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how they may be extended to any number of coaxial cylindrical layers
of different substances, solid and fluid. We would only remark that
a diminution of density in the gas surrounding the cylinder has ex-
actly the same effect in diminishing the variable part of the pressure,
and so lowering the sound, as it had in the case of the spherical
shell.

Eighth Meeting, June 11th, 1886.

Dr Ferauson, F.R.S.E., President, in the Chair.

A Problem in Combinations.
By Airzxanper RoBERTSON, M.A.
L

Given sets of balls of different colours, in how many ways may
they be arranged in line so that no two balls of the same colour shall
come together.

If we have two colours only, and the same number *m of each
colour, there are evidently two arrangements possible; if we have
m, m — 1 respectively, only one arrangement is possible; if we have
m, m —2; m, m—3, &c., no arrangement is possible, We may write
these results

(m, m)=2, (m, m—1)=1, (m, m ~2)=0, (m, m~3)=0, &c.

In,the sequel we shall consider three colours only, say m white
balls, n black balls, and p red balls. The number of arrangements is
denoted by (mnp), and in general we shall take m greater than =
and n greater than p, but not always.

Keeping m and n constant, the smallest value of pism-n-1.
There is algo a superior limit to p; taking n as then the smallest we
should have, smallest value of n=p —m —1, therefore p=m+n+1,
and therefore the total number of values of p is 2n+3. For example,
let m =5 and n=2, the smallest value of p is 2 and the greatest 8;
or p may have seven values, so that arrangements are possible with
522, 523, 524, 525, 526, §27, 528.  If, however, m and = are equal,
the case is slightly different; then the smallest value of p is 0, and
the greatest is 2m + 1, or p has 2m + 2 values.
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‘Weproceed now to discussthenumber of arrangementsof 4 white (W),
3 black (B), and 2 red (R) balls, or (432). The natural way would be to
write the 9 numerals on 9 cards, and first find the possible arrangements
of the 4 white balls, by considering in how many ways 123...... 9 may
be arranged 4 at a time so that no two consecutive numbers shall come
together. We find that we have 15 such arrangements, which are
given in the table, with the remainders of 5 places for the other balls.

Remainders. Values.

@ 1357 24689 6
(@) 1358 24679 6

®3) 1359 24678 3

() 1368 24579 6

(5) 1469 24578 4

(6) 1379 24568 3

(1) 1468 23579 6

®) 1469 23578 4

) 1479 23568 4
(10) 1579 23468 3
(11) 2468 13579 10

(12) 2469 13578 6
(13) 2479 13568 6
(14) 2579 13468 6
(15) 3579 12468 6
79 in all.

We have now to take these remainders and divide each into
groups of 3’s and 2's, rejecting all those in which two consecutive
numbers come together. Thus, taking the first remainder 24689, it

'ves

& 246 89
248 69
249 68
268 49
269 48
289
468 29
469 28
489
889
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So that rejecting the unsuitable ones, we get six possible arrangements.
We may call this the value due to this first remainder.  Treating
them all in the same way we get the third column of the table, or
values due to the different remainders, and the sum of these being 79
gives us the result

(432)="79.

Generalizing this method, the number of arrangements of the m W
balls is Czt»+:,  The following table gives specimens of the value
due to a good many remainders. The value is found to depend en-
tirely on the number and range of the sequences in the different
remainders. This will abridge the work very much. The value iz a
maximum when there is no sequence, and is then C%*? as in the 11th
remainder in the above table.

Species of Bpecies of
sequences. Values, seyuences, Values.
(0) c.r (3,3) Cup
(2) 20yt (2,4) 40y
(3) Caip (2,5) 204
4 2055~ (3,4) 2034
(5) g (2,2,92) 8Cny
(6) 20+ (2,2,3) 40z
(2,2) 4Cpp (2,3,3) 200157
(2, 3) 200 (2,2,22) 16Czte—s

The work for (432) may therefore be put down as follows—

Species.  Number. Value. Arrangements.

(0) 1 10 10
@) 8 6 48
(3) 3 3 9
(22) 3 4 12
15 79

Application to (543).
Number of arrangements of the 5 =C{=56.

On analysing the remainders as to their sequences we get the fol-
lowing results—
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Species.  Number.  Value, Arrangements.

(2) 6 20 120
(3) 10 10 100
4) 4 6 24
(2, 2) 20 12 240
(2, 3) 12 6 72
(2, 2,2) 4 8 32
588

1L

We have now to discuss a general theorem which will enable us
to make the number of arrangements in any case depend on similar
arrangements with a smaller number of elements.

General Theorem.
(mnp)=(m-1,n-1,p)+(m-1, n,p-1)+(mn-1,p-1)
+2(m-1,n-1,p-1)
Let W,,.., B,..,» R,., denote those of (mnp) which commence with
a W, a B, or a R respectively, so that

(mnp) =(W + B + R),pnpe

If we have one W ball more, and put it on at the beginning of the
B and R portions of (mnp) we evidently get the W part of (m + 1, », p)

that is

Wm+l. np (B + R)mnp
Similarly Wooe =B+R)iza,
S0 anp = (\'V + R)m- n—1,p
and Ry =(W+B)n;3

therefore  (mnp)=(W +B+R),,,
= (B + R)m—l, npt (W + R)m, n—1, p + (W + B)m, n, p-l

But Bisin,=(W+R\oy o5,
Rm_-l. np= (W + B)m—l. np—1
WmffT:i. 2= (B + R);ntf alLp
R, .= (W + B)M.F:l.-p—_l'
W nzi1=(B+R)m 51
Bm. n,p—1 (W + R)m w1, p—1
6 Vol.4
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therefore  (mnp)=(2W +B+R), 55,0 + (W + 2B+ R)as w35
+ (W +B+ 2Ry, 7550
=mn-Lp-D+(m-1,np-1)+(m-1,n-1,p)
W1+t Bugnpat Regnas
But Wm. i, p—1= (B+R)py, n, —1
Bm—l. np—1= (W + R)m—l. n—1, p—1
Ru——l, n-l,p= (W + B)m—-l, n—1, p—1
therefore W, ., +B. o1+ Buisa,=2(m-1,2-1,p-1)
therefore (mnp)=(m-1,n-1,p)+(m-1,np-1)+(mn~-1,p-1)
+2(m-1,n-1,p-1).
This glves us a quick method of calculating the number of arrange-
ments in any case.

Application to find (432).
(211) (311) (221) (321)

(101)=2  (201)=1 (111)=6  (211)=6
(110)=2  (210)=1  (120)=1  (220)=2
(200)=0  (300)=0  (210)=1  (310)=0
2(100)=2  2(200)=0  2(110)=4  2(210)=2

6 2 12 10

(421) (331) (322) (432)

(Gl)=2  (21)=12 (2123)=12  (322)=38
(320)=1  (230)= 1  (221)=12  (331)=18
(410)=0  (320)= 1 (311)= 2  (421)= 3
2(310)=0  2(220)= 4 2(211)=12 2(321)=20

3 18 38 79

By this method the following table of the number of arrangements
has been computed—
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(111) 6 (544) 1668
(211) 6 (551) 30
(221) 12 (552) 222
(222) 30 (553) 1026
(311) 2 (554) 3228
(321) 10 (553) 7188
(322) 38 (632) 10
(331) 18 (633) 100
(332) 74 (641) 5
(333) 174 (642) 70
(421) 3 (643) 445
(422) 24 (644) 1700
(431) 14 (651) 22
(432) 79 (652) 206
(433) 248 (653) 1150
(441) 24 (654) 4315
(442) . 138 (655) 11492
(443) 480 (661) 36
(444) 1092 (662) 326
(522) 6 (663) 1882
(531) 4 (664) 7580
(532) 44 (665) 22274
(533) 212 (666) 48852
(541) 18 amn 339720
(542) 135 (888) 2403588
(543) 588 (999) 17236524
Thus, to find (543)
(543)

(433) =248

(442)=138

(532)= 44

2(432)=158

588

To extend the theorem. Let rst denote the arrangement
(m —r, n—s, p-t), then the theorem may be written
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000 = 110 + 101 + Ol1 + 2.111
therefore 110 = 220 + 211 + 7121 + 23931
10T = 211 + 202 + 112 + 2.212
011 = 121 + TI2 + 022 + 2122
o111 = 2(321) +2(212) + 2(192) + 4(229)
therefore 000 = 220 + 202 + 022
+2(211 + 121 + 112)
+4(221 + 212 + 122)

+4.222

that is (map)=(m~2, n~2, p)+(m -2, 7 p—2)+(m n-2,p-2)
+2{(m-2,n-1,p-1)+(m-1,n-2, p-1)
+(m-1,n-1, p-2)}
+4{(m-2,p-2,p-1)+(m-2, n-1,p-2)
+(m-1,n-2p-2)}
+4(m-2,n-2,p-2)
and so on to any number of steps.
Another mode of extending it is as follows, and is much simpler,

As before 000 =110+ 101 + 011 + 2.711
therefore 111 =221 + 212 + 122 4 2.232
222 =332+ 323 + 233+ 2.333
333 =443+ 434 + 344 + 2.444
Add and reject terms which occur on both sides, we get
000 =110+ 101 +011
+221+ 212 +122
+332+323+233
+443 + 434+ 344
+111 4222 + 333 + 2.244

whose interpretation is obvious.

IIT.

Expression of the number of arrangements by an algebraic formula.
Keep n and p constant, say n=5, p=2, and m variable, we have
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(052)= 0
(152)= 0
(252)= 6
(352)= 44
(452) =135
(552) = 222
(652) = 206
(752) =102
(852)= 21

If we divide by the co-efficients of the 8th power of a binomial we
get a regular series.
0 0 % H# 3T W AR 8 2
Multiply by 28, the L.C.M. of the denominators, and difference
0 0 6 22 54 111 206 357 588
0O 6 16 32 57 95 151 231
6 10 16 25 38 56 80
4 6 9 13 18 24
2 3 4 5 6
1 1 1 1
therefore by finite differences
6Cy +4Cp +2C7 + Cp
28
It would, perhaps, be simpler to reject the 0, 0 and divide by co-
efficients of the 6th power instead of the 8th.
Applying this process to m11, m21, m31, we would get mnl

then to m12, m22, m32, . 5 mn2
to m13, m23, m33, ’ »  mnd

(m52) = x C,

and so on.
(We do not actually require to find them all, for (m21) = (m12), &c.)

There results

(mn1) = St 2y

07
n m 2 m 2 m 3 m .
(mn2) =Cl (Cn + Cn—l);C}‘lgg Cn—2 + Cn—3) X C:‘n+.;
(mnd) = O3 (Cm + 2C7) + 10C(2C7, + 3C7,) + T0(3CT, + 40 ,)
Oy
5Cr
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(mnd) = OO, + 2Cm,) + 1003(207 + 301,
+ 7oc"~=(3c A+ 407 ) + 420(4CT, + 5Cm,)
Cn+5
* Ty

(mnb)=C;H(Crq + 2Ch,,) + 10C3H(20,, + 3C7)
+T70C571(3C, + 407 5) + 4200 (402, + 5CT
+2310(5C ;+ 6Cy)
Crte
x %&Cnﬂ
The numerical factors §, 2, 5, 10 3%, &c., in the denominators are

evidently
305, 35, 1G5, 4G5, 3C, &

In the numerators occur the factors 1, 10, 70, 420, 2310, &c., whose
law is not so obvious. Denoting them at present by A, A, A, A,
A,;, &c., and by comparing the above results we may write

(mnp) = ACIHX(CR,y + 207, 5)
+ AL (207 o+ 30, )
AL Y800 s+ 407, )
................................... -
+A,(pO7,+p+1C7 ) x ICrC

If in this we put m=mn —p, all the terms vanish except the last,
Cn+p+1
therefore (n—p, n, p)= A, (POrT+p+1Co2_, x 75 1CTHCT e

In this put n=p+ 1, we get after some reductions

PRCIERV o5
%Cp—l\-?c?p-f-ﬂ

but we have already seen that

(r+1,p,1)=

(p+1,p,1)_ﬂy_—3xcp+ﬂ

%(Jp+2 fap
Ceti4 203 (p+ 9)
B
Equate these values and reduce, we get
AP D Cpr2)!
12 o 120 - 1)i(p+ 1)!
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Hence
1r4! m m
(mnp) = TQ[QT Cor(Cy s + 2C05s)
y
+ g_;c;g—d(zc':ﬁ_. +3C74 )
8!
2141

2p +.2)! R
(p__(i?;:-_(p).,—.]jl(PCh +p+ IC-T-H)]
Cnm+P+l
" oo
By finding the r** term of this expression, and making some obvious
reductions, we get

+ Cr (30 s + 407 —)

(mnp) = 2’%”0::: OO
the number of terms is not greater than p, but may be less, from the
vanishing of the last factor.
This result may also be written more symmetrically
_s[(CCI+ OO }
() =3{( iy« G oCR R
The following method will be found convenient when we wish to
calculate all the arrangements possible when two elements m, n are
kept constant.
Calculate the coefficients K by the formulae
K, =C'Cr2 + GO0,
K;n=2C7003,

Then
(myn,m-n-1)=K,
(m, n, m-n) =CP**K;+K,

(m, ny, m - n+1)=Cp+"K,+C""K, + K,

(m, n, m-n+2)=C"?K + C*"'K, + C*K, + K,

(m, n, m+n —2)=Cy+K,+ C'K, + C*K,...... +K

(m, n, m+n-1)=C+K,+ CyHK, + CK,...... +CK,,

(myn, m+n) =CPK +Ci"HK, + CPK,...... + CK,,

(myn, m+n+1)=K, + K.+ K,..... + K
It may be noticed that the sums of alternate terms of these are

equal, and that the total sum is always divisible by 16.
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