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Abstract. The purpose of this paper is to develop necessary conditions for a
diffeomorphism to be topologically stable (lower semistable). Our results combine
with a recent theorem of R. Maiie and with earlier results of J. Robbin, C. Robinson,
and Z. Nitecki to give a complete characterization of diffeomorphisms of compact
manifolds that are both topologically and structurally stable: they are precisely the
Axiom A diffeomorphisms that satisfy the strong transversality condition.

0. Introduction
We consider diffeomorphisms of a compact Riemannian manifold M. / is (C1)
structurally stable if there is a neighbourhood °U of / (in Diff(M) with the C'
topology) such that for each g in °U there is a homeomorphism h — hg on M satisfying
f ° h = h ° g. A related notion is that of topological stability, also called lower semi-
stability, f is topologically stable if for any 8 > 0 there is a neighbourhood aU = aUb

of/ (in the set of homeomorphisms of M with the uniform C° topology) such that
for each g in °U there is a continuous surjection h = hg from M to M satisfying
f°h = h°g and d(h(x), x) is less than 5 for all x in M. (Here and throughout this
paper d( , ) denotes a metric on M that is induced by the Riemannian structure.)

J. Palis and S. Smale, in [10], made the conjecture that a certain set of conditions
on / are necessary and sufficient for / to be structurally stable. These conditions
are that / satisfy Axiom A and the Strong Transversality Condition (the definitions
are given below). J. Robbin, [11], and C. Robinson, [13], succeeded in showing that
these conditions are indeed sufficient for structural stability. There has also been
much work done on the neccessity of these conditions for structural stability. In a
recent paper, [8], R. Mane gives a summary of much of this research; we refer the
reader to the introduction of that paper for a history of this research. In the same
paper Mane establishes the fact that if / is structurally stable and if there is a
uniform lower bound on the distance between any two periodic points of/ with

https://doi.org/10.1017/S0143385700002285 Published online by Cambridge University Press

https://doi.org/10.1017/S0143385700002285


82 M. Hurley

different indices, then / satisfies Axiom A and the strong transversality condition.
(The index of a periodic point p is the dimension of the unstable manifold of p\
that is, the number of eigenvalues of Dfk(p) of modulus greater than one, where k
is the period of p under / )

The study of topological stability has had a development paralleling that of
structural stability. The earliest results were due to P. Walters, [16], who showed
that Anosov diffeomorphisms are topologically stable. Later, Z. Nitecki, [9], showed
that Axiom A and the strong transversality condition are sufficient to imply
topological stability.

As for necessary conditions for topological stability, note that it is immediate
from the definitions that topological stability is a conjugacy invariant, so it is not
hard to construct examples of diffeomorphisms that are topologically stable but do
not satisfy Axiom A. Recently, however, it has been shown that topologically stable
diffeomorphisms on the circle and topologically stable flows on compact surfaces
must be conjugate to Morse-Smale dynamical systems, which are the Axiom A,
strong transversality condition systems of these types [17], [2]. More generally, it
has been shown that any topologically stable diffeomorphism shares a large number
of qualitative features with Axiom A diffeomorphisms [7]. One of the purposes of
the current paper is to establish further similarities of this type. Our main result is:

THEOREM A. A diffeomorphism on a compact manifold is both topologically and (C1)
structurally stable if and only if it satisfies Axiom A and the strong transversality
condition.

As was mentioned earlier, the facts that Axiom A and the strong transversality
condition imply topological stability and C' structural stability have been established
by Nitecki and Robinson, respectively. In order to prove the converse, we use the
assumption of topological stability to establish the following:

PROPOSITION. Iff is topologically stable, then the chain recurrent set offis composed
of a finite number of chain components (basic sets). If in addition f is Kupka-Smale,
then there is a unique value of the index of the periodic points of f that lie in any given
chain component off.

Combining this proposition with the following theorem of R. Mane gives the proof
of theorem A.

THEOREM (Mane). A C' structurally stable diffeomorphism satisfies Axiom A and the
strong transversality condition if and only if A.nAj is empty for every 0 < i < 7 <
dim (M), where A, is the closure of the set of periodic points of f of index i.

(This result is essentially the same as theorem B of [8]; see the discussion on pages
504-505 of [8].)

Before going on, we should mention that there have been other papers showing
that certain hypotheses stronger than structural stability are equivalent to Axiom A
and the strong transversality condition. Among these results are those of J. Franks,
[4], [5], and J. Guckenheimer, [6].
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I. Preliminaries
Given a diffeomorphism g on M, an a-chain for g is a sequence (finite, infinite, or
bi-infinite), (x,) with the property that d(g(x,), xi+]) is less than a for all relevant
values of i. A bi-infinite a-chain (x,) is periodic if x,+k = x, for all i and some k > 1.
A point p in M is chain recurrent for g if for each a > 0 there is a periodic a-chain
(Xj) for g with x0 = p; the collection of all such points is the chain recurrent set of
g, denoted CR(g). It is easy to see that CR(g) is both closed and g-invariant.

A subset X of CR (g) is called chain transitive if for any pair of points p, q in X
and any positive constant a there is a periodic a-chain (x,) with p, q contained in
{Xj}. X is a chain component of g if X is chain transitive and no set that contains
X as a proper subset is chain transitive. (Equivalently, a chain component is an
equivalence class in CR (g) under the relation p ~ q if and only if for every positive
a there is a periodic a-chain for g containing both p and q.) Note that each chain
component of g is closed and g-invariant. Note also that if x is any point of M
then the alpha-limit set and the omega-limit set of x with respect to g are chain
transitive sets. (These sets are the maximal g-invariant subsets of clos {g"(x)|n >0}
and clos{g"(x)|n>0}, respectively.)

If g is a homeomorphism on M and x is in M, then we can define the stable set
of x with respect to g, W5(x; g), and the unstable set of x with respect to g, W"(x; g)
by

Ws(x; g) = {y in M\d(g"(y), g"(x))^0 as n -» oo}

W"(x; g) = {y in M\d{g'\y), g" (x) )^ 0 as it ̂  oo}.

When the identity of g is clear from the context we will at times abbreviate W"(x; g)
to VV"(x), cr = s or M. A similar definition is that of the y-local stable set of x with
respect to g, Wy(x;g), which is the set of points y in Ws(x;g) satisfying
d(g"(x), gn(y))< y for all « =0, 1, 2 , . . . . The y-local unstable set of x with respect
to g is defined analogously and is denoted W"(x; g).

A diffeomorphism g is said to satisfy Axiom A if CR (g) has a hyperbolic structure.
A hyperbolic structure for g on CR(g) is a continuous splitting E"X®E"X of the
tangent space TMX at each point x in CR(g) satisfying

(1) Dg{x)(Ex-)=El{x), <T = S or u;
(2) there are constants C > 0, 0< A < 1, such that for n = 1, 2, 3 , . . . ,

||(Dg"(x))|£*||<CA" and ||(Dg-"(x))|E^|| < Q "

for all x in CR(g).

(This definition of Axiom A is not the one originally given by Smale. However, in
the presence of the strong transversality condition the original definition and the
one we are using are equivalent; see [3] for more details.)

When g satisfies Axiom A and x is in CR (g) the stable and unstable sets of x
with respect to g are smoothly immersed submanifolds of M, with dim WCT(x; g) =
dim E x, a = s or u. These stable and unstable manifolds enjoy several other interest-
ing properties, among them

(3) invariance: g( W"r(x)) = WCT(g(x)), cr = s or u.
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(4) W(x) is tangent at x to E^, cr = s or u.
(5) M is the union of the sets W(x) for x in CR (g), with a equal to either 5

or M.

Because of (5) it makes sense to talk about the stable or unstable manifold of x
with respect to an Axiom A diffeomorphism g regardless of whether or not x is in
CR(g).

An Axiom A diffeomorphism g is said to satisfy the strong transversality condition
if Ws(x; g) and W(y; g) are everywhere transverse for every pair of points x, y
in M. Much is understood about the structure of CR(g) when g satisfies Axiom A
and the strong transversality condition; see [1] for example. One particular fact that
we will be making use of is the existence of a 'local product structure' near the
chain recurrent set.

PROPOSITION 1. Suppose that g is a diffeomorphism satisfying Axiom A. Then there
is a constant y0 > 0 such that if 0 < y < y0 then there is a constant S = S(y) > 0 with
the property that if x, y are in M, within 8 of each other, and at least one of them is
in CR(g), then Ws

y(x) and W"y(y) intersect in a non-empty set which we denote by
[x, y]. Moreover, S can be chosen small enough that [x, y] is a single point that is
contained in CR (g) as long as both x and y are in CR (g).

Proof. See §§ 3.A and 3.B of [1].

II. Properties of topologically stable diffeomorphisms
In [7] it is shown that any topologically stable diffeomorphism shares a large number
of qualitative features with Axiom A diffeomorphisms. In this section we build upon
the techniques developed in that paper.

LEMMA 2. If f is topologically stable and X is a chain component of f then f\X is
topologically transitive; that is, there is a point in X whose alpha-limit set and
omega-limit set are each dense in X.

Proof. The first statement is proved in [7]; that the second follows from the first is
a standard exercise in point-set topology. •

PROPOSITION 3. Suppose that f is topologically stable and that X is a chain component
off. Let g be a homeomorphism of M and h a semiconjugacy from g to f hg =fh. Then

(a) fi(CR(g)) is contained in C R ( / ) ;
(b) h~\X) contains every chain component of g that it meets;
(c) there is a chain component Y of g with h(Y) = X. (Consequently (a) can be

strengthened to h(CR (g)) = CR (/).)

Proof Since h is uniformly continuous, given a > 0 there is a /3 > 0 such that if (x,)
is a )3-chain for g then (/J(X,)) is an a-chain f o r / Hence if Z is chain transitive for
g, then /i(Z) will be chain transitive f o r / This establishes both (a) and (b).

To prove (c), we use lemma 2 to find a point x in X whose omega-limit set is all
of X. Since h is a surjection, we can find a point p in h '(x). Let Y be the chain
component that contains the omega-limit set of p with respect to g. To see that
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h(Y) = X, let q in X be given. By the way x was chosen, there is a sequence of
integers nk going to infinity with/"k(x)-» q. By compactness there is a subsequence
(which we also label nk) with g"k(p) converging to some point y. By definition of
Y, y is in Y. Finally,

h(y) = lim h(g"'(p)) = limf"k(h(p)) = Km/"'(*) = q. U
fc-»oc k-»oo fc-*oc

A diffeomorphism g is said to be in phase if for each x in M there are points
y = y(x) and z = z(x) in CR(g) with x contained in the intersection of Ws(y;g)
and W"(z; g). If g is Axiom A then g is in phase (this is the content of (5) in the
previous section); see 3.10 of [1].

LEMMA 4. Iffis topologically stable then f is in phase.

Proof. By Shub's density theorem [14] we can find an Axiom A diffeomorphism g
that is C° close t o / ; consequently there is a semiconjugacy h from g to f, hg=fh.
Let x in M be given, and pick p in h~'(x). Since g is in phase thereare points q,
r in CR(g) with p in the intersection of Ws(q;g) and W(r;g). Let y = h(q) and
z = h(r). Then y, z are in CR (/) by proposition 3. It is an easy consequence of the
continuity of h that h{W{w; g)) is contained in W(h(w);f) for a = 5 or u, so x
is in Ws(>>;/)n W"(z;/) as desired. •

If A, B are closed non-empty subsets of M, let

dist (A, B) = inf {d(a, b)\a eA,be B}.

LEMMA 5. Ifh is a continuous surjection from M to itself and if Y is a closed non-empty
subset of M, then the map x-» h~'(x)n Y is upper semicontinuous. In particular, if x
is in M and B>0 then there is a constant a = a(x, B)>0 such that if z is within a of
x, then

dist(/T'(x)n Y,h"\z)n Y)<B.

Proof. We argue by contradiction; if the conclusion of the lemma is false then there
are sequences xn -> x and yn ->y with yn in Y and h(yn) = xn for each n, but with y
not in h~'(x)n Y. Since Y is closed and h is continuous, this is absurd. •

PROPOSITION 6. (Non-uniform local product structure) Suppose thatf is topologically
stable and that X is a chain component off Let x in X and B > 0 be given. Then there
is a constant a = a(x, B)>0 such that if z is in M and within a of x, then there are
points v, w in M such that

(1) vis in W'p(x;f)nWl(z;f);
(2) wisin W'p(z;f)nWUx;f).

Moreover, if z is in X then so are v and w.

Proof. As in the proof of lemma 4, choose an Axiom A diffeomorphism g and a
semiconjugacy h from g to / , hg=fh. By proposition 3 there is a chain component
Y of g with h( Y) = X. Now let y > 0 be small enough that

(i) d(yl,y2)<y implies d(h(y,), h(y2))<B for any yu y2 in Y.
(ii) y < y0, where y0 is the constant given by proposition 1.
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Use this value of y in proposition 1 to obtain S > 0 as in the statement of that
proposition. By lemma 5 we can find a = a(x, S) > 0 such that d{x, z)<a implies that

dist (Zr'(x)n y,fc'(z)n Y)<8.

Thus if z is within a of x, then we can find points y{ in h'\x)n Y and y2 in
/i~'(z)n Y with d(.yi,.y2)< 5. By proposition 1 and the way the constants have been
chosen the sets [yu y2] and [y2, y,] are non-empty. Choose q{ in [yu y2], q2 in [y2, y,]
and let v = h(q{), w = h(q2). (1), (2) follow from the choices of the various constants
involved. The final assertion of the proposition is a general fact about chain
recurrence; if x, z belong to the same chain component, X, of/ and p is in both
Ws(x\f) and Wu(z;f) then p is also in X. •

COROLLARY 7. Let / X be as in proposition 6. Suppose p is in X and is periodic,
fk(p) = p for some k > 1. 77ien

J lV(/(p)nX) =X, cr = soru.
i J

Pfoo/ We give the proof for cr = s; the other case is analogous. Choose a = a(p, 1)
as in proposition 6, and use lemma 2 to find z in X within a of p and with the
alpha-limit set of z equal to X. Now apply the proposition to get a point y in
Ws(p) n W"(z) n X. Since 7 is in W"(z), j> and z have the same alpha-limit set, so

X = alpha-limit set of y

cclos{/""(^) |n=0, 1,2,...}

c clos {x inXx is in /"(Ws(p)) , «= 0, 1,....}

= clos [U Ws(fJ(p)) n X]. •

COROLLARY 8. Let/ X be as in proposition 6 and suppose p, q are periodic points of
flying in X. Then Ws(p)n W(q)nX is dense in X.

Proof. Let x in X, /3 >0 be given. Let O(p), O(q) denote the /-orbits of p and q,
respectively. Use corollary 7 to pick y in W\O{p))nX with d(x,y)<p/2. Select
a = a(y, (3/2) as in proposition 6 and choose z in W"(O(q)) n X with <i(_y, z) < a.
Applying the proposition gives a point v in X with d(v,y)</3/2 and

t;e WsO)n W"(z)nXc l^s(O(p))n W(O(q))nX.

Finally,
)<j3. •

A periodic point p of a diffeomorphism g is hyperbolic if none of the eigenvalues
of Dgk(p) have modulus 1, where k is the period of p. When this is the case, Ws(p)
and W(p) are immersed submanifolds of M of complementary dimension. The
dimension of Ws(p) is the number of eigenvalues (counting multiplicity) of modulus
less than 1, and the dimension of W(p) is the number of eigenvalues of modulus
greater than 1. The diffeomorphism g is said to be Kupka-Smale if every periodic
point of g is hyperbolic and if Ws(p) and W"(q) are everywhere transverse whenever
p and q are periodic points of g.
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Recall that if p is a hyperbolic periodic point then the index of p is the dimension
of its unstable manifold.

COROLLARY 9. Let f X, p, q be as in corollary 8. Iffis Kupka—Smale then p and q
have the same index.

Proof. Since/ is Kupka-Smale, the last corollary shows that W\p) and Wu(q) have
a point of transversal intersection. Thus

dim (Ws(p))+dim (W(q)) > dim (M);

since W*(p) and Wu(p) have complementary dimensions, we see that

dim (M) - dim (W"(p)) +dim (W(q)) > dim (M),

so that dim (W(q)) > dim (W"(p)). Reversing the roles of/? and q gives the opposite
inequality. •

Proof of theorem A. It is well known that any structurally stable diff eomorphism is
Kupka-Smale; see [12] for a proof. Hence corollary 9 shows that there is a unique
value of the index of the periodic points of a given chain component of/ whenever
/ is both topologically and structurally stable. A topologically stable diffeomorphism
has only finitely many chain components (this is easily deduced from proposition
3; see [7, theorem A] for more details). Now the theorem of Mane quoted in the
introduction can be applied to give the conclusion of theorem A. •

We finish with a result that shows that the non-uniform local product structure of
proposition 6 can be taken to be uniform on large subsets of CR(/).

Let FM denote the collection of all non-empty closed subsets of M. For A, B in
FM, let

dH(A, B) = inf {a > 0| A c Ua(B), B <= Ua(A)},

where Ua{X) = {y in M|dist (y, X)< a}. dH is called the Hausdorff metric on FM;
it is a standard fact that (FM, dH) is a compact metric space.

The proof of lemma 5 shows that if h is a continuous surjection on M and Y is
closed and non-empty, then the map from M into FM given byx-»/i" ' (x)nKis
upper semicontinuous. It is a well known fact that in this situation the set of
continuity points of h~\ )u Y is residual in M; a proof may be found in [15].

PROPOSITION 10. Suppose f is topologically stable and X is a chain component off.
Let fl>0 be given. Then there is an open and dense subset G = G(/3) of X (in the
relative topology) such that if K is a compact subset of G then there is uniform local
product structure on K. That is, there is a constant a = a(K, /3) such that ifxu x2 are
in K and are within a of each other, then there are points v, w in K with v in
W^(x,)n w;(x2) and w in Ws^x2)n W^x,).

Proof. Choose g, h, Y, y, and a as in the proof of proposition 6. For x in X let
S(x) denote h~\x)n Y, and let Z be the set of continuity points of S as a map
from X to FM. For each z in Z choose a(z)>0 such that dH(S(z), S(x))<8/2
whenever d(x,z)<a(z). Let

G(z)=Ua{z)(z)nX and G= (J G(z).
zeZ
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Clearly G is open and dense in X. Now suppose K is a compact subset of G. Let
a be a Lebesgue number for K relative to the open cover {G(z)}. If any two points
p, q of K are within a of each other then there is a point z^ in Z with both points
contained in G(zyi.), so that

dist(S(p),S(q))<dH(S(p),S(q))

< dH(S(p), $(*„,))+ dH(S(Z#), S(q))<8.

Now the rest of the proof is essentially the same as that of proposition 6. •

As a final remark, note that while one might expect a topologically stable
diffeomorphism to have a uniform local product structure on all of its chain recurrent
set, it is unlikely that this can be established by the type of argument that we have
been using. The reason for this is that the mapping JC-» h~\x) generally has points
of discontinuity. This is true even in the case when h is a semiconjugacy from some
homeomorphism g to a topologically stable diffeomorphism / As an example,
suppose/has an attracting fixed point p. We can perturb/in a small neighbourhood
of p to obtain a homeomorphism g which looks like / except that p has been
enlarged to a closed ball B consisting entirely of fixed points of g. Any semiconjugacy
close enough to the identity must map all of B to p. If g is constructed with a little
care it is not difficult to construct a semiconjugacy h from g to / that is one-to-
one on the complement of B. Here x-*h~\x) will be continuous at every point
except p.
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