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Thermodynamic growth of sea ice: assessing
the role of salinity using a quasi-static
modelling framework
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Sea ice is a mushy layer, a porous material whose properties depend on the relative
proportions of solid and liquid. The growth of sea ice is governed by heat transfer
through the ice together with appropriate boundary conditions at the interfaces with the
atmosphere and ocean. The salinity of sea ice has a major effect on its thermal properties
so might naïvely be expected to have a major effect on its growth rate. However, previous
studies observed a low sensitivity throughout the winter growth season. The goal of this
study is to identify the controlling physical mechanisms that explain this observation. We
develop a simplified quasi-static framework by applying a similarity transformation to
the underlying heat equation and neglecting the explicit time dependence. We find three
key processes controlling the sensitivity of growth rate to salinity. First, the trade-off
between thermal conductivity and (latent) heat capacity leads to low sensitivity to salinity
even at moderately high salinity and brine volume fraction. Second, the feedback on
the temperature profile reduces the sensitivity relative to models that assume a linear
profile, such as zero-layer Semtner models. Third, thicker ice has the opposite sensitivity
of growth rate to salinity compared with thinner ice, sensitivities that counteract each
other as the ice grows. Beyond its use in diagnosing these sensitivities, we show that the
quasi-static approach offers a valuable sea-ice model of intermediate complexity between
zero-layer Semtner models and full partial-differential-equation-based models such as
Maykut–Untersteiner/Bitz–Lipscomb and mushy-layer models.
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1. Introduction

Sea ice is a fundamental part of the climate of the polar regions. Sea ice evolves as it
is transported by wind and ocean currents, due to various mechanical processes such as
ridging, and due to thermodynamic processes of growth and melting (Golden et al. 2020).
This study focuses on the thermodynamic aspects of the evolution.

The first goal of this study is to understand the effect of salinity on sea-ice growth
through the winter growth season and to compare different representations of this process
in active use in the sea-ice modelling community (these include zero-layer Semtner,
Maykut–Untersteiner/Bitz–Lipscomb and dynamic-salinity mushy-layer models). The
second goal is to propose a new type of quasi-static (QS) approximate model of an
intermediate complexity between a zero-layer model (based on ordinary differential
equations (ODEs)) and the other types of models which are all based on partial differential
equations (PDEs).

The classic early work on sea-ice growth was developed by Stefan in the late nineteenth
century (Stefan 1891). Historical reviews of Stefan’s contribution are given by Vuik
(1993) and Šarler (1995). Stefan investigated solidification problems with a free boundary
between the solid and liquid phases, a class of problems subsequently called Stefan
problems. Stefan introduced several approaches that will guide this study. The growth of
ice is governed by a heat equation. Stefan applied a similarity-solution method to solve this
equation analytically and also obtained approximate solutions under the assumption of a
linear temperature profile. In either case, the ice thickness increases with the square root
of time. This theoretical prediction was consistent with measurements of sea-ice thickness
from polar expeditions.

Stefan treated sea ice as a pure material with constant thermal properties. However, sea
ice forms from seawater, an aqueous solution of water and salt (of various types). The
salt retained in sea ice allows pockets of saltwater (brine) to remain as liquid inclusions
within a matrix of solid ice even when the composite is cooled beneath the freezing point
of seawater. This part-solid and part-liquid composite is called a mushy layer. Huppert &
Worster (1985) and Worster (1986) extended the similarity solution for a pure material to
the solidification of a two-component (binary) alloy. A two-component alloy is a simple
model of saltwater (amongst many other chemical systems). As for the pure system, the
solidification front advances with the square root of time. In this study, we develop a new
QS approximation. This approximation reduces to the similarity-solution method under
certain conditions and so represents an extension of this body of earlier work as well as
Stefan’s original application of the idea.

Kerr et al. (1989, 1990) extended these earlier models to account for the variation of
the thermal properties within the mushy layer and for variation in the bulk composition
within the mushy layer. These papers parameterised heat transfer through the liquid as a
turbulent heat flux rather than assuming that all the heat transfer was conductive. These
extensions are important for modelling sea-ice growth because the thermal properties
vary considerably and also because the heat transfer from the ocean is dominantly
through turbulent convection rather than conduction. The resulting equations were solved
numerically. However, the treatment was still limited because it was not known how to
calculate the evolution of the bulk composition (salinity) within the mush. In practice,
sea ice is observed to desalinate rapidly through a process called convective desalination
driven by a compositional buoyancy gradient within the ice (see reviews by Worster 1997,
2000; Anderson & Guba 2020).

Within the sea-ice literature, Maykut & Untersteiner (1969, 1971) developed a
significant new type of model (see references therein for some antecedent developments).
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Thermodynamic growth of sea ice

We refer to this model by the acronym MU. There are some similarities with the
developments in mushy-layer theory outlined above (which all came later), particularly
in terms of the role of salinity in the thermal properties of the ice. The MU model has the
same limitation as the mushy-layer models mentioned so far in terms of having to prescribe
the salinity. There are also differences. In particular, the ice is topped by a layer of snow,
radiative heating is included and a realistic energy balance with the atmosphere is used.
The MU model is of particular importance because it is still widely used in large-scale
climate simulations, particularly in the version developed further by Bitz & Lipscomb
(1999). Bitz & Lipscomb (1999) updated the MU model by accounting for the latent heat
of melting the upper surface of the ice, which is important for modelling the summer melt
season. However, for the winter growth season, this difference is not important since there
is limited melting at that interface in winter.

The thermodynamics within the sea ice itself in the MU model is structurally entirely
consistent with that used in mushy-layer theory (Feltham et al. 2006). Indeed, by a suitable
choice of the parameter values, they can be made identical. However, the parameters used
by default in MU models have a stronger sensitivity to salinity than would be suggested by
mushy-layer theory (in which the thermal conductivity is a weighted average of the solid
and liquid conductivity). We return to this issue later when considering suitable parameter
values.

Another widely used class of sea-ice models was developed by Semtner (1976). These
models use the same thermodynamic framework as the MU model, but rather than solving
the full heat equation, the equation is vertically discretised into three layers (one snow layer
and two sea-ice layers), with the temperature field assumed linear between the midpoints of
each layer. In an appendix, Semtner (1976) proposed an even simpler ‘zero-layer’ model,
in which the heat equation is not solved at all and the temperature field varies linearly
across the ice. As mentioned above, this type of linear approximation was first used by
Stefan (1891). We discuss why such approximations continue to work well even when the
thermal properties vary strongly across the ice.

Recently, a new generation of dynamic-salinity mushy-layer models has been developed
(Griewank & Notz 2013; Turner, Hunke & Bitz 2013; Rees Jones & Worster 2014;
Griewank & Notz 2015). These applied theoretical developments within mushy-layer
theory to calculate the evolution of bulk salinity either using a semi-analytical theory (Rees
Jones & Worster 2013a,b) or two-dimensional numerical simulations (Wells, Wettlaufer
& Orszag 2011, 2013). The particular implementation of Turner et al. (2013) has been
implemented in large-scale models as discussed below. However, the three dynamic
salinity models are all rather similar from a theoretical point of view (Worster & Rees
Jones 2015). Laboratory experiments of the very early stages of ice growth by Thomas
et al. (2020) suggest that dynamic-salinity mushy-layer models can successfully capture
the initial desalination of sea ice and perform better than other types of parameterisation.

Indeed, collectively the zero-layer, MU and dynamic-salinity mushy-layer models
represent the three options available to users of the CICE/Icepack software packages
(Hunke et al. 2024a,b). These packages are widely used sea-ice models for large-scale
simulations. A recent inter-comparison of CMIP6 models shows that these three models of
sea-ice thermodynamics remain in use, with the Bitz–Lipscomb version of the MU model
being the most common (Keen et al. 2021). One goal of our study is to understand better
the differences between such models. This is motivated in part by numerical calculations
in Griewank & Notz (2013) and Rees Jones & Worster (2014) that suggested introducing
a dynamic salinity field had only a small effect on the ice growth. Similar results had
previously been obtained with different prescribed salinity profiles by Vancoppenolle,
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Fichefet & Bitz (2005). These observations are somewhat curious given the large variation
in thermal properties through sea ice and how strongly these depend on salinity. In this
study, we provide detailed physical reasons for this observation and show that it continues
to hold across a wide range of sea-ice salinities (from ice that is almost as salty as seawater
to ice that is completely desalinated).

Our study also contributes a new QS approximate model of sea ice which has an
intermediate complexity between zero-layer models and PDE-based models (such as
MU-type and mushy-layer models). Under constant boundary conditions, this model
reduces to the similarity-solution method mentioned previously and gives an exact solution
to MU-type models. Under variable boundary conditions, the solution is only approximate
and so we investigate the validity of the approximation on theoretical grounds and
through numerical calculation. While our study focuses on terrestrial sea ice, this type
of intermediate complexity approach may be attractive for emerging research into the
postulated mushy layers on icy moons (e.g. Buffo et al. 2020, 2021; Vance et al. 2021).

The structure of the paper is as follows. In § 2, we develop governing equations,
non-dimensionalise them, discuss appropriate parameter values, and develop the QS
approximation. In § 3, we analyse the initial growth rate of sea ice using theoretical
(asymptotic) analysis and numerical calculation. We explain why salinity has a very weak
effect on the growth rate. We compare our calculations with those based on zero-layer and
MU-type models. In § 4, we consider the subsequent growth rate, which diminishes as the
ice grows and the ocean heat flux becomes more important. We calculate the evolution of
ice thickness and develop an approximate analytical solution. We return to the question of
the role of salinity on ice growth. In § 5, we consider various kinds of variable conditions,
particularly time-dependent atmospheric temperature and time-dependent sea-ice salinity.
Then we test the validity of the QS approximation by comparing it against numerical
solutions of a full PDE-based model. Finally, in § 6, we summarise our findings from the
viewpoint of the implications for large-scale sea-ice modelling.

2. Model of sea-ice growth and the QS approximation

Sea ice is formed from seawater and consists of solid ice (the solid phase) and liquid
saltwater/brine (the liquid phase). The composite will be referred to as sea ice, or ice for
brevity.

The thermodynamic growth of ice is a predominantly one-dimensional process in which
ice grows in the vertical z direction, where z increases downwards. The top of the ice (at
the boundary with the atmosphere) lies at z = 0 and the bottom (at the boundary with
the ocean) lies at z = h, where h is the ice thickness. The thickness evolves in time t so
h = h(t). The primary model output is the growth rate ḣ(t) and, hence, by integrating in
time, the thickness h(t).

A key simplifying assumption in our model is that we treat the bulk salinity S as
constant. Correspondingly, we neglect the effect of brine advection through the pores,
which is the primary mechanism behind salinity evolution. As discussed in § 1, salinity
evolution is an important process. However, we wish to understand why the salinity only
has a small effect on ice growth, so it is simpler to have a single constant characterising
the salinity. In Appendix A, we show that both the direct advective transport of heat by
brine advection and the latent heat changes associated with changes in bulk salinity can
be self-consistently neglected. Moreover, taking the bulk salinity as constant satisfies local
salt conservation in the absence of advection and diffusion (equation (4) in Rees Jones &
Worster 2014). It also satisfies global salt conservation: there is a salt flux proportional
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Thermodynamic growth of sea ice

to the ice growth rate and the difference in bulk salinity across the ice–ocean interface
(equation (18) in Rees Jones & Worster 2014). While the more complete descriptions
of salinity evolution described in § 1 are more realistic; nevertheless, assuming constant
salinity does satisfy local and global salt conservation. Thus, we can safely analyse the
temperature evolution while holding the salinity constant.

2.1. Temperature equation within the ice
The growth rate of ice depends on thermal transfer through the ice governed by
conservation of heat within the ice,

c̄
∂T
∂t

= ∂

∂z

(
k̄
∂T
∂z

)
− L

∂X
∂t

, (2.1)

where T(z, t) is the temperature and X(z, t) is the liquid (brine) fraction. The remaining
quantities are the thermal properties: L is the volumetric latent heat, c̄ is the volumetric
heat capacity and k̄ is the thermal conductivity. The properties c̄ and k̄ depend on the
relative fraction of the ice that is occupied by solid and liquid. Weighting these properties
volumetrically,

k̄ = klX + ks(1 − X) ≡ ks [1 − X�k] , (2.2a)

c̄ = clX + cs(1 − X) ≡ cs [1 − X�c] , (2.2b)

where a subscript s denotes a property of the solid phase and l denotes a property of the
liquid phase. For the final equivalences, we define

�k = (ks − kl)/ks, (2.3a)

�c = (cs − cl)/cs. (2.3b)

These are dimensionless measures of the differences between the thermal properties of
solid and liquid phases.

The liquid fraction depends on the temperature of the ice as well as its bulk salinity S,
i.e. the weighted average of the salinity of the solid phase (which is assumed to be zero)
and that of the liquid phase C. These are related by

S = CX. (2.4)

We assume that phase change occurs until the system reaches a local thermodynamic
equilibrium in which the liquid phase lies at the temperature-dependent freezing point.
Thus,

C = −T/m, (2.5)

where m is the slope of the freezing point (assumed constant). Hence, by combining with
(2.4), we determine the liquid fraction

X = mS
−T

, (2.6)

and by the chain rule
∂X
∂t

= X
1

−T
∂T
∂t

. (2.7)
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Equation (2.7) allows the latent heat term on the right-hand side of (2.1) to be rewritten as
an enhanced heat capacity. In particular, we write

c
∂T
∂t

= κs
∂

∂z

(
k
∂T
∂z

)
, (2.8)

where κs = ks/cs is the thermal diffusivity of the solid phase and

k = 1 − X�k, (2.9a)

c = 1 − X�c + L
cs(−T)

X, (2.9b)

are the dimensionless thermal conductivity and heat capacity respectively. These quantities
depend on T , so (2.8) is a nonlinear diffusion equation.

2.2. Boundary conditions
In general, suitable boundary conditions for sea-ice evolution require the conservation of
heat and salt across the interfaces. Here, we take a simplified approach.

We assume that the top of the ice is held at some temperature TB, the atmospheric
temperature. In principle, this temperature could vary in time, in which case TB would
denote the mean (time-averaged) or initial atmospheric temperature. In mushy-layer
models, such a fixed temperature boundary condition is commonly used and corresponds
physically to a perfectly conducting boundary. In sea-ice models, an energy flux balance
is usually used. Hitchen & Wells (2016) showed that such flux balance models can be
linearised and expressed as a Robin-type boundary condition involving both T and ∂T/∂z;
such boundary conditions could be handled within our modelling framework.

We assume that the bottom of the ice is at the freezing point of seawater T0 = −mS0,
where S0 is the salinity of seawater. This introduces a natural temperature scale to the
problem

�T ≡ T0 − TB, (2.10)

which will be positive for ice growth.
Although (2.8) is a second-order equation and we already have two boundary conditions,

we need an extra boundary condition to determine the evolution of the free boundary h(t).
Its evolution is determined by a generalised Stefan condition (Kerr et al. 1989, 1990). This
condition represents the balance of heat fluxes across a narrow boundary layer below the
ice–ocean interface

ḣ
[
cl(Tl − T0) + L(1 − X)z=h−

]+ FT = ks

(
k
∂T
∂z

)
z=h−

, (2.11)

where Tl > T0 is the temperature of the upper ocean (assumed constant) and FT is the
turbulent heat flux supplied by the ocean. In general, the left-hand side of (2.11) is
dominated by the latent heat term, but we retain the sensible heat term cl(Tl − T0) as
it regularises the boundary condition when the liquid fraction at the interface Xz=h− = 1.

We introduce a scale for the bulk salinity of sea ice relative to the salinity of the ocean

Ŝ = S/S0, (2.12)

which will lie between 0 and 1 depending on how much the sea ice has desalinated (we
discuss the range of Ŝ in § 2.4). Note that Xz=h− = Ŝ, so Ŝ can also be thought of as a scale
for the liquid fraction.
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Thermodynamic growth of sea ice

2.3. Non-dimensionalisation
The growth of ice appears to have no natural length scale. Previous studies of growth in
the laboratory have typically used the depth of the tank as a scale (e.g. Kerr et al. 1990).
However, if we are interested in the long-term growth of ice, it makes more sense to use
the following scale:

h∞ = ks
�T
FT

, (2.13)

which is a scale estimate for the steady-state ice thickness based on estimating the
steady-state balance in (2.11). It is important to note that this is a scale estimate, not the
actual steady-state thickness. This scale is chosen because we want to investigate how ice
growth depends on salinity, so it is convenient to non-dimensionalise with respect to a
scale that does not depend on salinity. We report the actual steady-state thickness of the
model in § 2.6.

Thus, we introduce a rescaled height (ĥ) as well as a rescaled time (τ ) and distance (ζ )
coordinate system:

ĥ ≡ h
h∞

, τ ≡ tκs

h2∞
, ζ ≡ z

h∞ĥ
. (2.14a–c)

The scaling for time is based on thermal diffusion across the steady-state ice thickness.
The scaled temperature of ice can be written

θ = T − TB

�T
, (2.15)

such that θ runs between 0 and 1 from the upper (atmospheric) to the lower (oceanic)
interface. We denote the scaled cold atmospheric temperature

θB = −TB

�T
, (2.16)

which is greater than 1 by the definition of �T . The effective scaled temperature difference
across the ice–ocean boundary layer is

θe = cl (Tl − T0)

L
, (2.17)

where we non-dimensionalise with respect to latent heat because this ratio controls the
relative importance of sensible to latent heat fluxes in (2.11).

The Stefan condition (2.11) can be rescaled

ĥ
dĥ
dτ

= 1

L̂
q, (2.18)

where the scaled latent heat L̂ = L/(cs�T) is often called the Stefan number, and the
growth rate factor q is defined by

q =
k
∂θ

∂ζ

∣∣∣∣
ζ=1−

− ĥ

1 − Ŝ + θe
. (2.19)

Thus,

d
dτ

(
ĥ2L̂
2

)
= q, (2.20)
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so determining q tells us how fast the square of ice thickness changes. We will often refer
to q, which is the crucial output of our calculations, as the growth rate factor.

Similarly, the temperature equation (2.8) can be written in scaled form

cĥ2 ∂θ

∂τ
− cζq

L̂

∂θ

∂ζ
= ∂

∂ζ

(
k
∂θ

∂ζ

)
, (2.21)

where scaled versions of the material properties are given by

X = Ŝ
θB − 1
θB − θ

, (2.22a)

k = 1 − X�k, (2.22b)

c = 1 − X�c + L̂
θB − θ

X. (2.22c)

Although (2.21) does not include any direct advective transport, the second term on the
left-hand side is a pseudo-advection term proportional to q associated with the changing
domain.

2.4. Parameter values and approximations
Six dimensionless parameters characterise the problem. In this section, we give typical
values or ranges for these parameters and discuss appropriate approximations. We also
recast two parameters to better separate material properties (that are essentially fixed) from
quantities that vary depending on environmental conditions. Throughout this section, we
use material properties given in table 1 of Rees Jones & Worster (2014); see references
therein for further discussion.

First, the difference between solid and liquid conductivities �k = 1 − kl/ks ≈ 0.76.
This means that the thermal conductivity of ice is about four times higher than that of
water, a significant difference. However, various MU-type models use a formula for the
thermal conductivity of the form

k̄ = ks + βS/T, (2.23)

where β is an empirical constant. By comparing this expression with (2.2a) and (2.6), we
see that the MU-type models are equivalent provided �k = β/mks. Particular choices of
parameters differ slightly between publications, so, as an example, we consider the default
parameter values given in the CICE/Icepack documentation (Hunke et al. 2024a,b). These
list β = 0.13 W m−1 ppt−1, m = 0.054 deg ppt−1 and ks = 2.03 W m−1 deg−1, which
combine to give �k ≈ 1.2. This is physically problematic in the framework of mushy-layer
theory because �k ≤ 1 by definition (2.3a). Indeed, the Icepack documentation casts
doubt on the suitability of these parameter values based on experimental results (Hunke
et al. 2024b). However, it appears not widely known that these default parameter values
are inconsistent with mushy-layer theory. We comment more generally on this issue in the
context of large-scale models in § 6.2.

Second, the difference between solid and liquid heat capacities �c = 1 − cl/cs ≈ −1.1.
Equivalently, the heat capacity of water is about double that of ice. This is a significant
difference. However, by inspecting (2.22c), we see that the magnitude of �c should be
compared with the role of latent heat since both appear multiplied by X. Indeed the ratio
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of the second and third terms is
�c

L̂/(θB − θ)
≤ �cθB

L̂
= cs − cl

L
(−TB), (2.24)

where the inequality arises from the fact that θ > 0. Even for quite strong cooling, e.g.
TB = −20 ◦C, the ratio in (2.24) is � 0.13. For numerical calculations, we will retain the
parameter �c. However, it only has a small effect on results and we will neglect it when
carrying out analysis to reduce the number of parameters.

Third, the effective ice–ocean temperature difference θe = cl(Tl − T0)/L � 1, because
L/cl ≈ 77 ◦C and any temperature difference is typically less than a degree (and often
much smaller). In some mushy-layer models of sea ice, this term still plays an important
role, because it regularises the Stefan condition in the case that the liquid fraction X = 1
at the interface (2.11). However, in our model with a fixed sea-ice salinity, it is reasonable
to neglect θe provided Ŝ is not very close to 1 (which ensures the liquid fraction is not 1
at the interface). Formally, we need θe � 1 − Ŝ. For numerical calculations, we will use
the representative value Tl − T0 ≈ 0.017 ◦C, which gives θe ≈ 2 × 10−4. For analytical
calculations, we neglect this term as an excellent approximation.

Fourth, the effective latent heat or Stefan number L̂ = L/(cs�T) � 1, because L/cs ≈
160 ◦C which is much greater than a typical temperature difference across the ice. For
example, if �T ≈ 20 ◦C, then L̂ ≈ 8. The definition of L̂ is convenient for simplifying
and analysing the equations. However, one limitation of this formulation is that changing
the cold atmospheric temperature TB, which will vary depending on the environmental
conditions, changes both L̂ and θB. Therefore, we introduce an alternative effective latent
heat

L̂0 = L
cs(−T0)

≈ 83, (2.25)

which, to an excellent approximation, is a fixed material property, because the freezing
point of seawater is roughly constant (assuming its salinity does not vary much).

Fifth, the scaled cold atmospheric temperature θB = −TB/�T > 1, which ensures that
the atmospheric temperature is below the freezing point T0. As TB approaches T0, the
temperature differences �T approaches zero, so θB can be arbitrarily large. Thus, we
introduce an alternative parameter

θ0 = (θB − 1)−1 ≡ �T
−T0

, ⇔ θB = 1 + θ−1
0 , (2.26)

where the equivalence expresses θ0 in terms of dimensional quantities. In a similar way
to L̂0, it is convenient to scale against a fixed quantity. Thus θ0 varies between 0 (when
there is no freezing) and about 9.4 (when TB = −20 ◦C and there is strong freezing).
Unless otherwise stated, we take a default value θ0 ≈ 9.4. Then the Stefan number can be
rewritten

L̂ = L̂0θ
−1
0 . (2.27)

Thus, variation in θ0 should be interpreted as representing variation in the environmental
conditions, which in turn controls variation in L̂. Combining the default values for L̂0 and
θ0 gives a default value for L̂ ≈ 8.3.

Sixth, the sea-ice salinity Ŝ defined in (2.12) will lie between 0 and 1. In mushy-layer
theory, the salinity is constant across the ice-ocean interface, so Ŝ = 1 at the interface.
Equivalently, all the salt contained in seawater is initially incorporated into the sea ice as
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Figure 1. Depth dependence of the thermal properties of sea ice from atmosphere (ζ = 0) to ocean (ζ = 1).
(a) The thermal conductivity and (b) the heat capacity of sea ice vary considerably with salinity Ŝ. The depth
dependence was calculated by assuming that temperature varied linearly with depth (θ = ζ ) in (2.22).

liquid brine inclusions (Notz & Worster 2008). Some laboratory experiments suggest that
there is a delay of several hours before desalination begins (Wettlaufer, Worster & Huppert
1997). However, this is a relatively short time period and such a delay was not apparent in
the field observations of Notz & Worster (2008). Within about 12 hours, sea ice appears to
lose at least half the salt originally contained in seawater (Notz & Worster 2008; Thomas
et al. 2020) so for all but the very initial stages of ice growth, it is reasonable to take
Ŝ � 0.5. For our results, we consider salinities between Ŝ = 0 (fresh ice) and Ŝ = 0.8
(very salty ice, in dimensional units about 28 ppt, which is much saltier than even very
young ice is observed to be) to consider a very broad possible range.

The values of �k and �c ensure that the effective conductivity and heat capacity of sea
ice vary considerably in sea ice (figure 1). Saltier ice is less thermally conductive because
the liquid fraction is higher. However, saltier ice has a higher heat capacity. The fact that
the heat capacity is much greater than 1 reflects the fact that the heat capacity (2.22c) is
dominated by latent heat release.

2.5. Dimensional parameter values
The solution of the dimensionless problem only involves the dimensionless parameters
introduced previously. However, to convert back to dimensional form, we additionally need
the dimensional steady-state thickness estimate h∞.

In addition to the material properties given in table 1 of Rees Jones & Worster (2014),
we need to specify a value of FT , T0 and TB. We take FT = 0.0013 J s−1 cm−2 and T0 =
−1.9 ◦C. This value of FT is smaller than (about half) that used in Rees Jones & Worster
(2014) and was chosen to achieve a sensible equilibrium thickness, comparable to Maykut
& Untersteiner (1971). The value of FT used is within the range observed by Wettlaufer
(1991). For TB, we consider two possible values.

(i) For TB = −20 ◦C, we obtain �T = 18.1 ◦C, which gives rise to h∞ = 280 cm and,
hence, a diffusive time scale h2∞/κs = 7.7 × 106 s (or 89 days).

(ii) For TB = −10 ◦C, we obtain �T = 8.1 ◦C, which gives rise to h∞ = 130 cm and,
hence, a diffusive time scale h2∞/κs = 1.5 × 106 s (or 18 days).
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Thermodynamic growth of sea ice

2.6. Equilibrium thickness

The ice grows and reaches an equilibrium (steady-state) thickness ĥ∞ at which the growth
rate factor q = 0. The temperature θ = θ(ζ ) alone. By (2.19), we observe that (kθ ′)(1) =
ĥ∞. The left-hand side of (2.21) is zero at steady state. Thus, by integrating the right-hand
side once and applying the condition at ζ = 1, we obtain(

1 − Ŝ�k
θB − 1
θB − θ

)
dθ

dζ
= ĥ∞, (2.28)

where we used (2.22) to express k. This is a first-order separable equation with two
boundary conditions (θ(0) = 0, θ(1) = 1) which allows us to determine the unknown
parameter ĥ∞. We integrate again and apply the boundary conditions to obtain

ĥ∞ = 1 − Ŝ�k (θB − 1) log
θB

θB − 1
,

= 1 − Ŝ�kθ−1
0 log(1 + θ0), (2.29)

where we used (2.26) to convert from θB to θ0.
The equilibrium thickness calculated decreases linearly with salinity Ŝ, which is driven

by the thermal conductivity difference �k. The dependence is also affected by the thermal
parameter θ0. When θ0 � 1, we note that θ−1

0 log(1 + θ0) ∼ 1 + O(θ0). This gives ĥ∞ ≈
1 − Ŝ�k, an estimate that could be derived using a simple zero-layer type of model of
ice in which the temperature field θ ≈ ζ . However, when θ0 is larger, the sensitivity of
equilibrium thickness to salinity is smaller. For example, when θ0 ≈ 9.4, the largest value
considered in § 2.4, θ−1

0 log(1 + θ0) ≈ 0.25.

2.7. QS approximation
A crucial simplification we can make to the system of equations is to neglect the explicit
time-dependence ∂θ/∂τ in the heat equation (2.21). This is a major simplification because
it reduces a PDE to an ODE. The resulting equations are still time-dependent because the
ice thickness depends on time and this affects the solution via the definition of q in (2.19).
For constant boundary conditions and when ĥ � 1, the QS solution is an exact solution
of the full PDE. This is sometimes called a similarity solution, an idea used in previous
analytical studies (Stefan 1891; Huppert & Worster 1985; Worster 1986). Thus, the QS
approximation can be thought of as a generalisation of a similarity solution.

To motivate this approximation, consider the initial phase of ice growth (from an initial
thickness of zero). We scaled the equations such that q = O(1) provided Ŝ /= 1, cf. (2.19).
Then, by integrating (2.20),

ĥ ∝
√

2τ

L̂
, (2.30)

so the first term in the heat equation (2.21) is a factor of τ smaller than the second
term. Therefore, initially at least, we can guarantee that the explicit time dependence is
negligible. Moreover, at later times, the system is likely to be evolving slowly anyway.
We will test the practical effects of this approximation later by comparing a full solution
of the PDE to the ODE (§ 5.3).
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Under the QS approximation, the heat equation (2.21) reduces to a boundary-value
problem (BVP)

− cζq

L̂
θ ′ = (kθ ′)′, θ(0) = 0, θ(1) = 1, q = (kθ ′)(1) − ĥ

1 − Ŝ + θe
. (2.31a–d)

Equation (2.31a) is a second-order ODE with an unknown parameter q, hence the three
boundary conditions (2.31b–d). The left-hand side of (2.31a) is a pseudo-advection term
associated with the change of coordinate system.

The BVP is coupled to an initial-value problem (IVP) for ice thickness (2.20). We define

ŷ = ĥ2L̂/2, (2.32)

so that the IVP has the simple form

dŷ
dτ

= q, ŷ(0) = 0. (2.33)

The coupled BVP–IVP can be solved very straightforwardly using collocation methods for
the BVP (Kierzenka & Shampine 2001) and Runge–Kutta methods for the IVP. We present
an implementation based on the MATLAB bvp4c and ode45 routine, respectively (see the
data availability statement for a link to the code). Similar implementations are available in
the SciPy library, for example.

3. Initial ice growth rate

In this section, we analyse the early stage of sea-ice growth from an initial thickness of
zero. We focus on how the growth rate depends on the salinity of sea ice and its latent
heat.

The initial ice thickness is zero (ĥ = 0), so the BVP (2.31) simplifies to

− cζq0

L̂
θ ′ = (kθ ′)′, θ(0) = 0, θ(1) = 1, q0 = (kθ ′)(1)

1 − Ŝ + θe
, (3.1a–d)

where we introduce the notation q0 for the initial value of q. The solution of the BVP, and
hence the value of q0, will depend on all the material parameters of the system (§ 2.4).
Our primary goal in this section is to analyse the role of salinity Ŝ in controlling initial
ice growth. We start by deriving analytical solutions valid when L̂ � 1 (§ 3.1) and Ŝ � 1
(§ 3.2). This analytical approach elucidates the physical mechanisms at play. Then we will
perform numerical calculations across the full parameter range (§ 3.3).

3.1. Analytical solution when the Stefan number is large
The parameters of the system (§ 2.4) suggest various approximations that simplify the
analysis. We take �c = θe = 0 in this subsection and the next. In this subsection, we take
Ŝ = 0 (fresh ice) and investigate the effect of latent heat in the limit that the Stefan number
is large, L̂ � 1. Given that Ŝ = 0, the parameters �k and θB do not affect the solution.

The Stefan problem when Ŝ = 0 is very well known so we only sketch the solution. The
temperature

θ = erf(Cζ )

erf(C)
, (3.2)

where C = (q0/2L̂)1/2 and q0 = (2/
√

π)C exp(−C2)/ erf(C). By eliminating C, we
obtain an implicit algebraic expression governing q0(L̂). Finally, by taking the limit
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Figure 2. Dependence of initial growth rate factor q0 on the latent heat L̂ calculated numerically and

asymptotically (3.3).

L̂ → ∞ (in which C → 0), we obtain the asymptotic estimate

q0 ∼ 1 − 1
3

1

L̂
+ 7

45
1

L̂2
+ O(L̂−3). (3.3)

Figure 2 shows that the asymptotic estimate is extremely close to the full numerical
solution throughout the parameter range of interest. Indeed, even the leading order estimate
q0 ∼ 1 has an error of less than about 4 % for L̂ > 8 (1/L̂ < 0.125), the geophysical range
of interest identified in § 2.4.

The corresponding leading order solution θ = ζ , i.e. the temperature field is
approximately linear through the ice. Thus models that assume a linear temperature profile
such as the Semtner zero-layer model (Semtner 1976) are effective provided the latent heat
is sufficiently large.

3.2. Analytical solution when the bulk salinity is small
We now extend the analysis to consider small but non-zero bulk salinity by investigating
the limit Ŝ � 1. We continue to make the assumption that L̂ � 1 but the solution now
depends additionally on the parameters �k and θB. As we discussed in § 1, one of the
major developments in recent sea-ice modelling has been dynamically calculating the bulk
salinity. But different models of bulk-salinity evolution seem to have little effect on ice
thickness (Griewank & Notz 2013; Rees Jones & Worster 2014; Worster & Rees Jones
2015). Our goal is to understand the physical reasons for this limited sensitivity and explore
how this is manifested in common large-scale sea-ice models.

The key idea is to decompose the temperature field

θ ∼ ζ + Ŝθ̃ (ζ ) + O(Ŝ2, L̂−1), (3.4)

where the perturbation temperature field θ̃ satisfies a second-order BVP subject to θ̃ (0) =
θ̃ (1) = 0. This BVP is obtained by substituting (3.4) into (3.1) and equating terms of the
same order in Ŝ (i.e. we linearise the system in Ŝ).

We give full details in Appendix B. Here we explain the main physical simplifications
involved. The liquid fraction X = Ŝ(θB − 1)/(θB − θ), so to leading order X is
proportional to Ŝ and the temperature field in the denominator can be replaced by
θ ∼ ζ . Then the heat capacity ratio on the left-hand side of (3.1a) can be estimated by
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c/L̂ ∼ X/(θB − ζ ) for similar reasons. The thermal conductivity k = 1 − �kX so there is
a constant part (which must be retained), and a part that is proportional to X, and hence Ŝ,
so is retained too. Thus, it is important to consider how thermal conductivity varies with
liquid fraction. Finally, the Stefan condition (3.1d) is linearised as follows

q0 = (kθ ′)(1)

1 − Ŝ
∼ 1 + Ŝ

[
1 − �k + θ̃ ′(1)

]+ O(Ŝ2, L̂−1). (3.5)

The term in square brackets includes three terms that control the sensitivity of the growth
rate of ice to its salinity.

The first term comes from linearising the denominator of the expression for q0.
Physically, this term arises from the latent heat released at the ice–ocean interface. A larger
Ŝ increases the liquid fraction at the interface which reduces the latent heat liberated
there which, in turn, increases the growth rate. That is, salty ice tends to grow quicker
than fresher ice because there is less latent heat to be conducted away from the growing
interface.

The second term comes from linearising the heat flux at the interface: considering the
variation in thermal conductivity while retaining the leading order estimate θ ′(1) ∼ 1.
At the interface, θ = 1, so the terms involving θB cancel and we are left with a contribution
−�k. Physically, a higher Ŝ increases the liquid fraction which reduces the thermal
conductivity because liquid water is less conductive than ice. That is, salty ice would tend
to grow slower than fresher ice because it is less thermally conductive.

The combination of the first and second terms is consistent with the prediction of
a simple zero-layer type of model of ice. Worster & Rees Jones (2015) discussed the
relative insensitivity of ice growth to salinity in terms of the competing effects of
thermal conductivity and latent heat growth. Here, we give a clear quantification of that
competition. In particular,

∂q0

∂ Ŝ
≈ 1 − �k ≈ 0.26. (3.6)

Thus, the overall sensitivity of ice growth to salinity is rather weak because the latent
heat and the thermal conductivity dependencies trade-off very strongly, even though
individually they vary very strongly with salinity (see figure 1). Mathematically the
weak sensitivity arises because the parameter group 1 − �k is small. Note that, from
the definition of �k, we have 1 − �k = kl/ks, so the weak sensitivity occurs in practice
because kl is much smaller than ks.

Furthermore, we identify an additional term, θ̃ ′(1), which is the third term in the bracket
of (3.5). This term also comes from linearising the heat flux at the interface, this time
considering the changed temperature profile θ̃ (ζ ) through the ice while fixing the leading
order estimate k = 1. Calculating this term is much more involved as it requires us to solve
the BVP for θ̃ (ζ ).

The total effect of all these terms can be found by calculating θ̃ ′(1) and combining with
the other terms (see Appendix B for details). We obtain the asymptotic estimate

q0 ∼ 1 + Ŝ(θB − 1)
[
−2 − (2θB − �k) log

(
1 − θ−1

B
)]+ O(Ŝ2, L̂−1). (3.7)

This estimate differs from the zero-layer type estimate (3.6) in two main respects.
It depends on θB whereas the previous estimate is independent of this parameter. The
dependence on �k is also different. The connection between the estimates is clearer if we
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Figure 3. Sensitivity of the initial growth rate factor to salinity at small Ŝ calculated asymptotically in the top
line of (3.8). Note that the vertical axis does not begin at zero.

express equation (3.7) in terms of θ0 using (2.26), and then rewrite as a sensitivity

∂q0

∂ Ŝ
∼ θ−1

0

[
−2 − (2 + 2θ−1

0 − �k) log(1 + θ0)
]

+ O(Ŝ, L̂−1),

∼ [1 − �k] + O(Ŝ, L̂−1, θ0), (3.8)

where the final result follows by taking the limit θ0 → 0. Figure 3 shows that the sensitivity
of sea-ice growth to salinity varies significantly with the cooling rate θ0 across the
parameter range of interest. The prediction of (3.8) is met at small θ0. However, for
strong cooling conditions when θ0 = 10, the growth rate factor is about 40 % smaller
than expected at small θ0, for example. Given that strong cooling (large θ0) conditions
are typical, this newly identified feedback mechanism associated with alteration to the
thermal profile is significant.

3.3. Numerical results
The asymptotic results were derived by assuming that the salinity of ice was very small
Ŝ � 1. However, in practice, we are interested in a range of salinities 0 ≤ Ŝ ≤ 0.8 as
discussed in § 2.4. Therefore, we solve for the initial growth rate factor q0 numerically
and compare with the asymptotic predictions

Figure 4 shows the dependence of the initial growth rate factor q0 on salinity Ŝ
according to various different models. The darker blue curves are the main results from
our QS model, with �k = 0.74, which is the best estimate for this parameter (§ 2.4).
The corresponding asymptotic predictions agree with the numerical results in the limit
of small Ŝ and are a reasonable approximation for Ŝ � 0.4. In practice, this corresponds to
a dimensional salinity of about 14 ppt, so would be relevant to all but the earliest stages of
ice growth. Nevertheless, the numerical results do diverge more sharply at higher salinity,
with the growth rate factor exceeding that predicted asymptotically.

We also plot predictions from zero-layer type models in a lighter green colour, both
the full calculation (solid) and the asymptotic limit from (3.6) (dashed). These both
over-predict the ice growth rate, for the reasons discussed in the previous section.
Moreover, the asymptotic limit diverges markedly from the full zero-layer calculation and
is a poor approximation for Ŝ � 0.1. So even though the asymptotic zero-layer model
appears to be a good model, this is coincidental.
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Ŝ
Figure 4. Dependence of initial growth rate factor q0 on the latent heat Ŝ. The solid blue curve corresponds to
the full numerical solution with our best estimate of the value of �k. This approaches the asymptotic prediction
(abbreviated ‘asymp.’ in the legend) as Ŝ → 0 (blue dashed curve). The dot-dashed curve shows results for a
larger value of �k. Lighter, green curves denote the predictions of zero-layer models (solid curve shows the full
model while the dashed curve is its asymptotic limit as Ŝ → 0). This figure was computed with L̂ = 103, �c =
θe = 0 to enable direct comparison with the asymptotic theory. These simplifications are tested in figure 5.

The above calculations, including the zero-layer results, were all made with �k = 0.74.
However, in § 2.4, we showed that �k ≈ 1.2 in MU-type models such as CICE/Icepack
(Hunke et al. 2024a,b). Thus, we also plot the numerical solution for the higher value of
�k = 1.2. It has a much weaker dependence on Ŝ because the reduction in growth rate
caused by thermal conductivity variation is made stronger.

In summary, all the models we presented agree with the general idea that the sensitivity
to salinity is rather weak. The zero-layer model over-predicts the sensitivity while the
high-�k model implemented as the default parameter choice in CICE/Icepack tends to
under-predict the sensitivity.

In figure 5, we show more completely the dependence of the growth rate factor on the
environmentally varying parameters of the system (θ0, Ŝ). Comparing panels (a,c), we
see that the basic trends found numerically are consistent with the asymptotic analysis
across the whole parameter space explored. Comparing panels (a,b) shows that relaxing
the assumptions that �c = 0 and θe = 0 makes almost no difference to results, so this
was a good assumption across the full parameter regime considered. Thus, the asymptotic
analysis (panel c) and the physical mechanisms identified using it (§ 3.2) explain why the
initial growth rate varies very weakly with salinity.

To conclude, the weak effect on relative growth rate is not only caused by the relatively
low salinity Ŝ (and, hence, low liquid fraction). For example, even a relatively high salinity
(Ŝ = 0.5, 50 % of the ocean seawater salinity) corresponds to q0 − 1 ≈ 0.1, which is
about a 10 % difference in growth rate factor. Thus, the physical mechanisms, first the
trade-off in thermal properties (conductivity/latent heat capacity) and second the feedback
on temperature profile (analysed asymptotically in § 3.2), are crucial to understanding the
role of salinity. In the next section, we investigate how this feeds through to the evolution
of ice thickness.

4. Later-stage ice growth rate and thickness evolution

As the ice continues to grow, the heat flux from the ocean gradually plays a greater
role slowing the ice growth until the thickness reaches a steady state (assuming constant
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Figure 5. Dependence of the initial growth rate factor on external parameters. (a) Full numerical results with
standard material parameter values. (b) Simplified numerical results (�c = 0 and θe = 0). (c) Asymptotic
results based on the combination of (3.3) for the dependence on L̂ (where L̂ = L̂0θ

−1
0 from (2.27)), and (3.7)

for the dependence on Ŝ. Note that we only plot θ0 ≥ 2 to focus on the parameter regime of geophysical interest.
For smaller values θ0 ≥ 2, q0 increases rapidly in both sets of numerical calculations.

forcing, something we revisit in § 5). In this section, we calculate how the growth rate
factor q depends on the ice thickness and then use this to determine the evolution of the
ice thickness. We show that the sensitivity of the growth rate to salinity reverses sign, so
saltier ice grows slower.

4.1. Effect of ice thickness on the growth rate factor
Under the QS approximation (§ 2.7), the problem of calculating the ice growth rate factor
does not depend on the evolution of the ice thickness, only the thickness at a given time.
Thus, we now solve the full BVP (2.31) and denote the growth rate factor q(ĥ). This
notation suppresses the dependence on all the material parameters of the system. Note
that q0 = q(ĥ = 0). However, we can not simply take our solutions for q0 and find q by
using the Stefan condition (2.31d), because q also appears in the heat equation (2.31a).

Numerically, we observe that the q(ĥ) varies approximately linearly with ĥ. Figure 6
shows that this approximation holds very well across the full range of ĥ ∈ [0, 1] for
parameter values that span the range of interest. While a linear dependence on ĥ might be
anticipated from (2.31d), the slope is not consistent with (1 − Ŝ + θe)

−1. This is because
the temperature profile itself also changes with ĥ.

Motivated by the observed linear trend in figure 6, we introduce the linear approximation

q(ĥ) ≈ q0 − q1ĥ, (4.1)

where q0 and q1 depend on the system parameters but not ĥ. We calculate q1 by computing
q at a very small value of ĥ to input, along with q0, into a finite difference approximation
of the (negative) slope at ĥ = 0.

Figure 7 shows that q1 (panel b) has a similar parametric dependence as q0 (panel
a). In particular, q1 increases strongly with salinity. Indeed the dependence of q1 on
salinity is stronger than that of q0. The practical implication is that q(ĥ) can decrease
with salinity rather than increase. Figure 7(c) shows that at small ĥ � 0.4, the growth rate
factor increases with Ŝ (consistent with the initial growth rate sensitivity found in § 3.2)
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Figure 6. Dependence of growth rate factor q on the thickness ĥ for Ŝ = 0.3. The solid blue curve corresponds
to the full numerical solution. The dashed light green line shows a first linear approximation given by (4.1). This
agrees very well with the full numerical solution. The dot-dashed darker green line shows a second alternative
linear approximation q = q0 − ĥ/(1 − Ŝ + θe) which does not agree with the numerical calculation.
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Figure 7. Dependence of the growth rate factor on external parameters. Panels (a,b) show how the constant
and linear terms in (4.1), respectively, depend on external parameters. These parameters are the same as the
‘full numerics’ parameters of figure 5. Panel (c) shows the resulting sensitivity of the growth rate factor to
salinity at increasing ice thickness. A negative q corresponds to thickness decaying towards its equilibrium
state.

but for larger ĥ � 0.4, the trend reverses. This reversed trend is consistent with the fact
that the equilibrium (steady-state) thickness decreases with salinity (see (2.29) in § 2.6).

Physically the reversal in sensitivity to salinity can be understood by considering the
changing relative importance of the different processes that control the sensitivity to
salinity. As the ice grows, the growth rate reduces, which reduces the importance of the
latent heat sensitivity to salinity (recall that saltier ice grows faster as less latent heat is
released by saltier ice). The turbulent ocean heat flux (a constant, independent of salinity)
becomes relatively more important. The conductive heat flux reduces, but at a slower rate
than the latent heat production reduces. Indeed, as the thickness approaches a steady state
(§ 2.6), the latent heat production is negligible and there is a balance between turbulent
ocean heat flux and conductive heat flux through the ice. Thus, the fact that the saltier ice
is less thermally conductive eventually dominates the overall sensitivity to salinity, such
that saltier ice grows slower beyond ĥ � 0.4.
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4.2. Ice thickness evolution
As the ice grows ĥ increases, so while initially saltier ice grows faster, subsequently saltier
ice grows slower. This is a further reason that the sensitivity of ice growth to ice salinity
is small. We next investigate the net result by calculating the thickness evolution using
(2.33). If the growth rate factor has the simple linear form given by (4.1), then the evolution
equation becomes

dŷ
dτ

= q0 − (2q2
1/L̂)1/2ŷ1/2, ŷ(0) = 0, (4.2)

where we used (2.32) to convert between scaled thickness ĥ and scaled squared thickness
ŷ. This is a separable equation and the analytical solution can be written in terms of the
product–logarithm function (sometimes called the Lambert W-function). This function is
defined as the root w = W of wew = z (the principle value, which satisfies W ≥ −1, is the
relevant root here).

We express the analytical solution in terms of the thickness

ĥ = q0

q1

{
1 + W

[
− exp

(
−τq2

1

L̂q0
− 1

)]}
. (4.3)

To the best of the author’s knowledge, this expression is a new analytical estimate of the
growth trajectory of sea ice. A related expression is given in an implicit form in Worster
(2000) and in the PhD thesis Notz (2005) but these earlier expressions are based on a
zero-layer model for ice growth.

Figure 8 shows that the thickness is initially proportional to τ 1/2 (see the inset), as is
typical for Stefan problems (Worster 2000). This comes from taking q0 ≈ 1 from (3.7),
which is valid at small Ŝ and large L̂. However, the thickness diverges markedly from this
initial growth even by τ = 1. The growth slows and approaches a steady state as τ → ∞.
The new analytical solution from (4.3) is an excellent approximation to the full numerical
solution across the full range of times considered. We plot results for two values of the ice
salinity as examples. The initial growth of the saltier ice is slightly faster (but the curves
are virtually indistinguishable). At late times, the saltier ice reaches a smaller thickness,
consistent with the growth rate factor being a decreasing function of salinity once ĥ � 0.4,
as shown in figure 7(c). Thus, the competing sensitivity of growth to salinity at small vs
large thickness is an additional reason why the overall ice thickness is relatively insensitive
to salinity. For practical purposes, the calculations with different salinities are virtually
indistinguishable up to about τ ≈ 5, which dimensionally corresponds to a period of at
least about 100 days (based on the TB = −10 ◦C conversion in § 2.5). This is a remarkable
degree of insensitivity in the context of the significant variation in the thermal properties
of ice between these salinities.

5. Effect of time-dependent forcing and the validity of the QS approximation

Sea ice grows in highly variable environmental conditions. In this section, we
progressively relax our assumptions of conditions being fixed. First, we consider the
effect of variable atmospheric conditions (§ 5.1). Second, we consider the effect of
variable salinity (§ 5.2). Third, and most significantly, we relax the QS approximation and
compare solutions based on solving the full PDE system to solutions based on our QS
approximation (§ 5.3).
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Figure 8. Ice thickness evolution calculated according to the numerical model at two different salinities.
Dashed curves show the corresponding analytical approximation from (4.3), which are extremely close to the
numerical curves. The dot-dashed curve shows an approximation to the initial growth based on q0 ≈ 1 from
(3.3). The inset shows the same data over the initial phase of growth.

5.1. Time-dependent atmospheric temperature
Variable atmospheric conditions are an important factor in sea-ice growth. We adjust
the boundary condition at the ice–atmosphere interface. We retain the same
non-dimensionalisation but interpret TB as the long-term average boundary temperature.
In dimensionless variables, the only change to the model is that

θ(0) = ĝ(τ ), (5.1)

where ĝ(τ ) represents the time-dependent boundary temperature. Within the QS
framework, the growth rate factor only depends on the value of ĝ at a particular time, so we
denote this dependence q(ĥ, ĝ), again suppressing the dependence on material properties.

Figure 9(a) shows that q decreases approximately linearly with ĝ. A higher value
of ĝ corresponds to a higher (warmer) atmospheric temperature so slower ice growth.
We introduce the approximation

q(ĥ, ĝ) ≈ q0 − q1ĥ − q2ĝ, (5.2)

where q2 is estimated in an analogous way to q1. A naïve, and rather good estimate of q2
can be obtained by substituting the zero-layer estimate θ ′(1) = 1 − ĝ into (2.31d), which
gives

q(0, ĝ) ≈ q0(1 − ĝ), (5.3)

or q2 ≈ q0. Figure 9(b) shows that q2 varies only weakly with the external parameters
and does so in a similar pattern to q0, although the approximation q2 ≈ q0 is not valid
uniformly (compare figure 5a).

We next consider the effect on the trajectory of ice thickness by solving the IVP (2.33)
that governs its evolution. The full equation requires numerical solution. However, if we
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Figure 9. (a) Approximately linear dependence of the growth rate factor on ĝ for ĥ = 0 and Ŝ = 0.3. The first
linear model (1) is based on numerical estimation of q2 at small ĝ as given by (5.2). The second linear model
(2), based on a zero-layer model, is given by (5.3). (b) The full parameter dependence of the slope q2.

adopt the linearisation (5.2) and take ĝ = �gĝ(τ ) where �g � 1, then we find

dŷ
dτ

= q0 − q1(2/L̂)1/2ŷ1/2 − q2�gĝ(τ ), ŷ(0) = 0. (5.4)

This equation can be linearised about the solution for �g = 0 (i.e. the solution we obtained
in § 4.2). We let ŷ = ŷ0 + �gŷ1, then

dŷ1

dτ
= −q2ĝ(τ ) + q1

(
1

2L̂

)1/2 ŷ1

ŷ1/2
0

+ O(�g), ŷ1(0) = 0. (5.5)

Note that the quotient is well-behaved in the limit that τ → 0. Both the numerator and
denominator tend to zero, but by l’Hôpital’s rule,

lim
τ→0

ŷ1

ŷ1/2
0

= lim
τ→0

ŷ′
1

1
2

ŷ′
0ŷ−1/2

0

= lim
τ→0

−q2ĝ(0)

1
2

q0

ŷ1/2
0 = 0, (5.6)

where, in the second expression, a prime denotes a derivative with respect to τ . For high
latent heat L̂ � 1, the evolution equation for ŷ has a simple form:

dŷ1

dτ
= −q2ĝ(τ ) + O(�g, L̂−1/2), ŷ1(0) = 0. (5.7)

We use these ideas to propose three solutions to the ice-thickness evolution equation:

(i) a numerical solution to the IVP with the full q(ĥ, ĝ);
(ii) a numerical solution to the IVP with the linearised form (5.2);

(iii) an analytical solution to the IVP based on (5.7).

Figure 10 shows the ice-thickness evolution for a sinusoidal forcing ĝ = �g sin(ωτ),
where ω is the angular frequency. While realistic forcing would contain a large spectrum
of frequencies, using a simple sinusoidal forcing allows us to test the success of the
various approximations we introduced as a function of frequency. For intermediate and
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Figure 10. The evolution of ice plotted in terms of the squared thickness scale ŷ = ĥ2L̂/2 under sinusoidal
atmospheric temperature variation ĝ = �g sin(ωτ) for Ŝ = 0.3. In all panels �g = 0.5 to allow us to test
the success of the approximate solutions beyond the �g � 1 limit in which they are derived. The panels
show different forcing frequencies: (a) low frequency, ω = 1; (b) intermediate frequency, ω = 10; and (c) high
frequency, ω = 100. For the latter plots, we restrict the τ axis range to show a representative part of the solution.
Solid blue curve shows the full numerical solution, referred to as (i) in the main text. Dashed green curves show
an approximate numerical solution (ii). Dot-dashed dark green curves show an analytical approximation (iii).
Solid grey curves show the steady solution equivalent to (4.3).

high frequency (ω = {10, 100}, corresponding, roughly, to sub-fortnightly time periods)
all the approximations we introduced agree very well with the full numerical solution.
(To be more precise, for the TB = −10 ◦C conversion in § 2.5, ω = 10 corresponds to a
period of 13 days.) For such frequencies, the basic behaviour can be most easily seen by
integrating (5.7) which gives

ŷ1 ≈ q2�g
ω

[cos(ωt) − 1] . (5.8)

The growth rate is anti-phase with the forcing (because a peak in boundary temperature
corresponds to a trough in growth rate). Then ŷ lags behind the peak in growth rate by
a quarter of a cycle. For longer-term variability (e.g. ω = 1), the approximations (i)/(ii)
agree well. However, there is a more significant departure from (iii). This is expected
because ŷ ∝ ω−1, so the O(L̂−1/2) term neglected in deriving (5.7) will be smaller at high
frequency than at low frequency. Similar behaviour has been observed in experimental
systems with analogous behaviour (Ding, Wells & Zhong 2019).

5.2. Time-dependent salinity
We next investigate the effect of time-dependent salinity on ice growth. The evolution of
the salinity profile is complex. Here, we investigate a simple prescribed time-dependent
salinity to assess whether or not it has a large effect on ice growth. In particular, we let

Ŝ(τ ) = Ŝ2 + (Ŝ1 − Ŝ2) exp(−τ/τd), (5.9)

where Ŝ1 is the initial salinity, Ŝ2 is the late-time salinity and τd is the desalination time
scale over which the salinity evolves. This type of exponential relaxation has been used
previously by Vancoppenolle et al. (2009) and then used as the ‘slow mode’ of gravity
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Figure 11. Ice growth plotted in terms of the squared thickness scale ŷ = ĥ2L̂/2 with time-dependent
prescribed salinity according to (5.9) with initial salinity Ŝ1 = 0.9 and late-time salinity Ŝ2 = 0.1. The solid
curves correspond to different desalination timescales. The dot-dashed and dashed curves are constant-salinity
calculations corresponding to the initial and late-time salinity, respectively. The inset shows the early time
behaviour in which all the curves are almost indistinguishable. Close inspection shows that the Ŝ = 0.1 dashed
curve is lowest early on, while the Ŝ = 0.9 dot-dashed curve is lowest at late times.

drainage by Turner et al. (2013). While it does not arise from any particular physical model
of desalination, it is a simple functional form to explore.

Figure 11 compares the thickness evolution with a constant salinity (corresponding to
either the initial or late-time salinity) with that with an evolving salinity. We look at an
extreme example with a high initial salinity Ŝ1 = 0.9 and low late-time salinity Ŝ2 = 0.1
in order to consider a significant salinity drop. With a relatively rapid desalination time
scale τd ≤ 1, the thickness is extremely close to a fixed salinity model with the prescribed
late-time salinity. For longer desalination timescales, the salinity remains higher for
longer. The thickness increases more slowly. For extremely long desalination timescales
τd = 100, 1000, much longer than the maximum τ considered, the thickness evolution is
close to a fixed salinity with the prescribed initial salinity.

In practice, we expect ice to desalinate significantly within the 18 days of growth that
corresponds in dimensionless units to τ = 1 (for the TB = −10 ◦C conversion in § 2.5, and
even lower τ for colder TB), so fixed-salinity models with the late-time salinity are likely
to be excellent approximations. A 20-day desalination time scale was previously used for
the winter by Vancoppenolle et al. (2009). Moreover, all the models give extremely similar
results (see the inset plot looking up to τ = 3 which corresponds approximately to the first
2 months of growth). Later stages of growth are sensitive to the later-time salinity value.

Although the QS model we developed cannot consider the full dynamic evolution of
salinity, it could, in principle, be extended to consider salinity profiles of the separable
form

Ŝ = r(τ )s(ζ ), (5.10)

where r and s are given functions. However, caution is needed as the assumptions used to
justify the heat equation (2.8) would not be formally valid, as described in Appendix A.
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Figure 12. Ice growth calculated by the full PDE compared against the QS approximation. Panel (a) shows the
evolution of ŷ = ĥ2L̂/2 for the PDE and QS models, as well as for two fixed temperature calculations (1, fixed
at the initial atmospheric temperature; 2, fixed at the temperature after the switch occurs). The switch occurs at
τs = 2. Panel (b) shows the growth rate for the same example as panel (a). Insets of both panels highlight the
behaviour around the switching time. Such experiments are repeated at a series of switching times. Panel (c)
shows the results of a series of experiments with τs = 1, 2, 4, 6 and 10. It shows the lag �τs before the growth
rate of the PDE catches up with that of the QS model. It also shows the maximum absolute difference in ŷ after
the switching time between the PDE and QS models denoted �ys. Linear fits to the data are shown.

5.3. Non-QS effects
Finally, and most importantly, we consider the limitations of the major simplification
introduced in this study, the QS approximation (§ 2.7). For fixed boundary conditions and
an initial temperature profile consistent with that calculated within the QS approximation,
the full PDE solution is identical to the QS solution. To provide a strong test of the
QS solution, we perform experiments with a step change in the atmospheric boundary
temperature at a given time τs. In dimensional units, we switch from TB = −10 ◦C to TB =
−20 ◦C. A step change is a more challenging test than the sinusoidal forcing considered
in § 5.1. The salinity value used in these experiments was Ŝ ≈ 0.56, corresponding to
20 ppt. The non-dimensionalisation of the temperature is based on the initial TB which
gives θ0 ≈ 4.2 and L̂ ≈ 20.

Figure 12(a,b) shows an example with a switching time τs = 2. This corresponds to
a dimensional time of 36 days, since we non-dimensionalise with respect to the initial
value TB = −10 ◦C, which corresponds to a diffusive time scale of 18 days (§ 2.5). The
PDE and QS models agree extremely closely. For reference, fixed atmospheric temperature
models with the before and after switch temperatures are also plotted. After the switch,
the atmospheric temperature is much colder so the ice thickness increases more rapidly.
In the QS model, the growth rate increases instantaneously. In the full PDE calculations,
the growth rate increases rapidly (but not instantaneously) before catching up with the
QS model over a switching lag time �τs. After this time, the growth rate of the PDE
model is slightly faster than the QS because the thickness is slightly smaller. The absolute
differences between the PDE and QS models in terms of thickness are very small.

The switching lag depends on the thickness around the time the switch occurs.
Figure 12(c) shows the results of a series of experiments at different switching times.
We observe that the lag is proportional to the value of the square of the ice thickness at
the switching time, i.e. �τs ∝ ŷ(τs). This is because the lag corresponds to the time it
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takes for the cooling at the ice–atmosphere interface to diffuse across the full depth of
the ice to the ice–ocean interface. A similar diffusive lag was observed experimentally
by Ding et al. (2019). In our dimensionless units, �τs ∝ [ĥ(τs)]2 ∝ ŷ(τs). During this
period of slower growth for the PDE model, slightly less ice grows. We denote the
maximum absolute difference in ŷ between the PDE and QS models as �ys. We observe
that �ŷs ∝ �τs ∝ ŷ(τs). The first proportionality assumes that dŷ/dτ is approximately
independent of switching time. While this is only an approximation, across the range
considered in figure 12(c), the discrepancy is within about ±15 %, so the dot-dashed linear
fit matches the calculated �ys well. Thus, although the lag increases with switching time,
and the square thickness change �ŷs increases too, the proportionate change �ŷs/ŷ(τs)
does not increase. Therefore, the QS model remains an effective approximation to the
PDE model for any switching time.

This was a strong test of the QS model. In practice, changes in atmospheric temperature
will occur in both directions (not just a sudden cooling), which would partly offset
each other. Furthermore, more realistic changes would occur more gradually than the
instantaneous switch tested here. Thus, it is reasonable to expect the QS model to perform
even better under more realistic forcing scenarios.

6. Discussion and implications

This study was designed to examine and explain the observed weak sensitivity of
thermodynamic sea-ice growth to salinity observed in studies with a range of fixed-salinity
profiles (e.g. Vancoppenolle et al. 2005) and in studies with dynamic-salinity profiles (e.g.
Griewank & Notz 2013; Rees Jones & Worster 2014). This weak sensitivity occurs despite
the strong sensitivity of the thermal properties (figure 1). There is an obvious basic reason,
the sea-ice salinity is low so the solid fraction is high and the thermal properties are close
to that of pure ice. However, the insensitivity persists even when the salinity is not very
low (relative to the salinity of seawater). To explain the insensitivity, we identified the
three main mechanisms described below.

6.1. Three mechanisms that explain why ice growth rate is insensitive to salinity
1. Trade-off between thermal conductivity and latent heat capacity. Saltier ice

has a higher liquid fraction and, hence, a lower thermal conductivity, which leads it
to grow slower. However, a higher liquid fraction also means less latent heat needs to
be conducted away as the ice grows, which leads it to grow faster. This competition
was described in Worster & Rees Jones (2015). In this study, we give a detailed
quantification and derive excellent analytical estimates for the effect (cf. figure 4).

2. Feedback on the thermal profile within the ice. Our previous estimates of the
sensitivity to salinity assumed a linear thermal profile (Worster & Rees Jones 2015), as
per zero-layer Semtner models (Semtner 1976). In this study, we show that feedback
on the thermal profile, which produces a nonlinear profile, reduces the sensitivity
to salinity further and introduces a sensitivity to the cooling factor (the ratio of the
temperature difference across the ice to the freezing point of seawater), as shown by
figures 3 and 5.

3. Opposite sensitivity of thicker ice vs thinner ice. Saltier ice grows faster when the
ice is thin, but saltier ice grows slower when the ice is thicker. This reversed sensitivity
can be understood by considering the relative importance of the three mechanisms
that determine the growth rate and their separate sensitivities to salinity. As well as
the mechanisms described in reason 1, the turbulent ocean heat flux is a constant,

1005 A7-25

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

11
77

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.1177


D.W. Rees Jones

independent of salinity. As the ice grows thicker, the latent heat mechanism becomes
relatively less important (indeed at the steady state, equilibrium thickness, it can be
neglected entirely). Thus, when the ice is sufficiently thick, the sensitivity to salinity
reverses, and saltier ice grows slower (figures 6 and 7). As the thickness evolves from
zero towards the equilibrium thickness, the sensitivities oppose each other, leading to
an even smaller net sensitivity (figure 8).

6.2. Implications for large-scale sea-ice modelling
Recently, there has been a move towards using ‘dynamic salinity’ sea-ice models, as
described in the introduction (§ 1). In terms of the ice-thickness evolution alone, these
models behave rather similarly to fixed-salinity models throughout the winter growth
season, as we and others had observed previously (e.g. Griewank & Notz 2013; Rees Jones
& Worster 2014). This study shows that this is a systematic, generic result, not merely
an artefact of the particular examples calculated previously. Figure 11 shows that the
conclusion holds even for extreme variation in salinity across a wide range of desalination
timescales.

However such dynamic-salinity models are still potentially worthwhile for a range of
other purposes. There is a direct connection between sea-ice desalination and the buoyancy
forcing that drives ocean mixing in the polar oceans. Dynamic-salinity models have a
different time dependence of buoyancy forcing relative to fixed-salinity models (Worster &
Rees Jones 2015). Furthermore, the brine motion that causes desalination also transports a
wide range of biogeochemical tracers and so model differences also affects the evolution of
these species (Vancoppenolle et al. 2013; Wells, Hitchen & Parkinson 2019). Differences
between fixed and dynamic salinity models have been observed both in standalone sea-ice
models (Turner & Hunke 2015) and coupled Earth-system models (Bailey et al. 2020).
Changing the buoyancy forcing can have large-scale effects by changing the amount of
dense bottom water being formed (DuVivier et al. 2021). Dynamic-salinity models have
shown some promise in interpreting data from ice mass balance buoys (Plante et al. 2024).

One issue that complicates the comparison of fixed and dynamic models of salinity is
the choice of parameters (material properties). While mushy-layer models are formally
equivalent to Maykut–Untersteiner/Bitz–Lipscomb models, as shown by Feltham et al.
(2006), the equivalence relies on an equivalent choice of parameters. In this study,
we showed that the default values in CICE/Icepack (Hunke et al. 2024a,b) of β =
0.13 W m−1 ppt−1 (which controls the sensitivity of thermal conductivity to salinity)
is too large to be consistent with mushy-layer theory and would need to be reduced
to β = 0.082 W m−1 ppt−1 for consistency. While it seems to be well known that the
default value of β might be problematic (it is mentioned in the documentation), this
inconsistency with mushy-layer theory does not seem well known. Indeed, the recent
large-scale studies cited in the previous paragraph have tended to use the ‘bubbly’ model
of thermal conductivity from Pringle et al. (2007). Schröder et al. (2019) showed that this
form for the conductivity gave the best agreement with CryoSat-2 observations of sea-ice
thickness. When assessing the differences between models, it is important to distinguish
structural differences (fixed vs dynamic salinity) from mere parameter choice differences.

Finally, this study proposes an intermediate complexity class of sea-ice model,
the QS model. We use a changing coordinate system, transforming the system to a
reference frame in which the ice is fixed. We solve a BVP for the temperature field
within the ice with no explicit time dependence by including a pseudo-advection term
associated with the changing coordinate system. This new term is proportional to the
ice growth rate factor. The BVP is then coupled to an IVP for the thickness evolution
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of time. This BVP–IVP approach is more complex than the zero-layer Semtner-type
model (Semtner 1976) but considerably simpler than full PDE-based models such
as Maykut–Untersteiner/Bitz–Lipscomb and their dynamic-salinity successors. The QS
model is an exact solution for the initial ice growth when the external forcing is constant,
and is used here as a tool to facilitate analytical progress. We also apply it to sinusoidal
atmospheric forcing with a range of periods and show that considerable analytical progress
can be made in understanding the results (figure 10). Finally, we show that it represents
a very good approximation to full PDE-based models even under the most difficult
time-dependent atmospheric forcing scenario, a step change (figure 12). This type of
intermediate complexity model is likely to be helpful for assessing and understanding the
potential impact of any proposed changes to a large-scale model (including, for example,
the parameter choices discussed above) as it can be run much more rapidly than a full-PDE
model. It may also be valuable in more speculative scenarios such as in modelling potential
mushy layers on icy moons (e.g. Buffo et al. 2020, 2021; Vance et al. 2021) where
an idealised modelling approach may allow the parametric uncertainty to be explored
thoroughly.
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Appendix A. Estimation of the relative importance of additional terms in heat
equation relating to brine transport and desalination

The heat equation derived in mushy-layer models of sea ice has additional terms relating
to the evolution of bulk salinity that are not present in the heat equation (2.8) used in this
study. In particular, a more general version of this equation is

c
∂T
∂t

+ c̃w
∂T
∂z

= κs
∂

∂z

(
k
∂T
∂z

)
, (A1)

where w is the vertical brine velocity and

c̃ = cl

cs
+ L

cs(−T)
. (A2)

The first term in c̃ arises from brine advection, i.e. the heat transported by the motion
of brine through the porous matrix of sea ice. The second term in c̃ arises from the
desalination of the ice, which causes a reduction in liquid fraction and hence a source
of latent heat. A full derivation is given in Feltham et al. (2006) and Rees Jones & Worster
(2014), for example.

The ratio of the second to the first term in c̃ is L/cl(−T). But L/cl ≈ 77 ◦C (§ 2.4)
and −T is between about 2 ◦C and 20 ◦C, so this ratio is much greater than 1. Physically,
the heat directly transported by brine advection is always negligible compared with the
contribution from latent heating.
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Equation (A1) does not determine the brine velocity w. In general, it will be determined
by convective desalination and flushing. Determining w has been one of the areas of recent
development in sea-ice modelling, as discussed in § 1.

To estimate the order of magnitude significance of the extra term in (A1), we instead
use the conservation equation for bulk salinity

∂S
∂t

+ w
∂C
∂z

= 0, (A3)

where we have neglected diffusion of salt (e.g. Feltham et al. 2006; Rees Jones & Worster
2014). Indeed, Wells et al. (2019) showed that salt diffusion had a relatively modest effect
on the growth of sea ice. But C is linearly related to T through equation (2.5), so

w
∂T
∂z

= −mw
∂C
∂z

= m
∂S
∂t

. (A4)

Then equation (A1) can be rewritten

c
∂T
∂t

+ c̃m
∂S
∂t

= κs
∂

∂z

(
k
∂T
∂z

)
. (A5)

Thus, if the ice salinity is constant (as we assumed throughout our calculations except in
§ 5.2), then the term involving c̃ is zero.

For variable salinity (§ 5.2), if we assume that time scale for salinity change �S occurs
at a comparable rate to that of temperature �T , then the ratio of the second to the first
term on the left-hand side of (A5) can be estimated

c̃m ∂S/∂t
c ∂T/∂t

∼ c̃m �S
c �T

∼ �S
S

(−T)

�T
. (A6)

In deriving this estimate, we assumed that both c̃ and c are dominated by the terms
involving latent heat for the reasons discussed above. Both fractions at the end of (A6)
are, in general, O(1), so we would expect both terms on the left-hand side of (A5) to
matter. However, within the QS framework (§ 2.7), we map evolution in time into (τ, ζ )

coordinates and neglect any explicit dependence on τ . Therefore, if salinity is taken as
constant or a function of τ only, it is self-consistent to neglect the term involving c̃, as
we have done in the main body of this study. The most complex τ -dependent salinity
variation considered is found in § 5.2, elsewhere the salinity is constant. For a more general
salinity evolution, both terms are, in principle, the same order of magnitude. To reiterate,
the dominant contribution from desalination comes from latent heat release, not brine
advection directly.

Appendix B. Asymptotic solution of BVP for initial growth rate factor q0

Here, we provide a more detailed derivation of the asymptotic estimates given in § 3.2.
Under the assumptions stated in the main text (θe = 0, �c = 0, L̂−1 → 0), the full BVP
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(3.1) can be written

− c

L̂
ζq0θ

′ = (kθ ′)′, θ(0) = 0, θ(1) = 1, q0 = (kθ ′)(1)

1 − Ŝ
, (B1a–d)

where the material properties are taken from (2.22),

X = Ŝ
θB − 1
θB − θ

, k = 1 − X�k,
c

L̂
= 1

θB − θ
X. (B2a–c)

Note that the limit L̂−1 → 0 justifies the loss of two terms in the simplified expression for
c/L̂ given here, although c/L̂ itself must be retained.

We then make the ansatz
θ ∼ ζ + Ŝθ̃ (ζ ) + O(Ŝ2), (B3)

and substitute this expression into the BVP. Note that c/L̂ ∝ X = O(Ŝ), so we can need
only consider the leading order temperature profile (θ ∼ ζ ) and leading order estimate of
the growth rate factor (q0 ∼ 1) on the left-hand side of (B1a). We obtain

− Ŝ
θB − 1

(θB − ζ )2 ζ =
[(

1 − �kŜ
θB − 1
θB − ζ

)
(1 + Ŝθ̃ ′)

]′
+ O(Ŝ2). (B4)

By equating terms at O(Ŝ), and after some algebraic manipulation, we obtain

θ̃ ′′ = θB − 1
(θB − ζ )2 (�k − ζ ) . (B5)

We integrate once to obtain

θ̃ ′

θB − 1
= �k − θB

θB − 1
− log(θB − ζ ) + C, (B6)

where C is constant. We integrate again to obtain

θ̃

θB − 1
= (2θB − �k − ζ ) log(θB − ζ ) + (1 + C)ζ + D, (B7)

where D is constant. Here D is determined by the boundary condition (B1b):

D = −(2θB − �k) log(θB). (B8)

Then C is determined by the boundary condition (B1c):

C = −(2θB − �k − 1) log(θB − 1) − 1 + (2θB − �k) log(θB). (B9)

To calculate the (extra contribution to the) temperature gradient at the ice–ocean interface,
we substitute (B9) into (B6) at evaluate at ζ = 1 and obtain, after simplification,

θ̃
′
(1) = 1 + �k − 2θB − (θB − 1)(2θB − �k) log

(
1 − θ−1

B
)
. (B10)

Finally, by expanding the final boundary condition (B1d),

q0 ∼ 1 + Ŝ[1 − �k + θ̃ ′(1)] + O(Ŝ2), (B11)

and combining with (B10), we obtain the result

q0 ∼ 1 + Ŝ(θB − 1)
[
−2 − (2θB − �k) log

(
1 − θ−1

B
)]+ O(Ŝ2). (B12)

This result is reported as (3.7) in the main text where we present numerical evidence
(figure 4) that this asymptotic limit holds well even up to moderate values of Ŝ.
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