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DECOMPOSABILITY OF FINITE RANK OPERATORS IN
CERTAIN SUBSPACES AND ALGEBRAS

JIANKUI L1

Let S be either a reflexive subspace or a bimodule of a reflexive algebra in B(H),
the set of bounded operators on a Hilbert space H. We find some conditions
such that a finite rank T € § has a rank one summand in § and S has strong
decomposability. Let S{L) be the set of all operators on H that annihilate all the
operators of rank at most one in alg L. We construct an atomic Boolean subspace
lattice £ on H such that there is a finite rank operator T in S(L) such that T
does not have a rank one summand in S(£). We obtain some lattice-theoretic
conditions on a subspace lattice £ which imply alg £ is strongly decomposable.

1. INTRODUCTION

Let H be a complex Hilbert space, B(H) the set of bounded linear operators on
H, and F(H) the set of operators with finite rank. For convenience we disregard the
distinction between a subspace of H and the orthogonal projection onto it. Throughout,
all subspaces will be assumed to be closed. By a subspace lattice on H, we mean
a collection £ of subspaces of H with (0), H in £ and such that for every family
{M,} of elements of £, both NM, and VM, belong to £, where VM, denotes the
closed linear span of {M,}. A totally ordered subspace lattice is called a nest. A
complemented and distributive subspace lattice is called a Boolean lattice. An element
L of a subspace lattice £ is called an atom if the condition (0) C K C L (K € L)
implies either K = (0) or K = L. A subspace lattice is atomic if each element of the
lattice is the closed linear span of the atoms it contains.

For every subspace lattice £ on H, we define alg £ by

algL ={T € B(H) : TM C M, for every M € L}.

Let L+ ={I—-P:PeL}. Wehave algL = (algL)". If e, f are in H, then the
rank one operator z — f(z)e = (z, f)e is denoted by e® f. If K, L € L, we denote
by L_ the subspace L_ =V{M € L: L ¢ M}, by Kz =Vv{Le L: K ¢ L_} and
by Ky =n{L € L:L¢ K}. By convention Hy =N = H, (0)_ = V0 = (0). The
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complete distributivity of £ is equivalent to K = Ky for all K € £. An element L in
L is completely meet prime if L 2 L. An element M in L is completely join prime if
MgZM_.

If M is a subset of H, we denote by [M] the norm closure of span{z : z € M}.
In this paper, “C” is used for set inclusion while “C” is reserved for proper inclusion.
Let R and T be finite rank operators on H. We say that R is a summand of T if
rank T = rank R + rank (T' — R). Let S be a subset of B(H). Then § is said to be
decomposable if each finite rank operator in S is a sum of rank one operators in S. We
say that S is strongly decomposable if, for each r > 1, each operator in S of rankr can
be expressed as the sum of r rank one operators in §. A subspace S of B(H) is said
to be reflezive if whenever T in B(H) satisfies the condition Tz € [Sz] for all z € H,
then T isin S.

Finite rank operators and rank one operators have been used extensively in the
study of nest algebras and related non-self-adjoint reflexive algebras. By [5], we know
that if £ is a nest or an atomic Boolean subspace lattice on H, then alg £ is strongly
decomposable. These results were first proved in [16] and [12], respectively. These
results were improved in [10]. Erdos and Power [3] proved that if A is a nest and
S is a o-weakly closed bimodule of algN, then S is strongly decomposable. In [6],
Hopenwasser and Moore construct a totally atomic commutative subspace lattice £ and
a rank two operator in alg L which cannot be written as a sum of rank one operators
in algL.

Let S be either a reflexive subspace or a bimodule of a reflexive algebra. For
T € SN F(H), we find some conditions such that T has a rank one summand in S.
We also obtain some necessary and sufficient conditions which imply that S is strongly
decomposable. We construct an atomic Boolean subspace lattice £ on H with three
atoms for which there is a finite rank operator T in S(L) such that T does not have a
rank one summand in S(L), where §(L) is the set of all operators on H that annihilate
all the operators of rank at most one in alg £. This answers a question in [8] negatively.
We obtain some lattice-theoretic conditions on a subspace lattice £ which imply alg £
is strongly decomposable. Theorems 2.12 and 2.13 generalise the main results of [10].

2. MAIN RESULTS

In [2], Erdos gives some necessary and sufficient conditions such that a reflexive
subspace of B(H) contains a rank one operator. In the following we obtain another
equivalent condition.

LEMMA 2.1. Let S be a reflexive subspace of B(H). Then e ® f belongs to S
ifand only if f € (span{y:e ¢ [Sy], y € H})J".
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PROOF: Suppose that e® f € §. For any y in H, e® f(y) = (y, fle € [Sy].
Hence if e ¢ [Sy], (y,f) =0. So f € (span{y:e ¢ [Sy], v € H})“L.

Conversely, suppose f € (span{y : e ¢ [Sy), y€ H })l Let y € H. It follows
that e ® f(y) = (y, f)e € [Sy]. Since § is reflexive, it follows that e® f € S. 0

The following Lemma will be used repeatedly.

LEMMA 2.2. ([5]) Let T be a finite rank operator and let A be a rank one
operator in B(H). Then A is a summand of T if and only if A is of the form (Ty) ®
(T* f) (or equivalently, T(y ® f)T ), where y and f are vectors in H and (Ty, f) =1.

THEOREM 2.3. Suppose that S is a reflexive subspace of B(H) and T is a finite
rank operator in §. Then T has a rank one summand in 8§ if and only if there is a
non-zero e in H such that e € T(H) and e ¢ span{Ty : e ¢ [Sy|, y € H}, where
T(H) is the range of T'.

PROOF: Suppose that 0 #e € T(H) and e ¢ span{Ty te ¢ [Sy],ye H}. Choose
g € H such that g € (span{Ty : e ¢ [Sy], y € H})l, (e,9) = 1, and take y € H
such that Ty = e. For any ¥ satisfying e ¢ [Sy], we have (§,T*g) = 0. It follows that
T*g€ (span{y:e ¢ [Sy], y € H})‘L. Using Lemma 2.1, e® T*g = (Ty) ® (T*g) € S.
Using Lemma 2.2, e® (T*g) = (Ty) @ (T*g) is a rank one summand of T in S.

Conversely, suppose that T has a rank one summand in §. By Lemma 2.2, there
exist m and f in H such that

Tm® YT =(Tm)®(T*f) € S,

and
(Tm,f)=1=(m,T*f).

Let Tm = e. Using Lemma 2.1, we have T*f € (span{y : e ¢ [Sy], y € H})'L.
Hence for any v € span{y : e ¢ [Sy], y € H}, (v, T*f) = (Tv,f) = 0. Since
(e, f) = (T'm, f) = 1, it follows that e ¢ T(span{y : e ¢ [Sy], y € H}) = span{Ty:
e¢[Syl, ye H}. 1]

COROLLARY 2.4. Let M and N be nonzero subspaces of H satisfying MNN =
(0) and MV N = H and let £ = {(0), M, N,H}. Then every o-weakly closed alg L-
bimodule S is strongly decomposable.

PRrROOF: By (9, Theorem 2.2] and [1, Theorem 3.1], it follows that S is reflexive.
By (4, Theorem 2], we know that S is determined by an order homomorphism ¢ of S.
Let ¢ be any order homomorphism of £ and let

M={TeB(H): (I-$E)TE=0,E€L}).
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By the symmetry of M and N, we only need to consider that in the following cases
M has strong decomposability.

1) ¢: MM, N~ (0),
(2) ¢: M~ N, N (0),
3 ¢:M—> N, N M,
(4) ¢:M— M, NN,
5) ¢:Mw— H, N (0).

For cases (1) to (4), we can easily prove the result using Theorem 2.3.
In case (5), M = {T € B(H) : TN = 0}. Let P denote the projection on N.
Then T is in M if and only if TP = 0. Hence M has strong decomposability. a

If £ is a subspace lattice on the Hilbert space H, let S(L) denote the set of all
operators on H that annihilate all the operators of rank at most one in alg £, that is

S(L) = {T € B(H) : tr (TR) = 0, for every R € alg L of rank at most one}.
LEMMA 2.5. ([8]) For any subspace lattice £ on H,
S(L)={T e B(H): T(K)C K_ for every K € L}.

LEMMA 2.6. ([8]) Let £ be a subspace lattice on H and e,f € H. The
following are equivalent.
(1) e®fesS(L),
(2) e€L and fe€ (L#)‘L for some L € L.
THEOREM 2.7. Let L be a subspace lattice and let T € S(L)N F(H). Then
T has a rank one summand in S(L) if and only if there exists an L € L such that
T(H)NL € T(Ly).
PROOF: Suppose that there exists L € £ such that T(H)NL ¢ T(Ly). Let
e € T(H)NL with e & T(Ly). Let e = Ty. Choose g € (T(L#))'L such that
(e,9) = (Ty,g) = 1. We have, using Lemma 2.6

(Ty,9) = (v, T*g) =1 and T(y ® 9)T = (Ty) ® (T"*g) € S(L).

By Lemma 2.2, it follows that T has a rank one summand in S(L).
Conversely, suppose T has a rank one summand in 8(£). By Lemma 2.2, there
exist e, f in H such that

T(e® f)T = (Te)® (T f) € S(L) and (Te, f) = 1.

By Lemma 2.6, there exists L in £ such that Te € L and T* f € (L#)L. Since Te€ L,
and (Te, f) =1 and for any v € Ly, (T, f) = 0, we have that T(H)NL ¢ T(Ly). O
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ExAMPLE 2.8. There is an atomic Boolean subspace lattice £ with three atoms such
that S(L) is not strongly decomposable.

PROOF: Let H be a finite-dimensional Hilbert space and let A be an invertible
operator in B(H). Define L, = {(z,0,0): z € H}, Ly = {(z,Az,0): z € H} and
L3 = {(z,Az, Az): z € H}. By [1, Lemma 6.3], it follows that {Ly, L,, L3} is the set
of atoms of an atomic Boolean subspace lattice.

Define T : Ly — LoV L3, by (z,0,0) » (0,0,Pz), T : Ly — Ly V L3, by
(z, Az,0) — (0, Pz, Pz),and T : Ly — L,V Ly, by (z, Az, Az) — (0, Pz,0), where P
is a nonzero finite rank projection in B(H). We can extend T to a bounded finite rank
operator in B(H ® H & H). In fact T(z,y,2) = (0, PA 1y, P(:I: - A‘lz)) , for every
z,y,z € H. By the definition of T, it follows that T € S(L). We have that T(H)NL; =
(0), T(H)N Ly = (0) and T(H)N Ly = (0). We can check that T(H) N (Ly Vv L3) C
T(LaVv Ls), T(HYN(Ly VL) C T(LyVv Ly) and T(H)YN(LyV L3) C T(Ly V L3).
Hence by Theorem 2.7, T does not have a rank one summand in S(L), where L is the
subspace lattice generated by Li, L. and Lj. . g

REMARK. The above Example answers a question in [8, p.31] negatively.

THEOREM 2.9. Suppose that L is a subspace lattice and Rad (alg L) is the
radical of algL. Let T € Rad(algL) N F(H). Then T has a rank one summand in
Rad (alg £) if and only if there exists an M in L such that T(H)NM ¢ T(M_ Vv M).

PROOF: Suppose that T(H)NM ¢ T(M_ v M). Choose g in (T(M- v M))*,
e in H such that (Te,g) =1 and Te € M. Then (e,T*g) =1, (Tx,g) = (z,T*g) =0
forany z € M_VM. By T*g € (M_V M)*, Te € M and [7, Lemma 3], it follows that
(Te)®(T*g) € Rad (alg £). By Lemma 2.2, T has a rank one summand in Rad (alg £).

Conversely, suppose T has rank one summand in Rad (algf). It follows that
there exist e, f € H such that T(e® f)T = (Te) ® (T*f) € Rad(algL). By [6,
Lemma 3), there exists M in £ such that T*f € (M- Vv M)*, (Te,f) = 1. Hence
TH)NM ¢ T(M-V M). 0

Let £, and L, be subspace lattices on Hilbert spaces H; and H,, respectively.
Then the ordinal sum £; + L, is defined as the subspace lattice on H, @ H, given by

£1+£2={L®(0)1 LEL:l}U{Hl@M: ME[,g}.

THEOREM 2.10. Let £, and L2 be subspace lattices on Hilbert spaces H, and
H,. If S(£1) and S(L2) are strongly decomposable, then S(L; + L») is strongly
decomposable.

PROOF: Since

Ay T

alg (L1 + L2) = {( o A2> A;€algl;, fori=1,2,Te B(HQ,HI)},
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we have

(2.1) S(Ly+L2) = {(131 5 ) :Bi€ A(L;), fori=1,2, and S € B(Hg,Hl)}.
2

Let T be a finite rank operator in S(£;+ £2). Then

T = (1(;1 ’_IS" ) , where T; € §(L;) fori =1, 2 and S € B(H», Hy).
2

Suppose T} # 0. Since S(L£,) is strongly decomposable, we may choose e; € H,
f1 € Hy such that Ti(e; ® f1)T) is a rank one summand of T} in S(L;). Let e = e; ®0
and let f = f10. For any z =z, ® z2 € Hy ® Hs, (z, f) = (=1, f1). It follows that

Ti(e1® fi)Th Ti(ex ®f1).5') _

T(e@f)T:( . 5

By (Te, f) = (The1, f1) =1, (2.1) and T(e ® f)T € S(L1 + L2), it follows from Lemma
2.2 that T(e ® f)T is a rank one summand of T in §(£; + £2).
If T, =0 and T; # 0, we can similarly prove that T has a rank one summand in

S(ﬁl + Cg)

0 A
Suppose that Ty = T2 = 0. Then T = ( ) Since B(Hs, H,) is strongly

0 0
decomposable, it follows that T has a rank one summand in S(£; + £3).

Since T is any finite rank operator in S(Ly + L£2), it follows that S(L; + £3) is
strongly decomposable. 0

Let
Je={LeLl: L#(0)and L_# H}, Pc={LeL:L¢L_}

By [13], we know that L € £ is completely meet prime if and only if L = M_ for some
MeP..

LEMMA 2.11. ([15, Lemma 2.3.1]) Let K and L be subspaces of H and let
n
F =) e, ® fi be a rankn operator in B(H). If F(L) C K and f; ¢ L', then F can

=1

n ~
be writtenas F=€:®@ fi+ Y  e; ® f; with e € K.

i=2
THEOREM 2.12. Let £ be a subspace lattice on H such that Jr = P, and
V{L :L € Jc} = H. Then alg L is strongly decomposable.

PRrOOF: Suppose that alg £ is not strongly decomposable. Then there is an op-
n
erator of rankn > 1 T = Y e; ® f; in alg L such that T does not have a rank one

i=1
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summand in algL. By H =V{M : M € J:}, it follows that there exists an M in J;
such that f; ¢ M. By Lemma 2.11, T can be written as

T=E1®f1+Zei®fi,
i=2

with & € M. Let
(2.2) N=n{LeJ;:& €L}

Then N € Jz and €; € N.

Now we show that €; € N_. Suppose €; ¢ N_. Since T* = fi ®e1 + > f~, ® ey,
=2

n
by Lemma 2.11, we have that T* = g; ® €, + 3 fi ® h; with g, € (N_)l.

i=2

By & € N and g; € (N_)", we have that g; ® & is a rank one summand of T*
in alg £*. Hence T has a rank one summand in alg £. This is a contradiction.

Let W =N_NN. We have e; € W and W € J:. By the assumption, W C N
and e; € W. This contradicts (2.2). |

THEOREM 2.13. Let L be a subspace lattice on H such that J; = P, and
N{L_-:L € Jc}=0. Then alg L is strongly decomposable.

PRrROOF: By [14, Proposition 2.1}, it follows that
Je1 = {(M~)l M€ JL}.

Since Jr = P, for any M € J., we have that (M_)'L is completely join prime. Hence
for subspace lattice £1, we have J,1. = P,r. By N{M_ : M € J:} = (0), it follows
that V{N : N € J,1} = H. By Theorem 2.12, alg £ is strongly indecomposable. It
follows that alg £ is too. 0

CorOLLARY 2.14. ([10]) Let L be a subspace lattice on H. If L satisfies
one of the following conditions
(1) vV{K:KeJ:}=H and foreach K in J., K_ VK =H,
(2) N{K-:KeJ:}=(0) and foreach K in J;, K_VK =H,
then alg L is strongly decomposable.
If £ is a completely distributive subspace lattice, by [11] we have V{L : L €

Jcy=H and N{L_: L € Jc} = (0). By Theorem 2.12 or Theorem 2.13, we have the
following result.

COROLLARY 2.15. ([15, Theorem 2.3.2]) Let £ be a finite distributive sub-
space lattice on H which satisfies Jy = P, . Then alg L is strongly decomposable.
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