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A collection of secondary instability calculations in streaky boundary layers is presented.
The data are retrieved from well-resolved numerical simulations of boundary layers forced
by free-stream turbulence (FST), considering different geometries and FST conditions.
The stability calculations are performed before streak breakdown, taking place at various
Reyx the Reynolds number based on the streamwise coordinate. Despite the rich streak
population of various sizes, it is found that breaking streaks have similar aspect ratios,
independently of the streamwise position where they appear. This suggests that wider
streaks will break down further downstream than thinner ones, making the appearance
of secondary instabilities somewhat independent of the streak’s wavelength. Moreover,
the large difference in the integral length scale among the simulations suggests that this
aspect ratio is also independent of the FST scales. An explanation for this behaviour is
provided by showing that these breaking streaks are in the range of perturbations that can
experience maximum transient growth according to optimal disturbance theory. This could
explain why, at a given streamwise position, there is a narrow spanwise wavelength range
where streak breakdown is more likely to occur.
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1. Introduction and background
Free-stream turbulence (FST) induced transition is one of the many routes to turbulence
that can take place in a boundary layer. Due to its relevance in engineering applications,
there has been produced abundant work in the topic. From all these investigations, we
have a general good understanding of the process and steps involved in this scenario.
This route to transition is initiated with the receptivity of free-stream disturbances which
can be of linear or nonlinear nature (Brandt et al. 2002), followed by the formation
and amplification of streaks due to the lift-up effect (Landahl 1980). The emergence of
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secondary instabilities causes the final streak breakdown, resulting in the nucleation of
turbulent spots (Schlatter et al. 2008) and the subsequent fully turbulent boundary layer.
For the interested reader, a more detailed description of the whole process can be found,
for instance, in Matsubara & Alfredsson (2001); Brandt et al. (2004); Zaki (2013).

In spite of the numerous experimental and numerical available evidence at our disposal,
there are still some details that remain elusive. This is generally attributed to the
dependence not only on the specific boundary conditions for each case dictating the
stationary base flow, but also on the characteristics of the imposed FST. The latter is
commonly defined from its turbulence intensity T u and an integral length scale L11, which
is obtained from two-point correlation measurements and that determines how energy is
distributed along the broadband FST spectrum. From an application perspective, probably
the most interesting quantity is the streamwise position where transition to turbulence will
take place under certain conditions. While the effect of T u is well understood, the same is
not true for L11. Notably, Fransson & Shahinfar (2020) showed in the same experimental
campaign that depending on the T u level, decreasing L11 can promote or delay transition,
which goes against the general trend observed in previous investigations where only delay
was observed (see, for instance, Brandt et al. 2004; Jonáš et al. 2000). This result motivated
the work by Durović et al. (2024), where an advance in transition was observed in a
numerical simulation.

The results for a zero pressure gradient (ZPG) flat plate in Fransson & Shahinfar (2020)
led to the hypothesis that an optimal ratio between L11 and the boundary-layer thickness
at transition position δtr = √

νxtr/U∞ must exist, with ν the kinematic viscosity and U∞
the free-stream velocity. This ratio should be optimal in the sense that transition happens
closest to the leading edge for a fixed turbulence intensity. One drawback on the use of this
parameter is that it includes the streamwise position xtr where transition takes place, which
is actually the quantity we are searching for. Nevertheless, this problem can be seen as find-
ing the optimal L11 such that unstable/breaking streaks arise closest to the leading edge.

The stability of streaks, and the resultant appearance of secondary instabilities, has
been generally associated with their amplitude (Andersson et al. 2001), where optimal
disturbance theory (Andersson et al. 1999; Luchini 2000) gives us the most likely waves
due to their maximum amplification. However, it has also been proposed that the amplitude
might not be the only relevant parameter to discriminate between stable and unstable
streaks. For instance, the discrimination based on a neural network by Hack & Zaki (2016)
suggests that other quantities such as the wall-normal velocity, streamwise momentum and
the spanwise shear can be valuable parameters to take into account for the identification
of breaking streaks.

One stage of FST induced transition that is not always easy to account for is receptivity,
setting the scale and initial amplitude of the disturbances inside the boundary layer. In this
regard, a linear and a nonlinear mechanism have been proposed (Brandt et al. 2002). The
linear mechanism is characterised by the direct penetration of free-stream vortices into the
boundary layer, taking place close to the leading edge. On the other hand, the nonlinear
mechanism can occur along the whole boundary layer through triad interactions. In the
work by Durović et al. (2024), this latter mechanism was proposed as being responsible
for turbulent spot inception. The reason being that the observed breaking streaks had a
relative short spanwise wavelength, and those scales were not energetic close to the leading
edge. This energy transfer can be explained by the preferred energy propagation towards
higher spanwise wavenumbers (short wavelengths) through the β-cascade proposed by
Henningson et al. (1993).

The purpose of the present work is to document different simulations of FST induced
transition performed within our group where we have observed that secondary instabilities,
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and therefore their hosting streaks, have a similar spanwise extension in their local
boundary-layer scaling. Here, we also include some examples found in the literature.
Further evidence that breaking streaks generally reach a certain aspect ratio condition can
also be found in the work by Hack & Zaki (2016), where they showed that for different
pressure gradients, the shapes of breaking streaks were almost identical when scaled by
the momentum thickness at transition position. By analysing the perturbations’ optimal
growth, we see that the width of the breaking streaks are in the range of those reaching
maximum amplification.

The remainder of this paper is structured as follows. In § 2 we present the framework
for stability analysis. Section 3 includes the list of cases with their corresponding unstable
modes. And finally, in § 4 we expand on some concluding remarks.

2. Stability analysis
The stability of the flow fields is studied in the local framework on planes normal to the
streamwise direction. These planes are taken directly from the direct numerical simulation
(DNS) solutions upstream and at previous time steps of a turbulent spot nucleation. In this
context, we decompose the velocity and pressure field as

Q(t, x, y, z) = Q0(y, z; t, x) + εq(t, x, y, z), (2.1)

with x = (x, y, z)T the streamwise, wall-normal and spanwise coordinates, Q0 =
(U, V, W, P)T the DNS solution for the velocity vector (U, V, W )T along the
corresponding coordinates and the pressure P , and ε the perturbation amplitude with
corresponding shape q = (u, v, w, p)T. For the perturbation function, we assume a normal
mode in time and along the streamwise direction q = q̂(y, z) exp(−i(αx − ωt)), with
α the streamwise wavenumber and ω a complex value whose real and imaginary parts
represent the angular frequency and temporal growth rate, respectively. The use of a local
temporal framework for the stability analysis is justified by the time-scale separation
between the low-frequency streaks and their high-frequency secondary instabilities.
Examples of similar procedures can be found, for instance, in Hack & Zaki (2014); Faúndez
Alarcón et al. (2024a).

By substituting (2.1) in the Navier–Stokes equations and neglecting high-order terms we
obtain the system

(C − Δ) û + (DyU
)
v̂ + (DzU ) ŵ + iα p̂ = iωû, (2.2a)(C − Δ +Dy V

)
v̂ + (Dz V ) ŵ +Dy p̂ = iωv̂, (2.2b)(Dy W

)
v̂ + (C − Δ +DzW ) ŵ +Dz p̂ = iωŵ, (2.2c)

iαû +Dy v̂ +Dzŵ = 0, (2.2d)

where C = Uiα + VDy + WDz , Δ = 1/Re(−α2 +D2
y +D2

z ), Dy = ∂/∂y and Dz =
∂/∂z, where Rey is the Reynolds number. The discrete differential operators are built with
a 4th-order finite difference scheme, while non-slip is imposed at the wall, periodicity
along the span, and zero velocity in the far field. The generalised eigenvalue problem (2.2)
is solved with a shift-and-invert Arnoldi algorithm.

3. Results
We present a summary of the analysed cases in table 1. The simulations consider
different geometries, with and without leading edge, solvers, FST conditions and transition
positions. However, they all share the same typical features of bypass transition from the
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Case Geometry LE T u% L11 Rex1 Reθ1 Reference

1 ZPG No 3.0 19.4 3.80 × 105 393 Sasaki et al. (2019)
2 ZPG Yes 3.4 119.5 1.72 × 105 275 Durović et al. (2024)
3 ZPG Yes 3.45 45.3 0.82 × 105 190 Durović et al. (2024)
4 NACA0008 Yes 2.5 45.9 1.02 × 105 181 Faúndez Alarcón et al. (2024b)
5 ZPG No 3.0 6.9 1.47 × 105 255 Hack & Zaki (2014)
6 APG No 3.0 7.0 1.03 × 105 242 Hack & Zaki (2014)

Table 1. List of the study cases. The LE column indicates if the simulation includes the leading edge. Here T u
and L11 represent the free-stream turbulence characteristics; Rex1 and Reθ1 correspond to the position where
the stability calculations were performed.
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Figure 1. Momentum thickness θ of the three base flow configurations considered in this work. Here θ is
made non-dimensional by the momentum thickness at Reθ = 116. The annotations indicate the case number
and position where stability analysis was performed.

inception to streak breakdown. The FST conditions, T u and L11, correspond to those
reported in the respective work at the leading edge/inflow. For better comparison, they
have been made non-dimensional by the momentum thickness θ0 at Reθ = 116, which
only coincides with the inlet condition in Sasaki et al. (2019). Evidently, this means that the
reported values in table 1 for T u and L11 do not necessarily have those values at Reθ = 116
due to turbulence decay. The columns corresponding to Rex1 and Reθ1 in table 1 represent
the position where the stability analysis was performed for the corresponding simulation.
Besides of the differences between cases, it is worth emphasising that these planes were
taken upstream and at previous time steps from turbulent spot nucleations. The nucleation
events were identified from flow inspection and laminar–turbulent discrimination of the
fields, following the procedure described in Faúndez Alarcón et al. (2024a).

To better visualise the different positions where the secondary instabilities emerge,
figure 1 shows the momentum thickness and streamwise location for all the cases presented
in table 1. Given that the stability calculations were performed in the still laminar flow, the
momentum thickness,

θ(x) =
∞∫

0

(
1 − U (x, y)

Ue(x)

)
U (x, y)

Ue(x)
dy, (3.1)

is obtained from the time-invariant base flow solution for the corresponding geometry,
with Ue(x) the free-stream velocity. The Hartree parameter for the adverse pressure
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Figure 2. Planes where stability calculations were computed for cases 1 to 4 (top to bottom). The grey contours
represent the streamwise velocity perturbations from −0.2 (black) to 0.2 (white), while the positive (red)
and negative (blue) streamwise velocity components of the secondary instability are represented by the open
contours. The axes are scaled by the momentum thickness at Reθ = 116.

gradient (APG) case is βH = −0.14. We have chosen the momentum thickness as a scaling
parameter because it has been shown that this scaling accounts for pressure gradient
differences in algebraic growth (Corbett & Bottaro 2000).

Local stability analysis, described in § 2, was performed for cases 1–4, and the planes
under consideration are presented in figure 2. Here, the axes have been normalised by the
momentum thickness at Reθ = 116, making more clear the spanwise extension difference
among the cases and the presence of streaks of various scales. The unstable modes shown
in these planes were selected based on the fact that they preceded the nucleation of
turbulent spots downstream and at a later time. By comparing the size of these unstable
streaks for the different cases, we can see that the actual streak width does not seem to play
a significant role regarding stability, with instabilities appearing on streaks of varied sizes.

Zoomed views of the unstable modes are included in figure 3, which also includes two
adaptions of plots from Hack & Zaki (2014) (cf. their figures 6 and 19). These two plots
also show the unstable modes on top of the streamwise velocity perturbation from their
DNS. The axes have been made non-dimensional by the local momentum thickness θ1
and centred around the secondary instability for better comparison. It can be noted that
most of the unstable modes are located on top of a low-speed streak, while only the APG
case shows an unstable mode in the shear between a low- and high-speed streak (an inner
mode in the terminology adopted in Hack & Zaki (2014)). Interestingly, they all exhibit
a similar spanwise extension in their local scaling, which seems to be independent of the
mode symmetry, either sinuous or varicose, and their streamwise position.

The spanwise extension of the secondary instabilities can be more clearly seen by
computing the energy distribution along the span as

E(z) =
ymax∫
0

ûH ûdy, (3.2)

with û = (û, v̂, ŵ)T and the superscript H representing the complex conjugate. The energy
distribution for the modes in cases 1–4 are shown in figure 4(a), where the curves have
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Figure 3. Zoomed view of the unstable modes with the axes scaled by the corresponding local momentum
thickness θ1. The colours for cases 1–4 are the same as in figure 2, with the grey solid line indicating the
critical layer and the purple markers the perturbation local maxima. The plots for the unstable modes 5 and 6
have been adapted from Hack & Zaki (2014).

been normalised by their corresponding maximum along the span. From this figure, it
can be seen that all of them have an extension in the range ≈ 8θ(x)–14θ(x). Statistical
results are included in figure 4(b), showing the distribution of the spanwise width �z of
secondary instabilities normalised by the corresponding local momentum thickness. The
stability calculations were performed in Faúndez Alarcón et al. (2024a), where the flow
fields come from the same dataset as case 3 in the present manuscript. In particular, the
distribution corresponds to instabilities reaching an N -factor = 3 and that were connected
to nucleation events, with �z based on the positions where E(z) drops below 1 % of
its maximum. Interestingly, most of the instabilities fall in a rather narrow range with
a peak around ≈ 13θ1. As a reference for the streak population range, figure 4(b) also
includes the energy distribution of the streaky base flow in case 3 as a function of the
spanwise wavelength, λz , at y/θ1 = 3. It is worth noting that there is some uncertainty on
the streamwise position of the instability, since it corresponds to wave packets convected
downstream appearing in a range of streamwise stations and a time window. Therefore,
depending on the station where we perform the stability calculation, the scaling can vary
slightly and so will the results shown in figure 4.

While the spanwise extension of the secondary instabilities could serve as a good
indicator of the size of their hosting streaks, it is not necessarily the most accurate one.
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Figure 4. (a) Energy distribution of the unstable modes along the span. The curves correspond to the different
cases and are centred at the corresponding modes’ mean position. (b) The black markers show the distribution
of instabilities from the same database as case 3. And, as a reference, the energy distribution of the streaky
base flow of case 3 at y/θ1 = 3 is shown in red.

This is due mainly to secondary instabilities being localised on top of a distorted low-
speed streak, which could lead to an underestimation of the unstable streak wavelength.
An alternative approach is to find the local maxima of the streamwise velocity perturbation
around the unstable streak, in order to identify the core of the contiguous high-speed
streaks. This is shown with the markers on top of the flow fields in figure 3, and noting
this is an approximated wavelength since the periodicity along z allows only for integer
divisions of the domain’s span. By taking the peak-to-peak length, we can estimate the
streak wavelength, noting that they are all in the range 12−15θ(x), which is, again,
independent of the simulation conditions. Particularly, this prevailing spanwise wavelength
does not change with the rather large L11 range.

One natural question that arises when analysing the streaks spacing is how they relate to
those that can experience maximum amplification (Andersson et al. 1999; Luchini 2000).
In this context, we compute the optimal energy gain at Rex1 for stationary disturbances
ω = 0 starting at a prescribed initial position x0 as

G(x1, β) = max
u0

∫
uH

1 u1dy∫
uH

0 u0dy
, (3.3)

where β is the spanwise wavenumber, and, in a slight abuse of notation, u corresponds
to the perturbation with respect to the time-invariant base flow and not to the secondary
instability. The calculations in this case were made non-dimensional by the streamwise
position x1. Figure 5 includes the optimal growth against the spanwise wavelength
considering different x0 for a Blasius boundary layer, the wing profile and, for
completeness, it also includes the curves for APG and favourable pressure gradient (FPG)
considering the Hartree parameter βH = −0.14 and βH = 0.14, respectively. Due to the
Reynolds independence characteristic of the Blasius boundary layer for optimal growth
(Andersson et al. 1999), the corresponding plot is valid for all ZPG cases under study. On
the other hand, the optimal results for the wing are specific for this particular case and
Rex1 . The lines associated with x0 = 0.01 can be directly contrasted against the results
in Andersson et al. (1999) and Faúndez Alarcón et al. (2022), for Blasius and the wing
boundary layer, respectively. These are related to linear receptivity mechanisms, where the
perturbations penetrate the boundary layer close to the leading edge (Brandt et al. 2002) to
then grow according to their optimal component. The interpretation of larger values of x0
is less clear, but they can be related to nonlinearly generated perturbations in the boundary
layer that will nonetheless grow due to linear mechanisms (Schmid & Henningson 2001).
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Figure 5. Optimal growth vs spanwise wavelength λz for different initial positions x0. The wavelength has
been made non-dimensional by the local momentum thickness at the objective position.

Interestingly, when optimal initial perturbations are placed closer to the objective position
there is a shift towards shorter wavelengths that can reach higher amplification. This
behaviour is much more pronounced in the optimal growth corresponding to the wing.

When comparing the results shown in figure 5 with the peak-to-peak spacing in figure 3,
we can see that the breaking streaks are in the range of those reaching maximum
amplification. In this type of transition scenario, with a broadband disturbance spectrum,
the optimal amplification could explain why it is within this range that breaking streaks
are more likely to be found. There is, of course, an intricate interplay between energy
transfer and optimal growth that will set the streak spacing in the boundary layer,
and which is largely dependent on the inflow FST conditions. While small spanwise
wavenumbers (large wavelengths) will reach maximum amplification downstream in the
boundary layer, the preferred energy propagation towards higher wavenumber through the
β-cascade (Henningson et al. 1993) can give rise to shorter spanwise wavelength able
to reach maximum amplification upstream, even when they were not initially present in
the incoming FST. Unlike linear receptivity, the nonlinear interactions responsible for the
energy transfer can take place throughout the boundary layer, profiting from the optimal
growth that downstream induced perturbations can achieve, as shown in figure 5.

4. Concluding remarks
In this work, we have collected the stability analysis of streaky flows in boundary layers
for six different numerical simulations. The main purpose of this survey is to provide
numerical evidence from well-resolved simulations of bypass transition regarding the
spanwise spacing of the streak secondary instabilities and their hosting streaks. We have
observed that independently of the geometry, FST conditions and streamwise positions,
the spacing of the breaking streaks is in a rather narrow range when scaled by the local
momentum thickness. This is particularly remarkable after noting the large variation in the
integral length scale among the cases. Although figure 4 provides statistical support for our
main conclusion in one of the cases, it is reasonable to assume that it holds for the other
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cases as well, in particular since the shape of the streaks, their streamwise development
and the characteristics of their secondary instability is the same in all cases.

We provide a plausible explanation for the seeming preference of a specific wavelength
for breaking streaks. Through optimal disturbance theory, we show that this spanwise
wavelength of 12−15θ(x) is within the range of streaks that can reach maximum
amplification. The question regarding the causality of optimal amplification on streak
instabilities remains open, since the latter might respond to various streak properties other
than only their amplitude, as suggested, for instance, by Hack & Zaki (2016). However, the
fact that maximum transient growth is achieved within this range could explain, at least,
why streaks around this width are more likely to be seen breaking down.

The emergence of breaking streaks with a specific wavelength due to their optimal
growth could serve as a basis for the hypothesis posed by Fransson & Shahinfar (2020)
about the existence of an optimal ratio between L11 and boundary-layer thickness at
transition. By recognising the role of L11 in distributing the energy along the spectrum, it
is then reasonable that there exists an optimal distribution such that the necessary streak
amplification is achieved closest to the leading edge through their optimal growth. Such
an optimisation problem, however, should consider not only the optimal growth but also
the energy transfer taking place along the boundary layer.

The twofold effect of L11 observed experimentally by Fransson & Shahinfar (2020) and
corroborated numerically by Durović et al. (2024) is also consistent with the ideas shown
here. The observation that increasing L11 could also delay transition can be understood by
noting that a very low wavenumber will reach maximum amplification farther downstream.
This would make their breakdown unlikely, where a more likely breakdown will take
place due to energy transfer through the β-cascade to a higher wavenumber that can
actually grow at upstream positions. The lower the initial wavenumber, the slower their
amplification will be, and therefore the longer it will take for the nonlinearities to propagate
energy.
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