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DECOMPOSABILITY OF FINITE RANK OPERATORS IN
CERTAIN SUBSPACES AND ALGEBRAS

JlANKUI Li

Let S be either a reflexive subspace or a bimodule of a reflexive algebra in B(H),
the set of bounded operators on a Hilbert space H. We find some conditions
such that a finite rank T e S has a rank one summand in 5 and 5 has strong
decomposability. Let S{C) be the set of all operators on H that annihilate all the
operators of rank at most one in alg C. We construct an atomic Boolean subspace
lattice £ on H such that there is a finite rank operator T in S(£) such that T
does not have a rank one summand in S(C). We obtain some lattice-theoretic
conditions on a subspace lattice C which imply alg£ is strongly decomposable.

1. INTRODUCTION

Let if be a complex Hilbert space, B(H) the set of bounded linear operators on
H, and F(H) the set of operators with finite rank. For convenience we disregard the
distinction between a subspace of H and the orthogonal projection onto it. Throughout,
all subspaces will be assumed to be closed. By a subspace lattice on H, we mean
a collection £ of subspaces of H with (0), H in £ and such that for every family
{Mr} of elements of £ , both PiMr and VMr belong to £ , where VMr denotes the
closed linear span of {M r } . A totally ordered subspace lattice is called a nest. A
complemented and distributive subspace lattice is called a Boolean lattice. An element
L of a subspace lattice £ is called an atom if the condition (0) C K C L (K € £)
implies either K = (0) or K = L. A subspace lattice is atomic if each element of the
lattice is the closed linear span of the atoms it contains.

For every subspace lattice C on H, we define alg C by

alg£ = { T e B(H) : TM C M, for every M e £ } .

Let £ x = {/ - P : P € £ } . We have a l g £ x = ( a l g £ ) \ If e, / are in H, then the
rank one operator x »-> f(x)e = (x, f)e is denoted by e ® / . If K, L 6 £ , we denote
by L_ the subspace L_ = V{M e £ : L <£ M}, by K# = V{L € £ : K <£ L_} and
by K+ = n{L e £ : L £ K]. By convention H+ = n0 = # , (0)_ = V0 = (0). The
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complete distributivity of £ is equivalent to K = K# for all K € £ . An element L in
£ is completely meet prime if L ^ L+. An element M in £ is completely join prime if
M£M_.

If M is a subset of H, we denote by [M] the norm closure of span{x : x e M } .
In this paper, " C " is used for set inclusion while " C " is reserved for proper inclusion.
Let R and T be finite rank operators on H. We say that R is a summand of T if
rankT = rank.R + rank(T - R). Let S be a subset of B{H). Then S is said to be
decomposable if each finite rank operator in 5 is a sum of rank one operators in S. We
say that S is strongly decomposable if, for each r > 1, each operator in S of rank r can
be expressed as the sum of r rank one operators in 5 . A subspace 5 of B(H) is said
to be reflexive if whenever T in B(H) satisfies the condition Tx £ [Sx] for all x S H,
then T is in S.

Finite rank operators and rank one operators have been used extensively in the
study of nest algebras and related non-self-adjoint reflexive algebras. By [5], we know
that if £ is a nest or an atomic Boolean subspace lattice on H, then alg £ is strongly
decomposable. These results were first proved in [16] and [12], respectively. These
results were improved in [10]. Erdos and Power [3] proved that if TV is a nest and
<S is a cr-weakly closed bimodule of algA/", then <S is strongly decomposable. In [6],
Hopenwasser and Moore construct a totally atomic commutative subspace lattice £ and
a rank two operator in alg £ which cannot be written as a sum of rank one operators
in a lg£ .

Let 5 be either a reflexive subspace or a bimodule of a reflexive algebra. For
T € 5 fi F(H), we find some conditions such that T has a rank one summand in S.
We also obtain some necessary and sufficient conditions which imply that S is strongly
decomposable. We construct an atomic Boolean subspace lattice £ on H with three
atoms for which there is a finite rank operator T in 5(£) such that T does not have a
rank one summand in <S(£), where <S(£) is the set of all operators on H that annihilate
all the operators of rank at most one in alg £ . This answers a question in [8] negatively.
We obtain some lattice-theoretic conditions on a subspace lattice £ which imply alg £
is strongly decomposable. Theorems 2.12 and 2.13 generalise the main results of [10].

2. MAIN RESULTS

In [2], Erdos gives some necessary and sufficient conditions such that a reflexive
subspace of B(H) contains a rank one operator. In the following we obtain another
equivalent condition.

LEMMA 2 . 1 . Let 5 be a reflexive subspace of B(H). Then e <8> f belongs to S

if and only if f € (span{y : e ^ [Sy], y € H}) .
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P R O O F : Suppose that e ® / e 5 . For any y in H, e ® f{y) = (y,f)e € [Sy].

Hence if e $ [Sy}, (y,f) = 0. So / € (span{y: e g [5y], y € i / } ) X .

Conversely, suppose / € (span{y : e ^ [5y], j / e f f } ) . Let y e H. It follows

that e <8> / (y) = (2/, / ) e € [Sy]. Since 5 is reflexive, it follows that e ® / € S . D

The following Lemma will be used repeatedly.

LEMMA 2 . 2 . ([5]) Let T be a finite rank operator and let A be a rank one
operator in B(H). Then A is a summand of T if and only if A is of the form (Ty) ®
(T*f) (or equivalently, T(y ® f)T), where y and f are vectors in H and {Ty, / ) = 1.

THEOREM 2 . 3 . Suppose that S is a reflexive subspace of B(H) and T is a finite
rank operator in S. Then T has a rank one summand in S if and only if there is a
non-zero e in H such that e 6 T(H) and e £ span{Ty : e $ [Sy], y € H}, where
T(H) is the range of T.

PROOF: Suppose that 0 ̂  e e T{H) and e £ span{Ty : e £ [<Sj/], y e H} . Choose

g £ H such that g € (span{T2/ : e g [Sy], y € tf})"1", (e,ff) = 1, and take y £ H

such that Ty — e. For any y satisfying e ̂  [Sy], we have (y,T*g) — 0. It follows that

T*p e (span{?/ : e £ [Sj/], y 6 H})±. Using Lemma 2.1, e®T*g = (Ty) ® (T*3) € 5.

Using Lemma 2.2, e ® (T*g) = (Ty) ® (T*g) is a rank one summand of T in S.

Conversely, suppose that T has a rank one summand in S. By Lemma 2.2, there
exist m and f in H such that

T(m ® /)T = (Tm) ® (T*f) e S,

and
(Tm,f) = l = (m,T*f).

Let Tm = e. Using Lemma 2.1, we have T*f € (span{y : e $ [Sy], y € #}) .
Hence for any v € span{y : e g [Sy], y € # } , (v,T*f) = (Tu,/) = 0. Since
(e,/) = (Tm,/) = 1, it follows that e £ T(span{y : e £ [Sy], y e H}) = span{Ty :
ei[Sy],yeH}. D

COROLLARY 2 . 4 . Let M and N be nonzero subspaces of Hsatisfying MnN =
(0) and My N = H and let C = {(0), M,N,H}. Then every a -weakly closed alg C-
bimodule S is strongly decomposable.

PROOF: By [9, Theorem 2.2] and [1, Theorem 3.1], it follows that S is reflexive.
By [4, Theorem 2], we know that S is determined by an order homomorphism <j> of 5 .
Let <$> be any order homomorphism of C and let

M = {Te B(H) : (I - <t>(E))TE = 0,EeC}.
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By the symmetry of M and N, we only need to consider that in the following cases
M. has strong decomposability.

(1) (j>:M^M, N^(0),
(2) 4>:Mt-+N,N>-+{0),
(3) <A:M>-> N, N>->M,
(4) 4>:M*->M,N>->N,
(5) <i>:M\->H,Ni->(0).

For cases (1) to (4), we can easily prove the result using Theorem 2.3.

In case (5), M = {T e B(H) :TN = 0}. Let P denote the projection on N.

Then T is in M if and only if TP = 0. Hence M has strong decomposability. D

If £ is a subspace lattice on the Hilbert space H, let 5 (£) denote the set of all
operators on H that annihilate all the operators of rank at most one in alg £ , that is

S(£) = {T e B(H) : tr (TR) = 0, for every R € a lg£ of rank at most one}.

LEMMA 2 . 5 . ([8]) For any subspace lattice C on H,

S(£) = {Te B(H) : T{K) C K- for every K € £ } .

LEMMA 2 . 6 . ([8]) Let £ be a subspace lattice on H and e,f e H. The

following are equivaient.

(1) e®/eS(£),
(2) e e l and f € (L^)-1 for some LeC.

THEOREM 2 . 7 . Let C be a subspace lattice and let T € S(C) n F ( i J ) . Then
T has a r a n i one summand in S(C) if and only if there exists an L e £ such that

PROOF: Suppose that there exists L € £ such that T(if) n L £ T(L#). Let

e € T(if) n i with e £ T(L#). Let e = Ty. Choose 5 € (r(X,#))x such that

(e, 5) = (Ty, g) ~ 1. We have, using Lemma 2.6

(Ty, g) = (y, T*g) = 1 and T[y <g> g)T = {Ty) ® (T'p) e S{C).

By Lemma 2.2, it follows that T has a rank one summand in <S(£).

Conversely, suppose T has a rank one summand in <S(£). By Lemma 2.2, there
exist e, / in H such that

T(e ® / ) T = (Te) ® (T*/) 6 5(£) and ( re , / ) = 1.

By Lemma 2.6, there exists L in £ such that Te € L and T*/ € (I^)"1. Since Tee L,

and (Te,/) = 1 and for any v € L#, (Tv,/) = 0, we have that T(H)nL <£ T(L#). D
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EXAMPLE 2.8. There is an atomic Boolean subspace lattice £ with three atoms such
that 5 (£) is not strongly decomposable.

P R O O F : Let H be a finite-dimensional Hilbert space and let A be an invertible
operator in B(H). Define Lx = {(z,0,0) : x € H), L2 = {(x,Ax,0) : x € H} and
L3 = {(x, Ax, Ax) : x € H} . By [1, Lemma 6.3], it follows that {Li, L2, L3} is the set
of atoms of an atomic Boolean subspace lattice.

Define T : Lx ->• L2 V L3, by (a;,0,0) >-> (0,0,Pa:), T : L2 -> Lx V L3, by
(x, Ax, 0) H-> (0, Px, Px), and T : L3 -> L2 V L i , by (a;, Ar, .4x) •->• (0, Px, 0), where P
is a nonzero finite rank projection in B(H). We can extend T to a bounded finite rank
operator in B(H ®H®H). In fact T(x, y, z) = (0, PA~ly, P(x - ^ l " ^ ) ) , for every
x,y,zeH. By the definition of T , it follows that T € 5 ( £ ) . We have that T(H)nLi =
(0), r ( f f ) n L2 = (0) and T ( # ) n L3 = (0). We can check that T"(.ff) n (L2 V L3) C
T ( L 2 V L 3 ) , T(if) n (L2 V Lx) C T{L2V Lr) and r ( i f ) n (Lx V L3) C T ( L i V L 3 ) .
Hence by Theorem 2.7, T does not have a rank one summand in 5 ( £ ) , where £ is the
subspace lattice generated by L\,L2 and L3. D

REMARK. The above Example answers a question in [8, p.31] negatively.

THEOREM 2 . 9 . Suppose that £ is a subspace lattice and Rad (alg £) is the
radical of alg C. Let T e Rad (alg £) C\F(H). Then T has a rank one summand in
Rad (alg £) if and only if there exists an M in £ such that T(H) n M <£ T(M_ V M).

PROOF: Suppose that T{H) D M £ T(M.VM). Choose p in (T(M_ VM))1,
e in H such that (re,5) = 1 and Te e M. Then (e,T*s) = 1, (Tx,#) = {x,T*g) = 0
for any x € M_VM. By T*g € (M_ V M)x , Te € M and [7, Lemma 3], it follows that
(Te) ® (T*^) e Rad (alg £). By Lemma 2.2, T has a rank one summand in Rad (alg £).

Conversely, suppose T has rank one summand in Rad (alg £). It follows that
there exist e,f € H such that T(e® f)T = (Te) ® (T*f) € Rad(alg£). By [6,
Lemma 3], there exists M in £ such that T*f € (M_ VM)1, (Te, / ) = 1. Hence
T(H)nM<£T(M- VM). D

Let £1 and £2 be subspace lattices on Hilbert spaces H\ and H2, respectively.
Then the ordinal sum C\ + £2 is defined as the subspace lattice on Hi © H2 given by

£i + £2 = {L@(0) : Le CX}\J{HX@M : M € £2}.

THEOREM 2 . 1 0 . Let £1 and £2 be subspace lattices on Hilbert spaces H\ and
H2. If S(Ci) and S(C2) are strongly decomposable, then S(d + £2) is strongly
decomposable.

PROOF: Since

a l g ( £ 1 + £ 2 ) = | ^ 1 J J -.AiZalgCi, for* =1,2, T e B(H2,Ht)} ,
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we have

(2.1) S ( d + £ 2 ) = {(BQ B 2 ) : B i £ A{Ci)' f ° r * = h 2

Let T be a finite rank operator in S(£i + £2) • Then

T=(Tl f V where T, € S{d) for i = 1, 2 and S € B(ff2,Hi)-
V 0 J-2J

Suppose T\ ^ 0. Since 5(A) is strongly decomposable, we may choose e\ € H\,
/1 6 ifi such that Ti(ei (8 /i)Ti is a rank one summand of T\ in S(£i). Let e = ei ©0
and let / = /1 © 0. For any x = xi@x2e Hx® H2, (x, /) = (xx, /1). It follows that

T ( e ® / ) T = ( T l ( e i ® / l ) T l

By (re, / ) = (Tiei, /1) = 1, (2.1) and T(e ® f)T e 5(£i + £2), it follows from Lemma
2.2 that T(e ® f)T is a rank one summand of T in 5(£i + £2).

If Ti = 0 and T2 / 0, we can similarly prove that T has a rank one summand in

Suppose that 7\ = T2 = 0. Then T = f J. Since B(H2,H{) is strongly

decomposable, it follows that T has a rank one summand in 5(£i + C2).

Since T is any finite rank operator in S(£i + £2), it follows that S(d + £2) is
strongly decomposable. D

Let

Jc = {L € £ : i ? t (0 ) and L_ j : H}, VC = {L € C : L <£ L_}.

By [13], we know that L G £ is completely meet prime if and only if L = M_ for some

M eVC-

LEMMA 2 . 1 1 . ([15, Lemma 2.3.1]) Let K and L be subspaces of H and let
n

F = Yl ei ® /t b e a r a n k n operator in 5(if). If F(L) C K" and fi^L-1, then F can
t=i

be written as F = e"i ® /1 + ^ e» ® /> Wlt^ e\ e K.
t=2

THEOREM 2 . 1 2 . Let £ be a subspace Jattice on F such that Jc = Vc and
V{L : L e Jc) — H. Then alg£ is strongly decomposable.

PROOF: Suppose that alg £ is not strongly decomposable. Then there is an op-
n

erator of rank n > 1 T = Yl e» ® /• in alg £ such that T does not have a rank one
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summand in a l g £ . By H = V{M : M G Jc}, it follows that there exists an M in Jc
such that / i ^ M x . By Lemma 2.11, T can be written as

i=2

with ei e M. Let

(2.2) iV = n { i £ j £ : e 1 € L}.

Then jV G J £ and ex £ N.

Now we show that e~i G AL.. Suppose Z\ $ AL.. Since T* = / i ® e\ + Yl h ® ei >
t=2

_ n — i
by Lemma 2.11, we have that T* = gx ® ei + X! /• ® ̂ t w i t h 5i 6 (N-) •

t=2

By ?i € iV and ^i € (N-) , we have that 31 ® ei is a rank one summand of T"
in alg £ x . Hence T has a rank one summand in alg C. This is a contradiction.

Let W = iV_ n N. We have ei G VK and W € Jc- By the assumption, W C Af
and e i S W . This contradicts (2.2). D

THEOREM 2 . 1 3 . Let £ be a subspace lattice on H such that Jc = Pc ar>d
n{L_ : L G Jc] — 0- Then alg£ is strongly decomposable.

PROOF: By [14, Proposition 2.1], it follows that

J £ i = {(M_) X :MG Jc}.

Since Jc = Vc , for any M € Jc-, we have that (M_) is completely join prime. Hence
for subspace lattice £ x , we have Jc± = Vcx • By fl{M_ : M G Jc} = (0), it follows
that v{iV : N G Jcs_] = H. By Theorem 2.12, alg£x is strongly indecomposable. It
follows that alg£ is too. D

COROLLARY 2 . 1 4 . ([10]) Let C be a subspace lattice on H. If C satisfies
one of the following conditions

(1) V{K : K e Jc} = H and for each K in Jc, K_ V K = H,

(2) n{#_ :KeJc} = (0) and for each K in Jc, K_ V K = H,

then alg C is strongly decomposable.

If £ is a completely distributive subspace lattice, by [11] we have V{L : L G
Jc} = H and C\{L- : L G Jc} = (0). By Theorem 2.12 or Theorem 2.13, we have the
following result.

COROLLARY 2 . 1 5 . ([15, Theorem 2.3.2]) Let £ be a finite distributive sub-
space lattice on H which satisfies Jc = Vc- Then a lg£ is strongly decomposable.
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