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Considerable efforts have been devoted to the understanding of the small-scale
characteristics in turbulent flows. While the universality of small-scale quantities has been
established for incompressible flows, their extension to high-pressure transcritical flows
remains an open area of research. To address this question, we investigate the real-fluid
thermodynamic effects on small-scale velocity statistics of high-pressure transcritical
wall-bounded turbulence. We show that in the locally isotropic region for transcritical
flows, low-order moments of small-scale statistics collapse for all cases and Kolmogorov’s
(1941) theory holds. However, real-fluid thermodynamic effects introduce deviations in
the tails of the probability density function for the velocity derivative and, consequently,
high-order moments of velocity gradients and dissipation rate in transcritical flows
cannot collapse in the locally isotropic region. Analysis of the intermittency shows that
the low-order structure functions in transcritical flows follow extended self-similarity,
while the dependence of the intermittency factor on real-fluid effects is observed for
high-order structure functions. The real-fluid effects on intermittency are explained by
turbulent structures related to rare events. Additionally, the dissipation rate moments
for transcritical flows follow a universal scaling with Reynolds number, and the scaling
exponents are different from those of incompressible flows. These results extend the
small-scale universality in incompressible flows (Schumacher et al., Proc. Natl Acad.
Sci. USA, vol. 111, 2014, pp. 10961–10965) to realistic flows with significant changes in
thermodynamic properties, and provide a physical underpinning of the scaling laws of
small-scale statistics at transcritical conditions.
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1. Introduction

Investigating the turbulent small-scale properties that are related to the dissipative scale
in the energy cascade, such as velocity gradients, dissipation rate and dissipation scale, is
of great interest to both the engineering and environmental communities. These quantities
play an important role in turbulence modelling by providing the foundation for modelling
subgrid stresses and closures for the transport equation of the dissipation rate (Antonia,
Kim & Browne 1991; Sreenivasan & Antonia 1997). The standard paradigm of small-scale
universality proposed by Kolmogorov (1941) is that while the large-scale turbulent motions
are non-universal, an increasing degree of universality is imparted to small scales with
increasing separation between the large and small scales.

Local isotropy was introduced by Kolmogorov (1941) to describe the universality
of the small scales of turbulent motions. This paradigm is a cornerstone of universal
self-similarity, which assumes complete independence of the small-scale structure from
large-scale structures (Kolmogorov 1941; Mestayer 1982). Since Kolmogorov postulated
the universality of small scales, many experiments and direct numerical simulations
(DNS) of incompressible turbulence have verified the universal small-scale properties
for locally isotropic incompressible flows. Hamlington et al. (2012) performed DNS of
incompressible channel flows with friction Reynolds number Reτ = 180, 381 and 590, and
found that in the locally isotropic region, the local dissipation scale and dissipation-rate
moments behave similarly to those of isotropic flows. Djenidi et al. (2017) found that
in the locally isotropic region of incompressible wall-bounded flows, the moments of
small-scale statistics for wall-bounded flows, such as the skewness (S) and flatness (F)
of velocity gradients, remain approximately constant with increasing wall distance ζ+ and
Taylor Reynolds number Reλ, where Reλ = ρurmsλ/μ with λ the Taylor microscale, ρ the

density, μ the dynamic viscosity, λ = urms/(∂u′/∂x)2
1/2

and urms =
√

u′2 (Djenidi et al.
2017), viz.

S∂u′/∂x = (∂u′/∂x)3

(∂u′/∂x)2
3/2 = const., F∂u′/∂x = (∂u′/∂x)4

(∂u′/∂x)2
2 = const., (1.1a,b)

with u′ and x denoting the streamwise velocity fluctuation and streamwise coordinate,
respectively. These findings indicate that in the locally isotropic region of incompressible
wall-bounded flows, the turbulent small-scale quantities in all cases exhibit universal
behaviour, which is independent of Reynolds number and ζ+. By studying homogeneously
isotropic turbulence, turbulent shear flows and thermal convection, Schumacher et al.
(2014) showed that probability density functions (PDFs) of velocity gradients and
moments of dissipation obey the universality of small scales for different flows even at
moderate Reynolds numbers. Furthermore, Boschung et al. (2016) examined structure
functions in the dissipative range, and reported Reynolds-number-independent structure
function and universal scaling for local-dissipation-rate moments for incompressible,
locally isotropic flows. Schumacher (2001) reported increasing derivative moments of
streamwise velocity with Reλ for orders n> 4 in incompressible, homogeneous shear
flows. Similar results for small-scale statistics of incompressible flows were reported by
Kim & Antonia (1993), Sreenivasan & Antonia (1997), Antonia et al. (2015) and Elsing
& Marusic (2010). With regard to compressible flows with high Mach number, Huang,
Coleman & Bradshaw (1995) showed that the dissipation rate induced by the dilatation
and viscous fluctuations is very small, implying the similarity of turbulent dissipation
between compressible and incompressible flows.
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Small-scale dynamics of transcritical turbulence

Transcritical wall-bounded turbulence at supercritical pressure conditions with intense
density fluctuations are encountered in many technical applications. The thermodynamic
properties of fluids at supercritical pressures differ from those at subcritical conditions.
In particular, at supercritical pressures, the transitioning from the liquid-like phase to
gas-like phase as the temperature increases, which is called ‘transcritical conditions’,
can occur without the formation of the interface (Simeoni et al. 2010; Bolmatov,
Brazhkin & Trachenko 2013; Simeski & Ihme 2023). Thermodynamic and transport
properties, including density, viscosity, specific heat capacity and thermal conductivity,
vary significantly across the Widom line as the increasing temperature, thereby introducing
significant real-fluid thermodynamic effects (Simeoni et al. 2010; Bolmatov et al. 2013;
Ma, Yang & Ihme 2018; Guo, Yang & Ihme 2022; Li et al. 2023). It has been confirmed
that real-fluid thermodynamic effects which are induced by strong variations in thermal
properties considerably change the large-scale structures of wall-bounded turbulence
(Patel et al. 2015; Ma et al. 2018; Kawai 2019; Kim, Hickey & Scalo 2019; Guo et al.
2022; Li et al. 2023). Sciacovelli, Cinnella & Grasso (2017) carried out systematic DNS
investigations to study small-scale structures of isotropic turbulence of high-pressure dense
fluids which have similar physical properties to transcritical fluids, their analysis showed
a weakening of compressive structures and an enhancement of expanding ones. They
reported that the dense gas temperature variations are negligible due to the decoupling
of dynamic and thermal effects, and the fluid viscosity exhibits a smaller root-mean
square (r.m.s.) than perfect gas, suggesting the structures considered in their work are
mainly related to the genuine compressibility and shocklet. Furthermore, the dissipation
rate of transcritical flows, which is dominated by the dissipative range, behaves quite
similarly to that of high-Ma compressible flows, with the fluctuating thermal properties
contributing insignificantly to the dissipation rate (Li et al. 2023). These raise some
important questions to be addressed. Will real-fluid effects invalidate the universality of
the small-scale dynamics? What are the effects of variable thermodynamic properties
on the small-scale dynamics? Current efforts have not yet provided evidence for the
universality of small-scale statistics at transcritical conditions with strong variations of
thermal properties. To the best of our knowledge, there has been no prior discussion
about turbulent small-scale characteristics at high-pressure transcritical conditions in the
scientific literature. A study utilizing high-resolution DNS data in an effort to examine
the small-scale universality at transcritical conditions can therefore provide the theoretical
framework for developing scaling laws and turbulence models to improve their accuracy
and generalization.

To address these issues, the present work examines the statistics related to the
small-scale properties in transcritical channel flows utilizing DNS data. The Reτ currently
considered in this study ranges between 300 and 1370. As in Hamlington et al. (2012),
Schumacher et al. (2014) and Djenidi et al. (2017) for incompressible flows, we focus
on the moments of the velocity gradients and the dissipation rate, to investigate the
scalings for statistics associated with the small-scale properties. The main objective of
this study is to examine the hypothesis of the consistency of these small-scale quantities
between transcritical and incompressible flows, and to interpret the modulations on the
turbulent statistics and intermittency related to the small-scale properties by variable
thermodynamic property arising from real-fluid conditions.

The remainder of this paper is organized as follows. Section 2 presents our
DNS database, which includes details of the overall computational set-up and
cases. Section 3 presents results and the associated interpretations. Finally, § 4 offers
conclusions.
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Cases Tr ,hot Tr,cold ρr,hot ρr,cold Reτ,hot Reτ,cold Density ratio (ρw,cold/ρw,hot)

TR3 2.38 0.79 0.12 2.17 300 430 17.8
TR1.9 1.51 0.79 0.22 2.17 610 440 10.1
TR1.4 1.11 0.79 0.42 2.17 1370 500 5.2
TR1 0.79 0.79 2.17 2.17 700 700 1

Table 1. Summary of cases and conditions, with the subscripts hot and cold indicating the values at the hot
wall and the cold wall. Here, pr = p/pc, Tr = T/Tc, ρr = ρ/ρc are reduced pressure, temperature and density,
respectively.

2. Direct numerical simulations

2.1. Problem formulation
The database used for the present analysis was obtained from DNS of a straight
turbulent channel of transcritical nitrogen (Ma et al. 2018; Guo et al. 2022; Li et al.
2023). For the broader use of the transcritical DNS database by the turbulence and
combustion community, we have made this database open-access on https://blastnet.
github.io/index.html (Chung et al. 2022). The flow has a reduced bulk pressure (defined
as pr = p/pc with pc the critical pressure) of 1.14, with the temperatures for the hot
wall and the cold wall kept spatially and temporally constant. The size of the flow
domain is Lx (streamwise, x) × 2Ly (wall normal, y) × Lz (spanwise, z), with Lx/Ly = 2π,
Lz/Ly = 4π/3, and the channel height measuring 2Ly = 9 × 10−5 m. The spatial coordinate
is defined over 0 ≤ x ≤ Lx, −Ly ≤ y ≤ Ly and 0 ≤ z ≤ Lz. We use ζ to denote the wall
distance.

The fully conservative, compressible continuity, momentum and total energy equations
are solved. The Peng–Robinson (PR) equation of state (EoS) (Peng & Robinson 1976)
and Chung’s transport-property model (Chung et al. 1988) are employed to describe the
thermodynamics of the working fluid. These models have been used in past DNS studies
on turbulence of transcritical fluids (Miller, Harstad & Bellan 2001; Ma et al. 2018;
Kim et al. 2019; Toki, Teramoto & Okamoto 2020; Guo et al. 2022; Li et al. 2023). In
Appendix A, we discuss the EoS and the transport-property model in more detail. Further
information of the DNS configurations, numerical methodology and validations can be
found in Ma et al. (2018) and Guo et al. (2022). As summarized in table 1, the current
database is composed of four transcritical cases, TR3, TR1.9, TR1.4 and TR1 (where TR
denotes the temperature ratio between the hot wall and the cold wall) with a reduced
temperature of Tr,cold = T/Tc = 0.79 at the cold wall. These conditions are selected to
examine the real-fluid effects induced by thermal property changes under substantial
heat transfer conditions on the small-scale turbulent statistics. For all cases, the Mach
number is less than 0.16, indicating that the configurations in all cases correspond to the
low-speed flow regime. Across the majority of the channel, the spatial resolution is �x =
(2.4 ∼ 4)η̄, �y = (0.4 ∼ 3.2)η̄, �z = (1.6 ∼ 3)η̄ with η̄ being the mean Kolmogorov
length scale, η̄ = [(μ̄/ρ̄)3ρ̄/ε̄]1/4 , where μ is the dynamic viscosity, ρ is the density
and ε is the dissipation rate of turbulent kinetic energy, ε = τ ′

ij(∂u′
i/∂xj) and τij the

viscous stress tensor. Expressed in wall units, these conditions correspond to�x+ = 4.9 ∼
8, �z+ = 3.26 ∼ 6.8, �y+ = 0.29 ∼ 0.47 at the cold wall and �y+ = 0.2 ∼ 1 at the
hot wall.
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Small-scale dynamics of transcritical turbulence

2.2. Cases set-up and grid resolutions
Seeking the statistically accurate small-scale velocity moments requires finer resolutions
and longer integration time, here we briefly review the typical resolutions in the literatures
that considered velocity-derivative skewness, flatness and high-order moments. van de
Water & Herweijer (1999) measured the high-order structure functions for incompressible
turbulence (with the order n up to 20), characteristic parameters of their isotropic flows
are Reλ < 810 with the spatial resolution evaluated by lp/η (lp is the probe length) being
lp/η ≈ 2. The scaling exponents of nth order passive scalar structure functions (n ≤ 8)
in incompressible flows were examined by Lepore & Mydlarski (2012), Reλ considered
in their study was 370 with the spatial resolution being �x = 3.25η. Schumacher (2001)
carried out DNS investigations of incompressible homogeneous shear flows with Reλ
from 59 up to 99 to compare the high-order small-scale statistics (n< 8), the grid
spacing in the y-direction is �y = (0.5 ∼ 1.6)η. Pumir, Xu & Siggia (2016) used DNS
to calculate high-order moments of velocity gradients in the incompressible channel flow
at Reτ ≈ 1000, the gird in wall units is �x+ = �z+ = 15.7. In the DNS examinations
on local dissipation scale and high-order dissipation moments of incompressible channel
flows conducted by Hamlington et al. (2012), Reτ of their cases is 180, 381 and 590 with
the resolution �x+ = 1.8 ∼ 4.4, �y+

max = 0.55 ∼ 0.91, �z+ = 1.8 ∼ 2.2. Analysis of
small-scale dynamics for compressible isotropic flows was conducted by Sciacovelli et al.
(2017), using a grid spacing of �x ≈ 2.3η. Hence, the resolutions in the present work are
comparable to those employed in prior studies on turbulent velocity gradients, dissipation
rate and their moments (van de Water & Herweijer 1999; Schumacher 2001; Hamlington
et al. 2012; Lepore & Mydlarski 2012; Pumir et al. 2016). Further evidence to examine the
small-scale grid convergency and ensure that the dissipative scale is sufficiently resolved
can be found in Appendix B. To obtain converged results for statistical moments, we
average over homogeneous directions and time using data in 20 flow-through times, where
one flow-through time is defined as Lx/ub, with ub being the bulk velocity.

2.3. Overview of the fluctuating thermodynamic properties
Figure 1 shows the plots for r.m.s. quantities of thermodynamic and transport properties
(i.e. density, constant-pressure specific heat capacity, dynamic viscosity and thermal
conductivity) in the present transcritical cases. Significant fluctuations of thermodynamic
and transport properties can be found, especially near the hot wall. The density fluctuations
(i.e. ρrms) reach 40 % of the mean value (figure 2a), while cp,rms is most significant and
its maximum exceeds 100 % of the mean value (figure 2b). The fluctuations of transport
properties (i.e. μrms and λrms) also reach 30 % of the mean value (figure 2c,d). To
address the influences of the real-fluid thermodynamic effects on transcritical turbulence,
here we compare the thermal-property fluctuations with those in the previous studies on
compressible flows. For supersonic turbulent boundary layers, ρrms is small compared
with ρ̄ (Bradshaw 1977), which is known as Morkovin’s hypothesis. Generally, ρrms/ρ̄
in supersonic compressible flows does not exceed 10 % (Coleman, Kim & Moser 1995;
Huang et al. 1995; Zhang et al. 2012, 2022). However, the density fluctuations ρrms/ρ̄ in
the present transcritical cases exceed the level of hypersonic flows for ideal gas with Mach
number Ma = 11.93 (Duan, Beekman & Martin 2011), indicating that compressibility
induced by real-fluid thermodynamic effects is significant to change turbulent structures.
As shown in figure 2(b–d), for transcritical cases, cp and transport properties also
exhibit very large fluctuations (the r.m.s. in cp is most significant and even reaches the
mean value), which can definitely result in noticeable impacts on momentum and scalar
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Figure 1. Plots for r.m.s. quantities of thermodynamic and transport properties for all cases: (a) ρ; (b) cp;
(c) dynamic viscosity μ; (d) thermal conductivity λ. All results of the r.m.s. quantities are normalized by the
Reynolds-averaged mean quantities.

statistics. In contrast, supersonic flows generally use the thermal-property models for
ideal gas, thus the fluctuations of cp, μ and λ are quite weak and influence turbulence
dynamics negligibly. In summary, the real-fluid thermodynamic effects at high-pressure
transcritical conditions induce appreciable fluctuations of thermodynamic and transport
properties, Morkovin’s hypothesis is invalid and the resultant turbulent dynamics may
deviate significantly from incompressible flows and supersonic flows.

We note that for all cases, the Mach number is less than 0.16, indicating that the
configurations in all cases correspond to the low-speed flow regime. Moreover, the
pressure change in the channels is very small (the instantaneous p/pc changes by less than
0.5 % within the whole channel). Hence the dominant effects in the transcritical cases are
the significantly variable properties induced by the temperature variations present at low
Mach numbers.

3. Results and discussions

In this section we begin showing the small-scale quantities and examine the effects
of variable thermodynamic properties at real-fluid conditions on these statistics using
the established transcritical DNS database. For the following discussions, the Reynolds
average for a variable Z is denoted as Z̄ and the Favre average is denoted by Z̃ = ρZ/ρ̄.
Their fluctuations are defined as Z′ and Z′′, respectively.
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Small-scale dynamics of transcritical turbulence

3.1. Examinations of local isotropy
Near the wall, the flow is highly anisotropic due to wall effects, the flow quantities are
sensitive to the boundary conditions and thus the universality of small-scale quantities
can hardly be observed. Therefore, examining the results in the locally isotropic region is
effective for evaluating the universality of statistics in the presence of the real-fluid effects
since the wall effects have been largely eliminated. We begin with examining the validity
of local isotropy of small-scale statistics. Provided that the flow is locally isotropic, the
even moments of velocity gradient should obey the following relations (Taylor 1935; Jiang
et al. 2022): (

∂u′

∂x

)2

=
(
∂v′

∂y

)2

=
(
∂w′

∂z

)2

= 1
2

(
∂u′

i
∂xj

)2

, (3.1)

with i /= j and no summation on i and j. Thus, the local isotropy of the second-order
moments of velocity gradients indicates

A1 =
(
∂u′

∂x

)2

/

(
∂v′

∂y

)2

= 1, A2 =
(
∂u′

∂x

)2

/

(
∂w′

∂z

)2

= 1, (3.2a)

A3 = 2
(
∂u′

∂x

)2

/

(
∂u′

∂y

)2

= 1, A4 = 2
(
∂u′

∂x

)2

/

(
∂u′

∂z

)2

= 1, (3.2b)

A5 = 2
(
∂u′

∂x

)2

/

(
∂v′

∂x

)2

= 1, A6 = 2
(
∂u′

∂x

)2

/

(
∂v′

∂z

)2

= 1, (3.2c)

A7 = 2
(
∂u′

∂x

)2

/

(
∂w′

∂x

)2

= 1, A8 = 2
(
∂u′

∂x

)2

/

(
∂w′

∂y

)2

= 1. (3.2d)

According to Tang et al. (2015), the local isotropy of the third-order and fourth-order
moments of the velocity gradient leads to

S∂u′/∂x = S∂v′/∂y = S∂w′/∂z, (3.3)

F∂u′/∂x = F∂v′/∂y = F∂w′/∂z. (3.4)

Figure 2 examines the local isotropy of the small-scale statistics along the wall-normal
direction. In figure 2(a), we show the Lumley triangle, which examines the non-zero
invariants I1 and I2 of the anisotropic part of the Reynolds stress tensor aij = u′

iu
′
j/u

′
ku′

k −
δij/3, with I1 = √

aijaji/6 and I2 = (1/6aijajkaki)
1/3. As in Lumley & Newman (1977),

the triangle corresponds to I1 = I2, I1 = −I2 and I1 =
√

2I3
2 + 1/27. As the distance to

the wall increases, the variants approach I1 = 0 and I2 = 0 which corresponds to the
isotropic condition, as indicated by the arrow, implying that the departure from isotropy
becomes smaller. Figure 2(b) shows the wall-normal distribution of Ai for TR3. The results
confirm that at 0.3<ζ /Ly< 1 near both walls, Ai shows a gradual convergence towards
unity and lies within the ±20 % boundaries of local isotropy (indicated by the dashed
lines), which suggests that the local isotropy hypothesis within this wall-normal range
(0.3<ζ /Ly< 1) is approximately valid. The results for other cases are similar to those of
TR3 and are not shown here for brevity. Figure 2(c) shows the skewness of the velocity
gradient components according to (3.3). It can be seen that at ζ /Ly> 0.25 near both walls,
all distributions exhibit a region where the magnitudes of the velocity-derivative skewness
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Figure 2. Examinations of the local isotropy along the wall-normal direction for TR3: (a) the
turbulence-invariant map which shows I1 as a function of I2 for the anisotropic tensor of Reynolds stress
aij near the hot wall (red line and symbols) and the cold wall (blue line and symbols); (b) verification of local
isotropy of second order moments by examining Ai from (3.2), with the dashed lines denoting the ±20 %
boundaries of local isotropy (Ai = 1); (c) verification of local isotropy of third-order moments (see (3.3)); (d)
verification of local isotropy of fourth-order moments (see (3.4)).

are approximately consistent. Figure 2(d) compares the distributions of F∂u′/∂x, F∂v′/∂y
and F∂w′/∂z, showing that the local isotropy condition (3.4) is satisfied reasonably well
when ζ /Ly> 0.3. Thus, we can determine the ζ /Ly range of locally isotropic region as
0.3<ζ /Ly< 1 near both walls. According to this, table 2 shows ζ /Ly, ζ+ and ζ* of the
start point of the locally isotropic region (LIR) of the channel for all cases.

3.2. Small-scale universality: velocity gradients and dissipation rate
Figure 3 shows PDFs of the longitudinal two-point velocity increments �u′ = u′(x +
r, y, z)− u′(x, y, z) at different wall-normal positions for all cases. We find that the PDFs
of the longitudinal velocity increments pass through a transition from super-Gaussian to
nearly Gaussian (or slightly sub-Gaussian) behaviour as the two-point distance increases
(see figure 3a–d), suggesting intermittency at the small scales. In figure 3(a), it can be seen
that all PDF profiles are quite consistent; although the PDFs are close to exponential decay,
there are still slight discrepancies among all cases at the tail of the PDF profiles. In the
following section, we will address the significance of these tails on the high-order moments
of velocity gradients. In the near-wall layer (as shown in figure 3b), the discrepancies
between different cases are more obvious, which is attributed to the anisotropic nature of
the flow near the wall.
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Small-scale dynamics of transcritical turbulence

Cases Start point of the locally isotropic region

ζ /Ly ζ+ ζ*

TR3 cold wall 0.3 107 268
TR3 hot wall 72 192
TR1.9 cold wall 101 209
TR1.9 hot wall 92 191
TR1.4 cold wall 122 202
TR1.4 hot wall 348 203
TR1 177 212

Table 2. Here, ζ /Ly, ζ+ and ζ* of the start point of the locally isotropic region for all cases, where ζ+ =√
ρwτwζ/μw and ζ ∗ = √

ρ̄τwζ/μ̄ are wall units and semilocal wall units, respectively, and τw is the wall shear
stress.
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PDF

TR3, cold wall

TR1.9, cold wall

TR1.4, cold wall

TR3, hot wall

TR1.9, hot wall

TR1.4, hot wall

TR3, cold wall

TR1.9, cold wall

TR1.4, cold wall

TR3, hot wall

TR1.9, hot wall

TR1.4, hot wall

Gaussian Gaussian

Gaussian

Gaussian

�u′/(�u)rms �u′/(�u)rms

(a) (b)

(c) (d)

Figure 3. Profiles for PDFs of longitudinal velocity increments �u′ = u′(x + r, y, z)− u′(x, y, z) near both
walls for different cases: (a) r =�x at ζ* = 300 in the LIR, where �x is the streamwise grid spacing; (b)
r =�x at ζ* = 10; (c) r = 20�x at ζ* = 300; (d) r = 100�x at ζ* = 300. The x-axis is rescaled by the r.m.s. of
velocity increments. The blue curves indicate cold wall profiles, the red curves correspond to hot wall profiles
and black dashed lines denote the Gaussian distribution.
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(a) (b)

rd/rd ε/ε̄

Figure 4. The PDFs of (a) local dissipation scales and (b) dissipation rate in the LIR (at ζ ∗ = 300)
of the channel for different cases: blue lines, cold wall profiles; red lines, hot wall profiles; black line,
the log-normal fitting PDFε/ε̄ = y0 + (A/(

√
2π(ε/ε̄)σ )) exp[−(ln((ε/ε̄)/xc))

2/2σ 2] with y0 =−0.00436,
xc = 0.682, σ = 1.232, A = 1.102.

We display the PDFs of local dissipation scale rd and local dissipation rate ε/ε̄

near the cold wall and the hot wall in figure 4. The local dissipation scale, rd, is
determined such that ρ̄(�u′)rd rd/μ̄ = 1 (Schumacher 2007; Hamlington et al. 2012),
with (�u′)rd the streamwise velocity-fluctuation increments over the streamwise distance
rd. Thus, the PDFs of local dissipation scale can formally be written as P[rd|0.9 ≤
ρ̄(�u′)rd r/μ̄ ≤ 1.1] (Hamlington et al. 2012). It should be noted that the Kolmogorov
scale, η̄ = [(μ̄/ρ̄)3ρ̄/ε̄]1/4, only results from the dimensional analysis and may contain
the length scales at the dissipative range and the inertial range. According to Hamlington
et al. (2012), including only values of rd in the above definition of local dissipation
scale can ensure the isolation of the flow structures occurring at the cutoff of dissipative
range and inertial range. Knowledge of the PDFs of the local dissipation scales, given
in figure 4, provides evidence of the similarity of the characteristic length scale at the
dissipative range for transcritical flows. Figure 4(a) shows PDF(rd) at ζ* = 300 for all
cases. It can be seen that there are only small differences in PDF(rd/rd) among cases,
suggesting that PDF(rd/rd) in the LIR of the channel is insensitive to the real-fluid
variable-property effects. Similar observations can be made from figure 4(b), showing that
the PDFs of dissipation rate, PDF(ε/ε̄) approximately follows the log-normal distribution
for 0.1 < ε/ε̄ < 2, but deviates from the log-normal distribution for the extreme events
at the tail. In the locally isotropic region, despite the different levels of density and
viscosity fluctuations in the flows, the PDFs of the dissipation rate have similar profiles;
our observations support the consistency of the local dissipation scale for transcritical
cases.

Results of the second-order structure function (S2) of u′ for the LIR of the channel give
similar insights into the small-scale flow structures. Figure 5 presents the longitudinal
structure functions of fluctuating streamwise velocity S2 = [u′(x + r, y, z)− u′(x, y, z)]2

as a function of the streamwise spatial increment in the LIR of the channel for TR3. There
is reasonable collapse of the distributions in the dissipative range with r < 20η̄. In the
LIR of the channel, the inertial region of S2 normalized by the mean dissipation rate (see
figure 5a) and that normalized by the local dissipation rate (considering intermittency,
see figure 5b) have not yet been observed in either case due to the Reynolds number not
being sufficiently large. In the dissipative range, according to Kolmogorov’s first similarity
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Figure 5. Second-order structure functions of u′ (S2 = [u′(x + r, y, z)− u′(x, y, z)]2) as a function of
streamwise spatial increment in the LIR of the channel for TR3: (a) S2 rescaled by the mean dissipation rate
ε̄0; (b) S2 rescaled by local dissipation rate (ε0 averaged over the streamwise two-point distance).

hypothesis, the viscosity and dissipation rate dominate the structure function. A simple
dimensional analysis yields the expression of the second-order structure function

S2 = C2

(
ρ̄ε̄0

μ̄

)
r2, (3.5)

with C2 the second-order structure function coefficient, and ε0 = ε/ρ. Equation (3.5)
indicates that the second-order structure function for transcritical flows is consistent with
that of the incompressible flows given in Pope (2000). In summary, despite the small
discrepancies at the tail of the ∂u′/∂x-PDF profiles, the low-order structure functions of u′
for all cases have the same scaling in the dissipative range.

3.3. Real-fluid effects on moments of small-scale statistics
The moments of the velocity gradients and dissipation rate play an important role for
characterizing the small-scale dynamics. The nth-order moments of turbulent statistics
can be written as

Mn(Z) = Zn

(Z2)
n/2 , (3.6)

with Z denoting any flow quantity. Figure 6(a,b) shows the variations of the skewness
of the velocity gradient (Z = ∂u′/∂x, n = 3 in (3.6)) and the flatness of the velocity
gradient (Z = ∂u′/∂x, n = 4 in (3.6)) as a function of ζ* for all cases. It can be seen
that M3(∂u′/∂x) (i.e. S∂u′/∂x) and M4(∂u′/∂x) (i.e. F∂u′/∂x) away from the wall are nearly
constant. Distributions of S∂u′/∂x or F∂u′/∂x are qualitatively similar for all the wall flows,
with minor quantitative variations. As the distance to the wall increases, S∂u′/∂x decreases,
reaches a minimum, increases and finally forms a plateau in the outer region of the flow.
This behaviour is also consistent with that of incompressible flows with moderate and high
Reτ reported in Djenidi et al. (2017). We can also observe the characteristic behaviour of
F∂u′/∂x for all transcritical cases, it is found that F∂u′/∂x approaches a constant, which is
independent of the thermal property changes. In Appendix C, we examine the results based
on density-weighted velocity fluctuations, and confirm that the results of density-weighted
velocity-fluctuation derivatives are consistent with the Reynolds-averaged results.
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Figure 6. Moments of fluctuating streamwise velocity gradients (see (3.6)) in different cases: (a) Z = ∂u′/∂x,
n = 3 (skewness) as a function of ζ*; (b) Z = ∂u′/∂x, n = 4 (flatness) as a function of ζ*; (c) Z = ∂u′/∂x,
n = 3 (skewness) as a function of semilocal Taylor Reynolds number Re∗

λ; (d) Z = ∂u′/∂x, n = 4 (flatness) as
a function of Re∗

λ. In (c) and (d), open symbols represent the results in the LIR of the channel whereas solid
symbols indicate the near-wall layers; blue, near the cold wall for TR3; red, near the hot wall for TR3; black,
near the cold wall for TR1.9; pink, near the hot wall for TR1.9; purple, near the cold wall for TR1.4; green,
near the hot wall for TR1.4; grey, TR1.

We make two additional remarks here. First, the data from Abe, Antonia & Kawamura
(2009) showed that the plateau of the velocity gradient skewness did not occur for
Reτ = 180, while this plateau can be clearly observed in the LIR of the channel when
Reτ reaches 590 for incompressible flows (Vreman & Kuerten, 2014). Our results also
indicate that at transcritical conditions, the plateau where S∂u′/∂x and F∂u′/∂x remain
constant definitely exists when Reτ exceeds 300 (i.e. the lowest Reτ in the present study);
this supports that S∂u′/∂x and F∂u′/∂x in the LIR of the channel are independent of ζ*
when Reτ exceeds 300, which is approximately consistent with the Reτ threshold for
S∂u′/∂x = const. and F∂u′/∂x = const. for incompressible turbulence. Second, in the LIR
of the channel, the level of agreement of S∂u′/∂x and F∂u′/∂x between the present study and
the previous studies on incompressible channel flows (Abe et al. 2009; Vreman & Kuerten
2014; Tang et al. 2015; Antonia et al. 2017; Tang et al. 2019) is relatively poor. Abe et al.
(2009) reported that S∂u′/∂x = −0.6 in the outer layer for Reτ = 395 and 640 (comparable
magnitude with the present study) while S∂u′/∂x remains less than −0.5 according to
Vreman & Kuerten (2014). Xu, Antonia & Rajagopalan (2001) found that S∂u′/∂x and
F∂u′/∂x remain −0.53 and 10 at Reλ> 200–300 in the outer layer of incompressible
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Small-scale dynamics of transcritical turbulence

plane jet and circular jet. The current transcritical cases suggest that S∂u′/∂x and F∂u′/∂x
converge at similar Reτ and Reλ compared with incompressible flows (i.e. Reτ = 300–600
or Reλ= 200–300). However, the corresponding values of the S∂u′/∂x and F∂u′/∂x plateau
(S∂u′/∂x = −0.25 and F∂u′/∂x = 4) are different from those of incompressible flows, which
means that the discrepancies between transcritical flows and incompressible flows are
mainly associated with the effects of real-fluid property variations, while the Reynolds
number effect contributes only minimally. Note that even for TR1 for which the two walls
have the same temperature and heat, transfer is weak, although the boundary condition
is similar to that of incompressible flows, the small-scale statistics still differ from the
incompressible flows. The small pressure fluctuations in the flow also lead to large thermal
property changes, leading to Re∗

λ varying from 700 at the wall to 1000 at the centreline
and thus turbulence dynamics depart significantly from incompressible flows. This may
explain the differences of the S∂u′/∂x and F∂u′/∂x profiles between TR1 and incompressible
flows studied in the prior studies (Abe et al. 2009; Vreman & Kuerten 2014; Tang et al.
2015; Antonia et al. 2017; Tang et al. 2019).

Next we assess the behaviour of S∂u′/∂x and F∂u′/∂x in terms of Taylor Reynolds number
(see figure 6c,d; Re∗

λ = ρ̄u′λ/μ̄ is semilocal Taylor Reynolds number defined based on
the local density and viscosity along the wall-normal direction). In the context of K41
(Kolmogorov 1941), both S and F in incompressible flows are approximately independent
of Reλ; whereas in K62 (Kolmogorov 1962; Obukhov 1962), S and F are expected to
increase with increasing Reλ. To clearly distinguish the profiles in the LIR of the channel,
we use different symbols to identify different wall-normal positions in the channels.
Figure 6(c,d) shows that the universality of skewness and flatness of fluctuating streamwise
velocity gradients with Re∗

λ in the locally isotropic region (see the open symbols) manifests
primarily. Moreover, in all cases, S∂u′/∂x in the LIR is nearly independent of Re∗

λ, providing
support for K41 at transcritical conditions; S∂u′/∂x becomes constant when Re∗

λ > 150
(as shown in figure 6c). These conclusions bear analogies with those for incompressible
flows in which S∂u′/∂x becomes independent of Reλ when Reλ > 100 for jet flows (Tang
et al. 2019) and when Reλ > 150 for wall-bounded flows (Djenidi et al. 2017) (note
that Reλ ≡ Re∗

λ for incompressible flows). With regard to F∂u′/∂x, we find that in the
LIR of the channel for transcritical flows, F∂u′/∂x remains approximately constant for
100 < Re∗

λ < 300 (see the open symbols in figure 6d). For incompressible flows, results
of isotropic flows and jet flows (van Atta & Antonia 1980; Kerr 1985; Sreenivasan &
Antonia 1997) show that F∂u′/∂x varies slightly with Reλ when Reλ < 100, and then
increases monotonically with Reλ for Reλ ∈ (102, 103). However, Djenidi et al. (2017)
pointed out that the plateau of F occurs when Reλ reaches 100–500 in wall-bounded
flows. According to the above discussions, F∂u′/∂x for transcritical wall-bounded flows
also exhibits consistency with the incompressible wall flows.

According to K41 and K62, the consistency of the small-scale statistics for
incompressible cases is only valid for sufficiently large Reynolds numbers. From the
results of figures 3–6, we conclude that the moments of the velocity gradients with
order n ≤ 4 follow the universal behaviours (thought to exist only at very high Reynolds
numbers) in the presence of real-fluid thermodynamic property variations even at
relatively moderate Reynolds numbers.

In figure 7, we show the moments of the local dissipation rate εn/ε̄n as a function
of ζ* in the LIR for transcritical channel flows. The dissipation moments εn/ε̄n reflect
the variations in the smallest dissipative scale, particularly for high n (Hamlington et al.
2012). Similar to the results for incompressible channel flows (Hamlington et al. 2012),
the low-order moments of ε remain constant in the locally isotropic region (see figure 7a).
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Figure 7. Variations of local dissipation rate moments εn/ε̄n as functions of ζ* for different cases: (a) n = 2;
(b) n = 3.

In contrast, the high-order dissipation rate moments (n = 3) obey different behaviours (see
figure 7b); the interesting point is that the high-order dissipation rate moments do not
collapse in the LIR of the channel. The variable-property effects on high-order small-scale
statistical moments will be elaborated on in the following section.

3.4. Real-fluid effects on small-scale high-order statistical moments
Our analysis shows that low-order moments of small-scale statistics such as dissipative
length scale, dissipation rate and the velocity gradient have universal behaviours at
transcritical conditions. However, the high-order moments of small-scale statistics in
transcritical flows are sensitive to real-fluid property variations. To clarify the modulations
of these effects on the moments of velocity gradients and dissipation rate, we consider the
following budget equation for local dissipation rate at transcritical conditions (Li et al.
2023):

ε = μ̄
∂u′

i
∂xj

(
∂u′

i
∂xj

+
∂u′

j

∂xi

)
︸ ︷︷ ︸

εI

−2
3
μ̄(∇ · u′)2︸ ︷︷ ︸
εII

+ μ′ ∂u′
i

∂xj

(
∂ ūi

∂xj
+ ∂ ūj

∂xi
− 2

3
∂ ūk

∂xk
δij

)
︸ ︷︷ ︸

εIII

+ ∂u′
i

∂xj

[
μ′
(
∂u′

i
∂xj

+
∂u′

j

∂xi
− 2

3
∂u′

k
∂xk

δij

)]
︸ ︷︷ ︸

εIV

, (3.7)

where εI is the solenoidal term composed of the mean viscosity and the enstrophy, εII
denotes the dilatational term related to the fluctuating velocity divergence, εIII and εIV
are budgets related to the fluctuations of viscosity. In our previous study (Li et al. 2023),
we found that turbulent dissipation is dominated by the solenoidal term, which means
that the dissipation rate is primarily generated by vorticity and the contributions from
thermal property fluctuations are negligible. For incompressible flows, we can expect
εII = εIII = εIV = 0 and thus ε= εI . In the LIR of the channel, (3.1) is valid so that

ε̄ = 15μ̄
(
∂u′

∂x

)2

. (3.8)
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Small-scale dynamics of transcritical turbulence

According to (3.8), we can establish the relation between the dissipation rate moments
and velocity gradient moments,

εn

ε̄n =
15nμ̄n

(
∂u′

∂x

)2n

15nμ̄

(
∂u′

∂x

)2n =

(
∂u′

∂x

)2n

(
∂u′

∂x

)2n = M2n

(
∂u′

∂x

)
. (3.9)

Equations (3.9) shows that the skewness and flatness of velocity gradients are associated
with the local dissipation rate moments in the LIR for channel flows. As discussed above,
the PDFs of the longitudinal velocity gradient distribute similarly in the locally isotropic
region of the channel, leading to the universal profiles of low-order dissipation rate
moments, as shown in figure 7(a). However, as in Belin, Maurer & Willaime (1997), the
discrepancy at the exponential-decaying low-probability tails can contribute significantly
to high-order moments, resulting in the substantial discrepancies of high-order moments
for different conditions. Figure 8 further shows the high-order structure functions. In
figure 8(a), we first examine the profiles of the rescaled longitudinal structure function
of the streamwise velocity S2n(r)/r2n (n ≤ 4). The plateau of S2n(r)/r2n at small-scale is
visible, thus it follows S2n(r) ∼ r2n in the dissipative range. In light of the definition of
S2n(r), we have the following relation in the dissipative range:

S2

r2 =
(
∂u′

∂x

)2

,
S2n

r2n =
(
∂u′

∂x

)2n

, (3.10a,b)

and thus,

M2n

(
∂u′

∂x

)
=

(
∂u′

∂x

)2n

(
∂u′

∂x

)2n = S2n

Sn
2

=
C2n

(
ρ̄ε0

μ̄

)n

r2n

Cn
2

(
ρ̄ε0

μ̄

)n

r2n
. (3.11)

Equation (3.11) yields

M2n

(
∂u′

∂x

)
= S2n

Sn
2

= C2n

Cn
2
. (3.12)

Equation (3.11) indicates that the moments of the velocity gradient are determined by
the structure functions in the dissipative range. Figure 8(b) gives the rescaled longitudinal
structure function of the streamwise velocity S2n(r)/(u∗

τ )
2n at the channel centreline for

TR1 and TR3. It is evident that as the order of the structure function (n) increases, the
structure functions with the same order for different cases cannot collapse in the dissipative
range, even though they still have the same scaling exponent with r. According to (3.12),
the inconsistency of S2n/Sn

2 between TR3 and TR1 indicates that the high-order structure
function coefficient C2n varies due to the variable-property effects in the channels (it
is worth noting that in the context of incompressible turbulence, the structure function
coefficient for a certain order is a constant), which essentially leads to the discrepancy of
high-order moments of velocity gradient and dissipation rate in the LIR at transcritical
conditions. Figure 8(c) shows PDFs of moments of local dissipation rate at ζ* = 300 near
the hot wall for different cases. The PDFs of high-order dissipation rate for all cases cannot
collapse, suggesting that the high-order moments of small-scale quantities are strongly
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Figure 8. Variable-property effects on small-scale high-order statistics: (a) the longitudinal structure functions
of the streamwise velocity S2n(r)/r2n = (�u′)2n/r2n (n ≤ 4) rescaled by (uτ,cold/Lx)

−2n at the channel
centreline of TR3. The horizontal lines are defined by the converged value of the corresponding curves; (b)
rescaled longitudinal structure function of the streamwise velocity S2n(r)/(u∗

τ )
2n at the channel centreline in

TR1 (solid lines) and TR3 (dashed lines), with S2n rescaled by u∗
τ at the centreline of TR3; (c) PDFs of local

dissipation rate moment ε2/ε̄2 at ζ* = 300 near the hot wall for all cases.

sensitive to changes in thermal properties. Recalling that the PDF profiles of ∂u′/∂x do
not collapse at the tail, we expect that the rare events with high velocity gradients and
turbulent dissipation contribute significantly to the discrepancies of high-order moments
of dissipation rate between different cases.

3.5. Real-fluid effects on the scalings for small-scale statistics
This section examines the real-fluid effects on the scalings for small-scale statistics,
including the structure function and dissipation rate moments. According to Kolmogorov’s
second hypothesis, Sn is independent of the viscosity in the inertial range (Kolmogorov
1941; Pope 2000), and hence dimensional analysis yields

Sn ∼ rζn . (3.13)

Several models have been proposed for the intermittency factor ζn for locally isotropic
flows at incompressible conditions, such as the refined similarity hypothesis (K62)
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Figure 9. Plots of longitudinal structure functions of streamwise velocity (S2, S4, S6 and S8) as a function of

|S3| at the centreline of the channel for all cases.

(Kolmogorov 1962; Obukhov 1962),

ζn = 1
3

n
[

1 − 1
6
μ(n − 3)

]
, μ = 0.25, (3.14)

and the universal scaling law (SL94) (She & Leveque 1994)

ζn = n
9

+ 2

[
1 −

(
2
3

)n/3
]
. (3.15)

Equations (3.14) and (3.15) were developed by considering the intermittency of the
dissipation rate at high Reynolds number. Benzi et al. (1993) reported on the existence
of an extended self-similarity (ESS) that holds for high and low Reynolds numbers, which
is characterized by the universal scaling exponents of the structure functions with the
independence of the Reynolds number. The ESS reads (Benzi et al. 1993)

|u′(x + r, y, z)− u′(x, y, z)|n ∝ (|S3|)ζn . (3.16)

Obviously |u′(x + r, y, z)− u′(x, y, z)|n = Sn when n is even. Since the Reτ and Reλ
considered in our study are relatively moderate, we use the ESS hypothesis to study
the scaling for intermittency. Figure 9 shows plots of S2, S4, S6 and S8 as a function
of the third-order structure function at the centreline for all conditions. For n = 2 and
4 (figure 9a,b), the results of all cases collapse onto a single profile which exhibits
reasonably good agreement with the power law, even if no inertial range is established.
Furthermore, self-similarity extends far beyond the inertial range deep into the dissipation
range. We note that ζn in the LIR of the channel is insensitive to the wall-normal location
(not shown here for brevity). These results show that the ESS exists at transcritical
conditions for low-order structure functions. As n increases (see n = 6 and n = 8 shown
in figure 9c,d), the profiles for Sn cannot collapse, suggesting that the ESS can hardly
be applied for high-order structure functions and ζn becomes dependent on the real-fluid
variable-property effects.

In table 3, we show the fitted value of ζn for n = 2–8 at transcritical conditions based
on ESS, along with the coefficients of determination. The values of ζn are determined by
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ζn

N TR3 TR1.9 TR1.4 TR1

2 0.685 0.687 0.683 0.688
4 1.296 1.295 1.295 1.292
5 1.574 1.575 1.566 1.567
6 1.836 1.842 1.813 1.827
7 2.084 2.097 2.042 2.077
8 2.323 2.345 2.261 2.32

Table 3. The fitted ζn based on ESS for n = 2–8 in all transcritical flows.

2.5

2.0

1.5ζn

1.0

0.5

2 3 4 5 6

n
7 8

K62

ESS
SL94

TR3 centreline

TR1.9 centreline

TR1.4 centreline

TR1 centreline

Incompressible flow

ESS

K62

SL94

Figure 10. Scaling exponents ζn based on ESS computed for n = 2–8 at transcritical conditions for different
cases. For comparison, the predictions of ζn by K62 (Kolmogorov 1962), SL94 (She & Leveque 1994),
incompressible ESS (Benzi et al. 1993) and the experimental results of ζn in the locally isotropic flow for
incompressible condition (the blue line, She & Leveque 1994) are also demonstrated.

fitting the data in the region of |S3|< 20, in which the structure functions closely follow the
exponential law. The coefficients of determination (R2) are higher than 0.99, implying the
accuracy of the fitted results. To gain more insights into the real-fluid variable-property
effects on the intermittency, we present ζn based on ESS computed for n = 2–8 at
transcritical conditions in figure 10, with the predictions of ζn by K62 (Kolmogorov
1962), SL94 (She & Leveque 1994) and incompressible ESS model (Benzi et al. 1993)
included. It is shown that ζn in the locally isotropic region of transcritical flows is higher
than that of incompressible flows. Moreover, the noticeable difference is observed between
ζn at transcritical conditions and that obtained by ESS for incompressible flow, implying
again that the turbulent intermittency is largely affected by the real-fluid variable-property
effects at transcritical conditions. Evidently, the modulations on intermittency are more
significant for the higher-order structure functions.

The underlying mechanisms for intermittent behaviour are substantiated by means
of visualizing the structures related to the rare events. Instantaneous isosurfaces of
wall-normal velocity fluctuations as well as corresponding flooded contours of density in
the locally isotropic region near the cold wall for TR1.9 and TR1.4 are shown in figure 11.
The isosurfaces of wall-normal velocity fluctuations with v′′ = 2.5 m s−1 and v′′ = 1.2 m
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Figure 11. Isosurfaces of wall-normal velocity fluctuation coloured by the instantaneous density in the locally
isotropic region near the cold wall, with v′′ = 1.2 m s−1 in (a,c) and v′′ = 2.5 m s−1 in (b,d); here (a,b)
TR1.9 and (c,d) TR1.4.

s−1 are associated with the rare structures with ρ > 680 kg m−3 for TR1.9, corresponding
to the mean density value in the buffer layer. This implies clear ejection events from
the near-wall layers as the near-wall turbulence lifts up the dense fluid in the buffer
layer into the locally isotropic region with lower density. However, for TR1.4 with lower
density ratio, such high-density rare structures from the near-wall layer are not obvious.
This implies attenuated ejection motion of the rare structures with decreasing real-fluid
thermodynamic effects in the channel. Evidently, these wall-normal coherent motions lead
to significant mixing in the channel, resulting in effective momentum and energy transport
between the near-wall layer and locally isotropic region. The comparison between the flow
structures of TR1.9 and TR1.4 leads us to conclude that the ejection motions and turbulent
mixing in the channel are enhanced as the increasing real-fluid effects. Since the ejected
fluids from the near-wall layer have much lower density and tend to have higher velocity,
their mixing with the core results in significant velocity increments in the locally isotropic
layer and creates extreme events for high velocity gradients. This is a unique characteristic
of transcritical wall-bounded flows which explains the extreme, rare events for high
velocity gradients displayed in figure 3. Thus, the real-fluid variable-property effects play a
first-order role in modulating the PDFs of higher-order structure functions and dissipation
rate by introducing extreme, rare events for high velocity gradients; consequently, the
higher-order structure function and its intermittency behave differently from those for
incompressible flows.
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Figure 12. Scaling of dissipation rate moments against global Re for n = 2–4 in all cases (i.e. TR3 hot wall,
TR3 cold wall, TR1.9 hot wall, TR1.9 cold wall, TR1.4 hot wall, TR1.4 cold wall and TR1). Here, Re =
ρwU′Ly/μw with U′ the r.m.s. of fluctuation velocity, U′ = (u′2 + v′2 + w′2)

1/2
and Ly the half-height of the

channel. The results of dissipation rate moments and Re are obtained by averaging the data within the whole
LIR in the channel. Each symbol represents a separate flow case.

To provide more quantitative insights into the high-order moments of small-scale
quantities, we compare the global Re dependence of local dissipation rate moments for
different flows in figure 12. The global Re is defined as Re = ρwU′Ly/μw with U′ the r.m.s.

of fluctuation velocity, U′ = (u′2 + v′2 + w′2)
1/2

and Ly the half-height of the channel
(Hamlington et al. 2012; Schumacher et al. 2014). Note that here the dissipation rate
moments and Re are obtained by averaging the data over the whole LIR in the channel
(Hamlington et al. 2012; Schumacher et al. 2014). The scaling relation for the moments
of the energy dissipation rate was derived from a theory for incompressible homogeneous
and isotropic turbulence (Yakhot & Sreenivasan 2005; Yakhot 2006). It is given by

εn ∝ Redn, dn = n + θ4n

θ4n − θ4n+1 − 1
. (3.17)

Here, θn is the inertial-range scaling exponent of the nth-order moment of the velocity
increment �u′. The error bar of 90 % confidence limits is also estimated and shown in
figure 12 following a moving-block bootstrap method (Garcia, Jackson & Garcia 2005;
Hamlington et al. 2012). The normalized dissipation moments are calculated in each
snapshot over x–z planes, and the block sizes used to estimate the error bar are equal
to one flow-through time, which is defined as Lx/ub with ub being the bulk velocity. The
interesting point is that despite the different levels of density and viscosity fluctuations
in the flows, the nth-order dissipation rate moments for all cases follow the same scaling
law (εn/ε̄n ∼ Redn), strongly suggesting that the high-order energy dissipation statistics
vary universally with Re at transcritical conditions. By fitting the scaling laws for each
n (see dashed lines in figure 12), we find that the scaling exponents for the dissipation
rate moments are d2 = 0.104, d3 = 0.622 and d4 = 1.237. Calculations of these exponents
for incompressible homogeneously isotropic turbulence were shown to give d2 = 0.152,
d3 = 0.476 and d4 = 0.978 (Yakhot 2006; Schumacher 2007); Hamlington et al. (2012)
reported that the local dissipation rate for incompressible channel flows follows the same
scaling as that for isotropic flows. Our results show that although the dissipation rate
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moments at transcritical conditions collapse to the same scaling, the scaling exponents
are different from those for incompressible channel flows and isotropic flows. For lower
values of n (such as n = 2), the small-scale moments remain nearly constants in the LIR
of the channel, thus the scaling exponents of dissipation rate moments for transcritical
flows are lower than those predicted by the incompressible isotropic turbulence theory
(Yakhot 2006; Schumacher 2007); as n increases (e.g. n = 3 and 4), the variable-property
effects start to influence the dissipation rate moments and thus dn exceeds those for
incompressible flows.

4. Conclusions

According to incompressible turbulence theory, small-scale quantities such as dissipation
rate, local dissipation scale and velocity gradients should have universal behaviours. In
this work, we study effects of real-fluid property variations on small-scale characteristics
of transcritical wall-bounded turbulence to investigate if the universality of the small-scale
dynamics in incompressible turbulence can be extended to transcritical flow regimes. Our
main conclusions are summarized as follows.

In the LIR of the channel, the longitudinal velocity gradient and dissipation rate
have universal PDF distributions at moderate Reynolds number. There are only small
differences at the tail of PDFs of local dissipation length scale and dissipation rate for
different cases. These results strongly suggest that the universal behaviour for low-order
statistics of small-scale quantities also extends to transcritical flows. This universality
persists for all transcritical cases considered in the present study and only vanishes in the
near-wall region with strong anisotropy. In addition, we can also observe the characteristic
behaviours of skewness and flatness of velocity gradient in all transcritical cases. It
is found that in the LIR of the channel, S∂u′/∂x and F∂u′/∂x in all cases approach the
constant value of −0.25 and 4, respectively. With regard to the S∂u′/∂x-Re∗

λ and F∂u′/∂x-Re∗
λ

relations, we find that S∂u′/∂x and F∂u′/∂x profiles behave universally in the locally isotropic
region for all transcritical cases; S∂u′/∂x and F∂u′/∂x in the LIR are independent of Re∗

λ,
providing support for K41 at transcritical conditions and exhibiting consistency with
incompressible wall-bounded flows.

In contrast, the high-order moments of dissipation rate and velocity gradients in the LIR
for all channel flow cases do not collapse. This inconsistency of high-order statistics among
transcritical cases originates from intermittent, rare events indicated by the scattered tail
of the velocity-derivative PDF profiles and the varying higher-order structure function
coefficient. The traditional models of intermittency, such as K62 and SL94, are invalid
at transcritical conditions. The intermittency factor for lower-order structure functions at
transcritical conditions follows the ESS, while the higher-order structure functions and
their intermittency behave differently from those for incompressible flows. The real-fluid
thermodynamic properties enhance the momentum and energy transport induced by the
ejection motion from the buffer layer, modulating the PDFs of higher-order structure
functions and dissipation rate by introducing the extreme, rare events for high velocity
gradients. The dissipation rate moments in all transcritical flows follow a universal scaling
with Re, but the scaling exponents are different from those in incompressible flows, as
demonstrated in the present study by the Re-scaling of the moments of local dissipation
rate.

Results of the present work are helpful for establishing further evidence for the
universality of small-scale turbulent statistics in the presence of strongly varying
thermodynamic conditions. Since we have shown the consistency of small-scale quantities
between the transcritical flows and incompressible flows, there is also considerable merit
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in developing universal scaling laws and parameterizations of small-scale quantities for
transcritical flows in the context of incompressible, low-Reynolds-number turbulence.
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Appendix A. Governing equations and equation of state for DNS

The DNS database used in this study consists of the channel flow with two isothermal
walls which have been conducted in our prior studies (Ma et al. 2018; Guo et al. 2022;
Li et al. 2023). The governing equations of mass, momentum and total energy for a fully
compressible flow are solved in conservative form,

∂ρ

∂t
+ ∂(ρui)

∂xi
= 0, (A1)

∂(ρui)

∂t
+ ∂(ρuiuj)

∂xj
= − ∂p

∂xi
+ ∂τij

∂xj
+ fi, (A2)

∂(ρE)
∂t

+ ∂

∂xj
[uj(ρE + p)] = ∂

∂xj
(uiτij − qj)+ uifi, (A3)

where ui = (u, v, w) denotes the streamwise, wall-normal and spanwise components of
the velocity, t is the time, p is the pressure, E is the total energy per unit mass, fi is
the ith component of the body force vector which acts as a streamwise-homogeneous
pressure gradient to impose a prescribed bulk streamwise momentum. Following Huang
et al. (1995) which focused on the compressible, isothermal channel flows, fi is given as

fi = −
∑
τw

2Ly

ρ̄

ρ0
δ1i, (A4)

where ρ0 is the volume-averaged density and δij is the Kronecker delta operator. The
viscous stress tensor τ ij and heat flux vector qi are given as

τij = μ

(
∂ui

∂xj
+ ∂uj

∂xi

)
− 2

3
μ
∂uk

∂xk
δij, (A5)

qi = −λ ∂T
∂xi
, (A6)

with λ is the thermal conductivity. According to Miller et al. (2001), Ma et al. (2018),
Kim et al. (2019) and Guo et al. (2022), the PR equation (Peng & Robinson 1976)
can be employed as the EoS to calculate the physical properties of N2 at high-pressure
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Figure 13. The thermodynamic and transport properties as a function of temperature obtained in the present
DNS, with the comparisons with NIST data (pr = 1.14 for N2) included: (a) density ρ, computed profiles are
provided for various commonly-used equations of state, including PR model (used in present work), ideal
gas model, Soave–Redlich–Kwong (SRK) model and the perturbed chain statistical associating fluid theory
(PC-SAFT); (b) dynamic viscosity μ; (c) thermal conductivity λ; (d) enthalpy difference h − hT =100K, with
hT =100K the enthalpy at T = 100 K; (e) internal energy difference h − hT =100K, with hT =100K the internal
energy at T = 100 K; ( f ) speed of sound c.

transcritical conditions because of its high accuracy in predicting thermodynamic
variables in the vicinity of the critical point. The PR EoS reads

p = ρRT
1 − bρ

− ρ2a
1 + 2bρ − b2ρ2 , (A7)

986 A36-23

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

34
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.348


F. Li, W. Zhang, B. Bai and M. Ihme

1

0

–1

–2

–3

20

15

10

5

0
0 100 200 300 400 0 100 200 300 400

S F

ζ∗ ζ∗

TR3, cold wall
TR3, cold wall

TR1

TR3, hot wall
TR3, hot wall

TR1

(a) (b)

Figure 14. Plots of (a) S∂u′/∂x and (b) F∂u′/∂x of grid refinement results for TR3 and TR1. For clarity, the results
near the TR3 cold wall in (b) are multiplied by 2. Lines, the current grid Nx × Ny × Nz = 384 × 256 × 384;
symbols, the fine grid Nx × Ny × Nz = 543 × 356 × 543.

1016

1012

108

104

100

10–3 10–2 10–1 100 10–3 10–2 10–1 100

1016

1012

108

104

100

n = 1
n = 2

n = 3
n = 4

r/Lx r/Lx

[S
2
n(

r)
/r

2
n ]

(u
τ/

L x
)–

2
n

(a) (b)

Figure 15. The structure functions of the streamwise velocity fluctuations rescaled by uτ,cold/Lx at the channel
centreline for (a) TR3 and (b) TR1. Solid lines, the current grid Nx × Ny × Nz = 384 × 256 × 384; dashed lines,
the fine grid Nx × Ny × Nz = 543 × 356 × 543.

a = 0.457236
R2T2

c

pc

[
1 + c

(
1 −

√
T
Tc

)]2

, (A8)

b = 0.077796
RTc

pc
, (A9)

with
c = 0.37464 + 1.54226ω − 0.26992ω2, (A10)

and with ω= 0.0372 being the acentric factor. For N2, b = 8.58 × 10−4 and c = 0.432. The
internal energy E and enthalpy h are expressed as

E = E0(T)+
∫ ρ

0

[
p
ρ2 − T

ρ2

(
∂p
∂T

)
ρ

]
dρ, (A11)

h = E + p
ρ
, (A12)
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Figure 16. Streamwise energy spectra Eρuu,x versus streamwise wavenumber kx. Here, Eρuu,x has been
normalized by the mean density ρ̄ and the semilocal friction velocity u∗

τ . Solid lines indicate the cold wall
profiles while dashed lines indicate the hot wall profiles.

where E0(T) is the reference internal energy for ideal gas. Many studies have verified the
accuracy of the PR EoS at high-pressure transcritical conditions (Miller et al. 2001; Hickey
et al. 2013; Sengupta et al. 2017; Kim et al. 2019). The transport properties (viscosityμ and
thermal conductivity λ) are evaluated by Chung’s model for high-pressure fluids (Chung
et al. 1988; Congiunti, Bruno & Giacomazzi 2003; Hickey et al. 2013). The accuracy of
these models for predicting transport properties of transcritical fluids in DNS studies has
been examined in the literature (Congiunti et al. 2003; Hickey et al. 2013; Ma et al. 2018;
Kim et al. 2019; Toki et al. 2020; Guo et al. 2022; Li et al. 2023). The dynamic viscosity
μ (in units of P) is computed as (Chung et al. 1988; Poling, Prausnitz & O’Connell 2001;
Kim et al. 2019)

μ = μk + μp, (A13)

μk = μ0

(
1

G2
+ A6Y

)
, (A14)

μp =
[

36.344 × 10−6 (MwTc)
1/2

V2/3
c

]
A7Y2G2 exp

(
A8 + A9

T∗ + A10

T∗2

)
, (A15)
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Figure 17. Spanwise energy spectra Eρuu,z versus spanwise wavenumber kz. Here Eρuu,z has been normalized
by the mean density ρ̄ and the semilocal friction velocity u∗

τ . Lines as in figure 16.

μ0 = (4.0785 × 10−5)
(MwT)1/2

V2/3
c Ω∗ Fc, (A16)

Fc = 1 − 0.2756ω + 0.059035μ4
r + κ, (A17)

Ω∗ = A
T∗B + C

exp(DT∗)
+ E

exp(FT∗)
+ GT∗B sin(ST∗W − H), (A18)

T∗ = 1.2593T/Tc, (A19)

G2 = A1[1 − exp(−A4Y)]/Y + A2G1 exp(A5Y)+ A3G1

A1A4 + A2 + A3
, (A20)

G1 = 1 − 0.5Y

(1 − Y)3
, (A21)

Y = 1
6
ρVc, (A22)

Ai = a0,i + a1,iω + a2,iμ
4
r + a3,iκ, (A23)

μr = 131.3
χ

(VcTc)
1/2 , (A24)
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Figure 18. Streamwise temperature spectra ETT ,x versus streamwise wavenumber kx. Here, ETT ,x is
normalized by the mean density ρ̄ and the semilocal friction temperature T∗

τ . Lines as in figure 16.

where Mw is the molecular weight in g mol−1, T is the temperature in K, Vc is the critical
volume in cm3 mol−1,μ0 is the low-pressure gas viscosity in P,Ω* is the reduced collision
integral which depends on the intermolecular potential, Fc is a factor to account for
molecular structure and polar effects, χ is a dimensionless dipole moment of molecules, ω
is the acentric factor and κ is a correction factor for hydrogen-bonding effect of associating
substances such as alcohols, acids and water. For non-polar gases such as N2, only the
two first terms in (A18) are used since the other two terms become zero. The thermal
conductivity (in W m−1 K−1) is developed by the following approach (Chung et al. 1988;
Poling et al. 2001; Kim et al. 2019):

λ = λk + λp, (A25)

λk = λ0

(
1

H2
+ B6Y

)
, (A26)

λ0 = 31.2
μ0

M′
w
ψ, (A27)

λp =
[

3.586 × 10−3 (Tc/M′
w)

1/2

V2/3
c

]
B7Y2T1/2

r H2, (A28)
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Figure 19. Spanwise temperature spectra ETT ,z versus spanwise wavenumber kz. Here ETT ,z is normalized by
the mean density ρ̄ and the semilocal friction temperature T∗

τ . Lines as in figure 16.

ψ = 1 + α
0.215 + 0.28288α − 1.061β + 0.26665Z

0.6366 + βZ + 1.061αβ
, (A29)

H2 = B1[1 − exp(−B4Y)]/Y + B2G1 exp(B5Y)+ B3G1

B1B4 + B2 + B3
, (A30)

Bi = b0,i + b1,iω + b2,iμ
4
r + b3,iκ, (A31)

α = Cv
R

− 3
2
, (A32)

β = 0.7862 − 0.7109ω + 1.3168ω2, (A33)

Z = 2 + 10.5T2
r , (A34)

where M′
w is the molecular weight in kg mol−1, M′

w = Mw/103, T is the temperature in
K, Vc is the critical volume in cm3 mol−1, μ0 is the low-pressure gas viscosity shown in
(A16) while here its unit is Pa s. The values of the coefficients in (A13)–(A34) can be
found in Poling et al. (2001).

Figure 13 shows the thermodynamic and transport properties as a function of
temperature obtained in the present DNS. As seen, the PR EoS performs well in capturing
the near-Widom-line gradient in ρ as well as in capturing the quantitative density values for
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Figure 20. Plots of dissipation spectra for streamwise momentum and temperature fluctuations versus
wavenumber for TR3. Lines as in figure 16.

the present thermodynamic conditions (pr = 1.14, T ∈ [100 K, 300 K]). The comparisons
with NIST data show that the mean relative error of PR EoS and Chung’s model are
within 1 % for pr = 1.14, T ∈ [100 K, 300 K]. Furthermore, Peng & Robinson (1976)
reported the r.m.s. error less than 1.25 % in predicting enthalpy at transcritical conditions
that are comparable to those used in our investigation; the errors of similar level were
also reported by Congiunti et al. (2003) and Hickey et al. (2013) for predicting ρ of
high-pressure transcritical fluids. For transport properties, the agreement between Chung’s
model and experimental values is quite good and the mean relative errors are usually
below 5 % for pr < 2 (Poling et al. 2001); and the accuracy of Chung’s model for
predicting λ and μ of transcritical fluids has also been verified in Congiunti et al. (2003).
Particularly, the possibility of calculating thermal properties with a single method with
several common expressions makes the method by Chung’s model the most effective in
terms of computational times and accuracy for computational fluid dynamics (Congiunti
et al. 2003). However, we note that the present models exhibit deviations of the order of
5 %–10 % from the NIST data for ρ, μ and λ at 100–110 K. In summary, our validations
and past studies generally confirm the accuracy of the models of thermal properties
employed in the present study.
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Figure 21. Plots of dissipation spectra for streamwise momentum and temperature fluctuations versus
wavenumber for TR1. Lines as in figure 16.

Appendix B. The grid resolutions

As part of the set-up of the channel DNS used in the current investigation, Ma et
al. (2018) performed a grid convergence study for case TR3 and evaluated the results.
In Appendix B we show additional grid resolution studies for skewness, kurtosis and
higher-order moments of velocity gradient. Two grid resolutions for TR3 and TR1 are used
in this grid convergence study: a ‘regular grid’ that is the same as used in the current study
with Nx × Ny × Nz = 384 × 256 × 384 for a total of 37.7 ×106 control volumes and a ‘fine
grid’, with Nx × Ny × Nz = 543 × 356 × 543 for a total of 105 × 106 control volumes. Plots
of S∂u′/∂x, F∂u′/∂x and higher-order structure functions of grid refinement results for TR3
and TR1 are given in figures 14 and 15 to demonstrate the grid resolutions. The results of
skewness and kurtosis of velocity gradient are consistent between different grids to within
3 %. For the results of higher-order structure functions at the channel centreline shown
here, no significant difference is seen among the different grids, thus confirming adequate
grid convergence. From the totality of these findings presented for grid convergence,
we conclude that the computational grid used for the current simulations satisfies the
requirements to be of DNS resolution for small-scale velocity statistics with the order
lower than 8.

As presented in figures 16–19, to ensure that the relevant small scales are sufficiently
resolved, we show the streamwise and spanwise energy spectra for momentum (Eρuu) and
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Figure 22. Sensitivity of PDFs of streamwise velocity gradient on the number of statistical samples. Blue
lines, ζ* = 100 near the cold wall for TR3; red lines, ζ* = 100 near the hot wall for TR3.

temperature (ETT ) as a function of streamwise wavenumber kx and spanwise kz using the
mesh with Nx × Ny × Nz = 384 × 256 × 384. If the small-scales are under-resolved, the
energy spectra will usually increase towards the grid cutoff (Ma et al. 2018; Kim et al.
2019; Guo et al. 2022). All profiles roll off rapidly, with no build-up of spectra occurring at
high wavenumbers, providing evidence of the adequacy of the resolution of the small scale
for both the hydrodynamic and thermodynamic quantities. Furthermore, figures 20 and 21
show the one-dimensional dissipation spectra of momentum fluctuations and temperature
fluctuations,

Dρuu(k) = 2
μ̄

ρ̄
k2Eρuuρ̄

−1u∗−2
τ L−1

x , (B1)

DTT(k) = 2
μ̄

ρ̄
k2ETTT∗−2

τ L−1
x , (B2)

here the plots for TR3 and TR1 are shown to assess the resolution of the small-scales for
the largest and smallest density changes across all cases. For both momentum and enthalpy,
at least three decades of dissipation spectra can be resolved. The peak of dissipation spectra
(and the premultiplied spectra) is visible at all wall-normal locations. At the dissipative
scale of dissipation spectra in figures 20 and 21, the build-up of the curves appears quite
minimal, which is consistent with the energy spectra observed in Kim et al. (2019). These
results support the well-resolvedness of the dissipative scale required for calculating the
results of small-scale moments in this study.

Here we address the sensitivity of small-scale statistics on the number of statistical
samples. As presented in § 2.2, we average over homogeneous directions and time using
data in 20 flow-through times to obtain the statistics, with one flow-through time being
Lx/ub. That corresponds to ∼50 time slices for calculating the statistics. To examine the
effects of samples number on small-scale statistics, we show the sensitivity of PDFs of
velocity gradient on the number of samples for TR3 in figure 22. Converged results for
PDFs of velocity gradient can be obtained when averaging over 50 time slices, implying
the small-scale results are not affected by the samples number and the statistical noises.
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Appendix C. Moments of density-weighted velocity gradients

Results of fluctuating velocity gradient shown in figure 6 are based on Reynolds-averaged
velocity fluctuations, which are typically encountered in the past studies on incompressible
turbulence (Kim & Antonia, 1993; Sreenivasan & Antonia, 1997; Schumacher et al. 2014;
Antonia et al. 2015; Djenidi et al. 2017). In figure 23, we assess the skewness and flatness
of derivatives of density-weighted velocity fluctuations

√
ρu′ (Z = ∂(

√
ρu′)/∂x in (3.6))

taking account of the influences of density variations on fluctuating velocity (Patel et al.
2015; Hirai, Pecnik & Kawai 2021). The results show that the behaviours of the moments
of ∂(

√
ρu′)/∂x agree with our previous results based on Reynolds-averaged velocity

fluctuations. The comparisons of S∂(√ρu′)/∂x and F∂(√ρu′)/∂x for all channel flow cases also
show a good collapse in the LIR, suggesting that employing density-weighted velocity
fluctuations does not affect the validity of the conclusions; the plateau of S∂(√ρu′)/∂x
and F∂(√ρu′)/∂x occurs in the LIR with S∂(√ρu′)/∂x = −0.25 and F∂(√ρu′)/∂x = 4, which
bears striking analogies with the Reynolds-averaged results. Compared with the results
in figure 5(a,b), the collapse in the LIR for S∂(√ρu′)/∂x and F∂(√ρu′)/∂x becomes more
prominent because the effects of density variations on the statistics are partially eliminated.
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