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Abstract. Le diagrams and Grassmann necklaces both index the collection of
positroids in the nonnegative Grassmannian Gr≥0(k, n), but they excel at very different
tasks: for example, the dimension of a positroid is easily extracted from its Le diagram,
while the list of bases of a positroid is far more easily obtained from its Grassmann neck-
lace. Explicit bijections between the two are, therefore, desirable. An algorithm for turning
a Le diagram into a Grassmann necklace already exists; in this note, we give the reverse
algorithm.
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1. Introduction. An element of the real Grassmannian Gr(k, n) is called totally
nonnegative if it has a matrix representation in which all of its maximal minors are non-
negative. This induces a cell decomposition of the nonnegative Grassmannian Gr≥0(k, n)

into positroids, determined by which maximal minors are positive and which are zero. The
positroids are indexed by several combinatorially interesting collections of objects, many
of which first appeared in Postnikov’s foundational preprint [12]. In this note, we focus
only on two of these (Le diagrams and Grassmann necklaces, both defined in Section 2),
and refer the interested reader to [12] for the bigger picture.

Positroids have recently found applications in several areas of physics, notably the
study of shallow water waves [9] and calculating scattering amplitudes in the quantum
field theory SYM N = 4 [1, 3]. Indeed, the two main current techniques used in calculating
scattering amplitudes in SYM N = 4 are BCFW recursion and Wilson loop diagrams, both
of which make use of the combinatorial machinery of positroids [8]. In particular, one finds
that the Le diagrams are crucial for understanding the geometry underlying the Wilson
loop diagrams [2]. In a forthcoming paper, we study the combinatorics of the positroids
associated with the Wilson loop diagrams and show that the natural objects to use in this
setting are the Grassmann necklaces.

Positroids also have a surprising application in noncommutative algebra, where they
are closely related to the study of graded prime ideals in the quantized coordinate rings
Oq(Mm,n) and Oq(Gr(k, n)) [7, 10]. These ideals are indexed by Cauchon diagrams [6],
which are equivalent to Le diagrams. However, obtaining a generating set for a given prime
is often easier when phrased in terms of the Grassmann necklace. (This follows from [5, 7]
for Oq(Mm,n), and is conjectured for Oq(Gr(k, n)).)
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Figure 1. Row and column numbering for a Young diagram with k = 3, n= 7 (left) and k = 3,
n= 8 (right). The top-left box in each diagram has coordinates (1, 7) (left diagram) and (2, 8) (right
diagram).

The algorithm to construct a Le diagram from a Grassmann necklace was a result of
the aforementioned forthcoming work, and we present it separately in this short note due
to its usefulness for the variety of applications described above.

In Section 2, we set out the notation and conventions in use, and in Section 3, we
give Oh’s algorithm for constructing a Grassmann necklace from a Le diagram. Finally,
in Section 4, we describe the inverse algorithm and prove that it does indeed reverse the
algorithm given in Section 3.

2. Notation and definitions. Following the standard convention, we write [n] for
the set of integers {1, 2, . . . , n}.

Given a Young diagram fitting inside a k × (n− k) box, we assign numbers to its
rows and columns by arranging the numbers [n] along its southeast border, starting at the
northeast corner. All coordinates are given in terms of these row and column labels. Notice
that if we keep the same diagram but increase n, this changes the size of the bounding box
and hence changes the row and column labels. (See Figure 1 for examples.)

A Le diagram of type (k, n) is a Young diagram fitting inside a k × (n− k) box,
together with a filling of the squares with + and 0 symbols subject to the following rule:

� Consider i, j, k, l ∈ [n] with i < k and j < l. If the boxes (i, j) and (k, l) both contain
a +, then box (k, j) (if it exists) must also contain a +.

A Grassmann necklace of type (k, n) is an ordered sequence of sets

I = (I1, I2, . . . , In),

with Ii ⊂ [n] and |Ii| = k for each i, related by the following rule:

� If i ∈ Ii, then Ii+1 = (Ii\i)∪ j for some j ∈ [n] \ Ii.
� If i �∈ Ii, then Ii+1 = Ii.

(Note: All indices are taken mod n. In particular, if i= n, then Ii+1 = I1.)
Both of these definitions were originally stated by Postnikov in [12, Sections 6 and 16]

The thread tying the definitions of Le diagrams and Grassmann necklaces together is given
by the following theorem:

THEOREM 2.1. [12, Theorems 6.5 and 17.1] The positroid cells in Gr(k, n)≥0 are in 1-1
correspondence with the Le diagrams of type (k, n), and are also in 1-1 correspondence
with the Grassmann necklaces of type (k, n).

3. Oh’s algorithm for obtaining a Grassmann necklace from a Le diagram. In
this section, we recall an algorithm for obtaining a Grassmann necklace from a Le diagram,
due to Oh [11].
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Given two squares (i, j) and (k, l) in a Young diagram, we say that

� (i, j) is strictly northwest of (k, l) if i < k and j > l.
� (i, j) is weakly northwest of (k, l) if i≤ k and j≥ l.

Given any square (k, l) in a Le diagram L, it follows from the Le property that:

� There is either a unique nearest + square strictly northwest of (k, l), or all squares
strictly northwest of (k, l) contain a 0.

� There is either a unique nearest + square weakly northwest of (k, l), or all squares
weakly northwest of (k, l) contain a 0.

Here, “nearest” is meant in the natural sense, i.e., (i, j) is the nearest + square northwest
of (k, l) if |i− k| and | j− l| are both minimized (see [4, Lemma 3.10]).

Note that if the square (k, l) contains a +, then the unique + square weakly northwest
of it is (k, l) itself.

We can now state Oh’s algorithm:

ALGORITHM 1. Let L be a Le diagram of type (k, n).

(1) Label the squares of the southeast boundary of L with 2, 3, . . . , n, starting from the
northeast corner.

(2) Define I1 = {row labels of L}.
(3) To obtain Ii, 2≤ i≤ n:

• Start in the nearest + square weakly northwest of i (this could be i itself ).
• Step to the unique nearest + square strongly northwest of the current position.
• Continue until no more steps are possible, keeping track of the squares

stepped in.
• Set Ii =

(
I1\{rows in path})∪ {columns in path}.

We write I(L) for the Grassmann necklace of a Le diagram L.

Notice that if there are no + squares weakly northwest of square i, then the path from i is
empty and Ii = I1.

EXAMPLE 3.1. In Gr≥0(3, 8), consider the Le diagram

L =

23

456

780

+
+

+
+
+

0

0

+
0 + 1

2
3

45
6

78

,

where we have already labelled the boundary squares as described in Algorithm 1.
To compute I4, for example: the sequence of steps from the square labelled 4 is

(3, 4), (1, 7), and so
I4 =

({1, 3, 6}\{1, 3})∪ {4, 7} = 467.

The complete Grassmann necklace of this diagram is

I(L)= (136, 236, 367, 467, 678, 678, 178, 168).

4. Reversing Oh’s algorithm. Oh’s algorithm for converting a Le diagram into
a Grassmann necklace is an extremely useful tool for computing concrete examples,
and for translating between different subject areas (e.g. from noncommutative algebra to
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combinatorics, as in [4]). However, it is also useful to be able to translate a Grassmann
necklace into a Le diagram (e.g. to quickly compute the dimension of the associated
positroid), but no algorithm exists in the literature to perform this process easily.

One can, of course, slowly construct the Le diagram from the northeast corner in
order to ensure it produces the right Grassmann necklace, but, for large examples, this can
be slow and prone to error. Instead, we present the following streamlined version of this
process:

ALGORITHM 2. Let I be a Grassmann necklace of type (k, n).

(1) In a k × (n− k) box, draw the Young diagram whose rows are labelled by I1.
(2) For each i, 2≤ i≤ n:

• Write

I1\Ii = {a1 > a2 > · · ·> ar}, Ii\I1 = {b1 < b2 < · · ·< br}.
• Place a + label in each of the squares

(a1, b1), (a2, b2), . . . , (ar, br).

(3) After performing step (2) for all i, place a 0 in any remaining unfilled boxes.

Write L(I) for the diagram obtained from a Grassmann necklace I via this process.

EXAMPLE 4.1. Consider the Grassmann necklace

I = (1247, 2347, 3478, 4678, 5678, 4678, 1478, 1478). (A)

This necklace has eight terms, each containing four entries, so it is of type (4, 8). To con-
struct L(I), we start by drawing the Young diagram with rows labelled by I1 inside a
4× (8− 4) box:

1

2

3
4

56
7

8

The squares, which should contain a + label, are specified by Algorithm 2:

i I1\Ii Ii\I1 + squares

2 1 3 (1, 3)

3 2, 1 3, 8 (2, 3), (1, 8)

4 2, 1 6, 8 (2, 6), (1, 8)

5 4, 2, 1 5, 6, 8 (4, 5), (2, 6), (1, 8)

6 2, 1 6, 8 (2, 6), (1, 8)

7 2 8 (2, 8)

8 2 8 (2, 8)
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Placing + labels in these squares and 0 labels in all remaining squares, we obtain the Le
diagram

L(I) =

1

2

3
4

56
7

8

0

0

+
+

0

+
0

+
0

0

+
+

The reader is invited to verify that applying Algorithm 1 to L(I), above yields exactly the
Grassmann necklace in (A).

To prove that Algorithm 2 is indeed the reverse of Algorithm 1, we show that the lists of
squares constructed in step 2 of Algorithm 2 are precisely the squares appearing in the
paths defined by Algorithm 1 (Lemma 4.2), and that every + square in a Le diagram must
appear in one of these paths (Lemma 4.3).

LEMMA 4.2. Given a Le diagram L, every+ square in L(I(L)) is also a+ square in L.

Proof. Fix i ∈ [n]\{1}, and recall that the ith term in the Grassmann necklace I(L) is
defined by

Ii =
(
I1\{rows in path from i})∪ {columns in path from i},

where “the path from i” refers to the sequence of steps defined by Algorithm 1 and starting
from square i in L.

Once we have L and I(L), we can describe the path from i in terms of I1 and Ii as
follows. The rows involved in the path from i are:

{rows in path from i} = {all rows} ∩ {rows in path from i}
= I1\{rows not in path from i}
= I1\(I1 ∩ Ii)

= I1\Ii.

Since the path is moving strictly north at each step, the row labels in I1\Ii should be ordered
from maximum to minimum. Similarly, the columns involved in the path from square i are
given by

{cols in path from i} = {all cols} ∩ {cols in path from i}
= {Ic

1} ∩ {Ic
1 ∩ Ii}

= Ii\I1.

The path is moving strictly west at each step, so the column labels in Ii\I1 should be ordered
from minimum to maximum.

Thus, the squares, which acquire a + label when constructing L(I(L)), are exactly
those which are involved in at least one path in L, each of which must be a + square in L
by the definition of Algorithm 1.
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It is not immediately clear from Algorithm 1 that every + square in L contributes to at
least one term in the Grassmann necklace, i.e. L(I(L)) may contain a strict subset of the
+ squares in L. The next lemma verifies that this is not the case.

LEMMA 4.3. Given a Le diagram L, every+ square in L is also a+ square in L(I(L)).

Proof. Suppose for contradiction that there is a + square (which we will call +a) in
L, which appears in none of the paths from Algorithm 1. We claim that in this case, there
must exist another+ square in L, which is strictly southeast of+a and also does not appear
in any of the paths from Algorithm 1.

First, note that +a cannot be the nearest + square weakly northwest of any boundary
square, and in particular, it cannot be a boundary square itself; this is because all such
squares appear in step 1 of Algorithm 1. This guarantees that there is at least one + square
to the east of +a (in the same row) and at least one + square to the south of +a (in the
same column).

Thus, we have the following type of configuration in L (bearing in mind that either or
both of the blocks of 0s could be empty):

+
0

+a 0 +

∗

all 0s ↑

←
all 0s

(B)

By the Le condition, if the square labelled ∗ is inside the boundary of L, then it must contain
a +, and we are done. If not, we have the following type of configuration (the dashed line
indicates the diagram boundary):

+
0

+a 0 +
all 0s ↑

←
all 0s

(C)

Note that the shaded region in (C) must have positive width and height, because other-
wise +a is the nearest + square weakly northwest of a boundary square. By the same
argument, the shaded region in (C) must contain at least one + square.

In either case, we have demonstrated the existence of a square +b strictly southeast
of+a, and with the pattern of 0 squares indicated in diagrams (B) or (C). This pattern of 0s
is forced by the Le condition, and it guarantees that any path that steps in+b must also step
in +a (possibly with some intermediate steps). Therefore, +b does not appear in any of the
paths from Algorithm 1 either. This argument can be repeated indefinitely, a contradiction
to the fact that the diagram is finite.

It follows that every + square in L contributes to at least one term in the Grassmann
necklace I(L), and hence by Lemma 4.2 is also a + square in L(I(L)).

Thus, we arrive at the main conclusion of the paper.
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THEOREM 4.4. Algorithm 2 uniquely constructs the Le diagram associated with a
Grassmann necklace.

Proof. This follows from Lemmas 4.2 and 4.3, and the fact that Algorithm 1 uniquely
constructs the Grassmann necklace associated with a Le diagram.
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