteristic 0, if A(L) is nilpotent then it is

connected (a unipotent group is connected).

We have the following elementary corollary of Theorem 2.7:

2.9 COROLLARY. Let L be a nilpotent Lie algebra over a perfect field, k, with
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more than two elements, dim L > 1. Suppose Λ(L) is nilpotent. Then the center of

L is contained in the derived algebra.

Proof. If z were in the center of L but not in L2, (z) would be an

abelian direct summand and so the elements of GL{(z)) would extend to

automorphisms of L. However, GL((z)) is not unipotent.

We note that the assumption that k contains more than two elements

is essential. (See 3.5)

As indicated in the introduction, we conclude this section with a

strengthening of a theorem in [7], For this we need the following lemma

which is the generalization of [1, Corollary 16.7] to ^-groups for certain k.

2.10 LEMMA. Let G be a connected linear algebraic k-group such that every

element of Gs has finite order. Suppose that fc* contains an element, x, of infinite

order (thus, either k has characteristic 0 or k is a non-algebraic extension of its

prime field). Then G is unipotent.

Proof. It suffices to show that every element of (GΩ)S has finite order,

where Ω is a universal domain containing k, for then by [1, 16.7] GΩ, and

therefore G, consists of unipotent transformations. Let k0 be the minimal

field of definition of GΩ which contains x. By [2, Theorem A] G° has a

maximal torus, T, which is defined over k0 and since k0 is infinite, the set

of &0-rational points of T, which we denote by H, is Zariski-dense in T.

Now H is an algebraic fc0-group and, since H £ Gs, every element of H is of

finite order. If, for σ e H, σr = 1 then the characteristic roots of σ are rth.

roots of unity. Furthermore they are each of degree ^m over k0, where

H £ GL{tn, k0). However, k0 is a finitely generated extension of a prime

field and so there are only a finite number of roots of unity of degree < m

over k0. Thus, there is some N such that σN = / for all σ e H. Since H is

dense in Γ, the same relation is satisfied by the elements of T. Then, since

each element of (G°)8 lies in some maximal torus which is necessarily con-

jugate to T, the elements of (GΩ)S are all of finite order.

Theorem (***) of the introduction can, with no additional difficulties,

be generalized to arbitrary algebras:

2.11 T H E O R E M . Let B be an algebra over a field, k, of characteristic 0. Then

B has only nilpotent derivations if and only if all the semi-simple automorphisms of

B are of finite order.
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Proof. The elements of Λ{B)S are all of finite order if and only if the

same holds for the semi-simple elements of A{B)0. Then, considering

Lemma 2.10, we need only recall that Δ(B) is the Lie algebra of A{B)0 and

therefore it consists of nilpotent transformations if and only if A(B)0 consists

of unipotent transformations.

3. Examples

We present, in this section, the examples promised in the introduction

and sections 2.

Consider first the nine-dimensional Lie algebra, Ll9 over any field k :

Li has basis xu x2, , #9 and

[a?!, a?2] = xi9 | > 2 , a?8] = x* O i , »β] = &β, l>2, <&4] = &β> [&i, &J = »?,

l>3, ^ 5 ] = »8, l>2, &δ] = &9, !>1, »?] = #9, I>3, »β] = #9,

with [a?*, αjy] = 0 for i < j if it is not listed above.

3.1 PROPOSITION (i) If k does not contain a primitive 3rd root of unity,

AiLt) is unipotent.

(ii) If ω3 = 1, for ω e fe, ίÂ w, ze zϊA respect to the given basis, diag (ωf ω, ω2,ω2,

1, 1, 1, ω2, ω) is an automorphism of Lx.

Proof (ii) is clear, (i) is an easy computation after one notes that

the ideals Bj = (#<) + Z,Λ i = 1, 2, 3 are invariant under all automorphisms

(and so, for a e A(Lχ), a{xt) = c%xt mod (Lj2), with ct e k, for f = 1, 2, 3).

For this observe that B2 is the centralizer of Lj3. Then, letting C= {z ̂  Lx

\(adw)2(z) e L^ for all «; e ^2}, one finds C= (αj2, α8) + ̂ i2 and ^ is the

centralizer of C2 while 5 3 is the centralizer of [Bl9 B2].

Applying Proposition 3.1, we find Lx has some remarkable properties:

3.2 If k is any field of characteristic 3, A(LX) is nilpotent. However

Δ{Lγ) contains non-trivial semi-simple elements, e.g., d=diag(l, 1, —1, —1, 0,

0, 0, —1, 1), and is by [7, Theorem 1] not nilpotent. It is interesting to note

also that, in this characteristic, Δ{LX) cannot be the Lie algebra of A{LX)

since the latter, having only unipotent elements, must have a nilpotent Lie

algebra. In [4, p. 143] an algebra, V, over an infinite field is exhibited such

that Δ[V) is not the Lie algebra of A(V). However, the example requires

an imperfect ground field and is not a Lie algebra. The present example

is not thus restricted.
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Now let δ be as above and let H denote the semi-direct sum (δ) + Lx.

Suppose a e Λ(H). Since H2 = Lu a leaves Lγ invariant so its restriction to

Li is necessarily unipotent and, since L\ = (x9), a(x9) = x9. Then x9 = a(δx9)

= a[δ)x9, whence a{δ) ==δ mod(Li). Thus, although H is non-nilpotent, A(H)

is unipotent. (See (iii) in the introduction).

3.3 We see also from Proposition 3.1 that the property of nilpotence of

Λ(L) is not independent of extensions of the ground field, even in chara-

cteristic 0. Thus, in particular, the usual extension, A(L)K, of A(L) to an

algebraic group over an extension, K9 of k may not be the automorphism

group of the extended algebra L (x) K.

There is a well-known example of a characteristically nilpotent algebra

given in [3, p. 123]. This algebra, Z,2, has dimension eight over a field k of

characteristic ψ 2 and the following mulitiplication.

[xl9 x2] = xSt lxu a8] = α4, l>i, αJ = «5, [»i, »δ] = »β,

[aj l f a?β] = α 8, [a?!, α?7] = OJ8, [x2, α?8] = α 5, [«2, a j = »β,

[»2, * 5 ] = »7, [»2, »β] = 2#8, [α?8, ί»4] = - « 7 + &β, [^3, » 5 ] = - * β ,

with [αjj, aĵ  ] = 0 for i < j and i + j > 8. In view of [6], it seems relevant

to prove

3.4 PROPOSITION. A(L2) is nilpotent.

Proof. I t suffices to prove A(L2) = A2{L2). For this, note the following:

(i) (x2)+L2

2 is the transporter of L2

2 into L2\ i.e. {zeL 2 | [>, L2

2]^L2

4},

and hence is invariant under every automorphism.

(ii) If yl9 y2 e L2 with yt φ (x2) + L2

2 then (ad ̂ i)2—ad y2 maps L2

2 into

(Z,22)2 = (^7ί ^8) if a n ( j o n i y if y. = β ^ . m o c j ^22y f = ^̂  2, for some O ^ f l G L

(iii) By (ii), (ccj) + L2

2 is invariant under all automorphisms and there-

fore so is [(a?!) + L2

2, L2

4] = (#6, α8). But, for 2 $ (a?2) + i-22, ad^I(X 6,X 8) is zero

if and only if z = δ ^ j ί-ίc2) mod (L2

2), for some 0ψ b &k.

Now let α e A(L2). By (ii) and (iii) we have

a{Xι) Ξ αapj m o d (L2

2)

a(x2) = α2αj2 m o d (L2

2)
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with a, b e &. Then we must have a = b — 1.

We conclude with an example of a nilpotent Lie algebra, Z,3, over Z2,

which is quasi-cyclic and whose center is not contained in the derived

algebra, yet A(LZ) is nilpotent (see corollaries 2.5 and 2.9). L3 has basis

#i, %2, , %s with [xu x2] = xQf [xl9 α 3]= #7, l>2, 3*] = »β, and [»*, Xj] = 0

for i < y otherwise.

3.5 PROPOSITION. ^4(L3) is nilpotent.

Proof. L3

2 = (x6, xΊt x8); Z(LZ), the center, = (x5) + L3

2. For 2/<ΞL3, ad?/

has rank 1 if and only if y Ξ= either α;3 or #4 mod (Z(L3)). Thus, for α e

α^αO Ξ xt mod (Z(L8))f for f = 3,4.

Further, the centralizer of (#3) + Z(L8) is (x2, ^3, a?4, , x8) while that of

(a?4) + Z(L3) is (xl9 xs, xit, , a?8).

Thus,

a\Xi) = α t mod ((x3, x4, , a8))f for f = 1, 2. I t follows easily that a2,

and therefore or, is unipotent.
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