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Abstract
We study computational aspects of repulsive Gibbs point processes, which are probabilistic models of
interacting particles in a finite-volume region of space. We introduce an approach for reducing a Gibbs
point process to the hard-core model, a well-studied discrete spin system. Given an instance of such a
point process, our reduction generates a random graph drawn from a natural geometric model. We show
that the partition function of a hard-core model on graphs generated by the geometric model concentrates
around the partition function of the Gibbs point process. Our reduction allows us to use a broad range of
algorithms developed for the hard-core model to sample from the Gibbs point process and approximate its
partition function. This is, to the extent of our knowledge, the first approach that deals with pair potentials
of unbounded range.
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1. Introduction
Gibbs point processes are a tool for modelling a variety of phenomena that can be described as
distributions of random spatial events [4, 26]. Such phenomena include the location of stars in
the universe, a sample of cells under the microscope, or the location of pores and cracks in the
ground (see [25, 31] for more on applications of Gibbs point processes). In statistical physics,
such point processes are frequently used as stochastic models for gases or liquids of interacting
particles [28].

A Gibbs point process on a finite-volume region � is parameterized by a fugacity λ and a pair
potential φ expressing the interactions between pairs of points. Every point configuration in the
region is assigned a weight according to the pair interactions φ between all pairs of points in the
configuration. One can then think of a Gibbs point process as a Poisson point process of intensity
λ, where the density of each configuration is scaled proportionally to its weight. The density is nor-
malized by the partition function, which is the integral of the weights over the configuration space
[see Section 4.1 for a formal definition of the model]. The most famous example of such a pro-
cess is the hard-sphere model, a model of a random packing of equal-sized spheres with radius r.
The pair potential in the hard-sphere model defines hard-core interactions, that is configurations
where two points closer than some distance 2r have weight zero, while all other configurations
have weight one. In this article, we consider Gibbs point processes with repulsive potentials,
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that is, pair potentials in which adding a point to a configuration does not increase its weight.
The hard-sphere model, for example, does have a repulsive pair potential, however, we do not
restrict ourselves to hard-core potentials and allow for soft-core interactions.

The two most fundamental algorithmic tasks considered on Gibbs point processes are to sam-
ple from themodel and to compute its partition function, which are closely related. Understanding
for which potentials and fugacities these two tasks are tractable is an ambitious endeavour.
Towards this goal, there has been a plethora of algorithmic results on Gibbs point processes
spanning several decades. Notably, the Markov chain Monte Carlo method was developed for
sampling an instance of the hard-sphere model [22]. Since then, a variety of exact and approx-
imate sampling algorithms for such point processes have been proposed in the literature, and
their efficiency has been studied extensively both without [13, 16] and with rigorous running
time guarantees [1, 15, 18, 23, 24]. The key objective of rigorous works is to identify a param-
eter regime for their respective model for which a randomized algorithm for sampling and
approximating the partition function exists with running time polynomial in the volume of the
region. In addition, deterministic algorithms for approximating the partition function have also
appeared in the literature [11, 20] with running time quasi-polynomial in the volume of the
region.

This recent flurry of algorithmic results on Gibbs point processes can be attributed to progress
in understanding the computational properties of discrete spin systems, such as the hard-core
model. Within these works, two main approaches can be identified for transferring insights from
discrete spin systems to Gibbs point processes. The first one, which includes results such as
[1, 17, 23], considers properties proven to hold in discrete spin systems and translates them to
the continuous setting of Gibbs point processes. More precisely, these works consider the notion
of strong spatial mixing, which has been strongly connected to algorithmic properties of discrete
spin systems [9, 29, 33], and translate it to an analogous notion for Gibbs point processes to obtain
algorithmic results. A common pattern in these works is that once the parameter regime for which
strong spatial mixing holds is established, one needs to prove from scratch that this implies effi-
cient algorithms for Gibbs point processes. In addition, the definition of strong spatial mixing for
Gibbs points processes assumes that the pair interactions of two particles is always of bounded
range, that is if two particles are placed at distance greater than some constant r ∈R≥0, they do
not interact with each other.

The second approach, used in [11, 12], is to discretize the model, that is reduce it to an instance
of the hard-coremodel and then solve the respective algorithmic problem for the hard-coremodel.
In this case, the algorithmic arsenal developed over the years for the hard-core model is now
readily available for the instances resulting from this reduction. The main downside of these
approaches is that they only apply to the hard-sphere model, a special case of bounded-range
repulsive interactions.

1.1. Our contributions
We introduce a natural approach for reducing repulsive point processes to the hard-core model.
Given an instance (�, λ, φ) of such a point process, we generate a random graph by sampling
sufficiently many points independently and uniformly at random in �. Each point represents
a vertex in the graph, and we connect each pair of vertices by an edge with a probability that
depends on φ. We show that both computational problems considered can be reduced to study-
ing the hard-core model on graphs generated by this model for an appropriately scaled vertex
activity.

Our first step towards this result is to show that the partition function of the hard-core model
on these graphs concentrates around the partition function of the Gibbs point process. Using
existing algorithms for the hard-core model as a black box, our result immediately yields random-
ized approximation algorithms for the partition function of the point process in running time
polynomial in the volume of�. Furthermore, we show that sampling an independent set from the
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generated hard-core model and returning the positions of its vertices in � results in an approx-
imate sampler from the distribution of the Gibbs point process. Our approach, in contrast to all
previous algorithmic work in the literature, does not require the pair potential φ of the point
process to be of bounded range. This includes various models of interest in statistical physics,
such as the (hard-core) Yukawa model [8, 27], the Gaussian overlap model [5], the generalized
exponential model [3], and the Yoshida–Kamakura model [34].

2. Notation
We write N for the non-negative integers (including 0) and N≥1 for the positive integers.
Moreover, for n ∈N, we denote [n]=N≥1 ∩ [0, n] (note that [0]= ∅). For a set S and k ∈N, we
write

(S
k
)
:= {S′ ⊆ S | 3= k} for the subsets of S of size k. Throughout the paper, we let G= (V , E)

denote undirected graphs with vertex set V and edge set E⊆ (V
2
)
. Moreover, for n ∈N we write Gn

for the set of undirected graphs with vertex set [n].

3. Concentration of the hard-core partition functions on random graphs
Before we discuss our results on Gibbs point processes, we first derive our main tool, which is a
concentration result for the hard-core partition function on random graphs generated based on a
graphon. We start by introducing the necessary notation and terminology.

3.1. Hard-core model
For a graph G we write I(G)⊆ 2V for its independent sets. That is, S ∈ I(G) if and only if no two
vertices in S are adjacent in G. The hard-core partition function on G at vertex activity z ∈R≥0 is
defined as

ZG(z) :=
∑

S∈I(G)
z|S|.

The hard-core model on G at activity z is a probability distribution on 2V with support I(G) that
is defined by

μG,z(S) := z|S|

ZG(z)
.

for every S ∈ I(G).

3.2. Graphons and random graphs
We will show that the hard-core partition ZG(z) of sufficiently large random graphs generated
from a graphon concentrates around its expectation. Here, we refer to graphons in a very general
sense, as defined in [21, Chapter 13]. That is, for a probability space X = (X,A, ξ ), a graphon
is a symmetric function W : X2 → [0, 1] that is measurable with respect to the product algebra
A2 =A⊗A. Note that, even though we call the functionW the graphon, we mean implicitly that
a graphon is a tuple of an underlying probability space and a suitable functionW.

A graphonW naturally defines a family of random-graphmodels, sometimes calledW-random
graphs (see [21, Chapter 11]). For every n ∈N≥1, we denote by GW,n a distribution on Gn that is
induced by the following procedure for generating a random graph:

1. Draw a tuple (x1, . . . xn) ∈ Xn according to the product distribution ξn.
2. For all i, j ∈ [n], i �= j, add the edge {i, j} independently with probabilityW(xi, xj).

https://doi.org/10.1017/S0963548324000282 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548324000282


4 T. Friedrich et al.

Formally, this gives a probability distributionGW,n on Gn with

GW,n(G)=
∫
Xn

⎛⎝ ∏
{i,j}∈E

W(xi, xj)

⎞⎠ ·
⎛⎜⎝ ∏

{i,j}∈([n]2 )\E

(
1−W(xi, xj)

)⎞⎟⎠ ξn(dx).

for all G ∈ Gn, where x= (xi)i∈[n] inside the integral. Observe that GW,n encompasses classical
random-graph models, such as Erdős–Rényi random graphs and geometric random graphs.

3.3 Efron–Stein inequality
For proving our concentration result, we use the Efron–Stein inequality. For N ∈N≥1 let
{(�i,Fi,μi)}i∈[N] be a collection of probability spaces and let f :� →R be a measurable func-
tion on the product space (�,F ,μ)=⊗

i∈[N] (�i,Fi,μi). For each i ∈ [N] define a function
�

(f )
i :� × �i →R≥0, where, for every x= (x1, . . . , xN) ∈ � and yi ∈ �i, the value �

(f )
i (x, yi) is

defined as the squared difference in f that is caused by replacing xi in x with yi. Formally, this is
�

(f )
i (x, yi)= (f (x)− f (y))2 where y= (x1, . . . , xi−1, yi, xi+1, . . . , xN). The Efron–Stein inequality

bounds the variance of f under μ based on the local squared deviations �
(f )
i (x, yi).

Theorem 3.1 (Efron – Stein inequalitye [7]). Let {(�i,Fi,μi)}i∈[N] be probability spaces with prod-
uct space (�,F ,μ)=⊗

i∈[N] (�i,Fi,μi]). For every F-measurable function f :� →R it holds
that

Varμ[f ]≤ 1
2
∑

i∈[N]
Eμ×μi[�

(f )
i ].

Remark 3.1. The Efron–Stein inequality is usually stated for functions of independent real-valued
random variables. However, it extends to functions on products of arbitrary probability spaces.

3.4. Proof of concentration
We start by deriving the following simple corollary of Theorem 3.1.

Corollary 3.1 (Corollary of the Efron – Stein inequality). Let {(�i,Fi,μi])}i∈[N] be probability
spaces with product space (�,F ,μ)=⊗

i∈[N] (�i,Fi,μi]), and let f : � →R be an F-measurable
function. Assume that there are ci ∈R≥0 for i ∈ [N] such that C := ∑

i∈[N] c2i < 2 and, for all x=
(xj)j∈[N] ∈ � and y= (yj)j∈[N] ∈ � that disagree only at position i, it holds that∣∣f (x)− f (y)

∣∣≤ ci ·min{∣∣f (x)∣∣, ∣∣f (y)∣∣}.
Then, for all ε ∈R>0, it holds that

P
[∣∣f −Eμ[f ]

∣∣≥ εEμ[f ]
]≤

(
2

2− C
− 1

)
1
ε2

.

Proof. First, we observe that
∣∣f (x)− f (y)

∣∣≤ ci min{∣∣f (x)∣∣, ∣∣f (y)∣∣} ≤ ci
∣∣f (x)∣∣ implies

Eμ×μi

[
�

(f )
i

]
≤ c2i Eμ

[
f 2
]
for all i ∈ [N]. Thus, by Theorem 3.1, we have Varμ[f ]≤ C

2Eμ

[
f 2
]
.

Now, recall that by definition Varμ[f ]=Eμ

[
f 2
]−Eμ[f ]2, which implies Eμ

[
f 2
]−Eμ[f ]2 ≤

C
2Eμ

[
f 2
]
. Rearranging for Eμ[f 2] and using the fact that C

2 < 1 yields Eμ[f 2]≤ 2
2−CEμ[f ]2.

Substituting this back into the definition of the variance, we obtain

Varμ[f ]≤
(

2
2− C

− 1
)
Eμ

[
f
]2 .

The claim follows immediately by applying Chebyshev’s inequality. �
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Remark 3.2. Usually, we want to characterize concentration asymptotically in N. In this setting,
Corollary 3.1 tells us that, if ci ∈O

(
N− 1+α

2
)
for all i ∈ [N] and some α > 0, then, for all ε ∈R>0

and δ ∈ (0, 1] such that ε2δ < 1, it is sufficient to choose N ∈ �
(
δ− 1

α ε− 2
α

)
to ensure

P
[∣∣f −Eμ[f ]

∣∣≥ εEμ[f ]
]≤ δ.

To apply Corollary 3.1 to the hard-core partition functions on random graphs from GW,n, we
will need to bound how much the partition function changes when applying small modifications
to the structure of a graph. More specifically, we want to get a bound on the relative change of the
partition function, given that we

• add or remove a single edge, or
• add or remove a set of edges that are all incident to the same vertex.

The following two lemmas provide such bounds.

Lemma 3.1. Let G= (V , E) be a graph and, for some e ∈ E, let G′ = (V , E \ {e}). For all z ∈R≥0 it
holds that

ZG(z)≤ ZG′(z)≤ (
1+ z2

)
ZG(z).

Proof. The lower bound follows immediately from observing that I(G)� I (G′). For the upper
bound, observe that

ZG′(z)− ZG(z)=
∑

S∈I(G′):
e⊆S

z|S| ≤ z2
∑

S′∈I(G′):
S′∩e=∅

z|S′| ≤ z2ZG(z),

�
Lemma 3.2. Let G= (V , E),G′ = (V , E′) be two graphs on a common vertex set V and assume there
is some vertex v ∈V such that v ∈ e for all edges e in the symmetric difference of E and E′. For all
z ∈R≥0 it holds that

|ZG(z)− ZG′(z)| ≤ zmin{ZG(z), ZG′(z)}.
Proof. Let F = (E∪ E′) \ {{v,w} |w �= v} where v is as given by the claim. Let F′ = F ∪ {{v,w} |
w �= v}, and set H = (V , F) and H′ = (V , F′). Note that for every S ∈ I (H′) with v /∈ S we have
S ∈ I (H) and S∪ {v} ∈ I (H). Thus, we get

ZH(z)≤ (1+ z)
∑

S∈I(H′):
v/∈S

z|S| ≤ (1+ z)ZH′(z).

Further, we have F ⊆ E, E′ ⊆ F′ and, by Lemma 3.1, we know that the hard-core partition function
is non-decreasing under removing edges from the graph. Applying the triangle inequality we get

|ZG(z)− ZG′(z)| ≤ ZH(z)− ZH′(z)≤ zZH′(z)≤ zmin{ZG(z), ZG′(z)}. �
Based on Lemmas 3.1 and 3.2, we use Corollary 3.1 to prove the following statement.

Theorem 3.2. Let W be a graphon on the probability space X = (X,A, ξ ). Let (zn)n≥1 be such that
zn ≤ z0n− 1+α

2 for some z0 ∈R≥0 and α ∈R>0. For all ε ∈ (0, 1], δ ∈ (0, 1], n≥ (
2z02ε−2δ−1) 1

α , and
G∼GW,n, it holds that

P [|ZG(zn)−E [ZG(zn)]| ≥ εE [ZG(zn)]]≤ δ.
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Proof. We aim for applying Corollary 3.1 to prove our claim. To this end, for each n ∈N≥1 we
need to write the partition function ZG(zn) for G∼GW,n as a function on a product of probability
spaces (i.e., a function of independent random variables). At first, an obvious choice seems to be
X n together with

(n
2
)
additional binary random variables, one for each potential edge {i, j} ∈ ([n]

2
)
.

However, note that the edges might not necessarily be independent, meaning that the result-
ing product distribution would not resemble GW,n. Instead, let Y = ([0, 1], B([0, 1]), u), where
B([0, 1]) is the Borel algebra restricted to [0, 1] and u is the uniform distribution on that interval.
We consider the probability space X n⊗Y(n2).

For x ∈ Xn and y ∈ [0, 1](
n
2) let x ◦ y ∈ Xn × [0, 1](

n
2) denote the concatenation of x and y.

We construct a measurable function g:Xn × [0, 1](
n
2) → Gn by mapping every z= x ◦ y ∈ Xn ×

[0, 1](
n
2) with x= (xi)i∈[n] ∈ Xn and y= (yi,j)1≤i<j≤n ∈ [0, 1](

n
2) to g(z)= ([n], E) such that, for

all i< j, it holds that {i, j} ∈ E if and only if W(xi, xj)≥ yi,j. Simple calculations show that, for
z∼ ξn × u(

n
2), it holds that g(z)∼GW,n. Now, let f : Xn × [0, 1](

n
2) →R with z �→ Zg(z)(zn). In

order to apply Corollary 3.1, we need to bound the relative change of f (z) if we change one com-
ponent of z. Let x′ = (x1, · · · , xi−1, x′

i, xi+1, . . . , xn) ∈ Xn for any i ∈ [n]. Then g(x′ ◦ y) can only
differ from g(z) on edges that are incident to vertex i. Thus, by Lemma 3.2, it holds that∣∣f (z)− f (x′ ◦ y)∣∣≤ zn min{f (z), f (x′ ◦ y)}.
Now, let y′ = (y′

i,j)1≤i<j≤n ∈ [0, 1](
n
2) such that y′

i,j = yi,j except for one pair 1≤ i< j≤ n. Note that
g(z) and g(x ◦ y′) differ by at most one edge. By Lemma 3.1, we have∣∣f (z)− f (x ◦ y′)

∣∣≤ z2n min{f (z), f (x ◦ y′)}.
For ε ≤ 1 and δ ≤ 1 it holds that n≥ (

2z02ε−2δ−1) 1
α > z0

2
α . Hence, for zn ≤ z0n− 1+α

2 , it holds that

C := nz2n +
(
n
2

)
z4n ≤ z02n−α + z04n−2α ≤ 2z02n−α < 2.

By Corollary 3.1 we obtain

P [|ZG(zn)−E [ZG(zn)]| ≥ εE [ZG(zn)]]≤
(

1
1− z02n−α

− 1
)

1
ε2

= z02(
nα − z02

)
ε2

.

Using again that n≥ (
2z02ε−2δ−1) 1

α we get

P [|ZG(zn)−E [ZG(zn)]| ≥ εE [ZG(zn)]]≤ δ,

which concludes the proof. �

4. Approximating the partition function of Gibbs point processes
We now turn towards the main goal of this paper, which is applying Theorem 3.2 to approximate
repulsive Gibbs point processes using the hard-core model on random graphs. To this end, we
start by formally defining the class of point processes that we are interested in.

4.1. Gibbs point processes
Let (X, d) be a complete, separable metric space and let B = B(X) be the Borel algebra of that
space. Let ν be a locally finite reference measure on (X, B) such that all bounded measurable
sets have finite measure. Denote by N the set of all locally finite counting measures on (X, B).
Formally, this is the set of all measures η on (X, B) with values in N∪ {∞} such that ν(A)< ∞
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implies η[A]< ∞ for all A ∈ B. For each A ∈ B, define a map NA :N →N∪ {∞} with η �→ η[A]
and let R be the sigma algebra on N that is generated by the set of those maps {NA |A ∈ B}. A
point process on X is now a measurable map from some probability space to the measurable space
(N ,R). With some abuse of terminology, we call any probability distribution on (N ,R) a point
process. Moreover, a point process is called simple if Nx(η)≤ 1 with probability 1, where we write
Nx for N{x}.

Note that every counting measure η ∈N is associated with a multiset of points in X. To see
this, define X(η)= {x ∈X |Nx(η)> 0}. Then η can be expressed as a weighted sum of Dirac
measures

η =
∑

x∈X(η)
Nx(η)δx.

In this sense, η is associated with amultiset of points x ∈ X(η), each occurring with finitemultiplic-
ityNx(η). Wemay use such a point configuration interchangeably with its corresponding counting
measure.

An important example for point processes are Poisson point processes. A Poisson point process
with intensity κ ∈R≥0 on (X, d) is uniquely defined by the following properties

• for all bounded measurable A⊆X it holds that NA is Poisson distributed with intensity
κν(A) and

• for all m ∈N≥2 and disjoint measurable A1, . . . ,Am ⊆X it holds that NA1 , . . . ,NAm are
independent.

Generally speaking, a Gibbs point process is a point process that is absolutely continuous with
respect to a Poisson point process. For a bounded measurable � ⊆X let N (�) denote the set
of locally finite counting measures η ∈N that satisfy NA(η)= 0 for all measurable A⊆X \ �. In
this work we are interested in Gibbs point processes P(λ,φ)

� on bounded measurable regions� ⊆X

that are parameterized by a fugacity parameter λ ∈R≥0 and non-negative, symmetric, measurable
potential function φ :X2 →R≥0 ∪ {∞}. Formally, such a process P(λ,φ)

� is defined by having a
density with respect to a Poisson point process with intensity λ of the form

dP(λ,φ)�

ddQλ

(η)= 1η∈N�
e−H(η)eλ v(�)

��(λ, φ)

where H :N →R≥0 ∪ {∞} is the Hamiltonian defined by

H(η)=
∑

{x,y}∈(Xη
2 )

Nx(η)Ny(η)φ(x, y)+
∑
x∈Xη

Nx(η) (Nx(η)− 1)
2

φ(x, x).

The normalizing constant ��(λ, φ) is usually called the (grand-canonical) partition function and
can be written explicitly as

��(λ, φ)= 1+
∑
k∈N≥1

λk

k!
∫

�k
e−H (

δx1 + · · · + δxk
)
νk(dx)

= 1+
∑
k∈N≥1

λk

k!
∫

�k

∏
{i,j}∈([k]2 )

e−φ(xi,xj)νk(dx).

For a more detailed overview on the theory of Gibbs point processes, see [19].
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4.2. Concentration of the partition function
The rest of this paper will use the following assumptions: (X, d) is a complete, separable metric
space with Borel algebraB = B(X), and ν is a locally-finite referencemeasure on (X, B). Moreover,
� ⊆X is bounded and measurable, λ ∈R≥0, and φ : X

2 →R≥0 ∪ {∞} is a symmetric repulsive
potential.

Under the assumptions above, we introduce the following way of obtaining a graphon from a
Gibbs point process.

Definition 4.1. The graphon associated with a repulsive Gibbs point process, denoted by Wφ , is
defined as follows: We consider the probability space (�, B�, u�), where B� is the trace of � in
B and u� is the probability measure on (�, B�) that is defined via the constant density 1

ν(�) with
respect to ν restricted to �.We define Wφ :�2 → [0, 1] via Wφ(x, y) := 1− e−φ(x,y) for x, y ∈ �.

We are particularly interested in the random graph model GWφ ,n. Note that, given n ∈N, a
random graph from n ∈N can be generated by the following procedure:

1. Draw x1, . . . , xn independently from u�.
2. Output a random graph on vertex set [n], where i �= j share an edge independently with

probabilityWφ(xi, xj)= 1− e−φ(xi,xj).

Our goal is to reduce the problem of approximate sampling from P(λ,φ)
� to approximate

sampling from μG,z and, similarly, to reduce the problem of approximating ��(λ, φ) to approx-
imating ZG(z) for a random graph G∼GWφ ,n at an appropriate vertex activity z. To this end, our
first step it to derive the following concentration result.

Theorem 4.1. Let Wφ be as in Definition 4.1 and let zn = λν(�)
n for n ∈N≥1. For all ε ∈ (0, 1],

δ ∈ (0, 1] and n≥ 4ε−2δ−1 max
{
e6λ2ν(�)2, ln

(
4ε−1)2}, it holds that, for G∼GWφ ,n,

P [|ZG(zn)− ��(λ, φ)| ≥ ε��(λ, φ)]≤ δ.

To prove Theorem 4.1, we start by relating the expected hard-core partition function with the
partition function of the Gibbs point process.

Lemma 4.1. Let Wφ be as in Definition 4.1 and let zn = λν(�)
n for n ∈N≥1. For all ε ∈R>0 and

n≥ 2ε−1 max
{
e6λ2ν(�)2, ln

(
2ε−1)2} it holds that, for G∼GWφ ,n,

(1− ε) ��(λ, φ)≤E [ZG(zn)]≤ ��(λ, φ).

Proof. We start by rewriting the hard-core partition function as

ZG(zn)= 1+
n∑

k=1

λk
ν(�)k

nk
∑

S∈([n]k )

1S∈I(G).

Thus, by linearity of expectation we have

E[ZG(zn)]= 1+
n∑

k=1

λk
ν(�)k

nk
∑

S∈([n]k )

P[S ∈ I(G)].
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By the definition ofWφ we observe that for all S ∈ ([n]
k
)
with |S| = k

P[S ∈ I(G)]=
∫

�n

∏
{i,j}∈(S2)

e−φ(xi,xj)un�(dx)

= ν(�)n−k

ν(�)n

∫
�k

∏
{i,j}∈([k]2 )

e−φ(xi,xj)νk(dx)

= 1
ν(�)k

∫
�k

∏
{i,j}∈([k]2 )

e−φ(xi,xj)νk(dx),

where the second equality uses that, by symmetry, the value of the integral does not depend on
the particular choice of S. We obtain

E[ZG(zn)]= 1+
n∑

k=1

λk
(n
k
)

nk

∫
�k

∏
{i,j}∈([k]2 )

e−φ(xi,xj)νk(dx).

Writing
(n
k
)
/nk = 1

k!
∏k−1

i=0 (1− i/n) we immediately obtain the upper bound

E[ZG(zn)]≤ ��(λ, φ).

For the lower bound, we set

Sm = 1+
m∑
k=1

λk

k!
∫

�k

∏
{i,j}∈([k]2 )

e−φ(xi,xj)νk(dx).

for any 1≤m≤ n and observe that

E[ZG(zn)]≥
(
1− m

n

)m
Sm.

In particular, for n≥ 2ε−1m2, Bernoulli’s inequality yields E[ZG(zn)]≥
(
1− ε

2
)
Sm. Moreover,

using that φ is non-negative, we note that

��(λ, φ)− Sm =
∞∑

k=m+1

λk

k!
∫

�k

∏
{i,j}∈([k]2 )

e−φ(xi,xj)νk(dx)≤
∞∑

k=m+1

λkν(�)k

k! .

Using Lagrange’s remainder formula, we obtain

��(λ, φ)− Sm ≤ eλν(�)

(m+ 1)! (λν(�))m+1 .

Choosingm≥max
{
e3λν(�), ln

(
2ε−1)} and using the fact that (m+ 1)! > (m+1

e
)m+1 yields

��(λ, φ)− Sm ≤
(
e2λν(�)
m+ 1

)m+1
≤ e−(m+1) ≤ ε

2
,

and, as ��(λ, φ)≥ 1, we get Sm ≥ (
1− ε

2
)
��(λ, φ). Hence, for n≥ 2ε−1m2 = 2ε−1 max{

e6λ2ν(�)2, ln
(
2ε−1)2}, we obtain

E[ZG(zn)]≥
(
1− ε

2

)
Sm ≥

(
1− ε

2

)2
��(λ, φ)≥ (1− ε) ��(λ, φ),

which proves the claim. �
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Proof of Theorem 4.1. By setting α = 1 and z0 = λν(�) and using the fact that

n≥ 4ε−2δ−1 max
{
e6λ2ν(�)2, ln

(
4ε−1)2}≥

(
2z02

(ε

2

)−2
δ−1

) 1
α

,

Theorem 3.2 yields

P

[
|ZG(zn)−E[ZG(zn)]| ≥ ε

2
E[ZG(zn)]

]
≤ δ.

Furthermore, by Lemma 4.1 we know that for

n≥ 4ε−2δ−1 max
{
e6λ2ν(�)2, ln

(
4ε−1)2}≥ 2

(ε

2

)−1
max

{
e6λ2ν(�)2, ln

(
2
(ε

2

)−1
)2
}
.

it holds that (
1− ε

2

)
��(λ, φ)≤E[ZG(zn)]≤ ��(λ, φ).

Combining both, we obtain
P [|ZG(zn)− ��(λ, φ)| ≥ ε��(λ, φ)]≤ δ,

which proves the claim. �

4.3. Approximation algorithm for the partition function
One of the main applications of Theorem 4.1 is that it yields a rather simple randomized proce-
dure for approximating ��(λ, φ). That is, we will use Theorem 4.1 to ε-approximate ��(λ, φ):
compute some value x ∈R such that (1− ε)��(λ, φ)≤ x≤ (1+ ε)��(λ, φ). More specifically,
we will obtain a randomized ε-approximation algorithm, i.e. an algorithm that outputs an
ε-approximation of ��(λ, φ) with probability at least 2

3 .
1

The rough idea of the approximation algorithm is as follows:

1. For n ∈N sufficiently large, sample G∼GWφ ,n whereWφ is as in Definition 4.1.

2. Approximate ZG(zn) for zn = λν(�)
n and use the result as an approximation for ��(λ, φ).

We are especially interested in obtaining an algorithm that is asymptotically efficient in the vol-
ume ν(�), as this gives a natural way to parameterize the algorithmic problem. More specifically,
we want to characterize the regime of the fugacity λ in terms of the potential φ for which we can get
a randomized ε-approximation of ��(λ, φ) in time polynomial in ν(�) and 1

ε
. We characterize

this fugacity regime in terms of the temperedness constant

Cφ = ess supx1∈X
∫
X

∣∣∣1− e−φ(x1,x2)
∣∣∣ν(dx2),

where ess sup denotes the essential supremum (i.e., an upper bound that holds almost every-
where). We obtain the following result.

Theorem 4.2. Assume for n ∈N there is a sampler forGWφ ,n with running time t�,φ (n).
If λ < e

Cφ
, then, for all ε ∈ (0, 1], there is a randomized ε-approximation algorithm for ��(λ, φ)

with running time in Õ
(
ν(�)4ε−6)+ t�,φ

(
Õ
(
ν(�)2ε−2)).

1The choice of the constant 2
3 is rather arbitrary here, as the error probability can be made smaller than every δ ∈R>0 by

taking the median of O( log
(
δ−1) ) independent runs, as long as the error probability of each run is some constant smaller

than 1
2 .
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To prove Theorem 4.2 we need two ingredients. First, we need to bound how large n needs to
be chosen to ensure that ZG(zn) is close to ��(λ, φ) with high probability. Second, we need to
ensure that ZG(zn) can be approximated in time polynomial in ν(�). To tackle the first part, we
use Theorem 4.1. For the second part, we will use some well known results on approximating the
hard-core partition function.

Theorem 4.3 [(30, Corollary 8.4] and [2, Theorem 1)]. Let G= (V , E) be an undirected graph with
maximum vertex degree bounded by dG ∈N≥2 and let z ∈R≥0 with

z < zc
(
dG
)=

(
dG − 1

)dG−1(
dG − 2

)dG .

Then, for all ε ∈ (0, 1], there is a randomized ε-approximation algorithm for the hard-core partition
function ZG(z) with running time Õ

(|V|2 ε−2).
Remark 4.1. In [30] the result above is only stated for z < 2

dG as an older mixing time result for
Glauber dynamics from [32] is used. Combining their approach with the more recent mixing time
bound in [2] gives the desired bound of z < zc

(
dG
)
.

Thus, arguing that ZG for G∼GWφ ,n can be approximated in time poly (n) boils down to
obtaining a probabilistic upper bound on dG. We use the following simple lemma.

Lemma 4.2. Assume Cφ > 0. For α ∈R>0, q ∈ (0, 1], n≥ 3max
{
α−1, α−2} ln (q−1) C−1

φ ν(�)+
1 and G∼GWφ ,n it holds that

P

[
dG ≥ (1+ α)

n− 1
ν(�)

Cφ

]
≤ qn.

Proof. By union bound, it is sufficient to argue that, for each i ∈ [n] it holds that

P

[
dG(i)≥ (1+ α)

n− 1
ν(�)

Cφ

]
≤ q,

where dG[i] denotes the degree of vertex i ∈ [n] in G. Now, observe that the random variables
dG[i] for i ∈ [n] are identically distributed. Thus, we can focus on dG[n] for ease of notation. By
definition, it holds for k ∈ [n− 1]∪ {0} that

P
[
dG(n)= k

]=
∑

S∈([n−1]
k )

∫
�n

(∏
i∈S

Wφ(xn, xi)

)
·
⎛⎝ ∏

i∈[n−1]\S
(1−Wφ(xn, xi))

⎞⎠ un�(dx)

=
∫

�

(
n− 1
k

)(∫
�

Wφ(x1, x2), u�(dx2)
)k

(
1−

∫
�

Wφ(x1, x2) u�(dx2)
)n−1−k

u�(dx1).

For every x1 ∈ �, let Bx1 be a binomial random variable with n− 1 trials and with success
probability

∫
�
Wφ(x1, x2) u�(dx2). We obtain

P[dG(n)= k]=
∫

�

P[Bx1 = k] u�(dx1).

Next, let B be a binomial random variable with n− 1 trials and success probability Cφ

ν(�) . Observe
that, by the definition of Cφ , it holds for ν-almost all x1 ∈ � that

∫
�
Wφ(x1, x2) u�(dx2)≤ Cφ

ν(�) .
Thus, we have that B stochastically dominates Bx1 for u� almost all x1 ∈ �. Consequently,
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we obtain

P[dG(n)≥ a]≤
∫

�

P[B≥ a] u�(dx1)= P[B≥ a].

Observing that E(B)= n−1
ν(�)Cφ and applying Chernoff bound yields

P

[
dG(n)≥ (1+ α)

n− 1
ν(�)

Cφ

]
≤ e−

min{α,α2}Cφ (n−1)
3ν(�) .

Setting n≥ 3max
{
α−1, α−2} ln (q−1) C−1

φ ν(�)+ 1 we have P

[
dG(n)≥ (1+ α) n−1

ν(�)Cφ

]
≤ q,

which proves the claim. �
Combining Theorem 4.1, Lemma 4.2, and Theorem 4.3, we prove our main algorithmic result

for approximating the partition function of repuslive Gibbs point processes.

Proof of Theorem 4.2.We start by giving a more precise outline of the algorithmic idea. To this
end, we define

N =max

⎧⎨⎩
324ε−2 max

{
e6λ2ν(�)2, ln

(
4ε−1)2},

24 max

{
1

e−λCφ
,

λCφ

(e−λCφ)
2

}
λν(�) ln

(
24 max

{
1

e−λCφ
,

λCφ

(e−λCφ)
2

}
λν(�)

)2

⎫⎬⎭ .

We now use the following procedure to approximate ��(λ, φ):

1. Choose some integer n≥N and draw a graph G∼GWφ ,n forWφ as in Definition 4.1.
2. If dG ≥ en

λν(�) , return an arbitrary value.

3. Else, use the algorithm from Theorem 4.3 to ε
3 -approximate ZG(zn) for zn = λν(�)

n with an
error probability of at most 1

9 and return the result.

We proceed by arguing that this procedure yields an ε-approximation of ��(λ, φ) in time
poly

(
ν(�)ε−1). We start by bounding the probability that the computed value is not an

ε-approximation.
First, we assume that, whenever dG ≥ en

λν(�) , the algorithm returns no ε-approximation in
step 2. Let A be the event that this happens. Second, let B denote the event that the hard-core
partition function ZG(zn) of G as in step 1 is not an ε

3 -approximation of ��(λ, φ). Finally, let C
denote the event we do not manage to compute an ε

3 -approximation of ZG(zn) in step 3. Note
that the probability that the above procedure does not output an ε-approximation for ��(λ, φ) is
upper bounded by

P
[
A∪ (B∩A)∪ (C ∩ B∩A)

]≤ P[A]+ P(B)+ P[CA].

We proceed with bounding each of these probabilities separately.

To bound P[A], let x= 24max
{

1
e−λCφ

, λCφ

(e−λCφ)
2

}
λν(�). As we are interested in asymptotic

behavior in terms of ν(�), we may assume that ν(�) is sufficiently large to ensure x≥ 5. Note that
for this, we have to exclude the case λ = 0, which trivially yields ��(λ, φ)= 1. Now, observe that
for x≥ 5 it holds that x ln (x)2 ≥ x ln

(
x ln (x)2

)
. Next, observe that n≥ x ln (x)2. Thus, we have
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n≥ x ln (n). Furthermore, by n≥ 5 ln (5)2 ≥ e≥ 2, we have

n− 1≥ 12max

{
1

e− λCφ

,
λCφ(

e− λCφ

)2
}

λν(�) ln (n)

= 3 (ln (9) ln (n)+ ln (n))max

{
1

e− λCφ

,
λCφ(

e− λCφ

)2
}

λν(�)

≥ 3 ln (9n)max

{
1(

e− λCφ

) , λCφ(
e− λCφ

)2
}

λν(�).

Thus, we obtain

n≥ 3max

{
λCφ

e− λCφ

,
(

λCφ

e− λCφ

)2
}
ln (9n) C−1

φ ν(�)+ 1

and by Lemma 4.2

P

[
dG ≥ en

λν(�)

]
≤ P

[
dG ≥

(
1+ e− λCφ

λCφ

)
n− 1
ν(�)

Cφ

]
≤ 1

9
.

To bound P(B), note that for n≥ 324ε−2 max
{
e6λ2ν(�)2, ln

(
4ε−1)2} Theorem 4.1 yields

P(B)= P

[
|ZG(zn)− ��(λ, φ)| ≥ ε

3
��(λ, φ)

]
≤ 1

9
.

Finally, note that, by Theorem 4.3, we can obtain an ε
3 -approximation of ZG(zn) with error

probability at most 1
9 in time Õ

(
n2ε−2) as long as zn < zc

(
dG
)
, meaning that P[C|A]≤ 1

9 .
We obtain that the error probability is bounded by 1

3 . To finish the proof, we need to argue
that our algorithm has the desired running time. To this end, note that N ∈O

(
ν(�)2ε−2).

Thus, we can also choose n ∈O(ν(�)2ε−2). By assumption, step 1 can be computed in time
t�,φ (n) = t�,φ

(
O
(
ν(�)2ε−2)). Furthermore, step 2 can be computed in time Õ

(
n2ν(�)−1)=

Õ
(
ν(�)3ε−4) and, by Theorem 4.3, step 3 runs in time Õ

(
n2ε−2)= Õ

(
ν(�)4ε−6) for zn <

zc
(
dG
)
. Consequently, the overall running time is in Õ

(
ν(�)4ε−6)+ t�,φ

(
O
(
ν(�)2ε−2)). �

5. Sampling from Gibbs point processes
In this section, we propose an approximate sampling algorithm for the Gibbs measure of a repul-
sive Gibbs point process. To this end, consider the setting of Section 4.2. Formally, the problem of
ε-approximate sampling from P(λ,φ)

� is defined as producing a random point configuration with a
distribution that has a total variation distance of at most ε to P(λ,φ)

� . As for approximating the par-
tition function, we consider an ε-approximate sampler efficient if the running time is polynomial
in the volume ν(�) and in ε−1.

With respect to sampling from P(λ,φ)
� , it is less obvious how Theorem 4.1 can be utilized.

However, under mild assumptions, we obtain an approximate sampler, given in Algorithm 1.

Our main theorem in this section is as follows.

Theorem 5.1. Assume we can sample from the uniform distribution u� in time t� and, for
every x, y ∈ �, evaluate φ(x, y) in time tφ . If the Gibbs point process P(λ,φ)

� is simple and λ < e
Cφ

then, for every ε ∈R>0, Algorithm 1 samples ε-approximately from P(λ,φ)
� and has running time

Õ
(
ν(�)2ε−4 + ν(�)2ε−3t� + ν(�)4ε−6tφ

)
.
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Algorithm 1: Approximate sampling algorithm for a repulsive point process (�, λ, φ).

Data: Instance of a repulsive Gibbs point process (Λ,λ ,φ ), error bound ε ∈ (0, 1]
Result: multiset of points in Λ

1 set

n =

⎡
⎢⎢⎢max

⎧⎨
⎩

8 182·12
ε 3 max{e6λ 2ν (Λ)2,ln( 4·18

ε )},

6 ln( 4e
ε ) max

{
1

e−λCφ
,

λCφ

(e−λ Cφ )2

}
λν (Λ) ln

(
3 ln( 4e

ε ) max

{
1

e−λCφ
,

λ Cφ

(e−λCφ )2

}
λν (Λ)

)2

⎫⎬
⎭

⎤
⎥⎥⎥;

2 for each i ∈ [n] draw Xi ∼ uΛ independently;

3 draw E ⊆ ([n]
2 ) s.t. {i, j} ∈ E with probability Wφ (Xi, Xj) = 1 − e−φ (Xi,Xj) independently;

4 set G = ([n], E);
5 if maximum degree dG ≥ en

λν (Λ) then
6 set X = ∅;
7 else
8 sample S ∈ 2[n] ε

4 -approximately from the hard-core distribution μG,zn where zn = λν (Λ)
n ;

9 set X = {Xi | i ∈ S} (possibly multiset);
10 end
11 return X ;

Algorithm 2:Modified sampling process

Data: Instance of a repulsive Gibbs point process (�, λ, φ), error bound ε ∈ (0, 1]

Result:multiset of points in �

1 set

n=
⎡⎢⎢⎢max

⎧⎨⎩
8 182·12

ε3
max

{
e6λ2ν(�)2,ln

(
4·18
ε

)}
,

6 ln
(
4e
ε

)
max

{
1

e−λCφ
,

λCφ

(e−λCφ)
2

}
λν(�) ln

(
3 ln

(
4e
ε

)
max

{
1

e−λCφ
,

λCφ

(e−λCφ)
2

}
λν(�)

)2

⎫⎬⎭
⎤⎥⎥⎥

2 for each i ∈ [n] draw Xi ∼ u� independently;

3 draw E⊆ ([n]
2
)
s.t. {i, j} ∈ E with probabilityWφ(Xi, Xj)= 1− e−φ(Xi,Xj) independently;

4 set G= ([n], E);

5 sample S′ ∼ μG,zn where zn = λν(�)
n ;

6 set Y = {Xi | i ∈ S′} (possibly multiset);

7 Return Y ;

To prove Theorem 5.1, we start by analyzing a simplified algorithm, given in Algorithm 2. The
main difference between Algorithm 1 and Algorithm2 is that the latter one does not check if the
maximum degree of the sampled graph G is bounded and that is assumes access to a perfect sam-
pler for μG,zn . It is not clear if such a perfect sampler for the hard-core Gibbs distribution can be
realized in polynomial time, especially for arbitrary vertex degrees. Therefore, Algorithm 2 is not
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suitable for algorithmic applications. However, the main purpose of Algorithm 2 is that the dis-
tribution of point multisets that it outputs are much easier to analyse. We use this, together with
a coupling argument, to bound the total variation distance between the output of Algorithm 1
and P(λ,φ)

� . Once this is done, it remains to show that Algorithm 1 satisfies the running time
requirements, given in Theorem 5.1.

To analyse the output distribution of Algorithm 2, we start by considering the resulting
distribution of multisets of points (or counting measures respectively) when conditioning on the
event that the hard-core partition function ZG(zn) of the drawn graph G is close to the partition
function of the continuous process ��(λ, φ). More specifically, for any given n and α ∈R≥0, let
A(n)

α = {H ∈ Gn | |ZH(zn)− ��(λ, φ)| ≤ α��(λ, φ)}. We derive an explicit density for the output
of Algorithm 2 with respect to a Poisson point process under the condition that G ∈A(n)

α for some
sufficiently small α. To this end, we use the following characterization of simple point processes
via so called void probabilities.

Theorem 5.2 (Rényi–Mönch, see [6, Theorem 9.2.XII]). Let P and Q be simple point process on
(X, d). If, for ηP ∼ P and ηQ ∼Q and for all bounded B ∈ B, it holds that

P [ηP(B)= 0]= P
[
ηQ(B)= 0

]
,

then P =Q.

Theorem 5.2 greatly simplifies proving that a given candidate function actually is a valid density
for the point process in question, as it implies that it is sufficient to check if it yields the correct
void probabilities.

Lemma 5.1. For ε ∈ (0, 1] let P̂ε be the point process produced by Algorithm 2 conditioned on G ∈
A(n)

ε
12
, and let Qλ denote a Poisson point process with intensity λ. If the Gibbs point process P(λ,φ)

� is
simple, then P̂ε has a density with respect to Qλ of the form

gε(η)= 1η(�)≤ n · 1η ∈N (�) · P
[
G ∈A(n)

ε
12

]−1
⎛⎝η(�)−1∏

i=0
1− i

n

⎞⎠ e−H(η)�(η(�))
n (ϕ(η)) eλν(�),

where ϕ maps every finite counting measure η to an arbitrary but fixed tuple (x1, . . . , xη(X)) such
that η =∑η(X)

i=1 δxi and

�(k)
n (x)=

∑
H∈A(n)

ε
12
:

[k]∈I(H)

1
ZH(zn)

∫
�n−k

⎛⎜⎜⎜⎝ ∏
(i,j)∈[k]×[n−k]:

{i,j+k}∈EH

1− e−φ(xi,yj)

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎝ ∏

(i,j)∈[k]×[n−k]:
{i,j+k}/∈EH

e−φ(xi,yj)

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎝

∏
{i,j}∈([n−k]

2 ):
{i+k,j+k}∈EH

1− e−φ(yi,yj)

⎞⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎝

∏
{i,j}∈([n−k]

2 ):
{i+k,j+k}/∈EH

e−φ(yi,yj)

⎞⎟⎟⎟⎟⎠ un−k
� (dy)

for all x= (x1, . . . , xk) ∈ �k.

Proof. First, observe that in Algorithm 2 it holds that G∼GWφ ,n for Wφ as in Definition 4.1.
As n≥ 412

3

ε3
max

{
e6λ2ν(�)2, ln

(
412

ε

)2}, Theorem 4.1 implies that P
[
G ∈A(n)

ε
12

]
≥ 1− ε

12 > 0.

Therefore, conditioning on the event G ∈A(n)
ε
12

is well defined.
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Next, note that, for all x ∈ � it holds that

P [η({x})≥ 2]≥ e−φ(x,x)λ2ν ({x})2
��(λ, φ)

≥ e−φ(x,x)λ2ν({x})2
eλν(�)

for η ∼ P(λ,φ)
� . Thus, if P(λ,φ)

� is simple (i.e., P [η({x})≥ 2]= 0 for all x ∈ �), it holds that λ = 0 or,
for all x ∈ �, ν({x})= 0 or φ(x, x)= ∞. This implies that the output of Algorithm 2 is simple as
well, and consequently P̂ε is a simple point process.

Knowing that P̂ε is simple, Theorem 5.2 implies that, in order to verify that gε is indeed a
density for P̂ε , it suffices to prove that it yields the correct void probabilities. Formally, this means
showing that for all bounded B ∈ B it holds that

P

[
Y ∩ B= ∅|G ∈A(n)

ε
12

]
=
∫
N

1η(B)= 0 · gε(η)Qλ(dη)

for Y and G as in Algorithm 2.
To prove this, we first write∫

N
1η(B)= 0 · gε(η)Qλ(dη)

=
∫
N (�)

1η(B)= 0 · gε(η)Qλ(dη)

= e−λν(�) ·
⎛⎝gε(0)+

∑
k∈N≥1

λk

k!
∫

�k
1∀i ∈ [k]:xi /∈ B · gε

⎛⎝∑
i∈[k]

δxi

⎞⎠νk(dx)

⎞⎠ ,

where 0 denotes the constant 0 measure on X. Note that

e−λν(�)gε(0)

= P

[
G ∈A(n)

ε
12

]−1 ·
∑

H∈A(n)
ε
12

1
ZH(zn)

∫
�n

⎛⎜⎜⎜⎝ ∏
{i,j}∈([n]2 ):
{i,j}∈EH

1− e−φ(yi,yj)

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎝ ∏

{i,j}∈([n]2 ):
{i,j}/∈EH

e−φ(yi,yj)

⎞⎟⎟⎟⎠ un�(dy)

= P

[
G ∈A(n)

ε
12

]−1 ·
∑

H∈A(n)
ε
12

P
[
S′ = ∅|G=H

]
P [G=H]

=
P

[
S′ = ∅ ∧G ∈A(n)

ε
12

]
P

[
G ∈A(n)

ε
12

]
= P

[
S′ = ∅|G ∈A(n)

ε
12

]
for S′ as in Algorithm 2. We proceed with a case distinction based on k. For every k> n and
(x1, . . . , xk) ∈ �k we have gε

(∑
i∈[k] δxk

)= 0. Therefore, we get

∫
�k

1∀i∈[k]:xi /∈B · gε
⎛⎝∑

i∈[k]
δxi

⎞⎠νk(dx)= 0
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for all k> n. Now, consider k ∈ [n] and observe that for all x= (x1, . . . , xk) ∈ �k we have

�(k)
n

⎛⎝ϕ

⎛⎝∑
i∈[k]

δxi

⎞⎠⎞⎠= �(k)
n (x)

by symmetry. Moreover, it holds that

λk

k!

⎛⎝k−1∏
i=0

1− i
n

⎞⎠=
(
n
k

)
zkn

ν(�)k
.

Therefore, we have

e−λν(�) λ
k

k!
∫

�k
1∀i∈[k]:xi /∈B · gε

⎛⎝∑
i∈[k]

δxi

⎞⎠νk(dx)

= P

[
G ∈A(n)

ε
12

]−1
(
n
k

)
zkn
∫

�k
1∀i∈[k]:xi /∈B ·

⎛⎜⎝ ∏
i,j∈([k]2 )

e−φ(xi,xj)

⎞⎟⎠�(k)
n (x)uk�(dx).

Next, note that

zkn
∫

�k
1∀i∈[k]:xi /∈B ·

⎛⎜⎝ ∏
i,j∈([k]2 )

e−φ(xi,xj)

⎞⎟⎠�
(k)
n (x)uk�(dx)

=
∑

H∈A(n)
ε
12

1[k] ∈ I (H)
zkn

ZH(zn)

∫
�n

1∀i∈[k]:xi /∈B ·

⎛⎜⎜⎜⎝ ∏
{i,j}∈([n]2 ):
{i,j}∈EH

1− e−φ(xi,xj)

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎝ ∏

{i,j}∈([n]2 ):
{i,j}/∈EH

e−φ(xi,xj)

⎞⎟⎟⎟⎠ un�(dx)

=
∑

H∈A(n)
ε
12

P
[
S′ = [k]|G=H

]
P
[
G=H ∧ ∀i ∈ [k] : Xi /∈ B

]

for X1, . . . , Xn as in Algorithm 2. Furthermore, because the event S′ = [k] is independent of
X1, . . . , Xn given G, it holds that∑

H∈A(n)
ε
12

P
[
S′ = [k]|G=H

]
P
[
G=H ∧ ∀i ∈ [k] : Xi /∈ B

]
=

∑
H∈A(n)

ε
12

P
[
S′ = [k]∧G=H ∧ ∀i ∈ [k] : Xi /∈ B

]
= P

[
S′ = [k]∧G ∈A(n)

ε
12

∧ ∀i ∈ [k] : Xi /∈ B
]
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18 T. Friedrich et al.

and

e−λν(�) λ
k

k!
∫

�k
1∀i∈[k]:xi /∈B · gε

⎛⎝∑
i∈[k]

δxi

⎞⎠νk(dx)

=
(
n
k

)P

[
S′ = [k]∧G ∈A(n)

ε
12

∧ ∀i ∈ [k] : Xi /∈ B
]

P

[
G ∈A(n)

ε
12

]

=
(
n
k

)
P

[
S′ = [k]∧ ∀i ∈ [k] : Xi /∈ B|G ∈A(n)

ε
12

]
=

∑
V ′∈([n]k )

P

[
S′ =V ′ ∧ ∀i ∈V ′ : Xi /∈ B|G ∈A(n)

ε
12

]
,

where the last equality is due to symmetry. Combining everything yields∫
N

1η(B)=0 · gε(η)Qλ(dη)= P

[
S′ = ∅|G ∈A(n)

ε
12

]
+

n∑
k=1

∑
V ′∈([n]k )

P

[
S′ =V ′ ∧ ∀i ∈V ′ : Xi /∈ B|G ∈A(n)

ε
12

]
=

∑
V ′∈2[n]

P

[
S′ =V ′ ∧ ∀i ∈V ′ : Xi /∈ B|G ∈A(n)

ε
12

]
= P

[
∀i ∈ S′ : Xi /∈ B|G ∈A(n)

ε
12

]
= P

[
Y ∩ B= ∅|G ∈A(n)

ε
12

]
,

which concludes the proof. �
We proceed by upper and lower bounding the density gε(η) in terms of the density of P(λ,φ)

� .
To this end, we use the following basic facts about the partition function of the hard-core model.

Observation 5.1 (see [11]). For every undirected graph G= (V , E) the following holds:

1. For all z1, z2 ∈R≥0

ZG[z1]≤ ZG[z1 + z2]≤ ez2|V|ZG[z1].

2. For all z ∈R≥0 and U ⊆V

ZG−U(z)≤ ZG(z)≤ ez|U|ZG−U(z),

where G−U denotes the subgraph of G that is induced by V \U.

Using Observation 5.1 we derive the following bounds.

Lemma 5.2. Consider the setting of Lemma 5.1 and let f denote the density of P(λ,φ)
� with respect to

Qλ. For n as in Algorithm 2 and all η ∈N with η(�)≤min
{√

εn
12 ,

ε
40λν(�)+ε

n
}
it holds that(

1− ε

4

)
f (η)≤ gε(η)≤

(
1+ ε

4

)
f (η).
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Proof. First, recall that, when P(λ,φ)
� is simple, its density with respect to Qλ can be expressed as

f (η)= 1η∈N (�) · e−H(η)

��(λ, φ)
eλν(�)

for every η ∈N . Therefore, we have

gε(η)= 1η(�)≤n · P
[
G ∈A(n)

ε
12

]−
1

⎛⎝η(�)−1∏
i=0

1− i
n

⎞⎠�(η(�))
n (ϕ(η)) ��(λ, φ)f (η).

As we focus on η with η(�)≤
√

εn
12 ≤ n, we omit the indicator 1η(�)≤ n from now on.

We proceed by deriving an upper bound on gε(η) for η ∈N with η(�)≤
min

{√
εn
12 ,

ε
40λν(�)+ε

n
}
. To this end, note that⎛⎝η(�)−1∏

i=0
1− i

n

⎞⎠≤ 1.

Moreover, for G∼GWφ ,n for Wφ as in Definition 4.1 and n≥ 412
3

ε3
max

{
e6λ2ν(�)2, ln

(
412

ε

)2}
Theorem 4.1 yields P

[
G ∈A(n)

ε
12

]
≥ 1− ε

12 . Finally, observe that for all x ∈ �k for k≤ n we have

�
(k)
n (x)≤ 1(

1− ε
12
)
��(λ, φ)

∑
H∈A(n)

ε
12
:

[k]∈I(H)

∫
�n−k

⎛⎜⎜⎜⎝ ∏
(i,j)∈[k]×[n−k]:

{i,j+k}∈EH

1− e−φ(xi,yj)

⎞⎟⎟⎟⎠

·

⎛⎜⎜⎜⎝ ∏
(i,j)∈[k]×[n−k]:

{i,j+k}/∈EH

e−φ(xi,yj)

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎝

∏
{i,j}∈([n−k]

2 ):
{i+k,j+k}∈EH

1− e−φ(yi,yj)

⎞⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎝

∏
{i,j}∈([n−k]

2 ):
{i+k,j+k}/∈EH

e−φ(yi,yj)

⎞⎟⎟⎟⎟⎠ un−k
� (dy)

= 1(
1− ε

12
)
��(λ, φ)

∫
�n−k

∑
H∈A(n)

ε
12
:

[k]∈I(H)

⎛⎜⎜⎜⎝ ∏
(i,j)∈[k]×[n−k]:

{i,j+k}∈EH

1− e−φ(xi,yj)

⎞⎟⎟⎟⎠

·

⎛⎜⎜⎜⎝ ∏
(i,j)∈[k]×[n−k]:

{i,j+k}/∈EH

e−φ(xi,yj)

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎝

∏
{i,j}∈([n−k]

2 ):
{i+k,j+k}∈EH

1− e−φ(yi,yj)

⎞⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎝

∏
{i,j}∈([n−k]

2 ):
{i+k,j+k}/∈EH

e−φ(yi,yj)

⎞⎟⎟⎟⎟⎠ un−k
� (dy)

≤ 1(
1− ε

12
)
��(λ, φ)

∫
�n−k

1 un−k
� (dy)

≤ 1(
1− ε

12
)
��(λ, φ)

.
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Given that ε ≤ 1 we get

gε(η)≤
(
1− ε

12

)−2
f (η)≤

(
1+ ε

11

)2
f (η)≤

(
1+ ε

4

)
f (η),

which proves the upper bound.
For the lower bound, note that

P

[
G ∈A(n)

ε
12

]−1 ≥ 1

and for η(�)≤
√

εn
12⎛⎝η(�)−1∏

i=0
1− i

n

⎞⎠≥
(
1− η(�)

n

)η(�)
≥ 1− η(�)2

n
≥ 1− ε

12
.

We proceed by lower bounding �
(k)
n (x). First, observe that

�
(k)
n (x)≥ 1(

1+ ε
12
)
��(λ, φ)

∑
H∈A(n)

ε
12
:

[k]∈I(H)

∫
�n−k

⎛⎜⎜⎜⎝ ∏
(i,j)∈[k]×[n−k]:

{i,j+k}∈EH

1− e−φ(xi,yj)

⎞⎟⎟⎟⎠

·

⎛⎜⎜⎜⎝ ∏
(i,j)∈[k]×[n−k]:

{i,j+k}/∈EH

e−φ(xi,yj)

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎝

∏
{i,j}∈([n−k]

2 ):
{i+k,j+k}∈EH

1− e−φ(yi,yj)

⎞⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎝

∏
{i,j}∈([n−k]

2 ):
{i+k,j+k}/∈EH

e−φ(yi,yj)

⎞⎟⎟⎟⎟⎠ un−k
� (dy)

= 1(
1+ ε

12
)
��(λ, φ)

∑
H∈Gn:

[k]∈I(H)

1H ∈A(n)
ε
12

∫
�n−k

⎛⎜⎜⎜⎝ ∏
(i,j)∈[k]×[n−k]:

{i,j+k}∈EH

1− e−φ(xi,yj)

⎞⎟⎟⎟⎠

·

⎛⎜⎜⎜⎝ ∏
(i,j)∈[k]×[n−k]:

{i,j+k}/∈EH

e−φ(xi,yj)

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎝

∏
{i,j}∈([n−k]

2 ):
{i+k,j+k}∈EH

1− e−φ(yi,yj)

⎞⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎝

∏
{i,j}∈([n−k]

2 ):
{i+k,j+k}/∈EH

e−φ(yi,yj)

⎞⎟⎟⎟⎟⎠ un−k
� (dy).

Next, for each graph H ∈ Gn, let H′ = ([n− k], E′) denote the subgraph that results from H − [k]
after relabelling each vertex in i ∈ [n] \ [k] to i− k ∈ [n− k] (note that this relabelling is formally
required for H′ ∈ Gn−k). By Observation 5.1 and the fact that zn ≤ zn−k and ZH′(z)= ZH−[k](z)
for all z ∈R≥0 we have

ZH(zn)≤ eznkZH′(zn)≤ e
k
nλν(�)ZH′(zn−k).

On the other hand, note that

zn−k = λν(�)
n− k

= n
n(n− k)

λν(�)=
(

n− k
n(n− k)

+ k
n(n− k)

)
λν(�)

=
(
1
n

+ k
n(n− k)

)
λν(�)= zn + k

n(n− k)
λν(�).
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Therefore, Observation 5.1 yields

ZH(zn−k)≤ e
k

n−kλν(�)ZH(zn)

and

ZH(zn)≥ e−
k

n−kλν(�)ZH(zn−k)≥ e−
k

n−kλν(�)ZH′(zn−k).

Thus, for k≤ ε
40λν(�)+ε

n we have

e−
ε
40ZH′(zn−k)≤ ZH(zn)≤ e

ε
40ZH′(zn−k).

As e− ε
40
(
1− ε

18
)≥ (

1− ε
12
)
and e

ε
40
(
1+ ε

18
)≤ (

1+ ε
12
)
for all ε ∈ [0, 1], this means that H′ ∈

A(n−k)
ε
18

is a sufficient condition for H ∈A(n)
ε
12

and

∑
H∈Gn:

[k]∈I(H)

1H∈A(n)
ε
12

∫
�n−k

⎛⎜⎜⎜⎝ ∏
(i,j)∈[k]×[n−k]:

{i,j+k}∈EH

1− e−φ(xi,yj)

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎝ ∏

(i,j)∈[k]×[n−k]:
{i,j+k}/∈EH

e−φ(xi,yj)

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎝

∏
{i,j}∈([n−k]

2 ):
{i+k,j+k}∈EH

1− e−φ(yi,yj)

⎞⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎝

∏
{i,j}∈([n−k]

2 ):
{i+k,j+k}/∈EH

e−φ(yi,yj)

⎞⎟⎟⎟⎟⎠ un−k
� (dy)

≥
∑

H′∈Gn−k

1
H′∈A(n−k)

ε
18

∫
�n−k

⎛⎜⎜⎜⎜⎝
∏

{i,j}∈([n−k]
2 ):

{i,j}∈EH′

1− e−φ(yi,yj)

⎞⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎝

∏
{i,j}∈([n−k]

2 ):
{i,j}/∈EH′

e−φ(yi,yj)

⎞⎟⎟⎟⎟⎠
∑

F⊆[k]×[n−k]

⎛⎜⎜⎜⎝ ∏
(i,j)∈[k]×[n−k]:

(i,j)∈F

1− e−φ(xi,yj)

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎝ ∏

(i,j)∈[k]×[n−k]:
(i,j)/∈F

e−φ(xi,yj)

⎞⎟⎟⎟⎠ un−k
� (dy)

=
∑

H′∈Gn−k

1
H′∈A(n−k)

ε
18

∫
�n−k

⎛⎜⎜⎜⎜⎝
∏

{i,j}∈([n−k]
2 ):

{i,j}∈EH′

1− e−φ(yi,yj)

⎞⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎝

∏
{i,j}∈([n−k]

2 ):
{i,j}/∈EH′

e−φ(yi,yj)

⎞⎟⎟⎟⎟⎠ un−k
� = (dy)

= P

[
G′ ∈A(n−k)

ε
18

]
for G′ ∼GWφ ,n−k. Next, observe that n≥ 1 we have k≤min

{√
εn
12 ,

ε
40λν(�)+ε

n
}

≤ n
2 and n− k≥

n
2 . Therefore, for n≥ 818

2·12
ε3

max
{
e6λ2ν(�)2, ln

( 4·18
ε

)2} Theorem 4.1 yields P
[
G′ ∈A(n−k)

ε
18

]
≥

1− ε
12 for G

′ ∼GWφ ,n−k. Consequently, we have

�
(k)
n (x)≥ 1− ε

12
1+ ε

12
· 1
��(λ, φ)
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and

gε(η)≥
(
1− ε

12

)2 (
1+ ε

12

)−1
f (η)≥

(
1− ε

12

)3
f (η)≥

(
1− ε

4

)
f (η),

which concludes the proof. �
We proceed by using Lemmas 5.1 and 5.2 to bound the total variation distance between P(λ,φ)

�
and the output distribution of Algorithm 2. However, as Lemma 5.2 only provides information for
point sets that are sufficiently small compared to n, we need a different way to deal with large point
configurations. To this end, the following two results are useful. The first lemma is a domination
result for the size of independent sets, drawn from a hard-core model.

Lemma 5.3. Let G ∈ Gn for some n ∈N and let z ∈R≥0. For S∼ μG,z it holds that |S| is stochasti-
cally dominated by a binomial random variable with n trials and success probability z

1+z .

Proof. We use a coupling argument to prove this statement. Consider the following procedure
for sampling a set Sn ⊆ [n]:

1. Start with S0 = ∅.
2. For each i ∈ [n], set Si = Si−1 ∪ {i} with probability P [i ∈ S|Si−1 ⊆ S] and Si = Si−1 other-

wise.

Note that Sn has law σ ∼ μG,z. Due to the definition of this process, it suffices to consider
sequences (Si)i∈[n]∪{0} such that the event Si ⊆ S has non-zero probability for all i. Further, note
that for all i ∈ [n]

P [i ∈ S|Si−1 ⊆ S]≤ z
1+ z

Now, we consider a modified process (S′
i)i∈[n]∪{0} with S′

0 = ∅ and S′
i = S′

i−1 ∪ {i} with probability
z

1+z . Observe that (Si)i∈[n]∪{0} and (S′
i)i∈[n]∪{0} can be coupled in such a way that Si ⊆ S′

i whenever
Si−1 ⊆ S′

i−1 for all i ∈ [n]. As initially S0 = S′
0, the same coupling yields Sn ⊆ S′

n. Finally, observing
that

∣∣S′
n
∣∣ follows a binomial distribution with n trials and success probability z

1+z concludes the
proof. �

The second lemma is the analog of Lemma 5.3 for repulsive point processes. However, prov-
ing it is slightly more technically involved. We start by introducing some additional notation
and terminology. For two counting measures η1, η2 ∈N , we write η1 ≤ η2 if η1(B)≤ η2(B) for
every B ∈ B. A measurable function h:N →R is called increasing if h(η1)≤ h(η2) for all η1 ≤ η2.
Moreover, for some κ ∈R≥0, let Qκ denote the Poisson point process with intensity κ and let P
be a point process that has a density fP with respect to Qκ . A function ζ :N ×X→R≥0 is called
a Papangelou intensity for P (w.r.t. Qκ ) if, for all η ∈N and x ∈X, it holds that

fP (η + δx) = ζ (η, x) fP(η).

The domination lemma we are aiming for is implied by the following result.

Theorem 5.3 [(14, Theorem 1.1)]. Let Qκ be a Poisson point process of intensity κ ∈R≥0 and let
P1, P2 be point processes that are absolutely continuous with respect to Qκ . Assume P1 and P2 have
Papangelou intensities ζ1 and ζ2. If, for all x ∈X and η1, η2 ∈N with η1 ≤ η2, ζ1(η1, x)≤ ζ2(η2, x),
then, for all increasing h :N →R, it holds that∫

N
h(η)P1(dη)≤

∫
N

h(η)P2(dη).

With that, we show the following simple domination result.
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Lemma 5.4. For η ∼ P(λ,φ)
� it holds that η(�) is dominated by a Poisson random variable with

parameter λν(�).

Proof. Let Qλ denote a Poisson point process with intensity λ. Note that

f1(η)= 1η ∈N (�) · 1
��(λ, φ)

⎛⎜⎝ ∏
{x,y}∈(X(η)2 )

e−Nx(η)Ny(η)φ(x,y)

⎞⎟⎠
⎛⎝ ∏

x∈X(η)
e−

Nx(η)(Nx(η)−1)
2 φ(x,x)

⎞⎠ eλν(�)

is a density for P(λ,φ)
� with respect to Qλ. Therefore,

ζ1, (η, x)= 1x∈�

∏
y∈X(η)

e−Ny(η)φ(x,y)

is a Papangelou intensity for P(λ,φ)
� . Moreover, let P denote the point process defined by the density

f2(η)= 1η ∈N (�) and observe that ζ2(η, x)= 1x ∈ � is a Papangelou intensity for P.
For all k ∈N, let hk(η)= 1η(�)≥k and observe that hk is increasing. Further, note that, for all

x ∈X and η1, η2 ∈N , it holds that

ζ1, (η, x)= 1x∈�

∏
y∈Xη1

e−Ny(η1)φ(x,y)≤1x∈� = ζ1, (η2, x).

By Theorem 5.3, this implies that for all k ∈N∫
N

hk(η)P
(λ,φ)
� (dη)≤

∫
N

hk(η)P(dη).

Consequently, for η ∼ P(λ,φ)
� and ξ ∼ P and for all k ∈N, it holds that

P
[
η(�)≥ k

]≤ P
[
ξ (�)≥ k

]
and observing that ξ (�) follows a Poisson distribution with parameter λν(�) concludes the
proof. �

We now bound the total variation distance between the output of Algorithm 2 and P(λ,φ)
� .

Lemma 5.5. For every given ε ∈ (0, 1], Algorithm 2 is an ε
2 -approximate sampler from P(λ,φ)

� .

Proof. We start by bounding the total variation distance between dtv
(
P(λ,φ)

� , P̂ε

)
for P̂ε as in

Lemma 5.1. The statement then follows from a coupling argument. Let Qλ denote a Poisson point
process of intensity λ. Let gε be the density of P̂ε with respect to Qλ as given in Lemma 5.1 and
let f denote the density of P(λ,φ)

� with respect to Qλ. Moreover, set m=min
{√

εn
12 ,

ε
40λν(�)+ε

n
}
.

Note that the total variation distance can be expressed as

dtv
(
P(λ,φ)

� , P̂ε

)
=
∫
N

∣∣f (η)− gε(η)
∣∣Qλ(dη)

=
∫
N

1η(�)≤m
∣∣f (η)− gε(η)

∣∣Qλ(dη)+
∫
N

1η(�)>m
∣∣f (η)− gε(η)

∣∣Qλ(dη).

By Lemma 5.2, we get∫
N

1η(�)≤m
∣∣f (η)− gε(η)

∣∣Qλ(dη)≤ ε

4

∫
N

1η(�)≤mf (η)Qλ(dη)≤ ε

4
.
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Further, it holds that∫
N

1η(�)>m
∣∣f (η)− gε(η)

∣∣Qλ(dη)≤
∫
N

1η(�)>mf (η)Qλ(dη)+
∫
N

1η(�)>mgε(η)Qλ(d η)

= P [ξ (�)>m]+ P

[
|Y| >m|G ∈A(n)

ε
12

]
for ξ ∼ P(λ,φ)

� , and G and Y as in Algorithm 2.
We proceed by bounding each of these probability separately. Note that, by our choice of n

it holds that m≥ 12
ε
λν(�). By Lemma 5.4, we have E[ξ (�)]≤ λν(�). Thus, Markov’s inequality

yields P [ξ (�)>m]≤ ε
12 . Moreover, note that |Y| = |S′| for S′ as in Algorithm 2. As S′ ∼ μH,zn

for some H ∈A(n)
ε
12

⊆ Gn and Lemma 5.3 applies to all such graphs, we get

E

[
|Y||G ∈A(n)

ε
12

]
≤ zn

1+ zn
n≤ znn= λν(�).

Again, applying Markov’s inequality gives P
[
|Y| >m|G ∈A(n)

ε
12

]
≤ ε

12 . Consequently, we have

dtv
(
P(λ,φ)

� , P̂ε

)
≤ ε

4
+ ε

6
= 5

12
ε.

To finish the proof, we now relate the output of Algorithm 2 with P̂ε by using a coupling
argument. To this end, note that Algorithm 2 can be used to sample from P̂ε by simply restart-
ing the sampler whenever G /∈A(n)

ε
12
. For our choice of n we know that with a probability of

P

[
G ∈A(n)

ε
12

]
≥ 1− ε

12 only a single run of Algorithm 2 is required. By this coupling, the total
variation distance between the output of Algorithm 2 and P̂ε is at most ε

12 . Finally, applying trian-
gle inequality shows that the total variation distance between the output of Algorithm 2 and P(λ,φ)

�

is bounded by 5
12ε + ε

12 = ε
2 , which concludes the proof. �

Using Lemma 5.5, we are able to prove that Algorithm 1 is an ε-approximate sampler for
P(λ,φ)

� . In order to argue that Algorithm 1 also satisfies the running time requirements, given in
Theorem 5.1, we require an efficient approximate sampler from the hard-core distribution μG,zn .
To this end, we use the following known result.

Theorem 5.4 [(2, Theorem 5)]. Let G= (V , E) be an undirected graph with maximum vertex
degree bounded by dG ∈N≥2 and let z ∈R≥0 with

z < zc
(
dG
)=

(
dG − 1

)dG−1(
dG − 2

)dG .

Then, for all ε ∈ (0, 1], there is an ε-approximate sampler for the hard-core Gibbs distribution μG,z

with an expected running time of O
(
|V| ln

( |V|
ε

))
.

Proof of Theorem 5.1. We start by arguing that Algorithm 1 is an ε-approximate sampler for
P(λ,φ)

� . To this end, we show that the total variation distance between the output distributions
of Algorithm 1 and Algorithm 2 is bounded by ε

2 . Using the triangle inequality and Lemma 5.5
then yields the desired result. To bound the total variation distance between the Algorithm 1
and Algorithm 2 by ε

2 , it suffices to construct a coupling of both algorithms such that their output
coincides with a probability of at least 1− ε

2 . This is, we want to find a coupling of both algorithms
such that X �= Y with probability at most ε

2 , where X and Y are as in Algorithm 1 and Algorithm 2.
To construct such a coupling, we start by letting both algorithms draw the same points

X1, . . . , Xn and construct the same graph G. If dG ≥ en
λν(�) , then we may just assume X �= Y .
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Otherwise, if dG < en
λν(�) , then S= S′ is a sufficient condition for X = Y . As S′ is drawn from μG,zn

and S is drawn from an ε
4 approximation of that distribution, they can be coupled in such a way

that P
[
S′ �= S

]≤ ε
4 . Using this coupling of Algorithm 1 and Algorithm 2, we have

P [X �= Y]≤ P

[
dG ≥ en

λν(�)

]
+ ε

4
· P

[
dG <

en
λν(�)

]
≤ P

[
dG ≥ en

λν(�)

]
+ ε

4
.

Therefore, it remains to prove that dG ≥ en
λν(�) with probability at most ε

4 , where G∼GWφ ,n
for Wφ as in Definition 4.1. We follow a similar arguments as in the proof of Theorem 4.2.

Note that, for our choice of n, there exists x≥ 3 ln
( 4e

ε

)
max

{
1

e−λCφ
, λCφ

(e−λCφ)
2

}
λν(�) such that

n= 2x ln (x)2. Moreover, we have n≥ e≥ 2 and, for ν(�) (consequently x) sufficiently large, it
holds that 2x ln (x)2 ≥ 2x ln

(
2x ln (x)2

)= 2x ln (n). Therefore, we have

n− 1≥ n
2

≥ 3 ln
(
4e
ε

)
max

{
1

e− λCφ

,
λCφ(

e− λCφ

) 2} λν(�) ln (n)

≥ 3 ln
(
4n
ε

)
max

{
1

e− λCφ

,
λCφ(

e− λCφ

) 2} λν(�)

and by Lemma 4.2

P

[
dG ≥ en

λν(�)

]
≤ P

[
dG ≥

(
1+ e− λCφ

λCφ

)
n− 1
ν(�)

Cφ

]
≤ ε

4
.

To prove Theorem 5.1, it remains to show that Algorithm 1 satisfies the given running time
requirements. To this end, note that, for all λ < e

Cφ
, it holds that n ∈ Õ

(
ν(�)2ε−3). Therefore,

sampling X1, . . . , Xn requires a running time of Õ (nt�) = Õ
(
ν(�)2ε−3t�

)
. Moreover, the graph

can be constructed in time Õ
(
n2tφ

)= Õ
(
ν(�)4ε−6tφ

)
and dG ≥ en

λν(�) can be checked in O(1) if
we keep track of dG while constructing the graph. Finally, for dG < en

λν(�) it holds that

zn = λν(�)
n

<
e
dG

< zc
(
dG
)
.

Thus, Theorem 5.4 guarantees the existence of an ε
8 -approximate sampler from μG,zn with

an expected running time in O
(
n ln

(n
ε

))=O
(
ν(�)2ε−3 ln

(
ν(�)

ε

))
. Note that, by Markov’s

inequality, the probability that this sampler takes more than 8
ε
times its expected running

time is bounded by ε
8 . Therefore, if we run the sampler from Theorem 5.4 with an error

bound of ε
8 and, whenever the algorithm takes more than 8

ε
times its expected running time,

stop it and return an arbitrary spin configuration, this results in an ε
4 -approximate sampler

with a guaranteed running time in Õ
(
ν(�)2ε−4). Consequently, Algorithm 1 runs in time

Õ
(
ν(�)2ε−4 + ν(�)2ε−3t� + ν(�)4ε−6tφ

)
, which concludes the proof. �

6. Discussion and outlook
The most commonly studied setting for algorithms for Gibbs point processes is when � = [0, �]d
is a box of side length � in d-dimensional Euclidean space. Usually, the following computational
assumptions are made:
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• We can perform arithmetic operations and comparison with arbitrary floating-point
precision.

• We have oracle access to a uniform sampler for the continuous interval [0, 1].
• We have oracle access to e−φ(x,y) for any x, y ∈Rd.

In this setting, Theorem 4.2 and Theorem 5.1 provide an approximation algorithm for the par-
tition function and an approximate sampling algorithm with running time Õ

(
ν(�)4

)
up to a

fugacity of λ < e/Cφ and for arbitrary repulsive potentials φ.
Recently, Michelen and Perkins [23] provide a Õ (ν(�)) approximate sampler and a Õ

(
ν(�)2

)
approximation for the partition function in the setting of bounded-range potentials up to a slightly
better fugacity threshold of e/�φ , where �φ is called the potential-weighted connective constant.
This result is obtained by directly applying a Markov chainMonte-Carlo algorithm on the contin-
uous problem, which is efficient as long as the Gibbs point process satisfies a property called strong
spatial mixing. The strong spatial mixing assumption restricts their approach to bounded-range
potentials. This raises the question if there are efficient approximation algorithms for repulsive
Gibbs point processes without bounded-range assumption for every λ < e/�φ . As a first step
towards this, we argue in an extended version of this paper [10] that a bound for the connec-
tive constant of our discretization can be obtained in terms of �φ . However, while this is known
to imply some notion of spatial mixing for the discrete hard-core model [29], it is not clear if it
suffices for a polynomial-time approximation.

Moreover, Jenssen, Michelen and Ravichandran [20] recently obtained a deterministic quasi-
polynomial time approximation algorithm for the partition function of repulsive Gibbs point
processes with sufficiently smooth bounded-range potentials up to λ < e/�φ . Their result is based
on using a discretization to approximate the coefficients of a suitable expansion of the logarithm
of the partition function. To perform the involved enumeration task efficiently, they require the
potential to have bounded range. It would be interesting to see if such a quasi-polynomial deter-
ministic approximation can be obtained without bounded-range assumptions. In particular, we
wonder if a derandomized version of our discretization under similar smoothness assumptions
on the potential as in [20] could give such a result.
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