
EMBEDDINGS INTO GROUPS WITH ONLY A FEW

DEFINING RELATIONS

Dedicated to the memory of Hanna Neumann

W. W. BOONE* and D. J. COLLINS

(Received 27 June 1972)

Communicated by M. F. Newman

It is a trivial consequence of Magnus' solution to the word problem for one-
relator groups [9] and the existence of finitely presented groups with unsolvable
word problem [4] that not every finitely presented group can be embedded in a
one-relator group. We modify a construction of Aanderaa [1] to show that any
finitely presented group can be embedded in a group with twenty-six defining rela-
tions. It then follows from the well-known theorem of Higman [7] that there is a
fixed group with twenty-six defining relations in which every recursively presented
group is embedded.

The results of the present paper are analogous for groups of the results of [2]
about semigroups; however, no knowledge of [2] is required to read this paper.

Let A be any finitely presented group. In view of the nature of our proposed
theorem we may, without loss of generality, assume that A has two-generators—•
say A = <a!,a2>. (See for example [8]).

We begin by regarding A as a semigroup. In this role A has four generators,
namely aua2,a^1 and a^1. When convenient, we shall sometimes write a3 and
a4 for aj"1 and a^1 respectively.

Let A = (aua2,a3,a4; Rt = 1, i = 1,2, •••,«).

We begin by applying to A a construction of the type given on p. 307 of [4]. It
will turn out that there is one delicate point in the argument. In order that this
point will be clear, and to make the paper more easily readable, we specify the
various constructions in detail.
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2 W. W. Boone and D. J. Collins [2]

Our first step is to define the semigroup

A, = (aua2,a3,a4,p; Rtp = p, ajp = pay, i = 1,2,—, j = 1,2,3,4).

Next we give an alternative presentation of A*. For this we write as for p. Then
by introducing additional generators and relations we can present A, as

A, = (a1,a2,---,ar; Aj = BJt j = 1,2, —,s)

where each relation is of the form ax = a,,av, 1 ^ k, \i, v ^ r. By suitable repeti-
tion, if necessary, we may assume s = 2', for some f.

We now embed A* in a semigroup £ on generators /? and y. The embedding
is defined by the mapping ij/ given by a"f = PPfPy'*1'' and (l /F)* = C/*V*.
Then £ = (fry; 4 = flj, j = 1,2, - , s ) .

Let u = r + 4; then /I* contains u symbols and Bj" contains 2M symbols.
Writing x M for the i-th symbol of A*j and yu for the i-th symbol of B* we define

M = ^1,1X1,2

and

(recall that s = 2').
Let 9K be the semigroup with presentation

P,y,e;

eySy = ye syy — ye

M = N

We now define the semigroup 31 = (a, o-;craa = ouxaaa, ova = onx<ra,MTN'),
where

0* == <7<x, y1 = a, £
r s aa and (7Z) ' = Y'Z1.

We write x f° r the composition of \j/ and T.

THEOREM 1. Let U and V be any two words of A. Then

(i) {UV)X = UXF" (i.e. are identical as words);
(ii) IfU = AV then U*px<j<x2' = mV*p*a<x2';
(iii) / / Z is a word of 5R and Zpxa<x2t = \Vfaa2',

then there exists a word W of A such that Z = W and W = AV.

PROOF. Part(i) is trivial. Parts (ii) and (iii) are more or less in the literature.
Initially one must note that where U and V are words of Up = A Vp if and only
if U =AV. Thereafter the most detailed source is probably [2] ([10] contains only
a sketch).
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[Unfortunately it has not been possible for us simply to quote results exactly
as they occur in the literature. Also we have not been able to make our notation
mesh precisely with that in the literature.]

We now employ the G( X, O0) construction on page 307 of [5] with 91 in the
role of X. We rewrite 91 as

(si ,s2; P, = Qt, i = 1,2,3)
and define

I 5R. = (sus2,q; Ptq = qQt, Sjq = qsp i = 1,2,3, j = 1,2).

For convenience we write the relations of 9 t . as Ftq = qKt, i = l ,2 , - - - ,5 and

0

sus2,q,t, k,a,d;

write O0 = pVa2' s p"s2Si' . Then the group G = (5(91,<D0) has presentation:

= Sjd6ad6

dladjFtq = qK^ad1

ta = at td = dt

ka = ak kd = dfc

V ' ^ o ) = (*o lq~ltq<S>0)k

where i = 1,2, ••• 5, j = 1,2 and /̂ - is obtained from Ft by replacing Sj by s j 1 .
For any word Wof A, let We denote the word obtained from W* by replacing

Sj by sj1.

THEOREM 2. For an>» word W of A, W = Al if and only if

PROOF. After sorting out the notation one sees that this is an immediate con-
sequence of Theorem 1 (ii) above and Lemma C and Technical Result (i) of [5].

At this point we begin to follow Aanderaa [1]. Let k0 = q<bok<&Q iq~1; then
of course Theorem 2 says that W = Al if and only if ko\W*)~1tWko

= aiW9)'1^9- We shall sometimes regard k0 as an abbreviation and at other
times as a new generating symbol.

Let C = <c1;C2> be an isomorphic copy of A. It is worth stressing that we
shall in fact embed C rather than A.

Let Kt = G * C. We shall define a sequence of groups using the well-known
//AW-construction (see [8] or [4]) or, to use alternative standard terminology in
a 'word problem' context, Britton extensions. We shall call such a construction
an HNNiJ-extension. It will not always be trivial to verify that we have a legitimate
instance of the construction, i.e. that Britton's isomorphism condition holds. For
the moment we simply give the presentations, reserving the verifications till later.
They are:
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K2 = (Kubub2\ b^sjb, = sp fc,"1^ = c}, b;lkobt = kocj\ i,j = 1,2);

K3 = (K2,f;f-\at)ebi
ef= (a])9, f~lkj= fc0, i = 1,2 e = ± 1);

K4 = (X3,fc; h-Hh = (/, fc-^ofc = *o. *" V = s;> J = 1.2).

THEOREM 3. (i) K^ is naturally embedded in K 4 .
(ii) The defining relations of C are consequences of the

remaining thirty-three defining relations of K 4 .

Before proving Theorem 3, we take the final step in our argument. It will be
observed that K4 has a number of commuting relations. Using a technique due
essentially to Borisov [3] we can eliminate some of these.

THEOREM 4. KA can be embedded in a group K'4 with twenty-six defining
relations

PROOF. Define a0 = qQ>oa<&oiq~1 and .do = q®odQ>o1q~i. Then we can pre-
sent X4 in such a way that the generator k0 commutes with the generators a0, d0,
f, h and /. Also bt and b2 commute with su s2, Cj and c2. If we twice apply Borisov's
theorem in the form in which it appears in [6], it is clear that with our first ap-
plication we can reduce the number of commuting relations by three, and with
our second application by another four.

We now prove Theorem 3, beginning with part (ii).
Let W = Al; we shall write Wb and Wc for the copies of Win bub2 and c,,

c2 respectively. We shall deduce Wc = 1 from the relations of K4 excluding the
relations of C. We have, by Theorem 2

ko\WyH{W6)ko = {W^-HW". (*)

If we conjugate both sides by h and use the relations involving h we obtain

ko\We)-ltfWek0 ^{W9YltfW9.

If we introduce suitable inverse pairs and use (*) we obtain

Now it follows from the definition of / and 9 that if

Ws ahah-ain then We = «• • •< , •

Hence we may pass/from left to right across We to obtain kg 1Wbk0 = Wb. Since
k^bfko = bfi, we have WbWc = Wb and so Wc = 1.

To prove part (i) we must establish three isomorphisms.
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(1) K2 is an i/NNB-extension of Kt. Here we must show that for each
i, (Sj,ko,ct;j,l = 1,2> and (Sj,koc^\c';j,l = 1,2> are isomorphic under s,-> Sj,
ko-*koc~\ c,-+c,. This follows from the fact that (Sj,ko,c,y is the free
product <Sj-, fco> * C and <S;, fco> is free on these generators.
(2) K3 is an HiViVB-extension of K2. This time we must look at (atfbf -* («?)">
k0 -+ fc0. We shall show that <(a?)fl, fco> is free on these generators. Then when we
map K2 ->• G by putting 6f = 1, i = 1,2 we map <(aj)fl6f,Ar0> onto <(fli)9, k0}. It
suffices to prove that (.(atf is free in <Si,s2>.

We recall the definition of 6. Writing a3 and a4 for o1~1and aj"1, we see that

8 _ / -1 -U2 -(i+l) -1 -(r+l-i)
ai = VS2 Sl J S 2 5 1 S 2 •

Let us call the right most sj"1 the central symbol of a\. Then it is not hard to see
that in a product (alfia])", r\,\ - + 1 the central symbols of af and af are not
cancelled unless i = j and r\ + v = 0. This extends to arbitrary products and the
desired assertion follows.

(3) K4 is an HNNB-extension of K3. In this case we must prove that
D = (spt,koy and E = <Sj,tf,fco> are naturally isomorphic. To do so we shall
show that D has presentation

where W ranges over all relators of A.
Let X be any word in s1,s2, t and k0, such that X = G l . We want to reduce

X to the empty word using only the displayed relations. If X contains a subword
t"WBk , where W= Al, we replace this subword by Wekv(Wey1t"We and freely
reduce the resulting word. This operation is clearly equivalent to an application of
the given relations. Let Xt be the result of iterating this procedure for as long as
possible.

Suppose Xt is non-empty. Since both <s,-, t} and <sy, feo>
 a r e free w e m a v a s"

sume both / and k0 appear in X^. We can apply Britton's Lemma [4] to G with
k0 as stable letter. Hence Xt contains a subword Zlt

miZ2---Zrt
mrZ,.+ 1 which

belongs to <a0, d0, t}. Next we may use t as stable letter to deduce that there exist
words i?! and R2 on a and b such that Z r + 1 ^O 0 = R1q<S>0R2 in the group G2 of
[5]. (For the moment we use the notation of [5].) This last equality yields the two
equalities

Ri%+lAil -A't: = o4l aad * 0 J W X 1 " C = GA-

We require a lemma.

LEMMA. IfRZA'l •••A'" = Gil, then Z is a negative word on the Sj-symbols.

Proof. The s-reduced word obtainable from A\\ • • • At" has form
Rk = i(D'mk

aDmkKYk> by Lemma 14 of [5] (correcting a misprint). Moreover m, = 0
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(for sr = + 1 or et = - 1 ) . It then follows from Lemma 12 of [5] that Z cannot
contain positive occurrences of Sj.

Picking up the main argument again we see that we now have exactly the
hypotheses of Lemma 19 of [5] and thus Z r + 1 = A where A<jO0 = n q<&0. In turn
we obtain AO0 = rfbg. After sorting out the notation, we see that, by Theorem 1
(iii),A = W for some relator W of A. Thus Z r + 1 = W and this is a contradiction.

We complete the whole argument by showing that E has presentation

where we write Ix s tf and W ranges over all relators of A.Us ng the relations of
K3 we see that

and (We)~it1W
e = K3(W*)~HWeWb. So the displayed relations certainly hold in

E. Using the fact that fcois a stable letter for D over <Sy,t> we can then easily check
that the natural map from D to E is an isomorphism.

One point in our construction is perhaps worth comment. Instead of Theorem
2 as stated, we could have asserted that W = Al if and only if

Defining t0 s q-1tq and fe0 s 00fc$oX we then have W = A\ if and only
if kaXWy^oWko = G (W"r ^oW*. What is interesting is that if we attempt to
repeat the construction with t0 in the role of t (and / instead of 8) the argument
breaks down.

To see this we observe that there certainly exists a word <t» of 5R such that
O = ^OQ and Y = <M>o 1 is freely reduced. Then it follows that

fco lY-%Yko =G Y-'toY while k^Y~

Thus D and £ cannot be isomorphic in the natural way.
We conclude with a few speculative remarks concerning the best possible

result along the lines of our theorem. It is of course tempting to conjecture that
every finitely presented group is embeddable in a two-relator group. If this be so,
then there exist two-relator groups with unsolvable word problem, - but the best
result presently known for this question is that there exist groups with twelve
relators and unsolvable word problem.
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