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Abstract

Let F be a totally real field in which a prime p is unramified. We define the Goren–
Oort stratification of the characteristic-p fiber of a quaternionic Shimura variety of
maximal level at p. We show that each stratum is a (P1)r-bundle over other quaternionic
Shimura varieties (for an appropriate integer r). As an application, we give a necessary
condition for the ampleness of a modular line bundle on a quaternionic Shimura variety
in characteristic p.
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1. Introduction

This paper is intended as the first in a series [TX13, TX14], in which we study the Goren–Oort
stratification for quaternionic Shimura varieties. The purpose of this paper is to give a global
description of the strata, saying that they are in fact (P1)r-bundles over (the special fiber of)
other quaternionic Shimura varieties for a certain integer r. We fix p > 2 a prime number.

1.1 Motivation: the case of modular curves
Let N > 5 be an integer prime to p. Let X denote the modular curve with level Γ1(N); it admits
a smooth integral model X over Z[1/N ]. We are interested in the special fiber X := X⊗Z[1/N ]Fp.
The curve X has a natural stratification by the supersingular locus Xss and the ordinary locus
Xord. In concrete terms, Xss is defined as the zero locus of the Hasse invariant h ∈ H0(X,
ω⊗(p−1)), where ω⊗(p−1) is the sheaf for weight p − 1 modular forms. The following deep result
of Deuring and Serre (see e.g. [Ser96]) gives an intrinsic description of Xss.
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On Goren–Oort stratification for quaternionic Shimura varieties

Theorem 1.2 (Deuring and Serre). Let A∞ denote the ring of finite adeles over Q and A∞,p its

prime-to-p part. We have a bijection of sets{
Fp-points of Xss

}
←→ B×p,∞\B×p,∞(A∞)/K1(N)B×p,∞(Zp)

equivariant under the prime-to-p Hecke correspondences, where Bp,∞ is the quaternion algebra

over Q which ramifies at exactly two places: p and ∞, B×p,∞(Zp) is the maximal open compact

subgroup of B×p,∞(Qp), and K1(N) is an open compact subgroup of GL2(A∞,p) = B×p,∞(A∞,p)
given by

K1(N) =

{(
a b
c d

)
∈ GL2(Ẑ(p))

∣∣∣∣ c ≡ 0, d ≡ 1 (mod N)

}
, where Ẑ(p) =

∏
l 6=p

Zl.

The original proof of this theorem uses the fact that all supersingular elliptic curves over Fp
are isogenous and the quasi-endomorphism ring is exactly Bp,∞. We however prefer to understand

the result as: certain special cycles of the special fiber of the Shimura variety for GL2 are just

the special fiber of the Shimura variety for B×p,∞.

The aim of this paper is to generalize this theorem to the case of quaternionic Shimura

varieties. For the purpose of simple presentation in this introduction, we focus on the case of

Hilbert modular varieties. We will indicate how to modify the result to adapt to general cases.

1.3 Goren–Oort stratification

Let F be a totally real field and let OF denote its ring of integers. We assume that p is unramified

in F . Goren and Oort [GO00] defined a stratification of the special fiber of the Hilbert modular

variety XGL2 . More precisely, let A∞F denote the ring of finite adeles of F and A∞,pF its prime-to-p

part. We fix an open compact subgroup Kp ⊂ GL2(A∞,pF ). Let XGL2 denote the Hilbert modular

variety (over Q) with tame level Kp. Its complex points are given by

XGL2(C) = GL2(F ) \
(
h±[F :Q] ×GL2(A∞F )

)
/
(
Kp ×GL2(OF,p)

)
,

where h± := C\R and OF,p := OF ⊗Z Zp. The Hilbert modular variety XGL2 admits an integral

model XGL2 over Z(p); let XGL2 denote its special fiber over Fp.
Since p is unramified in F , we may and will identify the p-adic embeddings of F with the

homomorphisms of OF to Fp, i.e. Hom(F,Qp) ∼= Hom(OF ,Fp). Let Σ∞ denote this set. (We

shall later identify the p-adic embeddings with the real embeddings, hence the subscript ∞.)

Under the latter description, the absolute Frobenius σ acts on Σ∞ by taking an element τ to the

composite στ : OF
τ−→ Fp

x 7→xp−−−→ Fp. This action decomposes Σ∞ into a disjoint union of cycles,

parametrized by all p-adic places of F .

Let A denote the universal abelian variety over XGL2 . The sheaf of invariant differential

1-forms ωA/XGL2
is then locally free of rank one as a module over

OF ⊗Z OXGL2

∼=
⊕
τ∈Σ∞

OXGL2,τ
,

where OXGL2,τ
is the direct summand on which OF acts through τ : OF → Fp. We then write

accordingly ωA/XGL2
=
⊕

τ∈Σ∞
ωτ ; each ωτ is locally free of rank one over OXGL2

.
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Definition 1.4. The Verschiebung map induces an OF -morphismωA/XGL2
→ ωA(p)/XGL2

, which

further induces a homomorphism hτ : ωτ → ω⊗p
σ−1τ

for each τ ∈ Σ∞. This map then defines a

global section hτ ∈ H0(XGL2 , ω
⊗−1
τ ⊗ω⊗p

σ−1τ
), which we call the partial Hasse invariant at τ . We

use Xτ to denote the zero locus of hτ . For a subset T ⊆ Σ∞, we put XT =
⋂
τ∈TXτ . These XT

give the Goren–Oort stratification of XGL2 .

An alternative definition of XT is given as follows: z ∈ XT(Fp) if and only if Hom(αp, Az[p])

under the action of OF has eigenvalues given by those embeddings τ ∈ T. We refer to [GO00] for

the proof of equivalence and a more detailed discussion.

It is proved in [GO00] that each Xτ is a smooth and proper divisor and these divisors intersect

transversally. Hence, XT is smooth of codimension #T for any subset T ⊆ Σ∞; it is proper if T 6= ∅.

1.5 Description of the Goren–Oort strata

The goal of this paper is to give a global description of the Goren–Oort strata.

Prior to our paper, most works focused on the p-divisible groups of the abelian varieties,

which often provides a good access to the local structure of Goren–Oort strata, e.g. dimensions

and smoothness. Unfortunately, there has been little understanding of the global geometry of

XT, mostly in low dimension. We refer to the survey article [AG04] for a historical account.

Recently, Helm made a break-through progress in [Hel12, Hel10] by taking advantage of the

moduli problem; he was able to describe the global geometry of certain analogous strata of the

special fibers of Shimura varieties of type U(2).

Our proof of the main theorem of this paper is, roughly speaking, to complete Helm’s

argument to cover all cases for the U(2)-Shimura varieties and then transfer the results from the

unitary side to the quaternionic side.

Rather than stating our main theorem in an abstract way, we prefer to give more examples

to indicate the general pattern.

When F = Q, this is discussed in § 1.1. For F 6= Q, we fix an isomorphism C ∼= Qp and hence

identify Σ∞ = Hom(F,Qp) with the set of real embeddings of F .

1.5.1 F real quadratic and p inert in F . Let ∞1 and ∞2 denote the two real embeddings of

F and τ1 and τ2 the corresponding p-adic embeddings (via the fixed isomorphism C ∼= Qp). Then

our main Theorem 5.2 says that each Xτi is a P1-bundle over the special fiber of the discrete

Shimura variety ShB×∞1,∞2
, where B∞1,∞2 stands for the quaternion algebra over F which ramifies

at both archimedean places. The intersection Xτ1 ∩Xτ2 is isomorphic to the special fiber of the

discrete Shimura variety ShB×∞1,∞2
(Iwp), where (Iwp) means to take Iwahori level structure at

p instead. The two natural embeddings of Xτ1 ∩ Xτ2 into Xτ1 and Xτ2 induce two morphisms

ShB×∞1,∞2
(Iwp)→ ShB×∞1,∞2

; this gives (a certain variant of) the Hecke correspondence at p (see

Theorem 7.16).

We remark here that it was first proved in [BG99] that the one-dimensional strata are disjoint

unions of P1 and the number of such P1 is also computed in [BG99]. This computation relies

on the intersection theory and does not provide a natural parametrization as we gave above.

Our proof will be different from theirs. One can easily recover their counting from our natural

parametrization.

1.5.2 Quaternionic Shimura varieties. Before proceeding, we clarify our convention on

quaternionic Shimura varieties.
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For S an even subset of archimedean and p-adic places of F , we use BS to denote the
quaternion algebra over F which ramifies exactly at those places in S. We fix an identification
B×S (A∞,p) ∼= GL2(A∞,p). We fix a maximal open compact subgroup B×S (OF,p) of B×S (F ⊗Q Qp).
We use S∞ to denote the subset of archimedean places of S. The Shimura variety ShB×S for the

algebraic group ResF/QB
×
S has complex points

ShB×S (C) = B×S (F ) \
(
h±[F :Q]−#S∞ ×B×S (A∞F )

)
/
(
Kp ×B×S (OF,p)

)
.

Here and later, the tame level Kp is uniformly matched up for all quaternionic Shimura varieties.
Unfortunately, ShB×S itself does not possess a moduli interpretation. We follow the

construction of Carayol [Car86] to relate it with a unitary Shimura variety Y and ‘carry over’
the integral model of Y . The assumption that p > 2 comes from the verification of the extension
property for the integral canonical model following Moonen [Moo98, Corollary 3.8].

In any case, we use ShB×S
to denote the special fiber of the Shimura variety over Fp. When

we take the Iwahori level structure at p instead, we write ShB×S
(Iwp).

1.5.3 F real quartic and p inert in F . Let ∞1, . . . ,∞4 denote the four real embeddings of
F , labeled so that the corresponding p-adic embeddings τ1, . . . , τ4 satisfy στi = τi+1 with the
convention that τi = τi (mod 4). We list the description of the strata as follows.

Strata Description

Xτi for each i P1-bundle over ShB×{∞i−1,∞i}

X{τi−1,τi} for each i ShB×{∞i−1,∞i}

X{τ1,τ3} and X{τ2,τ4} (P1)2-bundle over ShB×{∞1,∞2,∞3,∞4}

XT with #T = 3 P1-bundle over ShB×{∞1,∞2,∞3,∞4}

X{τ1,τ2,τ3,τ4} ShB×{∞1,∞2,∞3,∞4}
(Iwp)

In particular, we point out that for a codimension-2 stratum, its shape depends on whether
the two chosen τi are adjacent in the cycle τ1→ · · ·→ τ4→ τ1.

1.5.4 F general totally real of degree g over Q and p inert in F . As before, we label the real
embeddings of F by∞1, . . . ,∞g such that the corresponding p-adic embeddings τ1, . . . , τg satisfy
στi = τi+1 with the convention that τi = τi (mod g). The general statement for Goren–Oort strata
takes the following form: for a subset T ⊆ Σ∞, the stratum XT is isomorphic to a (P1)r-bundle
over the special fiber of another quaternion Shimura variety ShB×

S(T)
. We now explain, given T,

what S(T) and r are.
– When T ( Σ∞, we construct S(T) as follows: if τ /∈ T and σ−1τ, . . . , σ−mτ ∈ T, we put
σ−1τ, . . . , σ−2dm/2eτ into S(T). In other words, we always have T ⊆ S(T), and S(T) contains
the additional element σ−m−1τ if and only if the corresponding m is odd. The number r is
the cardinality of S(T)− T.

– When T = Σ∞, r is always 0; for S(T), we need to distinguish the parity:
* if #Σ∞ is odd, we put S(T) = Σ ∪ {p};
* if #Σ∞ is even, we put S(T) = Σ and we put an Iwahori level structure at p.
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1.5.5 F general totally real and p unramified in F . The general principle is: different places
above p work ‘independently’ in the recipe of describing the strata (e.g. which places of the
quaternion algebra are ramified); so we just take the ‘product’ of all recipes for different p-adic
places.

More concretely, let pOF = p1 · · · pd be the prime ideal factorization. We use Σ∞ to denote
the set of all archimedean embeddings of F , which is identified with the set of p-adic embeddings.
We use Σ∞/pi to denote those archimedean embeddings or equivalently p-adic embeddings that
give rise to the p-adic place pi. Given any subset T ∈ Σ∞, we put Tpi = T ∩ Σ∞/pi . Applying
the recipe in § 1.5.4 to each Tpi viewed as a subset of Σ∞/pi , we get a set of places S(Tpi) and

a non-negative number rpi . We put S(T) =
⋃d
i=1 S(Tpi) and r =

∑d
i=1 rpi =

∑d
i=1 #(S(Tpi)− Tpi).

Then XT is a (P1)r-bundle over ShB×
S(T)

(with possibly some Iwahori level structure at appropriate

places above p).
We also prove analogous results on the global description of the Goren–Oort strata on general

quaternionic Shimura varieties (Theorem 5.2). We refer to the content of the paper for the
statement. The modification we need to do in the general quaternionic case is that one just
‘ignores’ all ramified archimedean places and applies the above recipe formally to the set Σ∞
after ‘depriving all ramified archimedean places’.

1.6 Method of the proof
We briefly explain the idea behind the proof. The first step is to translate the question into
an analogous question on (the special fiber of) unitary Shimura varieties. We use X ′ to denote
the special fiber of the unitary Shimura variety we start with, over which we have the universal
abelian variety A′. Similar to the Hilbert case, we have naturally defined analogous Goren–Oort
stratification given by divisors X ′τ . We consider X ′T =

⋂
τ∈TX

′
τ .

The idea is to prove the following sequence of isomorphisms: X ′T
∼=
←− Y ′T

∼=−→ Z ′T, where Z ′T is
the (P1)-power bundle over the special fiber of another unitary Shimura variety, which comes
with a universal abelian variety B′; Y ′T is the moduli space classifying both A′ and B′ together
with a quasi-isogeny A′ → B′ of certain fixed type (with very small p-power degree); and the
two morphisms are just simply forgetful morphisms. We defer the characterization of the quasi-
isogeny to the content of the paper. To prove the two isomorphisms above, we simply check that
the natural forgetful morphisms are bijective on the closed points and induce isomorphisms on
the tangent spaces.

Remark 1.7. We point out that we have been deliberately working with the special fiber over the
algebraic closure Fp. This is because the description of the stratification is not compatible with
the action of the Frobenius. In fact, a more rigorous way to formulate the theorem is to compare
the special fiber of the Shimura variety associated to GL2(F )×F×E× and that to B×

S(T)×F×E
×.

The homomorphism from the Deligne torus into the two E× are in fact different, causing the
incompatibility of the Frobenius action. (See Corollary 5.9 for the corresponding statement.)
The result about quaternionic Shimura varieties is obtained by comparing geometric connected
components of the corresponding Shimura varieties, in which we lose the Frobenius action. See
Remark 5.10 for more discussion.

1.8 Ampleness of automorphic line bundles
An immediate application of the study of the global geometry of the Goren–Oort stratification
is to give a necessary condition (hopefully also sufficient) for an automorphic line bundle to be
ample. As before, we take F to be a totally real field of degree g in which p is inert for simplicity.
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Let X∗GL2
denote the special fiber of the minimal compactification of the Hilbert modular variety.

We label all p-adic embeddings as τ1, . . . , τg with subindices considered modulo g, such that
στi = τi+1. Then ωτ1 , . . . , ωτg form a basis of the group of automorphic line bundles. The class
[ωτi ] in Pic(X)Q := Pic(X) ⊗Z Q of each ωτi extends to a class in Pic(X∗GL2

)Q, still denoted by

[ωτi ]. For a g-tuple k = (k1, . . . , kg) ∈ Zg, we put [ωk] =
∑g

i=1 ki[ωτi ]. Probably slightly contrary
to the common intuition from the case of modular forms, we prove the following theorem.

Theorem 1.9. If the rational class of line bundle [ωk] is ample, then

pki > ki−1 for all i (and all ki > 0). (1.9.1)

Here we put the second condition in parentheses because it automatically follows from
the first condition. This theorem is proved in Theorem 6.5. When F is a real quadratic field,
Theorem 1.9 is proved in [AG04, Theorem 8.1.1].

To see that the condition (1.9.1) is necessary, we simply restrict to each of the Goren–Oort
(GO) strata Xτi , which is a P1-bundle as we discussed before. Along each of the P1-fibers, the
line bundle ωk restricts to O(pki − ki−1). The condition (1.9.1) is clear.

We do expect the condition in Theorem 1.9 to be necessary (which was proved for Hilbert
modular surfaces in [AG04]), but we are not able to prove it due to a combinatorics complication.

1.10 Forthcoming works in this series
We briefly advertise the other papers of this series to indicate the potential applications of the
technical result in this paper. In the subsequent paper [TX13], we discuss an application to the
classicality of overconvergent Hilbert modular forms, following the original proof of R. Coleman.
In the third paper [TX14], we show that certain generalizations of the Goren–Oort strata realize
Tate classes of the special fiber of certain Hilbert modular varieties, and hence verify the Tate
conjecture under some genericity hypothesis.

1.11 Structure of the paper
In § 2, we review some basic facts about integral models of Shimura varieties, which will be used
to relate the quaternionic Shimura varieties with the unitary Shimura varieties. One novelty is
that we include a discussion about the ‘canonical model’ of certain discrete Shimura varieties; this
can be treated uniformly together with usual Shimura varieties. In § 3, we construct the integral
canonical model for quaternionic Shimura varieties, following Carayol [Car86]. However, we tailor
many of the choices (e.g. the auxiliary CM field and signatures) for our later application. In § 4,
we define the Goren–Oort stratification for the unitary Shimura varieties and transfer them to
the quaternionic Shimura varieties; this is a straightforward generalization of the work of Goren
and Oort [GO00]. In § 5, we give the global description of Goren–Oort stratification. The method
is very close to that used in [Hel12]. In § 6, we give a more detailed description for Goren–Oort
divisors, including a necessary condition for an automorphic line bundle to be ample, and a
structure theorem relating the Goren–Oort stratification along a P1-bundle morphism provided
by Theorem 5.8. In § 7, we further study some structures of the Goren–Oort strata which will
play an important role in the forthcoming paper [TX14].

1.12 Notation
1.12.1 For a scheme X over a ring R and a ring homomorphism R→ R′, we use XR′ to

denote the base change X ×SpecR SpecR′.
For a field F , we use GalF to denote its Galois group.
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For a number field F , we use AF to denote its ring of adeles and A∞F (respectively A∞,pF )

to denote its finite adeles (respectively prime-to-p finite adeles). When F = Q, we suppress the

subscript F from the notation. We use the superscript cl to mean closure in certain topological

groups. For example, F×,cl means the closure of F× inside A∞,×F or A∞,pF (depending on the

situation). We put Ẑ =
∏
l Zl and Ẑ(p) =

∏
l 6=p Zl.

For each finite place p of F , let Fp denote the completion of F at p and Op its valuation ring,

which has uniformizer $p and residue field kp. (When Fp is unramified over Qp, we take $p to

be p.)

We normalize the Artin map ArtF : F×\A×F → Galab
F so that for each finite prime p, the

local uniformizer at p is mapped to a geometric Frobenius at p.

1.12.2 For A an abelian scheme over a scheme S, we denote by A∨ the dual abelian scheme,

by Lie(A) the Lie algebra of A, and by ωA/S the module of invariant 1-differential forms of A

relative to S. We sometimes omit S from the notation when the base is clear.

For a finite p-group scheme or a p-divisible group G over a perfect field k of characteristic

p, we use D(G) to denote its covariant Dieudonné module. For an abelian variety A over k, we

write DA for D(A[p]) and write D̃A for D(A[p∞]).

1.12.3 Throughout this paper, we fix a totally real field F of degree g > 1 over Q. Let Σ

denote the set of places of F and Σ∞ the subset of archimedean places or, equivalently, all real

embeddings of F .

We fix a prime number p which is unramified in F . Let Σp denote the set of places of F above

p. We fix an isomorphism ιp : C
∼=−→ Qp so that we identify Σ∞ as the set of p-adic embeddings

of F . For each p ∈ Σp, we use Σ∞/p to denote the subset of p-adic embeddings τ ∈ Σ∞ which

induce the p-adic place p. Since p is unramified, each τ induces an embedding OF ↪→ W (Fp).
Post-composition with the Frobenius σ on the latter induces an action of σ on the set of p-adic

embeddings and makes each Σ∞/p into one cycle. We use στ to denote this action, i.e. στ = σ◦τ .

1.12.4 We will consider a CM extension E over F , in which all places above p are

unramified. Let ΣE,∞ denote the set of complex embeddings of E. For τ ∈ Σ∞, we often use τ̃ to

denote a/some complex embedding of E extending τ , and we write τ̃ c for its complex conjugate.

Using the isomorphism ιp above, we view τ̃ and τ̃ c as p-adic embeddings of E.

Under the natural two-to-one map ΣE,∞ → Σ∞, we use ΣE,∞/p to denote the preimage of

Σ∞/p. In the case when p splits as qqc in E/F , we use ΣE,∞/q to denote the set of complex

embeddings τ̃ such that ιp ◦ τ̃ induces the p-adic place q.

1.12.5 For S an even subset of places of F , we denote by BS the quaternion algebra over F

ramified at S. Let NmBS/F : BS→ F denote the reduced norm and TrBS/F : BS→ F the reduced

trace.

We use the following lists of algebraic groups. Let GS denote the algebraic group ResF/QB
×
S .

Let E be the CM extension of F above and put TE,S̃ = ResE/QGm; see § 3.4 for the meaning

of the subscript S̃. We put G̃S̃ = GS × TE,S̃ and G′′
S̃

= GS ×Z TE,S̃, which is the quotient of G̃S̃

by the subgroup Z = ResF/QGm embedded as z 7→ (z, z−1). Let G′
S̃

denote the subgroup of G′′
S̃

consisting of elements (g, e) such that NmBS/F (g) ·NmE/F (e) ∈ Gm.

We put S∞ = Σ∞ ∩ S. For each place p ∈ Σp, we set S∞/p = Σ∞/p ∩ S.
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2. Basics of Shimura varieties

We first collect some basic facts on integral canonical models of Shimura varieties. Our main
references are [Del71, Del79, Mil05, Kis10]. (Our convention follows [Mil05, Kis10].) We focus
on how to transfer integral canonical models of Shimura varieties from one group to another
group. This is well known to the experts. We include the discussion here for completeness. One
novelty of this section, however, is that we give an appropriate definition of ‘canonical model’
for certain discrete Shimura varieties, so that the construction holds uniformly for both usual
Shimura varieties and these zero-dimensional ones. This will be important for later applications
to transfer the description of the Goren–Oort strata between Shimura varieties for different
groups.

Notation 2.1. Fix a prime number p. Fix an isomorphism ι : C
∼=−→ Qp. We use Q to denote the

algebraic closure of Q inside C (which is then identified with the algebraic closure of Q inside
Qp via ι).

In this section, let G be a connected reductive group over Q. We use G(R)+ to denote the
neutral connected component of G(R). We put G(Q)+ = G(R)+ ∩ G(Q). We use Gad to denote
the adjoint group and Gder its derived subgroup. We use G(R)+ to denote the preimage of
Gad(R)+ under the natural homomorphism G(R)→ Gad(R). We put G(Q)+ = G(R)+ ∩G(Q).

For S a torus over Qp, let S(Zp) denote the maximal open compact subgroup of S(Qp).

2.2 Shimura varieties over C
Put S = ResC/RGm. For a real vector space V , a Deligne homomorphism h : S→ GL(V ) induces

a direct sum decomposition VC =
⊕

a,b∈Z V
a,b such that z ∈ S(R) ∼= C× acts on V a,b via the

character z−az̄−b. Let r denote the C-homomorphism Gm,C→ SC such that z−az̄−b ◦ r = (x 7→
x−a).

A Shimura datum is a pair (G,X) consisting of a connected reductive group G over Q and
a G(R)-conjugacy class X of homomorphisms h : S→ GR satisfying the following conditions:

(SV1) for h ∈ X, only characters z/z̄, 1, z̄/z occur in the representation of S(R) ∼= C× on
Lie(Gad)C via Ad ◦ h;

(SV2) for h ∈ X, Ad(h(i)) is a Cartan involution on Gad
R ; and

(SV3) Gad has no Q-factor H such that H(R) is compact.

The G(R)-conjugacy class X of h admits the structure of a complex manifold. Let X+ denote
a fixed connected component of X.

A pair (G,X) satisfying only (SV1), (SV2), and the following (SV3)′ is called a weak Shimura
datum.

(SV3)′ Gad(R) is compact (and hence connected by [Bor91, p. 277]; this forces the image of h
to land in the center ZR of GR).

For an open compact subgroup K ⊆ G(A∞), we define the Shimura variety for (G,X) with
level K to be the quasi-projective variety ShK(G,X)C, whose C-points are

ShK(G,X)(C) := G(Q)\X ×G(A∞)/K ∼= G(Q)+\X+ ×G(A∞)/K.

When (G,X) is a weak Shimura datum, ShK(G,X)C is just a finite set of points.

2141

https://doi.org/10.1112/S0010437X16007326 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X16007326


Y. Tian and L. Xiao

2.3 Reflex field

Let (G,X) be a (weak) Shimura datum. The reflex field, denoted by E = E(G,X), is the field

of definition of the conjugacy class of the composition h ◦ r : Gm,C→ SC→ GC. It is a subfield

of C, finite over Q. We refer to [Del71] for the definition of the canonical model ShK(G,X) of

ShK(G,X)C over this reflex field E. We assume from now on that all (weak) Shimura varieties we

consider in this section admit canonical models. (In fact, [Del71] excludes the case when (G,X)

is a weak Shimura datum. We will give the meaning of the canonical model in this case in § 2.8

later.)

We will always assume that K is the product KpKp of an open compact subgroup Kp of

G(A∞,p) and an open compact subgroup Kp of G(Qp). Taking the inverse limit over the open

compact subgroups Kp, we have ShKp(G,X) := lim
←−Kp

ShKpKp(G,X). This is actually a scheme

locally of finite type over E carrying a natural (right) action of G(A∞,p).

2.4 Extension property

Let O be the ring of integers in a finite extension of Qp. A scheme X over O is said to have the

extension property over O if for any smooth O-scheme S, a map S⊗Frac(O)→ X extends to S.

(Such an extension is automatically unique if it exists by the normality of S.) Note that this

condition is weaker than the one given in [Kis10, 2.3.7] but is enough to ensure the uniqueness.

The chosen isomorphism C ∼= Qp identifies E as a subfield of Qp. Let E℘ denote the p-adic

completion of E and O℘ its valuation ring with F℘ as the residue field. Let Eur
℘ be the maximal

unramified extension of E℘ and Our
℘ its valuation ring.

An integral canonical model ShKp(G,X)O℘ of ShKp(G,X) over O℘ is an O℘-scheme

ShKp(G,X)O℘ , which is an inverse limit of smooth O℘-schemes ShKpKp(G,X)O℘ with finite

étale transition maps as Kp varies, such that:

– there is an isomorphism ShK(G,X)O℘ ⊗O℘ E℘ ∼= ShK(G,X)⊗E E℘ for each K compatible

with transition maps as K varies; and

– ShKp(G,X)O℘ = lim
←−Kp

ShKpKp(G,X)O℘ satisfies the extension property.

Existence of integral canonical models of Shimura varieties of abelian type with hyperspecial

level structure was proved by Kisin [Kis10]. Unfortunately, our application requires, in some

special cases, certain non-hyperspecial level structures, as well as certain non-quasi-split groups

at p. We have to establish the integral canonical models in two steps: we first prove the existence

for some group G′ with the same derived and adjoint groups as G (as is done in § 3); we then

reproduce a variant of an argument of Deligne to show that the integral canonical model for

the Shimura variety for G′ gives that of G. The second step is well known at least for regular

Shimura varieties when Kp is hyperspecial [Kis10]. Our limited contribution here is to include

some non-hyperspecial case and to cover the case of discrete Shimura varieties, in a uniform way.

Hypothesis 2.5. Let (G,X) be a (weak) Shimura datum. From now on, we assume that the

derived subgroup Gder is simply connected, which will be the case when we apply the theory

later. Let Z denote the center of G. Let ν : G� T denote the maximal abelian quotient of G. We

fix an open compact subgroup Kp of G(Qp) such that ν(Kp) = T (Zp) and Kp ∩ Z(Qp) = Z(Zp).

2.6 Geometric connected components

We put T (R)† = Im(Z(R)→ T (R)) and T (Q)† = T (R)† ∩ T (Q). Put T (Q)?,(p) = T (Q)? ∩ T (Zp)
for ? = ∅ or †. Let Y denote the finite quotient T (R)/T (R)†, which is isomorphic to T (Q)/T (Q)†
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because T (Q) is dense in T (R). The morphism ν : G→ T then induces a natural map

ν : G(Q)+\X+ ×G(A∞)/K
ν // T (Q)†\T (A∞)/ν(K) ∼= T (Q)†,(p)\T (A∞,p)/ν(Kp)

∼= T (Q)(p)\Y × T (A∞,p)/ν(Kp). (2.6.1)

If (G,X) is a Shimura datum, this map induces an isomorphism [Mil05, Theorem 5.17] on the
set of geometric connected components π0(ShK(G,X)Q) ∼= T (Q)(p)\Y ×T (A∞,p)/ν(Kp). Taking
the inverse limit gives a bijection

π0(ShKp(G,X)Q) ∼= T (Q)†,(p),cl\T (A∞,p) ∼= T (Q)(p),cl\Y × T (A∞,p).

Here and later, the superscript cl means taking closure in T (A∞,p) (or in appropriate topological
groups).

2.7 Reciprocity law

Let (G,X) be a (weak) Shimura datum. The composite

νhr : Gm,C
r // SC

h // GC
ν // TC

does not depend on the choice of h (in the conjugacy class) and is defined over the reflex field
E. The Shimura reciprocity map is given by

Rec(G,X) : ResE/Q(Gm)
ResE/Q(νhr)
−−−−−−−−→ TE

NE/Q−−−→ T.

We normalize the Artin reciprocity map ArtE : A×E/(E
×E×,+R )cl

∼=−→ Galab
E so that the local

parameter at a finite place l is mapped to a geometric Frobenius at l, where E×,+R is the identity
connected component of E×R . We denote the unramified Artin map at ℘ by Art℘ : E×℘ /O×℘ →
Galab,ur

E℘
(again normalized so that a uniformizer is mapped to the geometric Frobenius).

The morphism Rec(G,X) induces a natural homomorphism

Rec = Rec(G,X) : Galab
E (E×E×,+R )cl\A×E

ArtE
∼=
oo Rec(G,X) // T (Q)cl\Y × T (A∞).

When (G,X) is a Shimura datum, the Shimura reciprocity law [Mil05, § 13] says that the
action of σ ∈ GalE on π0(ShKp(G,X)Q) ∼= T (Q)cl\Y × T (A∞)/T (Zp) is given by multiplication
by Rec(G,X)(σ). As a corollary, π0(ShKp(G,X)Q) = π0(ShKp(G,X)Eur

℘
), i.e. the geometric

connected components are seen over an unramified extension of E℘.

The action of Galab,ur
E℘

= GalF℘ on the geometric connected component is then given by
multiplication by the image of the Galois group element under the following map:

Rec℘ = Rec℘(G,X) : GalF℘
Art℘−−−→∼= Ê×℘ /O×℘

−→ (E×E×,+R )cl\A×E/O
×
℘

Rec(G,X)
−−−−−−→ T (Q)(p),cl\Y × T (A∞,p), (2.7.1)

where Ê×℘ /O×℘ denotes the profinite completion of E×℘ /O×℘ .
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2.8 Integral canonical model for weak Shimura datum

When (G,X) is a weak Shimura datum, the associated Shimura variety is, geometrically, a finite

set of points. We define its canonical model by specifying the action of GalE . The key observation

is that condition (SV3)′ ensures that the morphism Rec(G,X) factors as

ResE/Q(Gm)
ResE/Q(hr)

//

RecZ(G,X)
((

ZE
ResE/Q(ν)

//

NE/Q
��

TE

NE/Q
��

Z
ν // T

We consider the natural homomorphism

RecZ : Galab
E (E×E×,+R )cl\A×E

ArtE
∼=
oo RecZ(G,X)// Z(Q)clZ(R)\Z(A) ∼= Z(Q)cl\Z(A∞).

We define the canonical model ShK(G,X) to be the (pro-)E-scheme whose base change to C is

isomorphic to ShK(G,X)C, such that every σ ∈ GalE acts on its Q-points by multiplication

by RecZ(σ). In comparison to § 2.7, we have ν(σ(x)) = Rec(G,X)(σ) · ν(x) for any x ∈
ShK(G,X)(Q).

Since ShK(G,X) is just a finite union of spectra of some finite extensions of E, it naturally

admits an integral canonical model over O℘ by taking the corresponding valuation rings. With

the map Rec℘ as defined in (2.7.1), we have ν(σ(x)) = Rec℘(G,X)(σ) · ν(x) for any closed point

x ∈ ShK(G,X)O℘ and σ ∈ GalF℘ .

Notation 2.9. We put Kder
p = Kp ∩Gder(Qp). Let Kad

p denote the image of Kp in Gad(Qp). Set

G?(Q)(p) = G?(Q)∩K?
p for ? = ∅, ad and der; they are the subgroups of p-integral elements. Put

Gad(Q)+,(p) = Gad(R)+ ∩Gad(Q)(p) and G?(Q)
(p)
+ = G?(R)+ ∩G?(Q)(p) for ? = ∅ or der.

2.10 A group theoretic construction

Before proceeding, we recall a pure group theoretic construction. See [Del79, § 2.0.1] for more

details.

Let H be a group equipped with an action r of a group ∆ and Γ ⊂ H a ∆-stable subgroup.

Suppose that we are given a ∆-equivariant map ϕ : Γ → ∆, where ∆ acts on itself by inner

automorphisms, and suppose that for γ ∈ Γ, ϕ(γ) acts on H as inner conjugation by γ.

Given the data above, we can first define the semi-product H o ∆ using the action r. The

conditions above imply that the natural map γ 7→ (γ, ϕ(γ)−1) embeds Γ as a normal subgroup

of H o ∆. We define the star extension H ∗Γ ∆ to be the quotient of H o ∆ by this subgroup.

Two typical examples we will encounter later are

Gder(A∞,p) ∗Gder(Q)(p) G(Q)(p) ∼= Gder(A∞,p) ·G(Q)(p) and Gder(A∞,p) ∗Gder(Q)(p) Gad(Q)(p).

2.11 The connected components of the integral model

Let (G,X) be a (weak) Shimura datum. Suppose that there exists an integral canonical model

ShKp(G,X)O℘ . For Kp an open compact subgroup of G(A∞,p), let ShKpKp(G,X)◦Our
℘

denote

the open and closed subscheme whose C-points consist of the preimage of {1} under the
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ν-map in (2.6.1). When (G,X) is a Shimura datum, this gives a connected component of
ShKpKp(G,X)Our

℘
. We put

ShKp(G,X)◦Our
℘

= lim
←−
Kp

ShKpKp(G,X)◦Our
℘

and ShKp(G,X)◦F℘ = ShKp(G,X)◦Our
℘
⊗Our

℘
F℘.

(2.11.1)

Note that the set of C-points of ShKp(G,X)◦Our
℘

is nothing but Gder(Q)
(p),cl
+ \(X+ ×Gder(A∞,p)).

When (G,X) is a Shimura datum, strong approximation shows that this is a projective limit of
a connected complex manifold. In any case, this implies that ShKp(G,X)◦Our

℘
depends only on

X, the groups Gder and Gad (as opposed to the group G), and the subgroups Kder
p and Kad

p (as
opposed to Kp).

We also point out that (2.6.1) gives rise to a natural map

ν : π0(ShKp(G,X)Our
℘

) = π0(ShKp(G,X)F℘) = π0(ShKp(G,X)Q) −→ T (Q)(p),cl\Y × T (A∞,p).
(2.11.2)

By abuse of language, we call (2.11.1) the geometric connected components of the Shimura
varieties, and the target of (2.11.2) the set of connected components (although this is not the
case if (G,X) is a weak Shimura datum).

The Shimura varieties ShKp(G,X)? for ? = Our
℘ and F℘ admit the following actions.

(i) The natural right action of G(A∞,p) on ShKp(G,X)Q extends to a right action on

ShKp(G,X)?. The subgroup Z(Q)(p) := Z(Q)∩G(Zp) acts trivially. So, the right multiplication

action above factors through G(A∞,p)/Z(Q)(p),cl. The induced action on the set of connected
components is given by ν : G(A∞,p)/Z(Q)(p),cl

→ T (Q)†,(p),cl\T (A∞,p).
(ii) There is a right action ρ of Gad(Q)+,(p) on ShKp(G,X)Our

℘
such that the induced map on

C-points is given by, for g ∈ Gad(Q)+,(p),

ρ(g) : G(Q)cl
+\X+ ×G(A∞)/Kp

// G(Q)cl
+\X+ ×G(A∞)/Kp

[x, a] � // [g−1x, intg−1(a)].

Here note that Kp is stable under the conjugation action of Kad
p and hence of Gad(Q)+,(p). One

extends the action ρ(g) to the integral model and hence to the special fiber using the extension
property. Moreover, this action preserves the connected component ShKp(G,X)◦?.

(iii) For an element g ∈ G(Q)
(p)
+ , the two actions above coincide. Putting them together, we

have a right action of the group

G :=
(
G(A∞,p)/Z(Q)(p),cl

)
∗
G(Q)

(p)
+ /Z(Q)(p) G

ad(Q)+,(p) (2.11.3)

on ShKp(G,X)◦?. The induced action on the set of connected components is given by

ν ∗ triv : G � T (Q)†,(p),cl\T (A∞,p),

i.e. ν on the first factor and trivial on the second factor.

(iv) The Galois group Gal(Eur
℘ /E℘) acts on ShKp(G)?, according to (2.7.1) (and § 2.8).

Let EG,℘ denote the subgroup of G × Gal(Eur
℘ /E℘) consisting of pairs (g, σ) such that

(ν ∗ triv)(g) is equal to Rec℘(σ)−1 in T (Q)†,(p),cl\T (A∞,p). Then, by the discussion above, the
group EG,℘ acts on the connected component ShKp(G,X)◦?.
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Conversely, knowing ShKp(G,X)◦? together with the action of EG,℘, we can recover the integral
model ShKp(G,X)O℘ or its special fiber ShKp(G,X)F℘ of the Shimura variety as follows. We
consider the (pro-)scheme ShKp(G,X)◦Our

℘
×EG,℘

(
G × Gal(Eur

℘ /E℘)
)
. Since this is a projective

limit of quasi-projective varieties, by Galois descent, it is the base change of a projective system
of varieties ShKp(G,X)O℘ from O℘ to Our

℘ . The same argument applies to the special fiber.

In general, for a finite unramified extension Ẽ℘̃ of E℘, we put EG,Ẽ℘̃ to be the subgroup of EG,℘
consisting of elements whose second coordinate lives in Gal(Eur

℘ /Ẽ℘̃). Knowing the action of EG,Ẽ℘̃
on ShKp(G,X)◦Our

℘
or ShKp(G,X)◦F℘ allows one to descend the integral model to ShKp(G,X)OẼ℘̃

.

2.12 Transferring mathematical objects
One can slightly generalize the discussion above to EG,Ẽ℘̃-equivariant mathematical objects

over the Shimura variety. More precisely, for ? = F℘,O℘, by a mathematical object P over
ShKp(G,X)?, we mean, for each sufficiently small open compact subgroup Kp of G(A∞,p),
we have a (pro-)scheme or a vector bundle (with a section) PKp over ShKpKp(G,X)?, such
that, for any subgroup Kp

1 ⊆ Kp
2 , PKp

1
is the base change of PKp

2
along the natural morphism

ShKpKp
1
(G,X)? → ShKpKp

2
(G,X)?. We say that P is G × Gal(Eur

℘ /Ẽ℘̃)-equivariant if P carries

an action of G ×Gal(Eur
℘ /Ẽ℘̃) that is compatible with the actions on the Shimura varieties.

Similarly, a mathematical object P◦ over ShKp(G,X)◦?ur is a (pro-)scheme or a vector bundle
(with a section) as above, over the connected Shimura variety ShKp(G,X)◦?ur , viewed as a pro-
scheme. It is called EG,Ẽ℘̃-equivariant if it carries an action of the group compatible with the

natural group action on the base Shimura variety.
Similar to the discussion above, we have the following corollary.

Corollary 2.13. There is a natural equivalence of categories between the category of
G × Gal(Eur

℘ /Ẽ℘̃)-equivariant mathematical objects P over the tower of Shimura varieties
ShKpKp(G,X)?, and the category of mathematical objects P◦ over ShKp(G,X)◦?ur , equivariant
for the action of EG,Ẽ℘̃ .

Proof. As above, given P, we can recover P◦ by taking the inverse limit with respect to
the open compact subgroup Kp and then restricting to the connected component ShKp(G,
X)◦?ur . Conversely, we can recover P from P◦ through the isomorphism P?ur ∼= P◦ ×EG,Ẽ℘̃
(G ×Gal(Eur

℘ /Ẽ℘̃)) and then use Galois descent if needed. 2

Remark 2.14. If one does not consider the Galois action, Theorem 2.16 below implies that

ShKp(G,X)Our
℘
∼= ShKp(G,X)◦Our

℘
×(Gder(A∞,p)∗

Gder(Q)
(p)
+

Gad(Q)+,(p)) G,

and the same applies to the mathematical objects.

Lemma 2.15. We have ν(G(Q)
(p)
+ ) = T (Q)†,(p).

Proof. By § 2.6, we have ν(G(Q)+) = T (Q)†. The lemma follows from taking the kernels of the
following morphism of exact sequences:

1 // Gder(Q)+
//

����

G(Q)+
//

��

T (Q)† //

��

1

1 // Gder(Qp)/K
der
p

// G(Qp)/Kp
// T (Qp)/T (Zp) // 1
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Here the left vertical arrow is surjective by the strong approximation theorem for the simply
connected group Gder(Q). The bottom sequence is exact because the corresponding sequences
are exact both for Qp (because H1(Qp, G

der) = 0) and for Zp (by Hypothesis 2.5). 2

The following structure theorem for EG,℘ is the key to transfer integral canonical models of
Shimura varieties for one group to those for another group.

Theorem 2.16. For a finite unramified extension Ẽ℘̃ of E℘, we have a natural short exact
sequence

1 −→ Gder(A∞,p) ∗
Gder(Q)

(p)
+

Gad(Q)+,(p) −→ EG,Ẽ℘̃ −→ Gal(Eur
℘ /Ẽ℘̃) −→ 1. (2.16.1)

Proof. By the definition of EG,Ẽ℘̃ , it fits into the following short exact sequence:

1 −→ Ker(G̃ → T (Q)†,(p),cl\T (A∞,p)) −→ EG,Ẽ℘̃ −→ Gal(Eur
℘ /Ẽ℘̃) −→ 1.

By Lemma 2.15, the kernel above is isomorphic to

((G(Q)
(p)
+ Gder(A∞,p))cl/Z(Q)(p),cl) ∗

G(Q)
(p)
+ /Z(Q)(p) G

ad(Q)+,(p), (2.16.2)

where both closures are taken inside G(A∞,p).
We claim that we can remove the two completions. Indeed, put Z ′ = Z∩Gder and Z ′(Q)(p) =

Z ′(Q) ∩ Z(Q)(p); the latter is a finite group. Consider the following commutative diagram of
exact sequences.

1 // Z′(Q)(p) // Z(Q)(p) ×Gder(A∞,p)

��

// G(Q)
(p)
+ Gder(A∞,p)

��

// T (Q)†,(p)/Im
(
Z(Q)(p) → T (Q)(p)

) //

��

1

1 // Z′(Q)(p),cl // Z(Q)(p),cl ×Gder(A∞,p) // (G(Q)
(p)
+ Gder(A∞,p)

)cl // T (Q)†,(p),cl/Im
(
Z(Q)(p),cl → T (Q)(p),cl

) // 1

By diagram chasing, it suffices to prove that the right vertical arrow is an isomorphism. Since
the kernel of Z → T is finite, [Del79, § 2.0.10] implies that Im(Z(Q)cl

→ T (Q)cl) ∼= (Im(Z(Q)→
T (Q)))cl and the right vertical arrow is an isomorphism.

Now the exact sequence (2.16.1) follows from a series of tautological isomorphisms(
G(Q)

(p)
+ ·Gder(A∞,p)/Z(Q)(p)

)
∗
G(Q)

(p)
+ /Z(Q)(p) G

ad(Q)+,(p)

∼=
[(
Gder(A∞,p) ∗

Gder(Q)
(p)
+

G(Q)
(p)
+

)
/Z(Q)(p)

]
∗
G(Q)

(p)
+ /Z(Q)(p) G

ad(Q)+,(p)

∼=
[
Gder(A∞,p) ∗

Gder(Q)
(p)
+

(
G(Q)

(p)
+ /Z(Q)(p)

)]
∗
G(Q)

(p)
+ /Z(Q)(p) G

ad(Q)+,(p)

∼= Gder(A∞,p) ∗
Gder(Q)

(p)
+

Gad(Q)+,(p).
2

Corollary 2.17. Let ϕ : G → G′ be a homomorphism of two reductive groups over Q
satisfying Hypothesis 2.5, which induces isomorphisms between the derived and adjoint groups
as well as isomorphisms G?(Q)(p) ∼= G′?(Q)(p) for ? = der, ad. A Gad(R)+-conjugacy class X+

of homomorphisms h : S → GR induces a G′ad(R)+-conjugacy class X ′+ of homomorphisms
h′ : S → G′R. Put X = G(R) · X+ and X ′ = G′(R) · X ′+. Then, for any field Ẽ℘̃ containing
both E℘ and E′℘′ and unramified over them, there exist a natural isomorphism of groups
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EG,Ẽ℘̃
∼=−→ EG′,Ẽ℘̃ and a natural isomorphism of geometric connected components of Shimura

varieties ShKp(G,X)◦
Ẽur
℘̃

∼= ShK′p(G
′, X ′)◦

Ẽur
℘̃

, equivariant for the natural actions of the groups

EG,Ẽ℘̃
∼=−→ EG′,Ẽ℘̃ .

As a corollary, if the Shimura variety for one of G or G′ admits an integral canonical model
and both E℘ and E′℘′ are unramified extensions of Qp, then the other Shimura variety admits
an integral canonical model.

Moreover, when there are canonical integral models, we have an equivalence of categories
between the category of G × Gal(Eur

℘ /Ẽ℘̃)-equivariant mathematical objects P over the tower

of Shimura varieties ShKpKp(G,X)? (for ? = O℘̃ or F℘̃) and the category of G′ ×Gal(Eur
℘ /Ẽ℘̃)-

equivariant mathematical objects P ′ over the tower of Shimura varieties ShK′pK′p(G
′, X ′)?′ (for

?′ = O℘̃′ or F℘̃′).

Proof. The first part follows from Theorem 2.16 and the discussion in § 2.11. For the second
part, the existence of an integral canonical model over Ẽ℘̃ follows from the first part and the
discussion at the end of § 2.11. The extension property allows one to further descend the integral
canonical model to O℘ (or O℘′). The last part follows from Corollary 2.13. 2

3. Integral canonical models of quaternionic Shimura varieties

Classically, the integral model for a quaternionic Shimura variety is defined by passing to a
unitary Shimura variety, as is done in the curve case by Carayol [Car86]. As we pointed out earlier
that we will encounter some groups which are not quasi-split at p, Kisin’s general work [Kis10]
unfortunately does not apply. We have to work out a generalization of Carayol’s construction for
completeness. This will also be useful later when discussing the construction of the Goren–Oort
stratification.

We tailor the choice of the unitary group to our application of Helm’s isogeny trick later.
In particular, we will assume certain places above p to be inert in the CM extension.

3.1 Quaternionic Shimura varieties
Recall the notation from § 1.12.3. Let S be an even subset of places of F . Put S∞ = S∩Σ∞ and
Sp = S∩Σp. Let BS be the quaternion algebra over F ramified precisely at S. Let GS denote the
reductive group ResF/Q(B×S ). Then GS,R is isomorphic to∏

τ∈S∞
H× ×

∏
τ∈Σ∞−S∞

GL2,R.

We define the Deligne homomorphism to be hS : S→GS,R, sending z = x+iy to (zτGS
)τ∈Σ∞ , where

zτGS
= 1 if τ ∈ S∞ and zτGS

=
( x y
−y x

)
if τ ∈ Σ∞−S∞. Let HS denote the GS(R)-conjugacy class of the

homomorphism hS; it is isomorphic to the product of #(Σ∞−S∞) copies of h± = P1(C)−P1(R).
We put H+

S = (h+)Σ∞−S∞ , where h+ denotes the upper half plane.
We will consider the following type of open compact subgroups of GS(A∞): K = KpKp,

where Kp is an open compact subgroup of B×S (A∞,pF ) and Kp =
∏

p∈Σp
Kp with Kp an open

compact subgroup of B×S (Fp).
From this point onward, we write ShK(G) instead of ShK(G,X) for Shimura varieties when

the choice of X is clear. Associated to the data above, there is a Shimura variety ShK(GS) whose
C-points are

ShK(GS)(C) = GS(Q)\(HS ×GS(A∞))/K.
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The reflex field FS is a subfield of C characterized as follows: an element σ ∈ Aut(C/Q) fixes
FS if and only if the subset S∞ of Σ∞ is preserved under the action of σ by post-composition.
Following § 2.2, we put ShKp(GS) = lim

←−Kp
ShKpKp(GS). (Note that the level structure at p is fixed

in the inverse limit.)
Put TF = ResF/QGm. The reduced norm on BS induces a homomorphism Nm = NmBS/F :

GS→ TF . This homomorphism induces a map

πgeom
0 (ShK(GS)) −→ TF (Q)\(TF (A∞)× {±1}g)/Nm(K),

which is an isomorphism if S∞ ( Σ∞. We will make the Shimura reciprocity law (§ 2.7) explicit
for ShK(GS) later when it is in use.

3.2 Level structure at p
We fix an isomorphism ιp : C ' Qp. For each p ∈ Σp, let Σ∞/p denote the subset of Σ∞ consisting
of real embeddings, which, when composed with ιp, induce the p-adic place p. We put S∞/p =

S ∩ Σ∞/p. Similarly, we can view the reflexive field FS as a subfield of Qp via ιp, which induces
a p-adic place ℘ of FS. We use O℘ to denote the valuation ring and k℘ the residue field.

In this paper, we always make the following assumption on S.

Hypothesis 3.3. If BS does not split at a p-adic place p of F , then S∞/p = Σ∞/p.

For each p ∈ Σp, we now specify the level structure Kp ⊂ B×S (Fp) of ShK(GS) to be considered
in this paper. We distinguish four types of the prime p ∈ Σp.

– Types α and α]: BS splits at p and the cardinality #(Σ∞/p − S∞/p) is even. We fix an

identification B×S (Fp) ' GL2(Fp). We take Kp to be:
* either GL2(Op); or

* Iwp =
(O×p Op

pOp O×p

)
, which we allow only when Σ∞/p = S∞/p.

We name the former case as type α and the latter as type α]. (Under our definition, when
Σ∞/p = S∞/p, the type of p depends on the choice of the level structure.)

– Type β: BS splits at p and the cardinality #(Σ∞/p − S∞/p) is odd. We fix an identification

B×S (Fp) ' GL2(Fp). We take Kp to be GL2(Op).
– Type β]: BS ramifies at p and S∞/p = Σ∞/p. In this case, BS⊗F Fp is the division quaternion

algebra BFp over Fp. Let OBFp be the maximal order of BFp . We take Kp to be O×BFp .

The aim of this section is to construct an integral canonical model of ShK(GS) over O℘ with
Kp =

∏
p|pKp specified above. For this, we need to introduce an auxiliary CM extension and a

unitary group.

3.4 Auxiliary CM extension
We choose a CM extension E over F such that:

– every place in S is inert in E/F ; and
– a place p ∈ Σp is split in E/F if it is of type α or α], and is inert in E/F if it is of type β

or β].
We remark that our construction slightly differs from [Car86] in that Carayol requires all

places above p to split in E/F . For later convenience, we fix some totally negative element d ∈ OF
coprime to p, so that E = F (

√
d). (The construction will be independent of such a choice.)

Let ΣE,∞ denote the set of complex embeddings of E. We have a natural two-to-one map
ΣE,∞ → Σ∞. For each τ ∈ Σ∞, we often use τ̃ to denote a complex embedding of E extending
τ , whose complex conjugate is denoted by τ̃ c.
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We fix a choice of a subset S̃∞ ⊆ ΣE,∞ which consists of, for each τ ∈ S∞, a choice of exactly
one lift τ̃ ∈ ΣE,∞. This choice is equivalent to a collection of the numbers sτ̃ ∈ {0, 1, 2} for all
τ̃ ∈ ΣE,∞ such that:

– if τ ∈ Σ∞ − S∞, we have sτ̃ = 1 for all lifts τ̃ of τ ;
– if τ ∈ S∞ and τ̃ is the lift in S̃∞, we have sτ̃ = 0 and sτ̃c = 2.

We put S̃ = (S, S̃∞). Consider the torus TE,S̃ = ResE/QGm together with the following choice
of the Deligne homomorphism:

hE,S̃ : S(R) = C× // TE,S̃(R) =
⊕

τ∈Σ∞

(E ⊗F,τ R)× '
⊕

τ∈Σ∞

C×

z � // (z̄E,τ )τ .

Here z̄E,τ = 1 if τ ∈ Σ∞−S∞ and z̄E,τ = z̄ otherwise, where, in the latter case, the isomorphism
(E⊗F,τR)× ' C× is given by the lift τ̃ ∈ S̃∞. The reflex field ES̃ is the subfield of C corresponding
to the subgroup of Aut(C/Q) which stabilizes the set S̃∞ ⊂ ΣE,∞. It contains FS as a subfield.
The isomorphism ιp : C ' Qp determines a p-adic place ℘̃ of ES̃. We use O℘̃ to denote the
valuation ring of the completion of ES̃ at ℘̃ and k℘̃ its residue field. Note that [k℘̃ : Fp] is always
even whenever there is a place p ∈ Σp of type β.

We take the level structure KE to be Kp
EKE,p, where KE,p = (OE ⊗Z Zp)× and Kp

E is an

open compact subgroup of A∞,p,×E . This gives rise to a Shimura variety ShKE (TE,S̃) and its
limit ShKE,p(TE,S̃) = lim

←−Kp
E

ShKE,pKp
E

(TE,S̃). They have integral canonical models ShKE (TE,S̃)

and ShKE,p(TE,S̃) over O℘̃, as specified in § 2.8.
We also consider the product group GS × TE,S̃ with the product Deligne homomorphism

h̃S̃ = hS × hE,S̃ : S(R) = C× −→ (GS × TE,S̃)(R).

This gives rise to the product Shimura varieties:

ShK×KE (GS × TE,S̃) = ShK(GS)×FS,℘ ShKE (TE,S̃),

ShKp×KE,p(GS × TE,S̃) = ShKp(GS)×FS,℘ ShKE,p(TE,S̃).

Let Z = ResF/QGm denote the center of GS. Put G′′
S̃

= GS ×Z TE,S̃, which is the quotient

of GS × TE,S̃ by Z embedded anti-diagonally as z 7→ (z, z−1). The corresponding Deligne

homomorphism h′′
S̃

: S(R) → G′′
S̃
(R) is the one induced by h̃S̃. We will consider open compact

subgroups K ′′ ⊆ G′′
S̃
(A∞) of the form K ′′pK ′′p , where K ′′p is an open compact subgroup of

G′′
S̃
(A∞,p) and K ′′p is an open compact subgroup of G′′

S̃
(Qp). Finally, the G′′

S̃
(R)-conjugacy class

of h′′
S̃

can be canonically identified with HS. We then get the Shimura variety ShK′′(G
′′
S̃
) and its

limit ShK′′p (G′′
S̃
) over the reflex field ES̃. The set of C-points of ShK′′(G

′′
S̃
) is

ShK′′(G
′′
S̃
)(C) = G′′

S̃
(Q)\(HS ×G′′S̃(A∞))/K ′′.

3.5 Unitary Shimura varieties
We now introduce the unitary group. Consider the morphism

ν = NmB/F ×NmE/F : G′′
S̃

= GS ×Z TE // T = ResF/QGm

(g, z) � // Nm(g)zz̄.

Viewing Gm naturally as a subgroup of T = ResF/QGm, we define G′
S̃

to be the reductive

group ν−1(Gm). This will be our auxiliary unitary group, whose associated Shimura variety will
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provide ShK(GS) with an integral canonical model. We will occasionally use the algebraic group
G′

S̃,1
= Ker ν, but we view it as a reductive group over F .

Note that the Deligne homomorphism h′′
S̃

: S(R)→ G′′
S̃
(R) factors through a homomorphism

h′
S̃

: S(R)→ G′
S̃
(R). The G′

S̃
(R)-conjugacy class of h′

S̃
can be canonically identified with HS.

We will consider open compact subgroups of G′
S̃
(A∞) of the form K ′ = K ′pK

′p, where K ′p is
an open compact subgroup of G′

S̃
(Qp) (to be specified later in § 3.9) and K ′p is an open compact

subgroup of G′
S̃
(A∞,p). We will always take K ′p to be sufficiently small so that K ′ is neat and

hence the moduli problem we encounter later would be representable by a fine moduli space.
Given the data above, we have a Shimura variety ShK′(G

′
S̃
) whose C-points are given by

ShK′(G
′
S̃
)(C) = G′

S̃
(Q)\(HS ×G′S̃(A

∞))/K ′.

The Shimura variety ShK′(G
′
S̃
) is defined over the reflex field ES̃. We put ShK′p(G

′
S̃
) =

lim
←−K′pShK′pK′p(G

′
S̃
).

The upshot is the following lemma, which verifies the conditions listed in Corollary 2.17.
This allows us to bring the integral canonical models of the unitary Shimura varieties to those
of the quaternionic Shimura varieties.

Lemma 3.6. The natural diagram of morphisms of groups

GS← GS × TE,S̃→ G′′
S̃

= GS ×Z TE,S̃← G′
S̃

(3.6.1)

(1) is compatible with the Deligne homomorphisms; and

(2) induces isomorphisms on their associated derived and adjoint groups.

Proof. This is straightforward. 2

3.7 PEL Shimura data
We put DS = BS ⊗F E. It is isomorphic to M2(E) under Hypothesis 3.3. This is a quaternion
algebra over E equipped with an involution l → l̄ given by the tensor product of the natural
involution on BS and the complex conjugation on E. Let Dsym

S denote the subsets of symmetric
elements, i.e. those elements δ ∈ DS such that δ = δ̄. For any element δ ∈ (Dsym

S )×, we can define
a new involution on DS given by l 7→ l∗ = δ−1 l̄δ. In the following Lemma 3.8, we will specify a
convenient choice of such a δ.

Let V be the underlying Q-vector space of DS with the natural left DS-module structure.
Define a pairing ψE : V × V → E on V by

ψE(v, w) = TrDS/E(
√
d · vδw∗), v, w ∈ V. (3.7.1)

It is easy to check that ψE is skew-hermitian over E for ∗, i.e. ψE(v, w) = −ψE(w, v) and
ψE(lv, w) = ψE(v, l∗w) for l ∈ DS and v, w ∈ V . We define the bilinear form

ψ = TrE/Q ◦ ψE : V × V−→Q,

which is skew-symmetric and hermitian for ∗. One checks easily that the subgroup consisting of
elements l ∈ D×S satisfying ψ(vl, wl) = c(l)ψ(v, w) for some c(l) ∈ Q× is exactly the subgroup
G′

S̃
⊂ D×S . We make the above right action of G′

S̃
on V into a left action by taking the transpose

action. This is different from the convention used in [Car86], which used the inverse action,
because taking the transpose action is naturally compatible with the setup of Hilbert modular
varieties (see § 3.24), and is also compatible with our earlier choice of Deligne homomorphism.
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The group G′
S̃

is identified with the DS-linear unitary group of V with similitudes in Q×, i.e.
for each Q-algebra R, we have

G′
S̃
(R) = {g ∈ EndDS⊗QR(V ⊗Q R) = Dop

S | ψ(v tg, w tg) = c(g)ψ(v, w) with c(g) ∈ R×}. (3.7.2)

We describe DS,p = DS ⊗F Fp by distinguishing three cases according to the types of p ∈ Σp

in § 3.2.
– Types α or α]: In this case, the place p splits into two primes q and q̄ in E. We have

natural isomorphisms Fp
∼= Eq

∼= Eq̄. We fix an isomorphism BS ⊗F Fp 'M2(Fp) as above;
then DS,p ' M2(Eq) ⊕ M2(Eq̄). Under these identifications, we put OBS,p = M2(Op) and
ODS,p = M2(Oq)⊕M2(Oq̄).

– Type β: In this case, the place p is inert in E/F and we let q denote the unique place in E
above p. Using the fixed isomorphism BS⊗F Fp 'M2(Fp), we have DS,p 'M2(Eq). We put
OBS,p = M2(Op) and ODS,p = M2(Oq).

– Type β]: Let q be the unique place in E above p. The division quaternion algebra BFp =
BS ⊗F Fp over Fp is generated by an element $BFp

over Eq, with the relations $2
BFp

= p

and $BFp
a = ā$BFp

for a ∈ Eq. We identify BFp ⊗Fp Eq with M2(Eq) via the map

(a+ b$BFp
)⊗ c 7−→

(
ac bc
pb̄c āc

)
. (3.7.3)

This also identifies DS,p with M2(Eq). We put OBS,p = OBFp and take ODS,p to be the
preimage of M2(Oq) in DS ⊗F Fp.

We put ODS,p =
∏

p∈Σp
ODS,p.

Lemma 3.8. (1) We can choose the symmetric element δ ∈ (Dsym
S )× above such that:

(a) δ ∈ O×DS,p
for each p ∈ Σp not of type β], and δ ∈

(
p−1 0

0 1

)
O×DS,p

for each p ∈ Σp of type

β]; and

(b) the following (symmetric) bilinear form on VR is positive definite:

(v, w) 7→ ψ
(
v, w · h′

S̃
(i)
)
.

(2) Through the homomorphism h′
S̃

: S(R) → G′
S̃
(R), h′

S̃
(i) acts on the vector space VR and

gives it a Hodge structure of type {(−1, 0), (0,−1)}. For l ∈ DS, we have

tr(l;VC/F
0VC) =

( ∑
τ̃∈ΣE,∞

sτ̃ τ̃

)
(TrDS/E(l)).

The reflex field ES̃ is the subfield of C generated by these traces for all l ∈ DS.

(3) With the choice of δ in (1), the group G′
S̃,1

is unramified at p ∈ Σp not of type β], and it

is non-quasi-split at p ∈ Σp of type β]. Moreover, ODS,p is a maximal ∗-invariant lattice of
DS(Qp) (up to scaling).

Proof. (1) Since F is dense in F ⊗Q Qp⊕F ⊗Q R, the symmetric elements of V are dense in the
symmetric elements of V ⊗QQp⊕V ⊗QR. The conditions at places above p are clearly open and
non-empty; so are the conditions at archimedean places, which follows from the same arguments
in [Car86, 2.2.4].

(2) This follows from the same calculation as in [Car86, 2.3.2].
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(3) We first remark that G′
S̃,1,Fp

does not depend on the particular choice of δ and hence we

may use a convenient δ to ease the computation. We discuss each of the types separately.
If p is of type α or α], G′

S̃,1
(Fp) is isomorphic to the kernel of GL2(Fp)×F×p (E×q ×E×q̄ )→ F×p

given by (l, x, y) 7→ Nm(l)xy. Hence, l 7→ (l,Nm(l)−1, 1) induces an isomorphism GL2(Fp) →
G′S,1(Fp). They are of course unramified.

If p is of type β, when we identify DS,p with M2(Eq), the convolution l 7→ l̄ is given by(
a b
c d

)
7→
(
d̄ −b̄
−c̄ ā

)
for a, b, c, d ∈ Eq. We take the element δ to be

(
0 1
1 0

)
. The hermitian form on

M2(Eq) is then given by

〈v, w〉 = trM2(Eq)/Eq
(vw̄δ) = −ab̄′ + bā′ + cd̄′ − dc̄′, v =

(
a b
c d

)
and w =

(
a′ b′

c′ d′

)
.

One checks easily that e =
(

1 0
0 0

)
is invariant under the ∗-involution. So, DS,p is isomorphic to

(eDS,p)
⊕2 as a ∗-hermitian space and G′

S̃,1,Fp
is the unitary group for eDS,p. It is clear from the

expression above that eDS,p is a hyperbolic plane [Min11, Example 3.2]. Hence, G′
S̃,1,Fp

, being

the unitary group of such hermitian space, is unramified.
If p is of type β], the identification of DS,p with M2(Eq) using (3.7.3) implies that the

convolution l 7→ l̄ is given by(
a b
c d

)
7→
(

ā −c̄/p
−pb̄ d̄

)
for a, b, c, d ∈ Eq.

We take the element δ to be
(
p−1 0

0 1

)
. The hermitian form on M2(Eq) is then given by

〈v, w〉 = TrM2(Eq)/Eq
(vw̄δ) = aā′/p− bb̄′− cc̄′/p+ dd̄′, v =

(
a b
c d

)
and w =

(
a′ b′

c′ d′

)
. (3.8.1)

Similar to above, e =
(

1 0
0 0

)
is invariant under ∗-involution and DS,p is isomorphic to (eDS,p)

⊕2 as
∗-hermitian spaces. The unitary group G′

S̃,1,Fp
is just the usual unitary group of eDS,p. But the

hermitian form there takes the form of aā′/p− bb̄′, which is a typical example of an anisotropic
plane [Min11, Example 3.2]. So, G′

S̃,1,Fp
is a non-quasi-split unitary group.

To see that ODS,p is a maximal ∗-stable lattice, it suffices to prove it for ODS,p for each p ∈ Σp.
When p is of type α, α], or β, this is immediate. When p is of type β], we write δ as

(
p−1 0

0 1

)
u for

u ∈ O×DS,p
. The involution ∗ is given by(

a b
c d

)
7→ u−1

(
p 0
0 1

)(
ā −c̄/p
−pb̄ d̄

)(
p−1 0
0 1

)
u = u−1

(
ā −c̄
−b̄ d̄

)
u for a, b, c, d ∈ Eq.

It is then clear that ODS,p is a maximal ∗-stable lattice. 2

3.9 Level structures at p in the unitary case
We specify our choice for K ′p corresponding to the level structure Kp =

∏
p|pKp ⊂

∏
p|p(BS ⊗F

Fp)
× considered in § 3.2.
By (3.7.2), giving an element gp ∈ G′S̃(Qp) is equivalent to giving tuples (gp)p∈Σp with gp ∈

EndDS⊗FFp(V ⊗F Fp) such that there exists ν(gp) ∈ Q×p independent of p satisfying

ψE,p(gpv, gpw) = ν(gp)ψE,p(v, w), ∀v, w ∈ V ⊗F Fp,
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where ψE,p is the base change of ψE to V ⊗F Fp = DS,p. In the following, we will give a chain

of lattices Λ
(1)
p ⊆ Λ

(2)
p in DS,p for each p, and define K ′p ⊆ G′S̃(Qp) to be the subgroup consisting

of the elements (gp)p∈Σp with gp belonging to the stabilizer of Λ
(1)
p ⊆ Λ

(2)
p and with ν(gp) ∈ Z×p

independent of p.

– When p is of type α, we take Λ
(1)
p = Λ

(2)
p to be ODS,p.

– When p is of type α], we take

Λ
(1)
p =

(
Oq q
Oq q

)
⊕
(
Oq̄ Oq̄

Oq̄ Oq̄

)
and Λ

(2)
p =

(
Oq Oq

Oq Oq

)
⊕
(
q̄−1 Oq̄

q̄−1 Oq̄

)
.

– When p is of type β, we take Λ
(1)
p = Λ

(2)
p = ODS,p.

– When p is of type β], we take

Λ
(1)
p =

(
q Oq

q Oq

)
⊆ Λ

(2)
p =

(
Oq Oq

Oq Oq

)
.

Note that these two lattices are dual to each other under the hermitian form (3.8.1).

Similarly, we give the level structure at p for the Shimura variety associated to the group

G′′
S̃
: take K ′′p to be the image of Kp ×KE,p under the natural map (GS × TE,S̃)(Qp)→ G′′

S̃
(Qp).

Lemma 3.10. The Shimura data for GS, GS×TE,S̃, G′′S̃, and G′
S̃

satisfy Hypothesis 2.5. Moreover,

the natural diagram of morphisms of groups

GS← GS × TE,S̃→ G′′
S̃

= GS ×Z TE,S̃← G′
S̃

(3.10.1)

induces isomorphisms on the p-integral points of the derived and adjoint groups.

Proof. This is straightforward from definition. In fact, both Kad
p =

∏
p∈Σp

Kad
p and Kder

p =∏
p∈Σp

Kder
p are products and we give the description case by case:

– if p is of type α or β, then Kder
p = SL2(Op) and Kad

p = PGL2(Op);

– if p is of type α], then Kder
p = SL2(Op) ∩

(O×p Op

p O×p

)
and Kad

p =
(O×p Op

p O×p

)
/O×p ; and

– if p is of type β], thenKder
p andKad

p are the maximal compact open subgroups of (B×S )der(Fp)

and (B×S )ad(Fp), respectively. 2

Corollary 3.11. The natural morphisms between Shimura varieties

ShKp(GS)←− ShKp×KE,p(GS × TE,S̃) −→ ShK′′p (G′′
S̃
)←− ShK′p(G

′
S̃
) (3.11.1)

induce isomorphisms on the geometric connected components. Moreover, the groups EG,℘̃ defined

in § 2.11 (and made explicit below) are isomorphic for each of the groups; and (3.11.1) is

equivariant for the actions of the EG,℘̃ on the geometric connected components. Moreover, if

one of the Shimura varieties admits an integral canonical model, so do the others.

Proof. This follows from Corollary 2.17, for which the conditions are verified in Lemmas 3.6

and 3.10. 2
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3.12 Structure groups for connected Shimura varieties
In order to apply the machinery developed in § 2, we now make explicit the structure groups G
in (2.11.3) and EG,℘̃ in § 2.11 in the case of our interest.

We use GS (respectively G′
S̃
, G′′

S̃
) to denote the group defined in (2.11.3) for G = GS

(respectively G′
S̃
, G′′

S̃
). Explicitly, since the center of GS is ResF/QGm, we have Gad

S (Q) = B×S /F
×.

Taking the positive and p-integral part as in Lemma 2.15, we haveGad
S (Q)+,(p) =B

×,>0,(p)
S /O×F,(p),

where the superscript > 0 means to take the elements whose reduced norm is positive for all
real embeddings. It follows that GS = GS(A∞,p)/O×,cl

F,(p). The same argument applies to G′′
S̃

whose

center is ResE/QGm and shows that G′′
S̃

= G′′
S̃
(A∞,p)/O×,cl

E,(p). Determination of G′
S̃

is more subtle.

By Lemmas 3.6 and 3.10, we have (G′
S̃
)ad(Q)+,(p) = (G′′

S̃
)ad(Q)+,(p). So, if we use Z ′

S̃
to denote

the center of G′
S̃
, then we have

G′
S̃

=
(
G′

S̃
(A∞,p)/Z ′

S̃
(Q)(p),cl

)
∗
G′

S̃
(Q)

(p)
+ /Z′

S̃
(Q)(p) (G′

S̃
)ad(Q)+,(p)

=
(
G′

S̃
(A∞,p)/Z ′

S̃
(Q)(p),cl

)
∗
G′

S̃
(Q)

(p)
+ /Z′

S̃
(Q)(p)

(
G′′

S̃
(Q)

(p)
+ /O×E,(p)

)
= G′

S̃
(A∞,p)G′′

S̃
(Q)

(p)
+ /O×,cl

E,(p). (3.12.1)

The subgroup G′
S̃
(A∞,p)G′′

S̃
(Q)

(p)
+ can be characterized by the following commutative diagram

of an exact sequence as the pullback of the right square.

1 // G′
S̃,1

(A∞,p) // G′′
S̃
(Q)

(p)
+ G′

S̃
(A∞,p) //
� _

��

O×F,(p)(A
∞,p)× //
� _

��

1

1 // G′
S̃,1

(A∞,p) // G′′
S̃
(A∞,p) // (A∞,pF )× // 1

(3.12.2)

We use EG,S,℘ to denote the group EG,℘̃ defined in § 2.11. As an abstract group, it is isomorphic
for all groups GS, G

′
S̃
, and G′′

S̃
. But we point out that it is important (see Remark 5.10) to know

how they sit as subgroups of GS ×Galk℘ , G′
S̃
×Galk℘̃ , and G′′

S̃
×Galk℘̃ , respectively, according to

the Shimura reciprocity map.

3.13 Integral models of unitary Shimura varieties
We choose a finite extension k0 of k℘̃ that contains all residual fields kq for any p-adic place q
of E. Then the ring of Witt vectors W (k0) may be viewed as a subring of Qp, containing O℘̃ as
a subring.

We fix an orderODS of DS stable under the involution l 7→ l∗ such thatODS ⊗OFOF,p 'ODS,p.
Recall that V is the abstract Q-vector space DS. We choose and fix an ODS-lattice Λ of V such
that:

– for each p ∈ Σp, we have Λ⊗OF Op
∼= Λ

(1)
p ; and

– if we put Λ̂(p) := Λ⊗Z Ẑ(p) as a lattice of V ⊗Q A∞,p, we have

Λ̂(p) ⊆ Λ̂(p),∨ under the bilinear form ψ, or equivalently, ψ(Λ̂(p), Λ̂(p)) ⊆ Ẑ(p). (3.13.1)

We call such Λ admissible.

Theorem 3.14. Let K ′p be the open compact subgroup of G′
S̃
(Qp) considered in § 3.9, and K ′p ⊂

G′
S̃
(A∞,p) be sufficiently small so that K ′ = K ′pK ′p is neat. Then there exists a unique smooth
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quasi-projective scheme ShK′(G
′
S̃
) over W (k0) representing the functor that sends a locally

noetherian W (k0)-scheme S to the set of isomorphism classes of tuples (A, ι, λ, αK′), as described
as follows.

(a) A is an abelian scheme over S of dimension 4g equipped with an embedding ι : ODS →

EndS(A) such that the characteristic polynomial of the endomorphism ι(b) on Lie(A/S) for
b ∈ OE is given by ∏

τ̃∈ΣE,∞

(x− τ̃(b))2sτ̃ .

(b) λ : A→ A∨ is a polarization of A such that:

(b1) the Rosati involution associated to λ induces the involution l 7→ l∗ on ODS ;

(b2) (Kerλ)[p∞] is a finite flat closed subgroup scheme contained in
∏

p of type β] A[p] such

that (Kerλ)[p∞] ∩A[p] for each p of type β] has rank (#kp)
4; and

(b3) the cokernel of λ∗ : HdR
1 (A/S)→ HdR

1 (A∨/S) is a locally free module of rank two over⊕
p of type β]

OS ⊗Zp (OE ⊗OF kp).

(c) αK′ is a pair (αpK′p , αp) defined as follows.

(c1) For each connected component Si of S, we choose a geometric point s̄i and let T (p)(As̄i)
be the product of l-adic Tate modules of A at s̄i for all l 6= p. Then αpK′p is a collection

of π1(Si, s̄i)-invariant K ′p-orbits of pairs (αpi , ν(αpi )), where αpi is an ODS⊗Z Ẑ(p)-linear

isomorphism Λ̂(p) ∼−→ T (p)(As̄i) and ν(αpi ) is an isomorphism Ẑ(p) ∼−→ Ẑ(p)(1) such that
the following diagram commutes.

Λ̂(p) × Λ̂(p) ψ //

αpi×α
p
i
��

Ẑ(p)

ν(αpi )

��

T (p)(As̄i)× T (p)(As̄i)
λ-Weil // Ẑ(p)(1)

(c2) For each prime p ∈ Σp of type α], let q and q̄ be the two primes of E above p. Then
αp is a collection of ODS-stable closed finite flat subgroups αp = Hq⊕Hq̄ ⊂ A[q]⊕A[q̄]
of order (#kp)

4 such that Hq and Hq̄ are dual to each other under the perfect pairing

A[q]×A[q̄]→ µp

induced by the polarization λ.

By Galois descent, the moduli space ShK′(G
′
S̃
) can be defined over O℘̃. Moreover, if the

ramification set S∞ is non-empty, ShK′(G
′
S̃
) is projective.

We will postpone the proof of this theorem until after Notation 3.16. The intuition behind the
proof is the following. It is well known that the corresponding moduli problem of hyperspecial
level is representable by a quasi-projective smooth scheme over W (k0). In our situation, the
hyperspecial level occurs merely at primes p ∈ Σp of type α# or β#, but the condition Σ∞/p =
S∞/p for such primes p implies that the extra levels at those primes are representable by finite
étale maps over the hyperspecial moduli. Hence, the resulting moduli problem is still smooth.
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3.15 Deformation theory
We recall briefly the crystalline deformation theory of abelian varieties due to Serre–Tate and
Grothendieck–Messing. This will be used in the proof of Theorem 3.14.

We start with a general situation. Let S be a Zp-scheme on which p is locally nilpotent, and
S0 ↪→ S be a closed immersion whose ideal sheaf I is equipped with a divided power structure
compatible with that on pZp, e.g. S0 = Spec k ↪→ S = Spec k[ε]/(ε2) with k a perfect field of
characteristic p. Let (S0/Zp)cris be the crystalline site of S0 over SpecZp and Ocris

S0/Zp be the

structure sheaf. Let A0 be an abelian scheme over S0, and Hcris
1 (A0/S0) be the dual of the

relative crystalline cohomology H1
cris(A0/S0) (or isomorphically Hcris

1 (A0/S0) = H1
cris(A

∨
0 /S0)).

Then Hcris
1 (A0/S0) is a crystal of locally free Ocris

S0/Zp-modules whose evaluation Hcris
1 (A0/S0)S

at the pd-embedding S0 ↪→ S is a locally free OS-module. We have a canonical isomorphism
Hcris

1 (A0/S0)S ⊗OS OS0 ' HdR
1 (A0/S0), which is the dual of the relative de Rham cohomology

of A0/S0. For each abelian scheme A over S with A ×S S0 ' A0, we have a canonical Hodge
filtration

0→ ωA∨/S → Hcris
1 (A0/S0)S → Lie(A/S)→ 0.

Hence, ωA∨/S gives rise to a local direct factor of Hcris
1 (A0/S0)S that lifts the subbundle ωA∨0 /S0

⊆
HdR

1 (A0/S0). Conversely, the theory of deformations of abelian schemes says that knowing this
lift of the subbundle is also enough to recover A from A0. More precisely, let AVS be the category
of abelian schemes over S, and let AV+

S0
denote the category of pairs (A0, ω), where A0 is an

abelian scheme over S0 and ω is a subbundle of Hcris
1 (A0/S0)S that lifts ωA∨0 /S0

⊆ HdR
1 (A0/S0).

The main theorem of the crystalline deformation theory (cf. [Gro74, pp. 116–118] and [MM74,
ch. II, § 1]) says that the natural functor AVS → AV+

S0
given by A 7→ (A ×S S0, ωA∨/S) is an

equivalence of categories.
Let A be a deformation of A0 corresponding to a direct factor ω ⊆ Hcris

1 (A0/S0)S that lifts
ωA∨0 /S0

. If A0 is equipped with an action ι0 by a certain algebra R, then ι0 deforms to an action

ι of R on A if and only if ωS ⊆ Hcris
1 (A0/S0)S is R-stable. Let λ0 : A0 → A∨0 be a polarization.

Then λ0 induces a natural alternating pairing [BBM82, 5.1]

〈 , 〉λ0 : Hcris
1 (A0/S0)S ×Hcris

1 (A0/S0)S → OS ,

which is perfect if λ0 is prime-to-p. Then there exists a (necessarily unique) polarization λ : A→
A∨ that lifts λ0 if and only if ωS is isotropic for 〈, 〉λ0 by [Lan13, 2.1.6.9, 2.2.2.2, and 2.2.2.6].

Notation 3.16. Before going to the proof of Theorem 3.14, we introduce some notation. Recall
that we have an isomorphism ODS,p ' M2(OE ⊗ Zp). We denote by e ∈ ODS,p the element
corresponding to

(
1 0
0 0

)
in M2(OE ⊗ Zp). For S a W (k0)-scheme and M an OS-module locally

free of finite rank equipped with an action of ODS,p, we call M◦ := eM the reduced part of M .
We have M = (M◦)⊕2 by Morita equivalence. Moreover, the OE-action induces a canonical
decomposition

M◦ =
⊕

τ̃∈ΣE,∞

M◦τ̃ ,

where OE acts on each factor M◦τ̃ by τ̃ : OE →W (k0).
Let A be an abelian scheme over S carrying an action of ODS . The construction above gives

rise to locally free OS-modules ω◦A/S , Lie(A/S)◦, and HdR
1 (A/S)◦, which are of rank 1

2 dimA,
1
2 dimA, and dimA, respectively. We call them the reduced invariant differential 1-forms, the
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reduced Lie algebra, and the reduced de Rham homology of A, respectively. For each τ̃ ∈ ΣE,∞,
we have a reduced Hodge filtration in τ̃ -component

0→ ω◦A∨/S,τ̃ → HdR
1 (A/S)◦τ̃ → Lie(A/S)◦τ̃ → 0. (3.16.1)

If the abelian scheme A comes from the moduli problem in Theorem 3.14, the dimensions of
these three factors are 2− sτ̃ , 2, and sτ̃ , respectively, where the number sτ̃ is defined in § 3.4.

Proof of Theorem 3.14. The representability of ShK′(G
′
S̃
) by a quasi-projective scheme over

W (k0) is well known (cf. for instance [Lan13, 1.4.13, 2.3.3, and 7.2.3.10]). To show the smoothness
of ShK′(G

′
S̃
), it suffices to prove that it is formally smooth over W (k0). Let R be a noetherian

W (k0)-algebra, I ⊂ R be an ideal with I2 = 0, and R0 = R/I. We need to show that every point
x0 = (A0, ι0, λ0, αK′,0) of ShK′(G

′
S̃
) with values inR0 lifts to anR-valued point x of ShK′(G

′
S̃
). We

apply the deformation theory recalled in § 3.15. The relative crystalline homology Hcris
1 (A0/R0)

is naturally equipped with an action of ODS ⊗ Zp. Let Hcris
1 (A0/R0)◦ := eHcris

1 (A0/R0) be its
reduced part and Hcris

1 (A0/R0)◦R be its evaluation on R. This is a free R ⊗ OE-module of rank
4[F : Q], and we have a canonical decomposition

Hcris
1 (A0/R0)◦R =

⊕
τ̃∈ΣE,∞

Hcris
1 (A0/R0)◦R,τ̃ .

The polarization λ0 on A0 induces a pairing

Hcris
1 (A0/R0)◦R,τ̃ ×Hcris

1 (A0/R0)◦R,τ̃c−→R, (3.16.2)

which is perfect for τ̃ ∈ ΣE,∞/p with p not of type β]. By the deformation theory § 3.15, giving
a deformation of (A0, ι0) to R is equivalent to giving, for each τ̃ ∈ ΣE,∞, a direct summand
ω◦R,τ̃ ⊆ Hcris

1 (A0/R0)◦R,τ̃ which lifts ω◦A∨0 /R0,τ̃
. Let p ∈ Σp with τ̃ ∈ ΣE,∞/p. We distinguish several

cases.
– If τ̃ restricts to τ ∈ S∞, Lie(A0/R0)◦τ̃ has rank sτ̃ ∈ {0, 2} by the determinant condition

(a). By duality or the Hodge filtration (3.16.1), ω◦A∨0 /R0,τ̃
has rank 2− sτ̃ , i.e. ω◦A∨0 /R0,τ̃

= 0

when sτ̃ = 2 and ω◦A∨0 /R0,τ̃
∼= HdR

1 (A0/R0)◦τ̃ when sτ̃ = 0. Therefore, ω◦R,τ̃ = 0 or ω◦R,τ̃ =

Hcris
1 (A0/R0)◦R,τ̃ is the unique lift in these cases, respectively.

– If τ̃ restricts to τ ∈ Σ∞ − S∞, then ω◦A∨0 /R0,τ̃
and ω◦A∨0 /R0,τ̃c

are both of rank one over R0,

and we have ω◦A∨0 /R0,τ̃
= (ω◦A∨0 /R0,τ̃c

)⊥ under the perfect pairing between HdR
1 (A0/R0)◦τ̃ and

HdR
1 (A0/R0)◦τ̃c induced by λ0. (Note that τ ∈ Σ∞/p−S∞ means that p is not of type β] and

hence the Weil pairing is perfect.) Within each pair {τ̃ , τ̃ c}, we can take an arbitrary direct
summand ω◦R,τ̃ ⊆ Hcris

1 (A0/R0)◦R,τ̃ which lifts ω◦A∨0 /R0,τ̃
, and let ω◦R,τ̃c be the orthogonal

complement of ω◦R,τ̃c under the perfect pairing (3.16.2). By the Hodge filtration (3.16.1),
such choices of (ω◦R,τ̃ , ω

◦
R,τ̃c) form a torsor under the group

HomR0(ω◦A∨0 /R0,τ̃
,Lie(A0)◦τ̃ )⊗ I ∼= Lie(A0)◦τ̃ ⊗R0 Lie(A0)◦τ̃c ⊗ I,

where in the second isomorphism we have used the fact that Lie(A∨0 )◦τ̃ ' Lie(A0)◦τ̃c .
We take liftings ω◦R,τ̃ for each τ̃ ∈ ΣE,∞ as above, and let (A, ι) be the corresponding

deformation to R of (A0, ι0). It is clear that
⊕

τ∈Σ∞
(ω◦R,τ̃ ⊕ ω◦R,τ̃c) is isotropic for the pairing

on Hcris
1 (A0/R0)◦R induced by λ0. Hence, the polarization λ0 lifts uniquely to a polarization

λ : A → A∨ satisfying condition (b1) in the statement of the theorem. By the criterion

2158

https://doi.org/10.1112/S0010437X16007326 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X16007326


On Goren–Oort stratification for quaternionic Shimura varieties

of flatness by fibers [EGAIV, 11.3.10], Ker(λ) is a finite flat group scheme over R, and

the condition (b2) is thus satisfied. Condition (b3) follows from the fact that the morphism

λ∗ : HdR
1 (A/R)→ HdR

1 (A/R) is the same as λ0,∗ : Hcris
1 (A0/R0)R → Hcris

1 (A∨0 /R0)R under the

canonical isomorphism HdR
1 (B/R) ' Hcris

1 (B0/R0)R for B = A0, A
∨
0 .

We have to show moreover that the level structure αK′,0 = (αp0, αp,0) extends uniquely to A.

It is clear for αp0. For αp,0, let H0 =
∏

p of type α] αp be the product of the closed subgroups in

the data of αp,0. Let f0 : A0 → B0 = A0/H0 be the canonical isogeny. It suffices to show that

B0 and f0 deform to R. The abelian variety B0 is equipped with an induced action of ODS , a

polarization λB0 satisfying conditions (a) and (b). The isogeny f0 induces canonical isomorphisms

Hcris
1 (A0/R0)◦R,τ̃

∼= Hcris
1 (B0/R0)◦R,τ̃ for τ̃ ∈ ΣE,∞/p with p not of type α]. So, for such primes p

and τ̃ ∈ Σ∞/p, the liftings ω◦R,τ̃ chosen above give the liftings of ω◦B∨0 /R0,τ̃
⊂ HdR

1 (B0/R0)◦τ̃ . For

τ̃ ∈ Σ∞/p with p of type α], we note that at each closed point x of R0, ω◦B∨0 /kx,τ̃
is either trivial

or isomorphic to the whole HdR
1 (B0/kx)◦τ̃ as in the case for A0. Hence, the same holds for R0 in

place of kx. Therefore, ω◦B∨0 /R0,τ̃
admits a unique lift to a direct summand of Hcris

1 (B0/R0)◦R,τ̃ .

Such choices of liftings of ω◦B∨0 /R0,τ̃
give rise to a deformation B/R of B0/R0. It is clear that

f0 : A0 → B0 also lifts to an isogeny f : A→ B. Then the kernel of f gives the required lift of

H0. This concludes the proof of the smoothness of ShK′(G
′
S̃
).

The dimension of ShK′(G
′
S̃
) follows from the calculation of the tangent bundle of ShK′(G

′
S̃
),

as the following corollary shows. When the ramification set S∞ is non-empty, it is a standard

argument to use a valuative criterion to check that ShK′(G
′
S̃
) is proper. We will postpone the

proof to Proposition 4.7, where a more general statement is proved. (One can check that there

is no loophole in our argument.) 2

Corollary 3.17. Let S0 ↪→ S be a closed immersion of locally noetherian k0-schemes with

ideal sheaf I such that I2 = 0. Let x0 = (A0, ι0, λ0, ᾱK′,0) be an S0-valued point of ShK′(G
′
S̃
).

Then the set-valued sheaf of local deformations of x0 to S forms a torsor under the group⊕
τ∈Σ∞−S∞

(
Lie(A0)◦τ̃ ⊗ Lie(A0)◦τ̃c

)
⊗ I.

In particular, the tangent bundle TShK′ (G′S̃) of ShK′(G
′
S̃
) is canonically isomorphic to⊕

τ∈Σ∞−S∞
Lie(A′)◦τ̃ ⊗ Lie(A′)◦τ̃c ,

where A′ = A′
S̃,K′

denotes the universal abelian scheme over ShK′(G
′
S̃
).

Proof. A deformation of x0 is determined by the liftings ω◦S,τ̃ ⊆ Hcris
1 (A0/S0)◦S,τ̃ of ω◦A∨0 /S0,τ̃

for

τ̃ ∈ ΣE,∞. From the proof of Theorem 3.14, we see that the choices for ω◦S,τ̃ are unique if τ̃

restricts to τ ∈ S∞. For τ ∈ Σ∞ − S∞, the possible liftings ω◦S,τ̃ and ω◦S,τ̃c determine each other

and form a torsor under the group

HomOS0
(ω◦A∨0 /S0,τ̃

,Lie(A0)◦τ̃ )⊗OS0
I ' Lie(A0)◦τ̃ ⊗ Lie(A0)◦τ̃c ⊗OS0

I.

The statement for the local lifts of x0 to S follows immediately. Applying this to the universal

case, we obtain the second part of the corollary. 2
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Remark 3.18. We remark that the moduli space ShK′(G
′
S̃
) does not depend on the choice of the

admissible lattice Λ in § 3.13; but the universal abelian scheme A′ does in the following way. If

Λ1 and Λ2 are two admissible lattices, we put Λ̂
(p)
i := Λi ⊗Z Ẑ(p) and we use A′i to denote the

corresponding universal abelian variety over ShK′(G
′
S̃
) and ᾱpK′p,i to denote the universal level

structure (away from p) for i = 1, 2.

Then there is a natural prime-to-p quasi-isogeny η : A′1 99K A′2 such that

Λ̂
(p)
1

��

ᾱp
K′p,1
∼=

// T (p)(A′1)

T (p)(η)

��
Λ̂

(p)
2

ᾱp
K′p,2
∼=

// T (p)(A′2)

is a commutative diagram up the action of K ′p, where the left-hand vertical arrow is the isogeny

of lattices inside V ⊗Q A∞,p. (For more detailed discussion, see [Lan13, 1.4.3].)

Corollary 3.19. The integral model ShK′(G
′
S̃
) defined in Theorem 3.14 gives an integral

canonical model ShK′p(G
′
S̃
) of ShK′p(G

′
S). Consequently, the quaternionic Shimura variety

ShKp(GS) admits an integral canonical model over O℘. Similarly, the Shimura varieties

ShKp×KE,p(GS × TE,S̃) and ShK′′p (G′′
S̃
) both admit integral canonical models over O℘̃. The

geometric connected components of these integral canonical models are canonically isomorphic.

Proof. We first assume that S∞ 6= Σ∞. We need to verify that for any smooth O℘̃-scheme S, any

morphism s0 : S ⊗O℘̃ ES̃,℘̃ → ShK′p(G
′
S̃
) extends to a morphism s : S → ShK′p(G

′
S̃
). Explicitly,

we have to show that a tuple (A, ι, λ,α
pαp) over S ⊗O℘̃ ES̃,℘̃ extends to a similar tuple over S.

Here αpαp is the projective limit in K ′p of level structures αpK′pαp as in Theorem 3.14(c). The

same arguments as [Moo98, Corollary 3.8] apply to proving the existence of extension of A, ι, λ,

and the prime-to-p level structure αp. It remains to extend the level structure αp. Let Sh
K̃′p

(G′
S̃
)

denote the similar moduli space as ShK′p(G
′
S̃
) by forgetting the p-level structure αp. We have

seen in the proof of Theorem 3.14 that there is no local deformation of αp, which means that

the forgetful map ShK′p(G
′
S̃
)→ Sh

K̃′p
(G′

S̃
) is finite and étale. The discussion above shows that

Sh
K̃′p

(G′
S̃
) satisfies the extension property. Hence, there exists a morphism s̃ : S → Sh

K̃′p
(G′

S̃
)

such that the square of the following diagram is commutative.

S ⊗O℘̃ ES̃,℘̃
s0 //

��

ShK′p(G
′
S̃
)

��
S

s
88

s̃ // Sh
K̃′p

(G′
S̃
)

We have to show that there exists a map s as the dotted arrow that makes the whole diagram

commutative. Giving such a map s is equivalent to giving a section of the finite étale cover

S ×Sh
K̃′S

(G′
S̃
) ShK′S(G

′
S̃
) → S extending the section corresponding to s0. Since a section of a

finite étale cover of separated schemes is an open and closed immersion, the existence of s

follows immediately. The existence of integral canonical models for ShKp(GS), ShK′′p (G′′
S̃
), and

ShKp×KE,p(GS × TE,S̃) follows from Corollary 2.17.

2160

https://doi.org/10.1112/S0010437X16007326 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X16007326


On Goren–Oort stratification for quaternionic Shimura varieties

When S∞ = Σ∞, we need to show that the action of the arithmetic Frobenius σ℘̃ on the

moduli space ShK′(G
′
S̃
) is given by the reciprocity law as in § 2.8. Put n℘̃ = [k℘̃ : Fp]. Let

RecZ′ : GalES̃
→ Z ′(Q)cl\Z ′(A∞)/Z ′(Zp) denote the reciprocity map defined in § 2.8, where Z ′

is the center of G′
S̃
, which is the algebraic group associated to the subgroup of E× consisting of

elements with norm to F× lying in Q×. By definition, RecZ′(σ℘̃) is the image of $−1
℘̃ under the

composite of

RecZ′,℘̃ : E×
S̃,℘̃
/O×℘̃

RecZ′ (G
′
S̃
,HS)

−−−−−−−−→ Z ′(Qp)/Z
′(Zp)

and the natural map Z ′(Qp)/Z
′(Zp)→ Z ′(Q)cl\Z ′(A∞)/Z ′(Zp). Explicitly, one has

Z ′(Qp) = {((xp)p∈Σp , y) | y ∈ Q×p , xp ∈ E×p , and NmEp/Fp
(xp) = y}.

We note that there is no p-adic primes of F of type β and the valuation of y determines the

valuation of xp for p of type β]. For each prime p ∈ Σp of type α or α], choose a place q of E

above p; then the map ((xp)p, y) 7→ (valp(y), (valp(xq))p) defines an isomorphism

ξ : Z ′(Qp)/Z
′(Zp)

∼=−→ Z×
∏

p of type α or α]

Z,

where we have written xp = (xq, xq̄) for each prime p ∈ Σp of type α or α]. By the definition of

RecZ′,℘̃ in § 2.8, using h′
S̃
, we see that ξ ◦RecZ′,℘̃($−1

℘̃ ) is equal to

(−n℘̃, (−#S̃∞/q̄ · n℘̃/fp)p), (3.19.1)

where n℘̃ = [k℘̃ : Fp] and fp is the inertia degree of p in F/Q. (Note that the homomorphism

hE,S̃ sends z to z̄ with respect to the embeddings τ̃ ∈ S̃∞.)

On the other hand, σ℘̃ takes a closed point x = (A, ι, λ, αK′) of ShK′(G
′
S̃
)Fp to σ℘̃(x) =

(σ∗℘̃(A), ι′, λ′,Frob℘̃ ◦ αK′), where σ∗℘̃(A) denotes the pullback of A via the Frobenius σ℘̃ = σn℘̃

on the residue field κ(x), equipped with the induced ODS-action and the polarization, and Frob℘̃ :

A→ σ∗℘̃A is the relative Frobenius map. For a p-adic prime p of F (or of E), denote by D̃(A)p
the covariant Dieudonné module of A[p∞]. We observe that, if p is a prime of F of type β, then

D̃(σ∗℘̃(A))p = p−n℘̃/2V n℘̃D̃(A)p

and, if p is of type α or α] with q a place of E above p, then

D̃(σ∗℘̃(A))q = p−#S̃∞/q̄·n℘̃/fpV n℘̃D̃(A)q.

Let gp ∈ Z ′(Qp) be an element such that ξ(ḡp) is given by (3.19.1), where ḡp denotes the image

of gp in Z ′(Qp)/Z
′(Zp). Then via the isogeny Frob℘̃ : A → σ∗℘̃A, which corresponds to V n℘̃ :

D̃(A)→ D̃(σ∗℘̃A), D̃(σ∗℘̃A) is identified with the lattice gpD̃(A) of D̃(A)[1/p]. This agrees with

the computation of RecZ′,℘̃($−1
℘̃ ) above. 2

The rest of this section is devoted to understanding how to pass the universal abelian varieties

on ShK′p(G
′
S̃
) to other Shimura varieties, as well as natural partial Frobenius morphisms among

these varieties and their compatibility with the abelian varieties.
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3.20 Actions on universal abelian varieties in the unitary case
We need to extend the usual tame Hecke algebra action on the universal abelian variety A′K′p over

ShK′p(G
′
S̃
) to the action of a slightly bigger group G̃S̃ := G′

S̃
(A∞,p)G′′

S̃
(Q)

(p)
+ . We follow [Sai09].

Take an element g̃ ∈ G̃S̃ and let K ′p1 and K ′p2 be two open compact subgroups of G′
S̃
(A∞,p)

such that g̃−1K ′p1 g̃ ⊆ K ′p2 (note that G′′
S̃

normalizes G′
S̃
). We put K ′i = K ′pi K

′
p for i = 1, 2.

Then, starting from the universal abelian variety A′K′1
together with the tame level structure

ᾱp
K′p1

: Λ̂(p)
∼=−→ T (p)A′K′1

, we may obtain an abelian variety B′ over ShK′1(G′
S̃
), together with

a prime-to-p quasi-isogeny η : A′K′1
→ B′ and a tame level structure such that the following

diagram commutes:

Λ̂(p)
ᾱp
K
′p
1

∼=
//

��

T (p)(A′K′1
)

T (p)(η)
��

Λ̂(p) ·g̃−1

∼=
// g̃Λ̂(p)

∼= // T (p)(B′)

where the left vertical arrow is the natural quasi-isogeny as lattices inside V ⊗Q A∞,p. Since
g̃−1K ′p1 g̃ ⊆ K ′p2 , we may take the K ′p2 -orbit of the composite of the bottom homomorphism as
the tame level structure on B′.

One can easily transfer other data in the moduli problem of Theorem 3.14 to B′, except for

the polarization, for which we make the modification as follows: since g̃ ∈ G′
S̃
(A∞,p)G′′

S̃
(Q)

(p)
+ , we

have ν(g̃) ∈ O×,>0
F,(p) · A

∞,p,×
Q = O×,>0

F,(p) · Ẑ
(p),×. We can then write ν(g̃) as the product ν+

g̃ · u for

ν+
g̃ ∈ O

×,>0
F,(p) and u ∈ Ẑ(p),×. In fact, ν+

g̃ is uniquely determined by this restriction. We take the

polarization on B′ to be the composite of a sequence of quasi-isogenies

λB′ : B′←− A′K′1
ν+
g̃ λA′−−−−→ (A′K′1)∨ −→ B′∨.

Such modification ensures that B′ satisfies condition (c1) of Theorem 3.14.
The moduli problem then implies that B′ ∼= (Hg̃)

∗(A′K′2
) for a uniquely determined morphism

Hg̃ : ShK′1(G′
S̃
) → ShK′2(G′

S̃
). This gives the action of G̃S̃ on ShK′p(G

′
S̃
). Moreover, we have a

quasi-isogeny

H#
g̃ : A′K′1

η−→ B′ ∼= (Hg̃)
∗(A′K′2)

giving rise to an equivariant action of G̃S̃ on the universal abelian varieties A′K′p over ShK′p(G
′
S̃
).

One easily checks that the action of the diagonal O×E,(p) on the Shimura variety ShK′p(G
′
S̃
)

is trivial and hence we have an action of G′
S̃

= G̃S̃/O
×,cl
E,(p) on ShK′p(G

′
S̃
). However, the action of

O×E,(p) on the universal abelian variety A′K′p is not trivial. So, the latter does not carry a natural

action of G′
S̃
. So, our earlier framework for Shimura varieties does not apply to the universal

abelian varieties directly. However, we observe that, by the construction at the end of § 2.11,

ShK′′p (G′′
S̃
) = ShK′p(G

′
S̃
)×G′

S̃
G′′
S̃

= ShK′p(G
′
S̃
)×

G̃S̃
G′′

S̃
(A∞,p).

So,
A′′K′′p := A′K′p ×G′S̃ G

′′
S̃

= A′K′p ×G̃S̃
G′′

S̃
(A∞,p)
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gives a natural family of abelian variety over ShK′′p (G′′
S̃
). We will not discuss families of abelian

varieties over the quaternionic Shimura variety ShKp(GS) (except when S = ∅).

3.21 Automorphic l-adic systems on ShK′′
p
(G′′

S̃
) and their geometric interpretation

By a multiweight, we mean a tuple (k,w) = ((kτ )τ∈Σ∞ , w) ∈ N[F :Q] × N such that kτ > 2 and

w ≡ kτ (mod 2) for each τ . We also fix a section of the natural map ΣE,∞→ Σ∞, that is, to fix

an extension τ̃ to E of each real embedding τ ∈ Σ∞ of F . Use Σ̃ to denote the image of this

section. In this subsection, we use τ̃ to denote this chosen lift of τ . We fix a subfield L of Q ⊂ C
containing all embeddings of E, as the coefficient field.

Let l be a finite place of L over a prime l with l 6= p. Fix an isomorphism ιl : C ' Ll.

Consider the injection

G′′
S̃
×QL= (ResF/Q(B×S )×ResF/QGmResE/QGm)×QL ↪→ ResE/QD

×
S ×QL∼=

∏
τ∈Σ∞

GL2,L,τ̃×GL2,L,τ̃c ,

where E× acts on GL2,L,τ̃ (respectively GL2,L,τ̃c) through τ̃ (respectively τ̃ c). For a multiweight

(k,w), we consider the following representation of G′′
S̃
×Q L:

ρ
′′(k,w)

S̃,Σ̃
=
⊗
τ∈Σ̃

ρ(kτ ,w)
τ ◦ p̌rτ̃ for i = 1, 2 with ρ(kτ ,w)

τ = Symkτ−2 ⊗ det (w−kτ )/2,

where τ is the restriction of τ̃ to F , and p̌rτ̃ is the contragradient of the natural projection to the τ̃ -

component of G′′
S̃
×QL ↪→ ResE/QD

×
S ×QL. Note that ρ

′′(k,w)

S̃,Σ̃
is trivial on the maximal anisotropic

R-split subtorus of the center of G′′
S̃
, i.e. Ker(ResF/QGm→ Gm). By [Mil90, ch. III, § 7], ρ

′′(k,w)

S̃,Σ̃

corresponds to a lisse Ll-sheaf L
′′(k,w)

S̃,Σ̃
over the Shimura variety ShK′′(G

′′
S̃
) compatible as the

level structure changes.

We now give a geometric interpretation of this automorphic l-adic sheaf on ShK′′(G
′′
S̃
). For

this, we fix an isomorphism DS ' M2(E) and let e =
(

1 0
0 0

)
∈ M2(OE) denote the idempotent

element. Let A′′ = A′′
S̃,K′′

denote the natural family of abelian varieties constructed in § 3.20.

Let V (A′′) denote the l-adic Tate module of A′′. We then have a decomposition

V (A′′)⊗Ql Ll
∼=
⊕
τ∈Σ∞

(
V (A′′)τ̃ ⊕ V (A′′)τ̃c

)
=
⊕
τ∈Σ∞

(
V (A′′)◦,⊕2

τ̃ ⊕ V (A′′)◦,⊕2
τ̃c

)
,

where V (A′′)τ̃ (respectively V (A′′)τ̃c) is the component where OE acts through ιl◦τ̃ (respectively

ιl ◦ τ̃ c) and V (A′′)◦τ̃ := eV (A′′)τ̃ (respectively V (A′′)◦τ̃c := eV (A′′)τ̃c) is a lisse Ll-sheaf of rank

two. For a multiweight (k,w), we put

L(k,w)

Σ̃
(A′′) =

⊗
τ∈Σ̃

(
Symkτ−2V (A′′)◦,∨τ̃ ⊗ (∧2V (A′′)◦,∨τ̃ )(w−kτ )/2

)
.

Note that the duals on the Tate modules mean that we are essentially taking the relative first

étale cohomology. The moduli interpretation implies that we have a canonical isomorphism

L
′′(k,w)

S̃,Σ̃
∼= L(k,w)

Σ̃
(A′′

S̃
).
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3.22 Twisted partial Frobenius
The action of the twisted partial Frobenius and its compatibility with the GO-strata description
will be important to later applications in [TX13]. We first define the twisted partial Frobenius
on the universal abelian scheme A′

S̃
= A′

S̃,K′
over the unitary Shimura variety ShK′(G

′
S̃
).

Fix p ∈ Σp. We define an action of σp on ΣE,∞ as follows: for τ̃ ∈ ΣE,∞, we put

σpτ̃ =

{
σ ◦ τ̃ if τ̃ ∈ ΣE,∞/p,
τ̃ if τ̃ /∈ ΣE,∞/p,

(3.22.1)

where ΣE,∞/p denotes the lifts of places in Σ∞/p. Note that σp induces a natural action on

Σ∞, and
∏

p∈Σp
σp = σ is the Frobenius action. Let σpS̃ denote the image of S̃ under σp. Note

that a prime p′ ∈ Σp has the same type with respect to S̃ or σpS̃. We fix an isomorphism
BσpS⊗A∞ ' BS⊗A∞, which induces in turn an isomorphism G′

σpS̃
(A∞)'G′

S̃
(A∞). We regard K ′

as an open subgroup of G′
σpS̃

(A∞) and have a well-defined unitary Shimura variety ShK′(G
′
σpS̃

).

We also point out that the reflex fields for G′
S̃

and for G′
σpS̃

have the same completion at ℘̃.

Let S be a locally noetherian k℘̃-scheme and let (A, ι, λ, ᾱK′) be an S-point on ShK′(G
′
S̃
)k℘̃ .

We will define a new S-point (A′, ι′, λ′, ᾱK′) on ShK′(G
′
σ2
p S̃

)k℘̃ as follows. The kernel of the relative

p2-Frobenius FrA : A→ A(p2/S) carries an action of OF , and we denote by Kerp2 its p-component.
We put A′ = (A/Kerp2) ⊗OF p with its induced action by ODS . It also comes equipped with a
quasi-isogeny η given by the composite

η : A −→ A/Kerp2 ←− (A/Kerp2)⊗OF p = A′.

It induces canonical isomorphisms of p-divisible groups A′[q∞] ' A[q∞] for q ∈ Σp with q 6= p,

and A′[p∞] ' A[p∞](p
2). From this, one can easily check the signature condition for A′. We define

the polarization λ′ to be the quasi-isogeny defined by the composite

A′
η
←−− A λ−−→ A∨

η∨
←−− A′∨. (3.22.2)

We have to check that λ′ is a genuine isogeny, and it verifies condition Theorem 3.14(b) on λ′ at
the prime p. By the flatness criterion by fibers, it suffices to do this after base change to every
geometric point of S. We may thus suppose that S = Spec(k) for an algebraically closed field k
of characteristic p. Let D̃(A)p be the covariant Dieudonné module of the p-divisible group A[p∞]
and define D̃(A′)p similarly. By definition, we have

D̃(A′)p = pD̃(A/Kerp2)p = pV −2D̃(A)p = p−1F 2D̃(A)p,

where pV −2D̃(A)p means the inverse image of D̃(A)p under the bijective endomorphism V 2 on
D̃(A)p[1/p]. Applying the Dieudonné functor to (3.22.2), we get

λ′∗ : D̃(A′)p = pV −2D̃(A)p
η∗
←−− D̃(A)p

λ∗−−→ D̃(A∨)p
η∨∗
←−− D̃(A′∨) = p−1F 2D̃(A∨)p.

Now it is easy to see that λ′ is an isogeny, and the condition in Theorem 3.14(b) on λ′ follows
from that on λ. The tame level structure ᾱ′K′ is given by the composition

Λ̂(p) αK′−−→ T (p)A
∼=−→ T (p)(A/Kerp2)

∼=
←− T (p)((A/Kerp2)⊗OF p) = T (p)(A′).
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We are left to define the subgroups α′p′ for all p′ ∈ Σp of type α]. The definition is clear for
p′ 6= p, since A′[p′∞] is canonically identified with A[p′∞]. Assume thus that p′ = p is of type
α#. In the data of α′p = H ′q ⊕ H ′q̄ ⊆ A′[p], the subgroup H ′q̄ is determined as the orthogonal
complement of H ′q under the Weil pairing on A[p]. Therefore, it suffices to construct H ′q or
equivalently an ODS-isogeny f ′ : A′ → B′ = A′/H ′q with kernel in A′[q] of degree #k2

p . Let
f : A → B = A/Hq be the isogeny given by αp. We write Kerp2,B for the p-component of the

kernel of the relative p2-Frobenius B → B(p2). It is easy to see that we have a natural isogeny
fp2 : A/Kerp2 → B/Kerp2,B. Then H ′q is defined to be the kernel of

fp2 ⊗ 1 : A′ = (A/Kerp2)⊗ p −→ (B/Kerp2,B)⊗ p =: B′,

and α′p is the direct sum of H ′q and its orthogonal dual H ′q̄.
To sum up, we obtain a morphism

F′p2 : ShK′(G
′
S̃
)k℘̃ → ShK′(G

′
σ2
p S̃

)k℘̃ . (3.22.3)

In all cases, we call the morphism F′p2 the twisted partial Frobenius map on the unitary Shimura

varieties. Moreover, if A′
S̃

and A′
σ2
p S̃

are respectively the universal abelian schemes over ShK′(G
′
S̃
)

and ShK′(G
′
σ2
p S̃

), we have the following universal quasi-isogeny:

η′p2 : A′
S̃,k℘̃
−→ F′∗p2(A′

σ2
p S̃,k℘̃

). (3.22.4)

It is clear from the definition that the (F′p2 , η
′
p2) for different p ∈ Σp commute with each other.

Let Sp : ShK′(G
′
S̃
) → ShK′(G

′
S̃
) be the automorphism defined by (A, ι, λ, ᾱK′) 7→ (A, ι, λ,

pᾱK′). It is clear that S∗pA
′
S̃
∼= A′

S̃
. Hence, Sp induces an automorphism of the cohomology groups

H?
rig(ShK′(G

′
S̃
),D

(k,w)

Σ̃
(A′

S̃,k0
)), still denoted by Sp. If

F 2
ShK′ (G

′
S̃
)k℘̃/k℘̃

: ShK′(G
′
S̃
)k℘̃ −→ ShK′(G

′
σ2S̃

)k℘̃ ' ShK′(G
′
S̃
)
(p2)
k℘̃

denotes the relative p2-Frobenius, then we have S−1
p ◦ F 2

ShK′ (G
′
S̃
)k℘̃/k℘̃

=
∏

p∈Σp
Fp2 . Similarly, if

[p] : A
′(p2)

S̃
→ A

′(p2)

S̃
denotes the multiplication by p and

F 2
A : A′

S̃,k℘̃
→ (F 2

ShK′ (G
′
S̃
)k℘̃/k℘̃

)∗(A′
σ2S̃,k℘̃

) ∼= A
′(p2)

S̃,k℘̃

denotes the p2-Frobenius homomorphism, we have [p]−1 ◦ F 2
A =

∏
p∈Σp

η′p2 .
Finally, we note that all the discussions above are equivariant with respect to the action of

the Galois group and the action of G̃S̃ = G′′
S̃
(Q)+,(p)G′

S̃
(A∞,p) ' G′′

σ2
p S̃

(Q)+,(p)G′
σ2
p S̃

(A∞,p) when

passing to the limit. (The isomorphism follows from the description of the group G̃S̃ in (3.12.2).)
So, applying −×

G̃S̃
G′′

S̃
(A∞,p) to the construction gives the following proposition.

Proposition 3.23. Let A′′
S̃

denote the natural family of abelian varieties over ShK′′p (G′′
S̃
). We

identify the level structure for G′′
S̃

with that of G′′
σ2
p S̃

similarly. Then, for each p ∈ Σp, we have a

G′′
S̃
(A∞,p)-equivariant natural twisted partial Frobenius morphism and an quasi-isogeny of family

of abelian varieties:

F′′p2 : ShK′′p (G′′
S̃
)k℘̃ −→ ShK′′p (G′′

σ2
p S̃

)k℘̃ and η′′p2 : A′′
S̃,k℘̃
−→ F′′∗p2 (A′′

σ2
p S̃,k℘̃

).
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This induces a natural G′′
S̃
(A∞,p)-equivariant homomorphism of étale cohomology groups:

H∗et

(
ShK′′p (G′′

σ2
p S̃

)Fp ,L
(k,w)

Σ̃
(A′′

σ2
p S̃

)
) F′′∗

p2
//

Φp2 ,,

H∗et

(
ShK′′p (G′′

S̃
)Fp ,L

(k,w)

Σ̃
(F′′∗p2 A′′

σ2
p S̃

)
)

η′′∗
p2

��

H∗et

(
ShK′′p (G′′

S̃
)Fp ,L

(k,w)

Σ̃
(A′′

S̃
)
)
.

Moreover, we have an equality of morphisms∏
p∈Σp

Φp2 = S−1
p ◦ F 2 : H∗et

(
ShK′′p (G′′

σ2S̃
)Fp ,L

(k,w)

Σ̃
(A′′

σ2S̃
)
)
−→ H∗et

(
ShK′′p (G′′

S̃
)Fp ,L

(k,w)

Σ̃
(A′′

S̃
)
)
,

where F 2 is the relative p2-Frobenius and Sp is the Hecke action given by multiplication by p−1.
Here p is the idele element which is p at all places above p and 1 elsewhere.

Proof. This is clear from the construction. 2

3.24 Comparison with the Hilbert modular varieties
When S = ∅, we have G∅ = ResF/Q(GL2,F ) and Kp = GL2(OF ⊗Z Zp). It is well known that
ShKp(G∅) = lim

←−Kp
ShKpKp(G∅) is a projective system of Shimura varieties defined over Q, and it

parametrizes polarized Hilbert–Blumenthal abelian varieties (HBAVs for short) with prime-to-p
level structure. Using this moduli interpretation, one can construct an integral canonical model
over Zp of ShKp(G∅) as in [Rap78, Lan13]. By the uniqueness of the integral canonical model, we
know that this classical integral model is isomorphic to ShKp(G∅) constructed in Corollary 3.19.
For this ‘abstract’ isomorphism to be useful in applications, we need to relate the universal HBAV
A on ShKp(G∅) and the abelian scheme A′′

∅
on ShK′′p (G′′

∅
) constructed at the end of § 3.20.

Let G?
∅
⊆ G∅ be the inverse image of Gm,Q ⊆ TF = ResF/Q(Gm,Q) via the determinant

map ν : G∅ → TF . The homomorphism h∅ : C× → G∅(R) factors through G?
∅
(R). We can

talk about the Shimura variety associated to (G?
∅
, h∅). We put K?

p = Kp ∩ G?∅(Qp). Then,
by Corollary 2.17, ShKp(G∅) and ShK?

p
(G?
∅
) have isomorphic neutral connected components

ShKp(G∅)
◦
Qur
p
' ShK∗p (G?

∅
)◦Qur

p
. The Shimura variety ShK?

p
(G?
∅
) is of PEL type, and the universal

abelian scheme on ShK?
p
(G?
∅
)◦Qur

p
is identified with that on ShKp(G∅)

◦
Qur
p

via the isomorphism

above. Actually, if Kp ⊆ GL2(A∞,pF ) is an open compact subgroup such that det(Kp ∩ O×F ) =

det(Kp) ∩ O×,+F , where O×,+F denotes the set of totally positive units of F , then ShKpKp(G∅) is
isomorphic to a finite union of ShK?pK?

p
(G?
∅
) for some appropriate tame level structure K?p (see

[Hid04, 4.2.1] or [TX13, Proposition 2.4]).
We now describe the Hilbert moduli problem that defines an integral canonical model of

ShK?
p
(G?
∅
). Let Ô(p)

F =
∏
v-p∞OFv and put Λ̂

(p)
F = Ô(p)

F e1 ⊕ Ô(p)
F d−1

F e2. We endow Λ̂
(p)
F with the

symplectic form

ψF (a1e1 + a2e2, b1e1 + b2e2) = TrF/Q(a2b1 − a1b2) ∈ Ẑ(p)

for a1, b1 ∈ Ô(p)
F and a2, b2 ∈ d−1

F Ô
(p)
F . It is an elementary fact that every rank-two free

Ô(p)
F -module together with a perfect Ẑ(p)-linear OF -hermitian symplectic form is isomorphic to

(Λ̂
(p)
F , ψF ).
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Let K?
p = GL2(OF ⊗ Zp) ∩ G?∅(Qp) be as above. For an open compact subgroup K?p, we

put K? = K?pK?
p . Assume that K?p stabilizes the lattice Λ̂

(p)
F . We consider the functor that

associates to each locally noetherian Zp-scheme S the set of isomorphism classes of quadruples
(A, ι, λ, αK?p), where:

(i) (A, ι) is a HBAV, i.e. an abelian scheme A/S of dimension [F : Q] equipped with a
homomorphism ι : OF ↪→ EndS(A);

(ii) λ : A→ A∨ is an OF -linear Z×(p)-polarization in the sense of [Lan13, 1.3.2.19];

(iii) choosing a geometric point s̄i for each connected component Si of S, αK?p is a collection

of π1(Si, s̄i)-invariant K?p-orbits of Ô(p)
F -linear isomorphisms Λ̂

(p)
F

∼−→ T (p)(As̄i), sending
the symplectic pairing ψF on the former to the λ-Weil pairing on the latter for some
identification of Ẑ(p) with Ẑ(p)(1).

This functor is representable by a quasi-projective and smooth scheme ShK?(G?
∅
) over Zp

such that ShK?(G?
∅
)Qp ' ShK?(G?

∅
) [Rap78] and [Lan13, 1.4.1.11]. By the same arguments of

[Moo98, Corollary 3.8], it is easy to see that ShK?
p
(G?
∅
) satisfies the extension property § 2.4. This

then gives rise to an integral canonical model ShKp(G∅) of ShKp(G∅). We could pull back the
universal abelian variety A? over ShK?

p
(G?
∅
) to a family of abelian varieties over ShKp(G∅) using

[Hid04, 4.2.1] cited above. But we prefer to do it more canonically following the same argument

as in § 3.20. More precisely, there is a natural equivariant action of G̃? := G∅(Q)
(p)
+ · G?(A∞,p)

on the universal abelian variety A? over ShK?
p
(G?
∅
). Then

A := A? ×
G̃?

GL2(A∞,p) (3.24.1)

gives a natural family of abelian variety over ShKp(G∅).
The natural homomorphism GL2,F → GL2,F ×F×E× induces a closed immersion of algebraic

groups G?
∅
→ G′

∅
compatible with the Deligne homomorphisms h∅ and h′

∅
. Therefore, one obtains

a map of (projective systems of) Shimura varieties f : ShK?
p
(G?
∅
)→ ShK′p(G

′
∅
), which induces an

isomorphism of the neutral connected component ShK?
p
(G?
∅
)◦Qur

p
' ShK′p(G

′
∅
)◦Qur

p
. We will extend

f to a map of integral models ShK?
p
(G?
∅
)→ ShK′p(G

′
∅
).

Now let E be a CM extension of F unramified at p as before. In the process of constructing

the pairing ψ on D∅, we may take δ∅ to be
( 0 −1/

√
d

1/
√
d 0

)
, which is coprime to p, where d is the

totally negative element chosen in § 3.7. It is easy to check that it satisfies the conditions in
Lemma 3.8(1), and the ∗-involution given by δ∅ on D∅ = M2(E) is given by

(
a b
c d

)
7→
(
ā c̄
b̄ d̄

)
for

a, b, c, d ∈ E. The ∗-hermitian pairing on M2(E) is given by

ψ(v, w) = TrM2(E)/Q

(
vw̄

(
0 −1
1 0

))
, for v =

(
av bv
cv dv

)
and w =

(
aw bw
cw dw

)
∈ M2(E)

= TrE/Q(bvāw − av b̄w + dv c̄w − cvd̄w).

In defining the PEL data for G′
∅
, we take the OD∅-lattice Λ to be

(OE d−1
F OE

OE d−1
F OE

)
. Clearly, Λ̂(p) =

Λ ⊗Z Ẑ(p) satisfies Λ̂(p) ⊆ Λ̂(p),∨ for the bilinear form ψ above. Moreover, if we equip Λ
(p)
F ⊗OF

OE with the symplectic form ψE = ψF (TrE/F (•),TrE/F (•)), then (Λ̂(p), ψ) is isomorphic to

((Λ̂
(p)
F ⊗OF OE)⊕2, ψ⊕2

E ) as a ∗-hermitian symplectic M2(OE)-module.

Proposition 3.25. For any open compact subgroup K ′p of G′
∅
(A∞,p), we put K?p = K ′p ∩

G?
∅
(A∞,p). Then we have a canonical morphism

f : ShK?pK?
p
(G?∅)→ ShK′pK′p(G

′
∅)
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such that, if A and A′
∅

denote respectively the universal abelian scheme on ShK?pK?
p
(G?
∅
) and

that on ShK′pK′p(G
′
∅
), then we have an isomorphism of abelian schemes f∗A′

∅
∼= (A⊗OF OE)⊕2

compatible with the natural action of M2(OE) and polarizations on both sides. By passing to
the limit, the morphism f induces an isomorphism between the integral models of connected
Shimura varieties ShK?

p
(G?
∅
)◦Zur
p

∼= ShK′p(G
′
∅
)◦Zur
p

.

Proof. By Galois descent, it is enough to work over W (k0) for k0 in Theorem 3.14. Let S be a
locally noetherian W (k0)-scheme and x = (A, ι, λ, αK?p) be an S-valued point of ShK?pK?

p
(G?
∅
).

We define its image f(x) = (A′, ι′, λ′, αK′p) as follows. We take A′ = (A ⊗OF OE)⊕2 equipped
with the naturally induced action ι′ of M2(OE). It is clear that Lie(A′)τ̃ is an OS-module locally
free of rank two for all τ̃ ∈ ΣE,∞. The prime-to-p polarization λ′ on A′ is defined to be

λ′ : A′
∼−→ (A⊗OF OE)⊕2 (λ⊗1)⊕2

−−−−−→ (A∨ ⊗OF OE)⊕2 ∼= A′∨ ⊗ δE/F → A′∨,

where δE/F is the different ideal of E over F . We define the K ′p-level structure to be the K ′p-orbit
of the isomorphism

αK′p : Λ̂(p)
∼=−→ (Λ̂

(p)
F ⊗OF OE)⊕2

α⊕2
K?p−−−→

(
T (p)(As̄)⊗OF OE

)⊕2 ' T (p)(A′s̄).

By the discussion before the proposition, it is clear that αK′p sends the symplectic form ψ on the
left-hand side to the λ′-Weil pairing on the right. This defines the morphism f from ShK?pK?

p
(G?
∅
)

to ShK′pK′p(G
′
∅
). By looking at the complex uniformization, we note that f extends the morphism

f : ShK?pK?
p
(G?
∅
)Qp → ShK′pK′p(G

′
∅
)Qp defined previously by group theory. Since both ShK?

p
(G?
∅
)

and ShK′p(G
′
∅
) satisfy the extension property § 2.4, it follows that f induces an isomorphism

ShK?
p
(G?
∅
)◦Zur
p
' ShK′p(G

′
∅
)◦Zur
p

. 2

Corollary 3.26. Let A denote the universal HBAV over ShKp(G∅) and A′′
∅

be the family of
abelian varieties over ShK′′p (G′′

∅
) defined in § 3.20. Then, under the natural morphisms of Shimura

varieties
ShKp(G∅)

pr1
←−−− ShKp×KE,p(G∅ × TE,∅)

α−−→ ShK′′p (G′′∅), (3.26.1)

one has an isomorphism of abelian schemes over ShKp×KE,p(G∅ × TE,∅)

α∗A′′∅ ∼= (pr∗1A⊗OF OE)⊕2 (3.26.2)

compatible with the action of M2(OE) and prime-to-p polarizations.

Proof. This follows from the constructions of A and A′′
∅

and the proposition above. 2

3.27 Comparison of the twisted partial Frobenius
Keep the notation as in § 3.24. The Shimura variety ShK?(G?

∅
)Fp also admits a twisted partial

Frobenius Φp2 for each p ∈ Σp, which we define as follows. Let S be a locally noetherian Fp-scheme.
Given an S-point (A, ι, λ, αK?p) of ShK?(G?

∅
)Fp , we associate a new point (A′, ι′, λ′, α′K?p):

– A′ = A/Kerp2⊗OF p, where Kerp2 is the p-component of the kernel of the relative Frobenius

homomorphism Fr2
A : A→ A(p2); it is equipped with the induced OF -action ι′;

– using the natural quasi-isogeny η : A→ A′, λ′ is given by the composite of quasi-isogenies

A′
η
←− A λ−→ A∨

η∨−→ A′∨ (which is a Z×(p)-isogeny by the same argument as in § 3.22);

– ᾱ′K?p is the composite Λ̂
(p)
F

ᾱK?p−−−→ T (p)(A)
η
←− T (p)(A′).
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The construction above gives rise to a twisted partial Frobenius morphism

F?p2 : ShK?(G?∅)Fp −→ ShK?(G?∅)Fp and ηp2 : AFp → (F?p2)∗AFp .

Using the formalism of Shimura varieties (Corollary 2.17 and more specifically (3.24.1)), it gives
rise to a twisted partial Frobenius morphism

F∅p2 : ShK(G∅)Fp −→ ShK(G∅)Fp and η∅p2 : AFp → (F∅p2)∗AFp .

Corollary 3.28. The twisted partial Frobenius morphism F′′p2 on ShK′′p (G′′
∅
)Fp and the twisted

partial Frobenius F∅
p2 on ShKp(G∅)Fp are compatible, in the sense that there exists a morphism

F̃p2 so that both squares in the following commutative diagram are Cartesian.

ShKp(G∅)Fp

F∅
p2

��

ShKp×KE,p(G∅ × TE,∅)Fp
pr1oo α //

F̃p2

��

ShK′′p (G′′
∅
)Fp

F′′
p2

��
ShKp(G∅)Fp ShKp×KE,p(G∅ × TE,∅)Fp

pr1oo α // ShK′′p (G′′
∅
)Fp

Moreover, η∅
p2 is compatible with η′′p2 , in the sense that the following diagram commutes.

α∗A′′
∅,Fp

α∗(η′′
p2 )

��

(3.26.2) // (pr∗1AFp ⊗OF OE)⊕2

η∅
p2⊗1

��

α∗F′′∗p2 A′′
∅,Fp

(3.26.2)//
(
pr∗1F

∅,∗
p2 (AFp)⊗OF OE

)⊕2

Proof. This follows from the definition of the partial Frobenii in various situations and the
comparison Proposition 3.25 above. 2

4. Goren–Oort stratification

We define an analog of the Goren–Oort stratification on the special fibers of quaternionic Shimura
varieties. This is first done for unitary Shimura varieties and then pulled back to the quaternionic
ones. Unfortunately, the definition a priori depends on the auxiliary choice of CM field (as well
as the signatures sτ̃ ). In the case of the Hilbert modular variety, we show that our definition
of the GO-strata agrees with Goren–Oort’s original definition in [GO00] (and hence does not
depend on the auxiliary choice of data).

4.1 Notation

Keep the notation as in the previous sections. Let k0 be a finite extension of Fp containing all
residue fields of OE of characteristic p. Let X ′ := ShK′(G

′
S̃
)k0 denote the base change to k0 of

the Shimura variety ShK′(G
′
S̃
) considered in Theorem 3.14.

Recall that e ∈ ODS,p corresponds to
(

1 0
0 0

)
when identifying ODS,p with M2(OE,p). For an

abelian scheme A over a locally noetherian k0-scheme S carrying an action of ODS , we have
the reduced module of invariant differential 1-forms ω◦A/S , the reduced Lie algebra Lie(A/S)◦,

and the reduced de Rham homology HdR
1 (A/S)◦ defined in § 3.16. Their τ̃ -components ω◦A/S,τ̃ ,
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Lie(A/S)◦τ̃ , and HdR
1 (A/S)◦τ̃ for τ̃ ∈ ΣE,∞ fit in an exact sequence, called the reduced Hodge

filtration,

0→ ω◦A∨/S,τ̃ → HdR
1 (A/S)◦τ̃ → Lie(A/S)◦τ̃ → 0.

Let A(p) denote the base change of A via the absolute Frobenius on S. The Verschiebung Ver :
A(p)
→ A and the Frobenius morphism Fr : A → A(p) induce respectively maps of coherent

sheaves on S:

FA : HdR
1 (A/S)◦,(p)→ HdR

1 (A/S)◦ and VA : HdR
1 (A/S)◦→ HdR

1 (A/S)◦,(p),

which are compatible with the action of OE . Here, for a coherent OS-module, M (p) denotes the
base change M ⊗OS ,Fabs

OS . If there is no confusion, we drop the subscript A from the notation
and simply write F and V for the two maps. (Although the letter F also stands for the totally
real field, we think that this should not cause confusion.) Moreover, we have

Ker(F ) = Im(V ) = (ω◦A∨/S)(p) and Im(F ) = Ker(V ) ∼= Lie(A(p)/S)◦.

Let (A, ι, λ, αK′) be an S-valued point of X ′ = ShK′(G
′
S̃
)k0 . By Kottwitz’ determinant

condition 3.14(a), for each τ̃ ∈ ΣE,∞, Lie(A/S)◦τ̃ is a locally free OS-module of rank sτ̃ . (The
numbers sτ̃ are defined as in § 3.4.) By duality, this implies that ω◦A∨/S,τ̃ is locally free of rank

sτ̃c = 2−sτ̃ . Moreover, when τ ∈ Σ∞/p with p not of type β], the universal polarization λ induces
an isomorphism of locally free OS-modules

ω◦A∨/S,τ̃
∼= ω◦A/S,τ̃c . (4.1.1)

4.2 Essential Frobenius and essential Verschiebung
We now define two very important morphisms: essential Frobenius and essential Verschiebung;
we will often encounter later their variants for crystalline homology and Dieudonné modules, for
which we shall simply refer to the similar construction given here.

Let (A, ι, λ, αK′) be as above. For τ̃ ∈ ΣE,∞ lifting a place τ ∈ S∞, we define the essential
Frobenius to be

Fes = FA,es,τ̃ : (HdR
1 (A/S)◦σ−1τ̃ )(p) = HdR

1 (A(p)/S)◦τ̃ −→ HdR
1 (A/S)◦τ̃

x 7−→
{
F (x) when sσ−1τ̃ = 1 or 2,

V −1(x) when sσ−1τ̃ = 0.
(4.2.1)

Note that in the latter case, the morphism V : HdR
1 (A/S)◦τ̃

∼−→ HdR
1 (A(p)/S)◦τ̃ is an isomorphism

by Kottwitz’ determinant condition.
Similarly, we define the essential Verschiebung to be

Ves = VA,es,τ̃ : HdR
1 (A/S)◦τ̃ −→ HdR

1 (A(p)/S)◦τ̃ = (HdR
1 (A/S)◦σ−1τ̃ )(p)

x 7−→
{
V (x) when sσ−1τ̃ = 0 or 1,

F−1(x) when sσ−1τ̃ = 2.
(4.2.2)

Here, in the latter case, the morphism F : HdR
1 (A(p)/S)◦τ̃ → HdR

1 (A/S)◦τ̃ is an isomorphism.
When no confusion arises, we may suppress the subscript A and/or τ̃ from FA,es,τ̃ and VA,es,τ̃ .
Thus, if sσ−1τ̃ = 0 or 2, both Fes,τ̃ : HdR

1 (A(p)/S)◦τ̃ → HdR
1 (A/S)◦τ̃ and Ves,τ̃ : HdR

1 (A/S)◦τ̃ →
HdR

1 (A(p)/S)◦τ̃ are isomorphisms and both Fes,τ̃Ves,τ̃ and Ves,τ̃Fes,τ̃ are isomorphisms. When
sσ−1τ̃ = 1, we usually prefer to write the usual Frobenius and Verschiebung.
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We will also use composites of Frobenii and Verschiebungs:

V n
es,τ̃ : HdR

1 (A/S)◦τ̃
Ves,τ̃−−−→ HdR

1 (A(p)/S)◦τ̃
V

(p)

es,σ−1τ̃−−−−−→ · · ·
V

(pn−1)

es,σ1−nτ̃−−−−−−→ HdR
1 (A(pn)/S)◦τ̃ , (4.2.3)

Fnes,τ̃ : HdR
1 (A(pn)/S)◦τ̃

F
(pn−1)

es,σ1−nτ̃−−−−−−→ HdR
1 (A(pn−1)/S)◦τ̃

F
(pn−2)

es,σ2−nτ̃−−−−−−→ · · ·
Fes,τ̃−−−→ HdR

1 (A/S)◦τ̃ . (4.2.4)

Suppose now that S = Spec(k) is the spectrum of a perfect field of characteristic p > 0.
Let D̃A denote the covariant Dieudonné module of A[p∞]. We have a canonical decomposition
D̃A =

⊕
τ̃∈ΣE,∞

D̃A,τ̃ . We put D̃◦A,τ̃ = e·D̃A,τ̃ . Then we define the essential Frobenius and essential
Verschiebung

Fes = FA,es,τ̃ : D̃◦A,σ−1τ̃ → D̃
◦
A,τ̃ and Ves = VA,es,τ̃ : D̃◦A,τ̃ → D̃◦A,σ−1τ̃

in the same way as in (4.2.1) and (4.2.2) for HdR
1 (A/S)◦τ̃ . The morphisms FA,es,τ̃ and VA,es,τ̃ on

HdR
1 (A/S)◦τ̃ can be recovered from those on D̃◦A,τ̃ by reduction modulo p.

Notation 4.3. For τ ∈ Σ∞ − S∞, we define nτ = nτ,S > 1 to be the integer such that σ−1τ, . . . ,
σ−nτ+1τ ∈ S∞ and σ−nτ τ /∈ S∞.

4.4 Partial Hasse invariants
For each τ̃ lifting a place τ ∈ Σ∞−S∞, we must have sτ̃ = 1. So, in the definition of V nτ

es,τ̃ in (4.2.3),

all morphisms are isomorphisms except the last one. Similarly, in the definition of Fnτes,τ̃ in (4.2.4),

all morphisms are isomorphisms except the first one. It is clear that V nτ
es,τ̃F

nτ
es,τ̃ = Fnτes,τ̃V

nτ
es,τ̃ = 0,

coming from the composition of V
(pnτ−1)
σnτ−1τ̃

and F
(pnτ−1)
σnτ−1τ̃

in both ways. Note also that the cokernels
of V nτ

es,τ̃ and Fnτes,τ̃ are both locally free OX′-modules of rank one.
The restriction of V nτ

es,τ̃ to the line bundle ω◦A∨/S,τ̃ induces a homomorphism

hτ̃ (A) : ω◦A∨/S,τ̃−→ω◦
A∨,(pnτ )/S,τ̃

= (ω◦A∨/S,σ−nτ τ̃ )⊗p
nτ
.

Applied to the universal case, this gives rise to a global section

hτ̃ ∈ Γ(X ′, (ω◦A′∨/X′,σ−nτ τ̃ )⊗p
nτ ⊗ (ω◦A′∨/X′,τ̃ )⊗(−1)), (4.4.1)

where A′ is the universal abelian scheme over X ′ = ShK′(G
′
S̃
)k0 . We call hτ̃ the τ̃ -partial Hasse

invariant. With τ̃ replaced by τ̃ c everywhere, we can define similarly a partial Hasse invariant
hτ̃c . They are analogs of the partial Hasse invariants in the unitary case.

Lemma 4.5. Let (A, ι, λ, ᾱK′) be an S-valued point ofX ′ as above. Then the following statements
are equivalent for τ̃ lifting τ ∈ Σ∞ − S∞:

(i) we have hτ̃ (A) = 0;

(ii) the image of Fnτes,τ̃ : HdR
1 (A(pnτ )/S)◦τ̃ → HdR

1 (A/S)◦τ̃ is ω◦A∨/S,τ̃ ;

(iii) we have hτ̃c(A) = 0;

(iv) the image of Fnτes,τ̃c : HdR
1 (A(pnτ )/S)◦τ̃c → HdR

1 (A/S)◦τ̃c is ω◦A∨/S,τ̃c .

Proof. The equivalences (1) ⇔ (2) and (3) ⇔ (4) follow from the fact that the image of F
coincides with the kernel of V . We prove now (2) ⇔ (4). Let p ∈ Σp be the prime above p so
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that τ ∈ Σ∞/p. Since Σ∞/p 6= S∞/p, p can not be of type β] by Hypothesis 3.3. We consider the
following diagram:

HdR
1 (A(pnτ )/S)◦τ̃

Fnτes,τ̃

��

× HdR
1 (A(pnτ )/S)◦τ̃c

Fnτes,τ̃c

��

〈 , 〉 // OS

HdR
1 (A/S)◦τ̃

V nτes,τ̃

FF

× HdR
1 (A/S)◦τ̃c

V nτes,τ̃c

XX

〈 , 〉 // OS ,

where the pairings 〈 , 〉 are induced by the polarization λ, and they are perfect because p is not
of type β]. We have 〈Fnτes,τ̃x, y〉 = 〈x, V nτ

es,τ̃cy〉σ
nτ

. It follows that

(ω◦A∨/S,τ̃ )⊥ = ω◦A∨/S,τ̃c and Im(Fnτes,τ̃ )⊥ = Im(Fnτes,τ̃c),

where ⊥ means the orthogonal complement under 〈 , 〉. Therefore, we have

(2) ω◦A∨/S,τ̃ = Im(Fnτes,τ̃ )⇐⇒ (ω◦A∨/S,τ̃ )⊥ = Im(Fnτes,τ̃ )⊥ ⇐⇒ (4) ω◦A∨/S,τ̃c = Im(Fnτes,τ̃c). 2

Definition 4.6. We fix a section τ 7→ τ̃ of the natural restriction map ΣE,∞ → Σ∞. Let T ⊂
Σ∞ − S∞ be a subset. We put ShK′(G

′
S̃
)k0,∅ = X ′, and X ′T := ShK′(G

′
S̃
)k0,T to be the closed

subscheme of ShK′(G
′
S̃
)k0 defined as the vanishing locus of {hτ̃ : τ ∈ T}. Passing to the limit, we

put
ShK′p(G

′
S̃
)k0,T := lim

←−
K′p

ShK′pK′p(G
′
S̃
)k0,T.

We call {ShK′(G
′
S̃
)k0,T : T ⊂ Σ∞−S∞} (respectively {ShK′p(G

′
S̃
)k0,T : T ⊂ Σ∞−S∞}) the Goren–

Oort stratification (or GO-stratification for short) of ShK′(G
′
S̃
)k0 (respectively ShK′p(G

′
S̃
)k0).

By Lemma 4.5, the GO-strata X ′T do not depend on the choice of the section τ 7→ τ̃ .

Proposition 4.7. For any subset T ⊆ Σ∞ − S∞, the closed GO-stratum X ′T ⊆ X ′ is smooth of
codimension #T, and the tangent bundle TX′T is the subbundle⊕

τ∈Σ∞−(S∞∪T)

(
Lie(A′)◦τ̃ ⊗ Lie(A′)◦τ̃c

)
|X′T ⊆

⊕
τ∈Σ∞−S∞

(
Lie(A′)◦τ̃ ⊗ Lie(A′)◦τ̃c

)
|X′T ,

where the latter is identified with the restriction to X ′T of the tangent bundle of X ′ computed in
Corollary 3.17. Moreover, X ′T is proper if S∞ ∪ T is non-empty.

Proof. We follow the same strategy as in [Hel12, Proposition 3.4]. First, the same argument
as [Hel12, Lemma 3.7] proves the non-emptyness of X ′T. We now proceed as in the proof of
Corollary 3.17. Let S0 ↪→ S be a closed immersion of locally noetherian k0-schemes whose ideal
of definition I satisfies I2 = 0. Consider an S0-valued point x0 = (A0, ι0, λ0, ᾱK′) of X ′T. To prove
the smoothness of X ′T, it suffices to show that, locally for the Zariski topology on S0, there exists
x ∈ X ′T(S) lifting x0. By Lemma 4.5, we have, for every τ ∈ T,

ω◦A∨0 /S0,τ̃
= Fnτes,τ̃ (HdR

1 (A
(pnτ )
0 /S0)◦τ̃ ).

The reduced ‘crystalline homology’ Hcris
1 (A0/S0)◦S is equipped with natural operators F and

V , lifting the corresponding operators on HdR
1 (A0/S0)◦. We define the composite of essential

Frobenius
F̃nτes,τ̃ : Hcris

1 (A
(pnτ )
0 /S0)◦S,τ̃ → Hcris

1 (A0/S0)◦S,τ̃
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in the same manner as Fnτes,τ̃ on HdR
1 (A

(pnτ )
0 /S0)◦τ̃ in Notation 4.2. Let ω̃◦A∨0 /S0,τ̃

denote the image

of F̃nτes,τ̃ for τ ∈ T. This is a local direct factor of Hcris
1 (A0/S0)◦S,τ̃ that lifts ω◦A∨0 /S0,τ̃

. As in the

proof of Theorem 3.14, specifying a deformation x ∈ X ′(S) of x0 to S is equivalent to giving

a local direct summand ω◦S,τ̃ ⊆ Hcris
1 (A0/S0)◦S,τ̃ that lifts ω◦A∨0 /S0,τ̃

for each τ ∈ Σ∞ − S∞. By

Lemma 4.5, such a deformation x lies in X ′T if and only if ω◦S,τ̃ = ω̃◦A∨0 /S0,τ̃
for all τ ∈ T. Therefore,

to give a deformation of x0 to S in X ′T, we just need to specify the liftings ω◦S,τ̃ of ω◦A∨0 /S0,τ̃
for

τ ∈ Σ∞ − (S∞ ∪ T). The set-valued sheaf of liftings ω◦S,τ̃ for τ ∈ Σ∞ − (S∞ ∪ T) forms a torsor

under the group

HomOS0
(ω◦A∨0 /S0,τ̃

,Lie(A0)◦τ̃ )⊗OS0
I ' Lie(A0)◦τ̃ ⊗OS0

Lie(A0)◦τ̃c ⊗OS0
I.

Here, in the last isomorphism, we have used (4.1.1). The statement for the tangent bundle of X ′T
now follows immediately.

It remains to prove the properness of X ′T when S∞ ∪ T is non-empty. The arguments are

similar to those in [Hel12, Proposition 3.4]. We use the valuative criterion of properness. Let

R be a discrete valuation ring containing Fp and L be its fraction field. Let xL = (AL, ι, λ,

ᾱK′) be an L-valued point of X ′T. We have to show that xL extends to an R-valued point

xR ∈ X ′T up to a finite extension of L. By Grothendieck’s semi-stable reduction theorem, we

may assume that, up to a finite extension of L, the Néron model AR of AL over R has a

semi-stable reduction. Let A be the special fiber of AR and T ⊂ A be its torus part. Since

the Néron model is canonical, the action of ODS extends uniquely to AR and hence to T. The

rational cocharacter group X∗(T)Q := Hom(Gm,T) ⊗Z Q is a Q-vector space of dimension at

most dim(A) = 4g = 1
2 dimQ(DS), and equipped with an induced action of DS

∼= M2(E). By the

classification of M2(E)-modules, X∗(T)Q is either 0 or isomorphic to E⊕2. In the latter case, we

have X∗(T)Q ⊗ L ∼= Lie(AL), and the trace of the action of b ∈ E on X∗(T)Q is 2
∑

τ̃∈ΣE
τ̃(b),

which implies that S∞ = ∅. Therefore, if S∞ 6= ∅, T has to be trivial and AR is an abelian scheme

over R with generic fiber AL. The polarization λ and level structure ᾱK′ extend uniquely to AR
due to the canonicality of the Néron model. We thus obtain a point xR ∈ X ′(R) extending xL.

Since X ′T ⊆ X ′ is a closed subscheme, we see easily that xR ∈ X ′T. Now consider the case S∞ = ∅

but T is non-empty. If X∗(T)Q ∼= E⊕2, then the abelian part of A is trivial. Since the action of

Verschiebung on ωT is an isomorphism, the point xL cannot lie in any X ′T with T non-empty.

Therefore, if T 6= ∅, T must be trivial, and we conclude as in the case S∞ 6= ∅. 2

Remark 4.8. It seems that X ′T is still proper if S is non-empty. But we do not know a convincing

algebraic argument.

4.9 GO-stratification of connected Shimura varieties

From the definition, it is clear that the GO-stratification on ShK′p(G
′
S̃
)k0 is compatible with the

action (as described in § 3.20) of the group G′
S̃

(introduced in § 3.12). By Corollary 2.13, for each

T ⊆ Σ∞ − S∞, there is a natural scheme

ShK′p(G
′
S̃
)◦Fp,T ⊆ ShK′p(G

′
S̃
)◦Fp

equivariant for the action of EG,k0 . We call them the Goren–Oort stratification for the connected

Shimura variety.
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Using the identification of connected Shimura variety in Corollary 3.11 together with
Corollary 2.13, we obtain the Goren–Oort strata ShKp(GS)k0,T⊆ShKp(GS)k0 and ShK′′p (G′′

S̃
)k0,T ⊆

ShK′′p (G′′
S̃
)k0 for each subset T ⊆ Σ∞ − S∞. Explicitly, for the latter case, we have

ShK′′p (G′′
S̃
)k0,T := ShK′p(G

′
S̃
)k0,T ×G̃S̃

G′′
S̃
(A∞,p).

Alternatively, in terms of the natural family of abelian varieties A′′
S̃
, the stratum ShK′′p (G′′

S̃
)k0,T

is the common zero locus of partial Hasse invariants

hτ̃ : ω◦A′′
S̃,k0

/ShK′′p
(G′′

S̃
)k0

,τ̃ −→
(
ω◦A′′

S̃,k0
/ShK′′p

(G′′
S̃

)k0
,σ−nτ τ̃

)⊗pnτ
for all τ̃ lifting τ ∈ T.

Theorem 4.10. When S = ∅, the GO-stratification on ShKp(G∅)k0 defined above agrees with
the original definition given in [GO00]. Moreover, for each subset T ⊆ Σ∞, under the morphisms
(3.26.1), we have

pr∗1(ShKp(G∅)k0,T) = α∗(ShK′′p (G′′∅)k0,T),

where ShKp(G∅)k0,T denotes the GO-stratum for T defined in [GO00].

Proof. Put X = ShKp(G∅)k0 for simplicity. By Proposition 3.25, we have an isomorphism
of abelian varieties α∗A′′

∅
= (pr∗1(A) ⊗OF OE)⊕2 on ShKp×KE,p(G∅ × TE,∅). Let ωA∨k0

/X =⊕
τ∈Σ∞

ωA∨k0
/X,τ be the canonical decomposition, where ωA∨k0

/X,τ is the local direct factor on

which OF acts via ιp◦τ : OF → Zur
p � Fp. Then we have a canonical isomorphism of line bundles

over ShKp×KE,p(G∅ × TE,∅)k0

α∗ω◦A′′∨k0
/X,τ̃ ' pr∗1ωA∨k0

/X,τ

for either lift τ̃ ∈ ΣE,∞ of τ . Via these identifications, the (pullback of) the partial Hasse invariant
α∗(hτ̃ ) defined in (4.4.1) coincides with the pullback via pr1 of the partial Hasse invariant
hτ ∈ Γ(X,ω⊗pA/X,σ−1τ

⊗ω⊗−1
A/X,τ ) defined in [GO00]. Therefore, for any T ⊂ Σ∞, the pullback along

pr1 of the GO-stratum XT ⊆ X defined by the vanishing of {hτ : τ ∈ T} is the same as the
pullback along α of the GO-stratum defined by {hτ̃ : τ ∈ T}. 2

Remark 4.11. It would be interesting to know, in general, whether the GO-strata on quaternionic
Shimura varieties depend on the auxiliary choice of CM field E.

To understand the ‘action’ of the twisted partial Frobenius on the GO-strata, we need the
following lemma.

Lemma 4.12. Let x = (A, ι, λ, ᾱK′) be a point of X ′ with values in a locally noetherian k0-scheme
S, and F′p2(x) = (A′, ι′, λ′, ᾱ′K′) be the image of x under the twisted partial Frobenius at p § 3.22

(which lies on another Shimura variety). Then hτ̃ (x) = 0 if and only if hσ2
p τ̃

(F′p2(x)) = 0.

Proof. The statement is clear if τ̃ /∈ ΣE,∞/p, since F′p2 induces a canonical isomorphism of p-

divisible groups A[q∞] ' A′[q∞] for q ∈ Σp with q 6= p. Consider the case τ̃ ∈ ΣE,∞/p. We claim
that there exists an isomorphism

HdR
1 (A′/S)◦τ̃ ∼= (HdR

1 (A/S)◦σ−2τ̃ )(p2)
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compatible with the action of F and V on both sides with τ̃ ∈ ΣE,∞/p varying. By Lemma 4.5,
the lemma follows from the claim immediately. It thus remains to prove the claim. Note that the
p-component of the de Rham homology

HdR
1 (A′/S)p :=

⊕
τ̃∈ΣE,∞/p

HdR
1 (A′/S)◦,⊕2

τ̃

is canonically isomorphic to the evaluation at the trivial pd-thickening S ↪→ S of the reduced
covariant Dieudonné crystal of A′[p∞], which we denote by D(A′[p∞])S . By definition of F′p2 , the

p-divisible group A′[p∞] ∼= (A/Kerp2)[p∞] is isomorphic to the quotient of A[p∞] by its kernel

of p2-Frobenius A[p∞]→ (A[p∞])(p2). Therefore, by functoriality of Dieudonné crystals, one has

D(A′[p∞])S = D(A[p∞])
(p2)
S , whence the claim. 2

One deduces immediately the following corollary.

Corollary 4.13. For ShS̃ = ShK′p(G
′
S̃
)k0 and ShK′′p (G′′

S̃
)k0 , the twisted partial Frobenius map

Fp2 : ShS̃→ Shσ2
p S̃

takes the subvariety ShS̃,T to Shσ2
p S̃,σ

2
pT

for each T ⊆ Σ∞ − S∞.

5. The global geometry of the GO-strata: Helm’s isogeny trick

In this section, we will prove that each closed GO-stratum of the special fiber of the unitary
Shimura variety defined in Definition 4.6 is a (P1)N -bundle over the special fiber of another
unitary Shimura variety for some appropriate integer N . This then allows us to deduce the
similar result for the case of quaternionic Shimura varieties.

This section is largely inspired by Helm’s pioneering work [Hel12], where he considered the
case when p splits in E0/Q and S is ‘sparse’ (we refer to [Hel12] for the definition of a sparse
subset; essentially, this means that, for any τ ∈ Σ∞, τ and στ cannot belong to S simultaneously).

5.1 The associated quaternionic Shimura data for a GO-stratum
We first introduce the recipe for describing general GO-strata. We recommend first reading the
light version of the same recipe in the special case of Hilbert modular varieties, as explained in
the introduction 1.5, before diving into the general but more complicated definition below.

Keep the notation as in the previous sections. Let T be a subset of Σ∞ − S∞. Our main
theorem will say that the Goren–Oort stratum ShK(GS)Fp,T is a (P1)N -bundle over ShKT(GS(T))Fp
for some N ∈ Z>0, some even subset S(T) of places of F , and an open compact subgroup KT ⊆
GS(T)(A∞).

We describe the set S(T) now. For each prime p ∈ Σp, we put T/p = T∩Σ∞/p. We define first
a subset T′/p ⊆ Σ∞/p ∪{p} containing T/p which depends on the types of p as in § 3.2 and we put

T′ =
∐
p∈Σp

T′/p and S(T) = S t T′. (5.1.1)

We separate the discussion into several cases.

– If p is of type α] or type β] for ShK(GS), we put T′/p = ∅.

– If p is of type α for S, i.e. (Σ∞/p − S∞/p) has even cardinality, we distinguish two cases.

* (Case α1) T/p ( Σ∞/p − S∞/p. We write S∞/p ∪ T/p =
∐
Ci as a disjoint union of

chains. Here, by a chain Ci, we mean that there exist τi ∈ S∞/p ∪ T/p and an integer

2175

https://doi.org/10.1112/S0010437X16007326 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X16007326


Y. Tian and L. Xiao

mi > 0 such that Ci = {σ−aτi : 0 6 a 6 mi} belong to S∞/p ∪ T/p and στi, σ
−mi−1τi /∈

(S∞/p ∪ T/p). We put T′/p =
∐
iC
′
i, where

C ′i :=

{
Ci ∩ T/p if #(Ci ∩ T/p) is even,

(Ci ∩ T/p) ∪ {σ−mi−1τi} if #(Ci ∩ T/p) is odd.

For example, if Σ∞/p = {τ0, σ
−1τ0, . . . , σ

−9τ0}, S∞/p = {σ−2τ0, σ
−6τ0}, and T/p =

{σ−3τ0, σ
−5τ0, σ

−7τ0}, then S∞/p ∪ T/p is separated into two chains C1 = {σ−2τ0,
σ−3τ0} and C2 = {σ−5τ0, σ

−6τ0, σ
−7τ0}. We have T′/p = {σ−3τ0, σ

−4τ0, σ
−5τ0, σ

−7τ0}.
An alternative way to understand the partition of T/p is to view it as a subset of
Σ∞/p − S∞/p with the cycle structure inherited from Σ∞/p. Then Ci ∩ T/p is just to
group elements of T/p into connected subchains.

* (Case α2) T/p = Σ∞/p − S∞/p. We put T′/p = T/p.

– If p is of type β for S, i.e. (Σ∞/p − S∞/p) has odd cardinality and BS splits at p. We
distinguish two cases.

* (Case β1) T/p ( Σ∞/p − S∞/p. In this case, we define T′/p using the same rule as in
Case α1.

* (Case β2) T/p = Σ∞/p − S∞/p. We put T′p = T/p ∪ {p}.

In either case, we put T′∞/p = T′/p ∩ Σ∞. It is equal to T′/p unless in case β2.

It is easy to see that each T′/p has even cardinality. Therefore, S(T) is also an even set, and it

defines a quaternion algebra BS(T) over F . Note that S(T) still satisfies Hypothesis 3.3.

Let GS(T) = ResF/Q(B×
S(T)) be the algebraic group over Q associated to B×

S(T). We fix an

isomorphism BS ⊗F Fl ' BS(T) ⊗F Fl whenever {l} ∩ S = {l} ∩ S(T). We define an open compact
subgroup KT = Kp

TKT,p ⊆ GS(T)(A∞) determined by K as follows.
– We put Kp

T = Kp. This makes sense, because BS ⊗F Fl ' BS(T) ⊗F Fl for any finite place l
prime to p.

– For KT,p =
∏

p∈Σp
KT,p, we take KT,p = Kp, unless we are in case α2 or β2.

* If p is of type α2 for ShK(GS), we have BS(T) ⊗F Fp ' BS ⊗F Fp ' M2(OFp). We take
KT,p = Kp if T/p = (Σ∞/p − S∞/p) = ∅, and KT,p = Iwp if T/p 6= ∅.

* If we are in case β2 (and β]), BS(T) is ramified at p. We take KT,p = O×BFp , where OBFp
is the unique maximal order of the division algebra over Fp with invariant 1/2.

The level KT fits into the framework considered in § 3.2. We thus obtain a quaternionic
Shimura variety ShKT(GS(T)), and its integral model ShKT(GS(T)) is given by Corollary 3.19.
Note that:

– if we are in case α1 above, then p is of type α for the Shimura variety ShKT(GS(T));

– if we are in case α2 above, then p is of type α] for ShKT(GS(T)) unless p is of type α for
ShK(GS) and T/p = Σ∞/p − S∞/p = ∅, in which case p remains of type α for ShKT(GS(T));

– if we are in case β1 above, then p is of type β for ShKT(GS(T));

– if we are in case β2 or β] above, then p is of type β] for ShKT(GS(T)).

Theorem 5.2. For a subset T ⊆ Σ∞ − S∞, the GO-stratum ShK(GS)Fp,T is isomorphic to a

(P1)IT-bundle over ShKT(GS(T))Fp , where S(T) is as described above and the index set is given by

IT = S(T)∞ − (S∞ ∪ T) =
⋃
p∈Σp

(T′∞/p − T/p).
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Moreover, this isomorphism is compatible with the action of GS(A∞,p), when taking the limit
over open compact subgroups Kp ⊆ GS(A∞,p).

As an example, the situation IT = ∅ happens exactly when T′∞/p = T/p for every p, which
means that, for each p, either T/p is divided into a union of chains of an even number of
‘consecutive’ elements of Σ∞/p − S∞/p, or T/p = Σ∞/p.

Theorem 5.2 will follow from the analogous statements (Theorem 5.8 and Corollary 5.9) in
the unitary case. But note Remark 5.10.

5.3 The signatures at infinity for the unitary Shimura varieties
In order to describe the unitary Shimura data associated to ShKT(GS(T)) as in §§ 3.4 and 3.5,

we need to pick a lift S̃(T) of the set S(T) to embeddings of E. More precisely, we will define
a subset S̃(T)∞ =

∐
p∈Σp

S̃(T)∞/p, where S̃(T)∞/p consists of exactly one lift τ̃ ∈ ΣE,∞ for each

τ ∈ S(T)∞/p. Then we put S̃(T) = (S(T), S̃(T)∞). So, we just need to assign such choices of lifts.

– When τ ∈ S(T)∞/p belongs to S∞/p, we choose its lift τ̃ ∈ ΣE,∞ to be the one that belongs

to S̃.

We now specify our choices of the lifts in S̃(T)∞/p for the elements of T′∞/p, which are

collectively denoted by T̃′/p. We separate into cases and use freely the notation from § 5.1. There

is nothing to do if p is of type α] or type β] (for S).

– p is of type α (for S). In this case, p splits into two primes q and qc in E. For a place
τ ∈ Σ∞/p, we use τ̃ to denote its lift to ΣE,∞, which corresponds to the p-adic place q.

* (Case α1) For a chain Ci = {σ−aτi, 0 6 a 6 mi} ⊆ S∞/p ∪ T/p and the corresponding
set C ′i = {σ−a1τi, . . . , σ

−ari τi} as defined in 5.1 with some 0 6 a1 < · · · < ari 6 mi + 1
(note that ri is always even by construction), we put

C̃ ′i = {σ−a1 τ̃i, σ
−a2 τ̃ ci , σ

−a3 τ̃i, . . . , σ
−ari τ̃ ci }.

Set T̃′/p =
∐
i C̃
′
i.

* (Case α2) We need to fix τ0 ∈ T/p = Σ∞/p−S∞/p and write T/p as {σ−a1τ0, . . . , σ
−a2rτ0}

for integers 0 = a1 < · · · < a2r 6 fp − 1. We put

T̃′/p = {σ−a1 τ̃0, σ
−a2 τ̃ c0 , σ

−a3 τ̃0, . . . , σ
−a2r τ̃ c0}.

– p is of type β (for S). In this case, p is inert in E/F , and we do not have a canonical choice
for the lift τ̃ of an embedding τ .

* (Case β1) In this case, we fix a partition of the preimage of C ′i under the map ΣE,∞/p→
Σ∞/p into two chains C̃ ′′i

∐
C̃ ′′ci , where

C̃ ′′i = {σ−a1 τ̃i, . . . , σ
−ari τ̃i} and C̃ ′′ci = {σ−a1 τ̃ ci , . . . , σ

−ari τ̃ ci }.

Here the choice of τ̃i is arbitrary, and ri is always even by construction. We put

C̃ ′i := {σ−a1 τ̃i, σ
−a2 τ̃ ci , σ

−a3 τ̃i, . . . , σ
−ari τ̃ ci }.

Finally, we set T̃′/p =
∐
i C̃
′
i.
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* (Case β2) We fix an element τ̃0 ∈ ΣE,∞/p. Then the preimage of T′/p under the natural

map ΣE,∞/p→ Σ∞/p can be written as {σ−a1 τ̃0, . . . , σ
−a2r τ̃0} (where r = #(Σ∞−S∞)

is odd) with 0 = a1 < · · · < a2r 6 2fp − 1 and ar+i = ai + fp for all i. We put

T̃′/p = {σ−a1 τ̃0, σ
−a3 τ̃0, σ

−a5 τ̃0, . . . , σ
−a2r−1 τ̃0}.

Since r is odd, this consists of exactly one lift of each element of T′∞/p.

Now we can assign integers sT,τ̃ according to S̃(T):
– if τ ∈ Σ∞ − S(T)∞, we have sτ̃ = 1 for all lifts τ̃ of τ ;
– if τ ∈ S(T)∞ and τ̃ is the lift in S̃(T)∞, we have sT,τ̃ = 0 and sT,τ̃c = 2.

We put T̃′ =
⋃

p∈Σp
T̃′/p and T̃′c, the complex conjugations of the elements in T̃′.

Now we compare the PEL data for the Shimura varieties for G′
S̃

and G′
S̃(T)

. We fix an

isomorphism θT : DS → DS(T) that induces an isomorphism between ODS,p and ODS(T),p for
each p ∈ Σp, where ODS,p and ODS(T),p are respectively fixed maximal orders of DS ⊗F Fp and
DS(T) ⊗F Fp as in § 3.7.

Lemma 5.4. Let δS ∈ (Dsym
S )× be an element satisfying Lemma 3.8(1). Then there exists an

element δS(T) ∈ (Dsym
S(T))

× satisfying the same condition with S replaced by S(T) such that, if

∗S : l 7→ δ−1
S l̄δS and ∗S(T) : l 7→ δ−1

S(T) l̄δS(T) denote the involutions on DS and DS(T) induced by

δS and δS(T), respectively, then θT induces an isomorphism of algebras with positive involutions

(DS, ∗S)
∼−→ (DS(T), ∗S(T)).

Proof. We choose first an arbitrary δ′
S(T) ∈ (Dsym

S(T))
× satisfying Lemma 3.8(1). Let ∗′

S(T) denote the

involution l 7→ (δ′
S(T))

−1 l̄δ′
S(T) on DS(T). By the Skolem–Noether theorem, there exists g ∈ D×

S(T)

such that θT(x)
∗′
S(T) = gθT(x

∗S)g−1 for all x ∈ DS. Since both ∗2S and ∗′2
S(T) are the identity, we get

g
∗′
S(T) = gµ for some µ ∈ E× with µ̄µ = 1. By Hilbert 90, we can write µ = λ/λ̄ for some λ ∈ E×.

Up to replacing g by gλ, we may assume that g
∗′
S(T) = g or, equivalently, δ′

S(T)g = δ′
S(T)g and

hence δ′
S(T)g ∈ (Dsym

S(T))
×. Note that we still have the freedom to modify g by an element of F×

without changing ∗S(T). We claim that, up to such a modification on g, δS(T) = δ′
S(T)g will answer

the question. Indeed, by construction, θT is an ∗-isomorphism, i.e. θT(x)∗S(T) = θT(x
∗S). Note that

θT sends ODS,p isomorphically to ODS(T),p for every p ∈ Σp, and both lattices are invariant under

the involutions ∗S and ∗′
S(T), respectively. So, up to modifying g by an element of F×, we may

assume that g ∈ O×DS(T),p
for all p ∈ Σp. Then it is clear that δS(T) satisfies Lemma 3.8(1)(a),

since so does δ′
S(T) by assumption. It remains to prove that, up to multiplying g by an element

of O×F,(p), the hermitian form

(v, w) 7→ ψδS(T)(v, wh
′
S̃(T)

(i)) = TrDS(T),R/R(
√
dvh′

S̃(T)
(i)−1w̄δS(T))

on DS(T),R := DS(T) ⊗Q R is positive definite, where ψδS(T) is the ∗S(T)-hermitian alternating form
on DS(T) defined as in § 3.7. Since the elements δS and δ′

S(T) satisfy similar positivity conditions by

assumption, we get two semi-simple R-algebras with positive involutions (DS,R, ∗S) and (DS(T),R,

∗S(T)). By [Kot92, Lemma 2.11], there exists an element b ∈ D×
S(T),R such that bθT(x

∗S)b−1 =

(bθT(x)b−1)
∗′
S(T) . It follows that g = b

∗′
S(T)bλ with λ ∈ (F ⊗QR)×. Up to multiplying g by an element

of O×F,(p), we may assume that λ is totally positive so that λ = ξ2 with ξ ∈ (F ⊗Q R)×. Then, up
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to replacing b by bξ, we have g = b
∗′
S(T)b. Then the positivity of the form ψδS(T) follows immediately

from the positivity of ψδ′
S(T)

and the fact that ψδS(T)(v, wh
′
S̃(T)

(i)) = ψδ′
S(T)

(bv, bwh′
S̃(T)

(i)). 2

Lemma 5.5. We keep the choice of δS(T) as in Lemma 5.4. Then there exists an isomorphism

ΘT : DS(A∞,p)→ DS(T)(A∞,p) of skew ∗-hermitian spaces compatible with the actions of DS and

DS(T), respectively.

Proof. This could be done explicitly. We however prefer a sneaky quick proof. Under Morita

equivalence, we are essentially working with two-dimensional hermitian spaces and the associated

unitary groups. It is well known that, over a non-archimedean local field, there are exactly two

hermitian spaces and the associated unitary groups are not isomorphic (see e.g. [Min11, 3.2.1]). In

our situation, we know that G′
S̃,1,v
∼= G′

S̃(T),1,v
for any place v - p∞. It follows that the associated

hermitian spaces at v are isomorphic. The lemma follows. 2

Corollary 5.6. The isomorphisms θT and ΘT induce an isomorphism θ′T : G′
S̃

∼=−→ G′
S̃(T)

. Moreover,

θ′T × id takes the subgroup EG,S,k0 ⊂ G′S̃ ×Galk0 to the subgroup EG,S(T),k0
⊂ G′

S̃(T)
×Galk0 .

Proof. The first statement follows from the description of the two groups in (3.12.1) and (3.12.2)

and the interpretation of these groups as certain automorphic groups of the skew ∗-hermitian

spaces. The second statement follows from the description of both subgroups in § 3.12 and the

observation that the choice of signatures in § 5.3 ensures that the reciprocity maps Reck0 for

both Shimura data are the same at p. 2

5.7 Level structure of ShK′
T
(G′

S̃(T)
)

We now specify the level structure K ′T ⊆ G′S̃(T)
(A∞).

– For the prime-to-p level, since ΘT induces an isomorphism G′
S̃(T)

(A∞,p) ' G′
S̃
(A∞,p), the

subgroup K ′p ⊆ G′
S̃
(A∞,p) corresponds to a subgroup K ′pT ⊆ G′S̃(T)

(A∞,p).
– For K ′T,p, we take it as the open compact subgroup of G′

S̃(T)
(Qp) corresponding to KT,p ⊆

GS̃(T)(Qp) by the rule in § 3.9. According to the discussion there, it suffices to choose a chain

of lattices Λ
(1)
T,p ⊂ Λ

(2)
T,p in DS(T) ⊗F Fp for each p ∈ Σp. Using the isomorphism θT, we can

identify DS(T) ⊗F Fp with DS ⊗F Fp and hence with M2(E ⊗F Fp).

* For p ∈ Σp with KT,p = Kp, we take Λ
(1)
T,p ⊆ Λ

(2)
T,p to be the same as the chain Λ

(1)
p ⊆ Λ

(2)
p

for defining K ′p ⊂ G′S(Qp).

* For p ∈ Σp with KT,p 6= Kp, KT,p is either the Iwahori subgroup of GL2(OFp) or O×BFp .

We take then Λ
(1)
T,p ( Λ

(2)
T,p to be the corresponding lattice as in § 3.9 that defines the

Iwahori level at p.

We also specify the lattices we use for both Shimura varieties: if ΛS denotes the chosen lattice

of DS, we choose the lattice of DS(T) to be ΛS(T) = θT(ΛS). With these data, we have a unitary

Shimura variety ShK′T(G
′
S̃(T)

) over the reflex field ES̃(T), which is the field corresponding to the

Galois group fixing the subset S̃(T) ⊆ ΣE,∞. To construct an integral model of ShK′T(G
′
S̃(T)

), we

need to choose an order ODS(T)
. Let ODS be the order stable under ∗ and maximal at p used to

define the integral model ShK′(G
′
S̃
). We put ODS(T)

= θT(ODS). For any p ∈ Σp, both ODS,p and

ODS(T),p can be identified with M2(OE ⊗OF OFp).
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We have now all the PEL data needed for Theorem 3.14, which ensures that ShK′T(G
′
S̃(T)

)

admits an integral model ShK′T(G
′
S̃(T)

) over W (k0). Using ShK′T(G
′
S̃(T)

), we can construct an

integral model ShKT(GS(T)) of the quaternionic Shimura variety ShKT(GS(T)).

Theorem 5.8. For a subset T ⊆ Σ∞ − S∞, let ShK′(G
′
S̃
)k0,T ⊆ ShK′(G

′
S̃
)k0 denote the GO-

stratum defined in Definition 4.6. Let IT be as in Theorem 5.2. Then we have the following.

(1) (Description) ShK′(G
′
S̃
)k0,T is isomorphic to a (P1)IT-bundle over ShK′T(G

′
S̃(T)

)k0 .

(2) (Compatibility of abelian varieties) Let πT : ShK′(G
′
S̃
)k0,T → ShK′T(G

′
S̃(T)

)k0 denote the

projection of the (P1)IT-bundle in (1). The abelian schemes A′
S̃,k0

and π∗TA
′
S̃(T),k0

over ShK′(G
′
S̃
)k0

are isogenous, where A′
S̃,k0

and A′
S̃(T),k0

denote respectively the universal abelian varieties over

ShK′(G
′
S̃
)k0,T and over ShK′T(G

′
S̃(T)

)k0 .

(3) (Compatibility with Hecke action) Taking the limit over the open compact subgroups

K ′p ⊆ G′
S̃
(A∞,p), the isomorphism as well as the isogeny of abelian varieties is compatible with

the action of the Hecke correspondence given by G̃S̃ = G′′
S̃
(Q)+,(p)G′

S̃
(A∞,p) ∼= G̃S̃(T).

(4) (Compatibility with partial Frobenius) The description in (1) is compatible with the

action of the twisted partial Frobenius (§ 3.22) in the sense that we have a commutative diagram

ShK′(G
′
S̃
)k0,T

ξrel
//

πT
**

F′
p2,S̃

--
F′∗
p2,S̃(T)

(ShK′(G
′
σ2
p S̃

)k0,σ2
pT

))

��

F′∗
p2,S̃(T)

// ShK′(G
′
σ2
p S̃

)k0,σ2
pT

π
σ2
pT

��
ShK′T(G

′
S̃(T)

)k0

F′
p2,S̃(T) // ShK′

σ2
pT

(G′
σ2
p(S̃(T))

)k0

where the square is Cartesian, we added subscripts to the partial Frobenius to indicate the

corresponding base scheme, and the morphism ξrel is a morphism whose restriction to each fiber

π−1
T (x) = (P1

x)IT is the product of the relative p2-Frobenius of the P1 indexed by IT ∩ Σ∞/p =

T′∞/p − T/p, and the identity on the other P1
x.

The proof of this theorem will occupy the rest of this section and concludes in § 5.24. We

first state a corollary.

Corollary 5.9. (i) The Goren–Oort stratum ShK′p(G
′
S̃
)◦Fp,T is isomorphic to a (P1)IT-bundle

over ShK′p(G
′
S̃(T)

)◦Fp , equivariant for the action of EG,S,℘̃ ∼= EG,S(T),℘̃ (which are identified as in

Corollary 5.6) with trivial action on the fibers.

(ii) The GO-stratum ShK′′p (G′′
S̃
)k0,T is isomorphic to a (P1)IT-bundle over ShK′′p (G′′

S̃(T)
)k0 , such

that the natural projection πT : ShK′′p (G′′
S̃
)k0,T→ ShK′′p (G′′

S̃(T)
)k0 is equivariant for the tame Hecke

action.

(iii) The abelian schemes A′′
S̃,k0

and π∗T(A′′
S̃(T),k0

) over ShK′′p (G′′
S̃
)k0,T are isogenous.

2180

https://doi.org/10.1112/S0010437X16007326 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X16007326


On Goren–Oort stratification for quaternionic Shimura varieties

(iv) The following diagram is commutative:

ShK′′p (G′′
S̃
)k0,T

ξrel
//

F′′
p2,S̃

--

πT
**

F∗
p2,S̃(T)

(ShK′′p (G′′
σ2
p S̃

)k0,σ2
pT

)
F′′∗
p2,S̃(T)

//

��

ShK′′p (G′′
σ2
p S̃

)k0,σ2
pT

πS̃(T)

��
ShK′′T,p(G

′′
S̃(T)

)k0

F′′
p2,S̃(T) // ShK′′

σ2
pT,p

(G′′
σ2
p(S̃(T))

)k0

where the square is Cartesian, F′′
p2,S̃

and F′′
p2,S̃(T)

denote the twisted partial Frobenii (§ 3.22)

on ShK′′p (G′′
S̃
)k0 and ShK′′T,p(G

′′
S̃(T)

)k0 , respectively, and ξrel is a morphism whose restriction to

each fiber π−1
T (x) = (P1

x)IT is the product of the relative p2-Frobenius of the P1
x indexed by

IT ∩ Σ∞/p = T′∞/p − T/p, and the identity on the other P1
x.

Proof. This is an immediate consequence of Corollary 5.9 above. The claims regarding the
universal abelian varieties follow from the explicit construction of A′′

S̃
and A′′

S̃(T)
in § 3.20. 2

Remark 5.10. We emphasize that the analog of Corollary 5.9(ii) for quaternionic Shimura
varieties only holds over Fp. This is because the subgroups EG,S,℘ and EG,S(T),℘, although
abstractly isomorphic, sit in GS ×Galk0

∼= GS(T) ×Galk0 as different subgroups. The two Deligne
homomorphisms are different.

The rest of this section is devoted to the proof of Theorem 5.8, which concludes in § 5.24.

5.11 Signature changes
The basic idea of proving Theorem 5.8 is to find a quasi-isogeny between the two universal abelian
varieties AS̃ and B := AS̃(T) (over an appropriate base). We view this quasi-isogeny as two genuine

isogenies AS̃

φ−→ C
φ′
←− B for some abelian variety C. Each isogeny is characterized by the set of

places τ̃ ∈ ΣE,∞ where the isogeny does not induce an isomorphism of the τ̃ -components of the
de Rham cohomology of the abelian varieties. We define these two subsets ∆̃(T)+ and ∆̃(T)− of
ΣE,∞ now, as follows. As before, ∆̃(T)± =

∐
p∈Σp

∆̃(T)±/p for subsets ∆̃(T)±/p ⊆ ΣE,∞/p. When p

is of type α] or β] for S, we set ∆̃(T)±/p = ∅. For the other two types, we use the notation in § 5.3

in the corresponding cases (in particular, our convention on τ̃ and the aj).
– (Case α1) Put

C̃−i :=
⋃
j odd

16j6ri

{σ−`τ̃i : aj 6 ` 6 aj+1 − 1}.

We set ∆̃(T)−/p =
∐
i C̃
−
i and ∆̃(T)+

/p = (∆̃(T)−/p)
c.

– (Case α2) Put

∆̃(T)−/p :=
⋃

16i6r

{
σ−lτ̃0 : a2i−1 6 l < a2i

}
and ∆̃(T)+

/p := (∆̃(T)−/p)
c.

– (Case β1) Put

C̃−i :=
⋃
j odd

16j6ri

{σ−`τ̃i : aj 6 ` 6 aj+1 − 1}.
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We set ∆̃(T)−/p =
∐
i C̃
−
i and ∆̃(T)+

/p = (∆̃(T)−/p)
c. (Formally, this is the same recipe as in

case α1, but the choice of τ̃i is less determined; see § 5.3.)
– (Case β2) Put

∆̃(T)−/p :=
⋃

16i6r

{
σ−lτ̃0 : a2i−1 6 l < a2i

}
.

Unlike in all other cases, we put ∆̃(T)+
/p = ∅.

We always have ∆̃(T)+ ∩ ∆̃(T)− = ∅.

Notation 5.12. We use TE (respectively T′E) to denote the preimage of T (respectively T′) under
the map ΣE,∞→ Σ∞.

The following two lemmas follow from the definition by a case-by-case check.

Lemma 5.13. For each τ̃ ∈ ∆̃(T)+ (respectively ∆̃(T)−), let n be the unique positive integer such
that τ̃ , σ−1τ̃ , . . . , σ1−nτ̃ all belong to ∆̃(T)+ (respectively ∆̃(T)−) but σ−nτ̃ does not. Then, for
this n, σ−nτ̃ ∈ T′E . Moreover, if τ̃ also belongs to T′E , then n equals the number nτ introduced
in § 4.4.

Lemma 5.14. (1) If both τ̃ and στ̃ belong to ∆̃(T)+ (respectively ∆̃(T)−), then τ̃ |F belongs to
S∞.

(2) If τ̃ ∈ ∆̃(T)− but στ̃ /∈ ∆̃(T)−, then τ̃ ∈ T̃′.
(3) If τ̃ /∈ ∆̃(T)− but στ̃ ∈ ∆̃(T)−, then τ̃ ∈ T̃′c.

5.15 Description of the strata ShK′(G′
S̃
)k0,T via isogenies

To simplify the notation, we put X ′ = ShK′(G
′
S̃
)k0 and X ′T = ShK′(G

′
S̃
)k0,T for a subset T ⊆

Σ∞ − S∞. We will first prove statement (1) of Theorem 5.8. Following the idea of Helm [Hel12],
we introduce auxiliary moduli spaces Y ′T and Z ′T and establish isomorphisms

X ′T Y ′T∼=
η1oo η2

∼=
// Z ′T , (5.15.1)

where Z ′T is a (P1)IT-bundle over the special fiber of ShK′T(G
′
S̃(T)

)k0 .

Recall that we have fixed an isomorphism θT : (DS, ∗S)
∼−→ (DS(T), ∗S(T)) of simple algebras

over E with positive involution, and put ODS(T)
= θT(ODS). To ease the notation, we identify

ODS(T)
with ODS via θT, and denote them by OD when there is no confusion.

We start now to describe Y ′T : it is the moduli space over k0 which attaches to a locally
noetherian k0-scheme S the set of isomorphism classes of (A, ιA, λA, αK′ , B, ιB, λB, βK′T , C, ιC ;φA,
φB), where we have the following.

(i) (A, ιA, λA, αK′) is an element in X ′T(S).
(ii) (B, ιB, λB, βK′T) is an element in ShK′T(G

′
S̃(T)

)(S).

(iii) C is an abelian scheme over S of dimension 4g, equipped with an embedding ιC : OD →
EndS(C).

(iv) φA : A→ C is an OD-isogeny whose kernel is killed by p, such that the induced map

φA,∗,τ̃ : HdR
1 (A/S)◦τ̃ → HdR

1 (C/S)◦τ̃

is an isomorphism for τ̃ ∈ ΣE,∞ unless τ̃ ∈ ∆̃(T)+, in which case we require that

Ker(φA,∗,τ̃ ) = Im(FnA,es,τ̃ ), (5.15.2)
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where n is as determined in Lemma 5.13 and FnA,es,τ̃ is defined in (4.2.4). (When τ itself

belongs to T′, the number n equals nτ introduced in § 4.4. In this case, condition (5.15.2)

is equivalent to saying that Ker(φA,∗,τ̃ ) = ω◦A∨/S,τ̃ .)

(v) φB : B→ C is an OD-isogeny whose kernel is killed by p such that φB,∗,τ̃ : HdR
1 (B/S)◦τ̃ →

HdR
1 (C/S)◦τ̃ is an isomorphism for τ̃ ∈ ΣE,∞ unless τ̃ ∈ ∆̃(T)−, in which case we require

that Im(φB,∗,τ̃ ) is equal to φA,∗,τ̃ (Im(FnA,es,τ̃ )), where n is as determined in Lemma 5.13.

(Note that as τ̃ /∈ ∆̃(T )+, φA,∗,τ̃ is an isomorphism by (iv).)

(vi) The tame level structures are compatible, i.e. T (p)(φA) ◦ αpK′p = T (p)(φB) ◦ αp
K′pT

as maps

from Λ̂
(p)
S
∼= Λ̂

(p)
S(T) to T (p)(C), modulo K ′p, if we identify the two lattices naturally as in

§ 5.7.

(vii) If p is a prime of type α] for the original quaternionic Shimura variety ShK(GS), then αp

and βp are compatible, i.e. φA(αp) = φB(βp), where αp ⊆ A[p] denotes the closed finite

flat group scheme given by Theorem 3.14(c2). (Note that φA and φB induce isomorphisms

between A[p], C[p], and B[p] for a prime p of type α] for S.)

(viii) Let p be a prime in Case α2, splitting into qq̄ in E. Then βp = Hq⊕Hq̄. If φq : B→ B′q =

B/Hq is the canonical isogeny, then the kernel of the induced map φq,∗ : HdR
1 (B/S)◦τ̃ →

HdR
1 (B′q/S)◦τ̃ coincides with that of φB,∗ : HdR

1 (B/S)◦τ̃ → HdR
1 (C/S)◦τ̃ for all τ̃ ∈ ∆̃(T)−/p.

(ix) We have the following commutative diagram.

A
φA //

λA
��

C B
φBoo

λB
��

A∨ C∨
φ∨Aoo

φ∨B // B∨

Remark 5.16. Compared to [Hel12], our moduli problem appears to be more complicated. This

is because we allow places above p of F to be inert in the CM extension E. It is clear that B is

quasi-isogenous to A. So, when S is the spectrum of a perfect field k, the covariant Dieudonné

module D̃B is a W (k)-lattice in D̃A[1/p]. The complicated conditions (v) and (vi) can be better

understood by looking at D̃B (see the proof of Proposition 5.17 below).

Proposition 5.17. The natural forgetful functor

η1 : (A, ιA, λA, αK′ , B, ιB, λB, βK′T , C, ιC ;φA, φB) 7→ (A, ιA, λA, αK′)

induces an isomorphism η1 : Y ′T → X ′T.

Proof. By the general theory of moduli spaces of abelian schemes due to Mumford, Y ′T is

representable by an k0-scheme of finite type. Hence, to prove the proposition, it suffices to show

that the natural map Y ′T→X ′T induces a bijection on closed points and the tangent spaces at each

closed point. The proposition will thus follow from Lemmas 5.18 and 5.20 below. This is a long

and tedious book-keeping check, essentially following the ideas of [Hel12, Proposition 4.4]. 2

Lemma 5.18. Let x = (A, ιA, λA, αK′) ∈ X ′T(k) for a perfect field k. Then there exist unique

(B, ιB, λB, βK′T , C, ιC ;φA, φB) such that (A, ιA, λA, αK′ , B, ιB, λB, βK′T , C, ιC ;φA, φB) ∈ Y ′T(k).
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Proof. We first recall some notation regarding Dieudonné modules. Let D̃A denote the covariant
Dieudonné module of A[p∞]. Then DA := D̃A/p is the covariant Dieudonné module of A[p].
Given the action of OD ⊗Z Zp ' M2(OE ⊗Z Zp) on A, we have direct sum decompositions

D̃◦A := eD̃A =
⊕

τ̃∈ΣE,∞

D̃◦A,τ̃ , D◦A := eDA =
⊕

τ̃∈ΣE,∞

D◦A,τ̃ ,

where e denotes the idempotent
(

1 0
0 0

)
. By the theory of Dieudonné modules, we have canonical

isomorphisms
Hcris

1 (A/k)W (k)
∼= D̃A, HdR

1 (A/k) ∼= DA,

compatible with all the structures. For τ̃ ∈ ΣE,∞, we have the Hodge filtration 0 → ω◦A∨,τ̃ →
D◦A,τ̃ → Lie(A)◦τ̃ → 0. We use ω̃◦A∨,τ̃ to denote the preimage of ω◦A∨,τ̃ ⊆ D◦A,τ̃ under the reduction

map D̃◦A,τ̃ � D◦A,τ̃ .

We first construct C from A. For each τ̃ ∈ ΣE,∞, we define a W (k)-module M◦τ̃ with D̃◦A,τ̃ ⊆
M◦τ̃ ⊆ p−1D̃◦A,τ̃ as follows. We put M◦τ̃ = D̃◦τ̃ unless τ̃ ∈ ∆̃(T)+. In the exceptional case, let n be
the integer as determined in Lemma 5.13 (or as in property (v) of Y ′T above), and put

M◦τ̃ := p−1FnA,es(D̃◦A,σ−nτ̃ ),

where FnA,es is the n-iteration of the essential Frobenius on D̃◦A defined in Notation 4.2.

If τ̃ ∈ ∆̃(T)+ ∩ TE , then the number n for τ̃ in Lemma 5.13 coincides with nτ introduced in
§ 4.4. Since the partial Hasse invariant hτ̃ (A) vanishes for any τ̃ ∈ TE by the definition of X ′T, we
see that M◦τ̃ = p−1ω̃◦A,τ̃ for τ̃ ∈ ∆̃(T)+ ∩ TE .

We now check that, for any τ̃ ∈ ΣE,∞,

FA(M◦σ−1τ̃ ) ⊆M◦τ̃ and VA(M◦τ̃ ) ⊆M◦σ−1τ̃ . (5.18.1)

Note that we are using the genuine but not essential Frobenius and Verschiebung here. We
distinguish several cases.

– τ̃ , σ−1τ̃ /∈ ∆̃(T)+. Then M◦τ̃ = D̃◦A,τ̃ and M◦σ−1τ̃ = D̃◦A,σ−1τ̃ . Hence, (5.18.1) is clear.

– τ̃ ∈ ∆̃(T)+ and σ−1τ̃ /∈ ∆̃(T)+. Then we have M◦σ−1τ̃ = D̃◦A,σ−1τ̃ and M◦τ̃ = p−1FA(D̃◦A,σ−1τ̃ ).

Hence, FA(M◦σ−1τ̃ ) ⊆M◦τ̃ is trivial, and VA(M◦τ̃ ) = M◦σ−1τ̃ .

– τ̃ , σ−1τ̃ ∈ ∆̃(T)+. Let n be the positive integer for τ̃ as in Lemma 5.13. Then we have

M◦τ̃ = p−1FnA,es(D̃◦A,σ−nτ̃ ) = FA,es

(
p−1Fn−1

A,es (D̃◦A,σ−nτ̃ )
)

= FA,es

(
M◦σ−1τ̃

)
.

The inclusions (5.18.1) are clear from this.
– τ̃ /∈ ∆̃(T)+ and σ−1τ̃ ∈ ∆̃(T)+. In this case, σ−1τ̃ must be in TE by Lemma 5.13. Hence,

we have M◦τ̃ = D̃◦A,τ̃ and M◦σ−1τ̃ = p−1ω̃◦A,σ−1τ̃ as remarked above. We thus see that

FA(M◦σ−1τ̃ ) = M◦τ̃ and VA(M◦τ̃ ) = pM◦σ−1τ̃ .
Consequently, if we put M◦ =

⊕
τ̃∈ΣE,∞

M◦τ̃ and M = (M◦)⊕2, then M is a Dieudonné

module, and D̃A ⊆ M ⊆ p−1D̃A with induced F and V on M . Consider the quotient M/D̃A.
It corresponds to a finite subgroup scheme K of A[p] stable under the action of OD by the
covariant Dieudonné theory. We put C = A/K and let φA : A→ C denote the natural quotient,
so that the induced map φA,∗ : D̃A→ D̃C is identified with the natural inclusion D̃A ↪→M . The
morphisms FC and VC on D̃C are induced from those on D̃A[1/p]. It is clear that C is equipped
with a natural action ιC by OD, and φA satisfies conditions (iii) and (iv) for the moduli space Y ′T .
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Conversely, if C exists, the conditions (iii) and (iv) imply that D̃◦C,τ̃ has to coincide with M◦τ̃ .

Therefore, C is uniquely determined by A. We finally remark that, by construction, D̃◦C,τ̃/D̃◦A,τ̃
is isomorphic to k if τ̃ ∈ ∆̃(T)+ and trivial otherwise.

We now construct the abelian variety B and the isogeny φB : B → C. Similarly to the
construction for C, we will first define a W (k)-lattice N◦ =

⊕
τ̃∈ΣE,∞

N◦τ̃ ⊆ D̃◦C , with N◦τ̃ =

D̃◦C,τ̃ unless τ̃ ∈ ∆̃(T)−. In the exceptional case, we put N◦τ̃ = FnA,es(D̃◦C,σ−nτ̃ ), where n is the

positive integer given by Lemma 5.13. Here we view D̃◦C,σ−nτ̃ as a lattice of D̃◦A,σ−nτ̃ [1/p], so that

FnA,es(D̃◦C,σ−nτ̃ ) makes sense. Note once again that, if τ̃ ∈ ∆̃(T)−∩TE , then n equals nτ defined in

4.4, and we have N◦τ̃ = ω̃◦C,τ̃ ' ω̃◦A,τ̃ , since hτ̃ (A) vanishes. We now check that N◦ is stable under
FC and VC , i.e. FC(N◦σ−1τ̃ ) ⊆ N◦τ̃ and VC(N◦τ̃ ) ⊆ N◦σ−1τ̃ for all τ̃ ∈ ΣE,∞. The same arguments

for M above work verbatim in this case (with ∆̃(T)− in place of ∆̃(T)+). Again, we point out
that, by construction, D̃◦C,τ̃/D̃◦B,τ̃ is isomorphic to k if τ̃ ∈ ∆̃(T)− and trivial otherwise.

Therefore, N = (N◦)⊕2 is a Dieudonné module such that the inclusions pD̃C ⊆ N ⊆ D̃C
respect the Frobenius and Verschiebung actions. In particular, the Dieudonné submodule
N/pD̃C ⊂ D̃C/pD̃C is the covariant Dieudonné module of a closed finite subgroup scheme
H ⊂ C[p] stable under the action of OD. We put B = C/H and define φB : B → C to be

the isogeny such that the composite C → B = C/H
φB−→ C is the multiplication by p. Then the

induced morphism φB,∗ : D̃B → D̃C is identified with the natural inclusion N ⊆ D̃C . It is clear
that B is equipped with a natural action by OD, and the condition (v) for the moduli space Y ′T
is satisfied. Conversely, if the abelian variety B exists, then condition (v) implies that D̃◦B has
to be N◦ defined above. This means that B is uniquely determined by C and thus by A.

To see condition (ix) of the moduli space Y ′T , we consider the quasi-isogeny

λB : B
φB−→ C

φA
←− A λA−→ A∨

φ∨A
←− C∨

φ∨B−→ B∨.

We have to show that λB is a genuine isogeny and verify that it satisfies conditions (b2) and
(b3) in Theorem 3.14 for the Shimura variety ShK′T(G

′
S̃(T)

). It is equivalent to proving that, when

viewing D̃◦B,τ̃ as a W (k)-lattice of D̃◦A,τ̃ [1/p] via the quasi-isogeny B
φB−→ C

φA
←− A, the perfect

alternating pairing
〈 , 〉λA,τ̃ : D̃◦A,τ̃ [1/p]× D̃◦A,τ̃c [1/p]→W (k)[1/p]

for τ̃ ∈ ΣE,∞/p induces a perfect pairing of D̃◦B,τ̃ × D̃◦B,τ̃c →W (k) if p is not of type β] for S(T),

and induces an inclusion D̃◦B,τ̃c ⊂ D̃
◦,∨
B,τ̃ with quotient equal to k if p is of type β] for S(T). We

discuss this case by case.
– If p is of type β] for S, then both φA and φB induce isomorphisms on the p-divisible groups

and the statement is clear in this case.
– If p is in Case β2, ∆̃(T)+

/p = ∅. By the construction of B, we have D̃◦B,τ̃ = D̃◦A,τ̃ unless

τ̃ ∈ ∆̃(T)−/p; in the latter case, D̃◦B,τ̃ = F̃nes,τ̃ (D̃◦A,σ−nτ̃ ) is a submodule of D̃◦A,τ̃ with quotient

isomorphic to k. Note that ΣE,∞/p = ∆̃(T)−/p
∐

(∆̃(T)−/p)
c. This implies that the pairing

〈 , 〉λA,τ̃ induces an inclusion D̃◦B,τ̃c ⊂ D̃
◦,∨
B,τ̃ with quotient equal to k.

– In all other cases, we have ∆̃(T)+
/p = (∆̃(T)−/p)

c. So,

D̃◦B,τ̃ =


D̃◦A,τ̃ if τ̃ /∈ (∆̃(T)+

/p ∪ ∆̃(T)−/p),

p−1FnA,es(D̃◦A,σ−nτ̃ ) if τ̃ ∈ ∆̃(T)+
/p,

FnA,es(D̃◦A,σ−nτ̃ ) if τ̃ ∈ ∆̃(T)−/p.

(5.18.2)
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It is clear that 〈 , 〉λA induces a perfect pairing on D̃◦B,τ̃ ×D̃◦B,τ̃c if τ̃ /∈ (∆̃(T)+
/p ∪ ∆̃(T)−/p). If

τ̃ ∈ (∆̃(T)+
/p∪∆̃(T)−/p), the perfect duality between D̃◦B,τ̃ and D̃◦B,τ̃c follows from the equality

〈p−1FnA,esu, F
n
A,esv〉λA,τ̃ = 〈u, v〉σnλA,σ−nτ̃

for all u ∈ D̃◦A,σ−nτ̃ and v ∈ D̃◦A,σ−nτ̃c .
This completes the verification of condition (viii) of the moduli space Y ′T and conditions (b2)

and (b3) in Theorem 3.14 for ShK′T(G
′
S̃(T)

). It is also clear that λB induces the involution ∗S(T)

on OD = ODS(T)
.

We now check that the abelian variety B has the correct signature required by the moduli
space ShK′T(G

′
S̃(T)

). For convenience of future reference, we put this into the following lemma.

Lemma 5.19. In the setup above, that is, knowing

dim Coker(φA,∗,τ̃ ) = δ∆̃(T)+(τ̃), dim Coker(φB,∗,τ̃ ) = δ∆̃(T)−(τ̃),

where δ•(?) is 1 if ? ∈ • and is 0 if ? /∈ •, we have dimω◦B∨/k,τ̃ = 2− sT,τ̃ for all τ̃ ∈ ΣE,∞ if and
only if dimω◦A∨/k,τ̃ = 2− sτ̃ for all τ̃ ∈ ΣE,∞, with the numbers sT,τ̃ defined as in § 5.3.

Proof. This is a simple dimension count. We prove the sufficiency, and the necessity follows by
reversing the argument. Using the signature condition for the Shimura variety X ′T, we have

sτ̃ = dimk

(
D̃◦A,τ̃/V (D̃◦A,στ̃ )

)
.

Comparing this with the abelian variety B, we have

dimk

D̃◦B,τ̃
V (D̃◦B,στ̃ )

= dimk

D̃◦A,τ̃
V (D̃◦A,στ̃ )

−
(

dimk

D̃◦C,τ̃
D̃◦B,τ̃

−dimk

D̃◦C,τ̃
D̃◦A,τ̃

)
+

(
dimk

D̃◦C,στ̃
D̃◦B,στ̃

−dimk

D̃◦C,στ̃
D̃◦A,στ̃

)
;

here we used the fact that the quotient D̃◦C,στ̃/D̃◦B,στ̃ has the same dimension as V (D̃◦C,στ̃ )/

V (D̃◦B,στ̃ ) and the same for A in place of B because V is equivariant. Using our construction of
the abelian varieties B and C, we deduce that

dimk

(
D̃◦B,τ̃/V (D̃◦B,στ̃ )

)
= sτ̃ −

(
δ∆̃(T)−(τ̃)− δ∆̃(T)+(τ̃)

)
+
(
δ∆̃(T)−(στ̃)− δ∆̃(T)+(στ̃)

)
. (5.19.1)

Using the definition of ∆̃(T)±, one checks case-by-case that the expression (5.19.1) is equal to
sT,τ̃ . We will only indicate the proof when τ̃ ∈ ΣE,∞/p for p in Case α1, and leave the other cases
as an exercise for the interested reader. Indeed, under the notation from § 5.11, when p ∈ Σp is
of type α1, ∆̃(T)±/p =

∐
i C̃
±
i . Then

δ∆̃(T)+(τ̃)− δ∆̃(T)+(στ̃) =


1 if τ̃ is one of σ−a1 τ̃ ci , σ

−a3 τ̃ ci , . . . ,

−1 if τ̃ is one of σ−a2 τ̃ ci , σ
−a4 τ̃ ci , . . . ,

0 otherwise;

and δ∆̃(T)−(τ̃)− δ∆̃(T)−(στ̃) =


1 if τ̃ is one of σ−a1 τ̃i, σ

−a3 τ̃i, . . . ,

−1 if τ̃ is one of σ−a2 τ̃i, σ
−a4 τ̃i, . . . ,

0 otherwise.

Putting these two formulas together and using the notation from § 5.3, we have(
δ∆̃(T)+(τ̃)− δ∆̃(T)+(στ̃)

)
−
(
δ∆̃(T)−(τ̃)− δ∆̃(T)−(στ̃)

)
= δT̃′(τ̃

c)− δT̃′(τ̃).

This implies that (5.19.1) is equal to sT,τ̃ and concludes the proof of Lemma 5.19. 2
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We now continue our proof of Lemma 5.18 (as part of the proof of Proposition 5.17). To fulfill

condition (vi) of the moduli space Y ′T , the tame level structure on B is chosen and determined

as the composite

βp
K′pT

: Λ̂
(p)
S(T)

θ−1
T−−→ Λ̂

(p)
S

α−→ T (p)(A)
T (p)(φA)
−−−−−→ T (p)(C)

T (p)(φB)−1

−−−−−−−→ T (p)(B),

where both T (p)(φA) and T (p)(φB) are isomorphisms because φA and φB are p-isogenies.

It remains to show that there exists a unique collection of subgroups βp satisfying

Theorem 3.14(c2) for ShK′T(G
′
S̃(T)

) and properties (vii) and (viii) of Y ′T . So, the corresponding

prime p ∈ Σp is either of type α] for S or in the Case α2 of § 5.1. In the former case, we have

T/p = ∅, which forces ∆(T)±/p = ∅ by definition. So, the induced morphisms φA,p : A[p∞]→ C[p∞]

and φB,p : B[p∞] → C[p∞] are isomorphisms. Now condition (vii) of the moduli space Y ′T
determines that the level structure βp is taken to be φ−1

B,p

(
φA,p(αp)

)
.

If p is in Case α2 of § 5.1, the prime p splits into two primes q and q̄ in E. Using the

polarization λB, we just need to show that there exists a unique subgroup Hq ⊆ B[q] satisfying

condition (vii). Since sT,τ̃ = 0 or 2 for τ̃ ∈ ΣE,∞/p, both FB,es,τ̃ and VB,es,τ̃ are isomorphisms. We

define a one-dimensional k-vector subspace D◦Hq
⊆ D̃◦B,τ̃/pD̃◦B,τ̃ for each τ̃ ∈ ΣE,∞/q as follows.

– If τ̃ ∈ ∆̃(T)−/p, then D̃◦B,τ̃ is contained in D̃◦C,τ̃ ∼= D̃◦A,τ̃ with quotient isomorphic to k. Put

D◦Hq
= pD̃◦A,τ̃/pD̃◦B,τ̃ .

– If τ̃ /∈ ∆̃(T)−/p, let n ∈ N be the least positive integer such that σ−nτ̃ ∈ ∆̃(T)−/p (such n exists

because τ̃0 in § 5.3 belongs to ∆̃(T)−/p). Put D◦Hq,τ̃
= FnB,es(D◦Hq,σ−nτ̃

).

Put DHq =
⊕

τ̃∈ΣE,∞/q
D◦,⊕2
Hq,τ̃

. Using the vanishing of the partial Hasse invariants {hτ̃ (A) :

τ̃ ∈ TE,∞/p}, one checks easily that DHq ⊆ DB[q] is a Dieudonné submodule. We define Hq ⊆ B[q]

as the finite subgroup scheme corresponding to DHq by covariant Dieudonné theory. Then DHq

is canonically identified with the kernel of the induced map

φq,∗ : DB = HdR
1 (B/k)→ DB/Hq

= HdR
1 ((B/Hq)/k).

Therefore, Hq satisfies condition (viii) of the moduli space Y ′T . This shows the existence of Hq.

For the uniqueness, the condition (viii) forces the choice of D◦Hq,τ̃
for τ̃ ∈ ∆̃(T)−/p and the stability

under FB and VB forces the choice at the other τ̃ . This concludes the proof that Y ′T →X ′T induces

a bijection on closed points. 2

Lemma 5.20. The map η1 : Y ′T → X ′T induces an isomorphism of tangent spaces at every closed

point.

Proof. Let y = (A, ιA, λA, αK′ , B, ιB, λB, βK′T , C, ιC ;φA, φB) be a closed point of Y ′T with values

in a perfect field k, and x = (A, ιA, λA, αK′) be its image in X ′T. We have to show that Y ′T → X ′T
induces an isomorphism of k-vector spaces between tangent spaces: TY ′T ,y

∼=−→ TX′T,x.

Set I = Spec(k[ε]/ε2). By deformation theory, TX′T,x is identified with the I-valued points xI =

(AI, ιA,I, λA,I, αK′,I) of X ′T with reduction x ∈ X ′T(k) modulo ε. In the proof of Proposition 4.7,

we have seen that giving an xI is equivalent to giving, for each τ̃ ∈ ΣE,∞, a direct factor ω◦A∨,I,τ̃ ⊆
Hcris

1 (A/k)◦I,τ̃ that lifts ω◦A∨,τ̃ ⊆ HdR
1 (A/k)◦τ̃ and satisfies the following properties.
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(a) If τ̃ ∈ ΣE,∞/p with p not of type β] for S, then ω◦A∨,I,τ̃ and ω◦A∨,I,τ̃c are orthogonal
complements of each other under the perfect pairing

Hcris
1 (A/k)◦I,τ̃ ×Hcris

1 (A/k)◦I,τ̃c → k[ε]/ε2

induced by the polarization λA.

(b) If τ̃ ∈ S̃∞, then ω◦A∨,I,τ̃ = 0 and ω◦A∨,I,τ̃c = Hcris
1 (A/k)◦I,τ̃c .

(c) If τ̃ restricts to τ ∈ T, then ω◦A∨,I,τ̃ has to be FnτA,es(H
cris
1 (A(pnτ )/k)◦I,τ̃ ), where nτ is as

introduced in § 4.4 and FnτA,es on the crystalline homology are defined in the same way as
FnτA,es on the de Rham homology as in Notation 4.2. Since we are in characteristic p, we have

FnτA,es(H
cris
1 (A(pnτ )/k)◦I,τ̃ ) = ω◦A∨,τ̃ ⊗ k[ε]/ε2.

Note also that the crystal nature of Hcris
1 (A/k) implies that there is a canonical isomorphism

Hcris
1 (A/k)I ∼= HdR

1 (A/k)⊗k k[ε]/ε2.

We have to show that, given such an xI, or equivalently given the liftings ω◦A∨,I,τ̃ as
above, there exist unique (BI, ιB,I, λB,I, βK′T,I, CI, ιC,I;φA,I, φB,I) over I deforming (B, ιB, λB, βK′T ,
C, ιC ;φA, φB) such that (AI, ιA,I, λA,I, αK′,I, BI, ιB,I, λB,I, βK′T,I, CI, ιC,I;φA,I, φB,I) is an I-valued
point of Y ′T .

We start with CI. To show its existence, it suffices to construct, for each τ̃ ∈ ΣE,∞, a direct
factor ω◦C∨,I,τ̃ ⊆ Hcris

1 (C/k)◦I,τ̃ that lifts ω◦C∨,τ̃ ⊆ D◦C,τ̃ ∼= HdR
1 (C/k)◦τ̃ .

– When neither τ̃ nor στ̃ belongs to ∆̃(T)+, φA,∗,? : HdR
1 (A/k)◦?

∼−→ HdR
1 (C/k)◦? is an

isomorphism for ? = τ̃ , στ̃ . We take ω◦C∨,I,τ̃ ⊆ Hcris
1 (C/k)◦I,τ̃ to be the image of ω◦A∨,I,τ̃ ⊆

Hcris
1 (A/k)◦I,τ̃ under the induced morphism φcris

A,∗,τ̃ on the crystalline homology.

– When either one of τ̃ and στ̃ belongs to ∆̃(T)+, an easy dimension count argument similar
to Lemma 5.19 (using Lemma 5.14) shows that ω◦C∨,τ̃ is either 0 or of rank two. So, there
is a unique obvious such lift ω◦C∨,I,τ̃ .

This finishes the construction of ω◦C∨,I,τ̃ for all τ̃ ; hence, one gets a deformation CI of C,

carrying a natural action of OD. It is clear that the map φcris
A,∗ : Hcris

1 (A/k)◦I,τ̃ → Hcris
1 (C/k)◦I,τ̃

sends ω◦A∨,I,τ̃ to ω◦C∨,I,τ̃ . Hence, φA deforms to an OD-equivariant isogeny of abelian schemes
φA,I : AI→ CI by [Lan13, 2.1.6.9].

We check now that φAI satisfies condition (iv) of the moduli space Y ′T . We note that the map
φAI,∗ : HdR

1 (AI/I)→ HdR
1 (CI/I) is canonically identified with φcris

A,∗ : Hcris
1 (A/k)I → Hcris

1 (C/k)I
by crystalline theory, which is in turn isomorphic to the base change of φA,∗ : HdR

1 (A/k) →
HdR

1 (C/k) via k ↪→ k[ε]/ε2. Let τ̃ ∈ ∆̃(T)+. Since the Frobenius on k[ε]/ε2 factors as

k[ε]/ε2 � k
x 7→xp−−−→ k ↪→ k[ε]/ε2,

we see that
FnA,es(H

dR
1 (A

(pn)
I /I)◦τ̃ ) = FnA,es(H

dR
1 (A(pn)/k)◦τ̃ )⊗k k[ε]/ε2.

Hence, the kernel of φAI,∗,τ̃ : HdR
1 (AI/I)◦τ̃ → HdR

1 (CI/I)◦τ̃ coincides with FnA,es(H
dR
1 (A

(pn)
I /I)◦τ̃ ),

since it is the case after reduction modulo ε. This shows that φAI satisfies the condition (iv).
Conversely, it is clear that, if CI and φAI satisfy the condition (iv), then they have to be of the
form as above.

We show now that there exists a unique deformation (BI, φBI) over I of (B,φB) satisfying
condition (vi) of the moduli space Y ′T . To construct BI, one has to specify, for each τ̃ ∈ ΣE,∞, a
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subbundle ω◦B∨,I,τ̃ ⊆ Hcris
1 (B/k)◦I,τ̃ lifting ω◦B∨,τ̃ ⊆ HdR

1 (B/k)◦τ̃ . Similar to the discussion above,
we have the following.

– If neither τ̃ nor στ̃ belongs to ∆̃(T)−, then φB,∗,? : HdR
1 (B/k)◦?

∼−→ HdR
1 (C/k)◦? is an

isomorphism for ? = τ̃ , στ̃ . We take ω◦B∨,I,τ̃ ⊆ Hcris
1 (B/k)◦I,τ̃ to be the image of ω◦C∨,I,τ̃ ⊆

Hcris
1 (C/k)◦I,τ̃ under the induced morphism φ−1

B,∗,τ̃ on the crystalline homology.

– If at least one of τ̃ and στ̃ belongs to ∆̃(T)−, then an easy dimension count argument similar
to Lemma 5.19 (using Lemma 5.14) shows that ω◦B∨,τ̃ is either 0 or of rank two. There is a
unique obvious such lift ω◦B∨,I,τ̃ .

This defines ω◦B∨,I,τ̃ for all τ̃ ∈ ΣE,∞. Hence, one gets a deformation BI of B over k[ε]/ε2. It is

immediate from the construction that the action of OD lifts to BI, and φcris
B,∗,τ̃ : Hcris

1 (B/k)◦I,τ̃ →
Hcris

1 (C/k)◦I,τ̃ sends ω◦B∨,I,τ̃ to ω◦C∨,I,τ̃ for all τ̃ ∈ ΣE,∞. Hence, φB : B → C deforms to an
OD-equivariant isogeny φBI : BI → CI. In the same way as for φAI , we prove that φBI satisfies
the condition (v) of the moduli space Y ′T , and conversely the condition (v) determines BI uniquely.

Let 〈 , 〉λB : Hcris
1 (B/k)◦I ×Hcris

1 (B/k)◦I → k[ε]/ε2 be the pairing induced by the polarization
λB. To prove that λB deforms (necessarily uniquely) to a polarization λBI on BI, it suffices to
check that 〈 , 〉cris

λB
vanishes on ω◦B∨,I,τ̃ × ω◦B∨,I,τ̃c for all τ̃ ∈ ΣE,∞ (cf. [Lan13, 2.1.6.9, 2.2.2.2,

and 2.2.2.6]).
– If τ = τ̃ |F lies in S(T)∞, this is trivial, because one of ω◦B∨,I,τ̃ and ω◦B∨,I,τ̃c is equal to 0 and

the other one is equal to Hcris
1 (B/k)◦I,τ̃ by construction.

– If τ = τ̃ |F is not in S(T)∞, then the natural isomorphism Hcris
1 (B/k)◦I,?

∼= Hcris
1 (A/k)◦I,?

sends ω◦B∨,I,? to ω◦A∨,I,? for ? = τ̃ , τ̃ c. The vanishing of 〈 , 〉λB on ω◦B∨,I,τ̃ × ω◦B∨,I,τ̃c follows
from the similar statement with B replaced by A.

Therefore, we see that λB deforms to a polarization λBI on BI. Since λdR
BI,∗ : HdR

1 (B/I) →
HdR

1 (B∨/I) is canonically identified with λcris
B,∗ : Hcris

1 (B/k)I → Hcris
1 (B∨/k)I, which is in turn

identified with the base change of λdR
B,∗ via k ↪→ k[ε]/ε2, it is clear that condition (ii) regarding

the polarization is preserved by the deformation λBI .
It remains to prove that βK′T deforms to βK′T,I. The deformation of the tame level structure

is automatic; the deformation of the subgroup at p-adic places of type α] and α2 is also unique,
by the same argument as in Theorem 3.14. 2

5.21 A lift of IT
Recall that IT is the subset S(T)∞ − (S∞ ∪ T) defined in Theorem 5.2. We use ĨT to denote the
subset of complex embeddings of E consisting of the unique lift τ̃ of every element τ ∈ IT, for
which τ̃ c ∈ S̃(T)∞. We describe this set explicitly as follows.

We write IT/p = IT ∩ Σ∞/p and ĨT/p = ĨT ∩ ΣE,∞/p for p ∈ Σp. They are empty sets unless
p is of type α1 or β1. When p is of type α1 or β1, using the notation of § 5.1, IT/p consists of

σ−mi−1τi for all i such that #(Ci ∩ T/p) is odd. In the notation of § 5.3, the set ĨT/p consists of
σ−ari τ̃i for all i such that #(Ci ∩ T/p) is odd. We remark that, in either case, for any τ̃ lifting a

place τ ∈ IT, τ̃ /∈ ∆̃(T)+ ∪ ∆̃(T)−.

5.22 Isomorphism of Y ′
T with Z′

T

Let Z ′T be the moduli space over k0 representing the functor that takes a locally noetherian
k0-scheme S to the set of isomorphism classes of tuples (B, ιB, λB, βK′T , J

◦), where:

(i) (B, ιB, λB, βK′T) is an S-valued point of ShK′T(G
′
S̃(T)

);

(ii) J◦ is the collection of subbundles J◦τ̃ ⊆ HdR
1 (B/S)◦τ̃ locally free of rank one for each τ̃ ∈ ĨT.
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It is clear that Z ′T is a (P1)IT-bundle over ShK′T(G
′
S̃(T)

).

We define a morphism η2 : Y ′T → Z ′T as follows: let S be a locally noetherian k0-scheme
and x = (A, ιA, λA, αK′ , B, ιB, λB, βK′T , C, ιC ;φA, φB) be an S-valued point of Y ′T . We define
η2(x) ∈ Z ′T(S) to be the isomorphism class of the tuple (B, ιB, λB, βK′T , J

◦), where J◦τ̃ is given by

φ−1
B,∗,τ̃ ◦ φA,∗,τ̃ (ω◦A∨,τ̃ ) for the isomorphisms

HdR
1 (A/S)◦τ̃

φA,∗,τ̃
∼=
// HdR

1 (C/S)◦τ̃ HdR
1 (B/S)◦τ̃ .∼=

φB,∗,τ̃oo

Note that τ̃ /∈ ∆̃(T)± implies that both φA,∗,τ̃ and φB,∗,τ̃ are isomorphisms.

Proposition 5.23. The morphism η2 : Y ′T → Z ′T is an isomorphism.

We note that Theorem 5.8 follows immediately from this proposition and Proposition 5.17.

Proof. As in the proof of Proposition 5.17, it suffices to prove that η2 induces a bijection on the
closed points and on tangent spaces.

Step I. We show first that η2 induces a bijection on closed points. Let z = (B, ιB, λB, βK′T , J
◦)

be a closed point of Z ′T with values in k = Fp. We have to show that there exists a unique
point y = (A, ιA, λA, αK′ , B, ιB, λB, βK′T , C, ιC ;φA, φB) ∈ Y ′T(k) with η2(y) = z. To prove this, we
basically reverse the construction in the proof of Lemma 5.18.

We start by reconstructing C from B and J◦. We denote by D̃B = (D̃◦B)⊕2 the covariant
Dieudonné module of B and by D̃◦B =

⊕
τ̃∈ΣE,∞

D̃◦B,τ̃ the canonical decomposition according

to the OE-action. We construct a Dieudonné submodule M◦ =
⊕

τ∈ΣE,∞
M◦τ̃ ⊆ D̃◦B[1/p] with

D̃◦B ⊆ M◦ ⊆ p−1D̃◦B as follows. Let τ̃ ∈ ΣE,∞/p with p ∈ Σp. If τ̃ /∈ ∆̃(T)−, we put M◦τ̃ = D̃◦B,τ̃ .
To define M◦τ̃ in the other case, we separate the discussion according to the type of p.

– (Case α1 and β1) Recall our notation from §§ 5.1, 5.3, 5.11, and 5.21. There are two subcases
according to the parity of #(Ci ∩ T/p), where Ci is a chain of S∞/p ∪ T/p as in § 5.1. (It
should not be confused with the abelian variety C.)

* When ri = #(Ci ∩ T/p) is odd, σ−mi−1τ̃i ∈ ĨT/p, so that J◦
σ−mi−1τ̃i

is defined. In this

case, all τ = σ−`τi belong to S(T)∞/p for 0 6 ` 6 mi + 1; so sT,σ−`τ̃i ∈ {0, 2} and the
essential Frobenii

Fmi+1−`
B,es : D̃◦

B,σ−mi−1τ̃i FB,es

∼= // D̃◦
B,σ−mi τ̃i

∼=
FB,es

// · · ·
∼=

FB,es

// D̃◦
B,σ−`τ̃i

are isomorphisms for such an `. If aj 6 ` < aj+1 for some odd number j, we put

M◦σ−`τ̃i = p−1Fmi+1−`
B,es (J̃◦σ−mi−1τ̃i

),

where J̃◦
σ−mi−1τ̃i

denotes the inverse image in D̃◦
B,σ−mi−1τ̃i

of J◦
σ−mi−1τ̃i

⊆ D◦
B,σ−mi−1τ̃i

under the natural reduction map modulo p. For other `, we have already defined M◦
σ−`τ̃i

to be D̃◦
B,σ−`τ̃i

.

* When ri = #(Ci ∩ T/p) is even, there is no J◦ involved in this construction. Note that

all τ = σ−`τi belong to S(T)∞/p for 0 6 ` 6mi. So, sT,σ−`τ̃i ∈ {0, 2} and in the sequence
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of essential Frobenii

Fmi−`+1
B,es : D̃◦

B,σ−mi−1τ̃i FB
// D̃◦

B,σ−mi τ̃i FB,es

∼= // D̃◦
B,σ−mi+1τ̃i

∼=
FB,es

// · · ·
∼=

FB,es

// D̃◦
B,σ−`τ̃i

all the maps except the first one are isomorphisms. If aj 6 ` < aj+1 for some odd
number j, we put

M◦σ−`τ̃i = p−1Fmi−`+1
B,es (D̃◦B,σ−mi−1τ̃i

);

then we have dimk(M
◦
σ−`τ̃i

/D̃◦
B,σ−`τ̃i

) = 1, since the cokernel of FB : D̃◦
B,σ−mi−1τ̃i

→

D̃◦
B,σ−mi τ̃i

has dimension 1, as sT,σ−mi−1τ̃i
= 1. (For other `, we have already defined

M◦
σ−`τ̃i

to be D̃◦
B,σ−`τ̃i

.)

– (Case α2) In this case, p is a prime of type α] for ShKT(GS(T)) and it splits into two
primes q and q̄ in E. Let Hq ⊆ B[q] be the closed subgroup scheme given in the data
βK′T . Let Hq̄ be its annihilator under the Weil pairing between B[q] and B[q̄] induced by
λB. (We collectively write Hp for Hq × Hq̄.) Let D◦Hp

=
⊕

τ̃∈ΣE,∞/p
D◦Hp,τ̃

⊆ D◦B be the

reduced covariant Dieudonné module of Hp = Hq ×Hq̄. Then each D◦Hp,τ̃
is necessarily one

dimensional over k for all τ̃ ∈ ΣE,∞/p. For τ̃ ∈ ∆̃(T)−/p, we define

M◦τ̃ = p−1D̃◦Hp,τ̃ ,

where D̃◦Hp,τ̃
denotes the inverse image in D̃◦B,τ̃ of the subspace D◦Hp,τ̃

⊆ D◦B,τ̃ . (We have

defined M◦τ̃ = D̃◦B,τ̃ for τ̃ /∈ ∆̃(T)−/p before.)

– (Case β2) In this case, p is a prime of type β] for ShKT(GS(T)). For τ̃ ∈ ∆̃(T)−/p, let λB,∗,τ̃ :

D◦B,τ̃ → D◦B∨,τ̃ be the morphism induced by the polarization λB. By Theorem 3.14(b3),

J◦τ̃ := Ker(λB,∗,τ̃ ) is a k-vector space of dimension 1. We set M◦τ̃ = p−1J̃◦τ̃ for such τ̃ , where
J̃◦τ̃ is the preimage of J◦τ̃ under the reduction map D̃◦B,τ̃ → D◦B,τ̃ . Note that when viewing

D̃◦B∨,τ̃ as a lattice of D̃◦B,τ̃ [1/p] using the polarization, we have M◦τ̃ = D̃◦B∨,τ̃ . (We have

defined M◦τ̃ = D̃◦B,τ̃ for τ̃ /∈ ∆̃(T)−/p before.)

This concludes the definition of M◦ ⊆ p−1D̃◦B. One checks easily that M◦ is stable under FB
and VB. Consider the quotient Dieudonné modules

M/D̃B = (M◦/D̃◦B)⊕2 ⊆ p−1D̃B/D̃B ∼= DB.

Then M/D̃B corresponds to a closed finite group scheme G ⊆ B[p] stable under the action of
OD. We put C = B/G with the induced OD-action and define φB : B → C as the canonical
OD-equivariant isogeny. Then the natural induced map φB,∗ : D̃◦B → D̃◦C is identified with the
inclusion D̃◦B ↪→M◦.

We now construct A from C. Similar to above, we first define a W (k)-lattice L◦ =⊕
τ̃∈ΣE,∞

L◦τ̃ ⊆ D̃◦C , with L◦τ̃ = D̃◦C,τ̃ unless τ̃ ∈ ∆̃(T)+. If τ̃ ∈ ∆̃(T)+, then the corresponding

p-adic place p ∈ Σp cannot be of type β2 or β]. In this case, we identify D̃◦B[1/p] with D̃◦C [1/p],
so that D̃◦B and D̃◦C are both viewed as W (k)-lattices in D̃◦B[1/p]. The polarization λB induces a
perfect pairing

〈 , 〉λB : D̃◦B,τ̃ [1/p]× D̃◦B,τ̃c [1/p]→W (k)[1/p],
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which induces a perfect pairing between D̃◦B,τ̃ and D̃◦B,τ̃c . We put (for ∈̃∆̃(T)+)

L◦τ̃ = D̃◦,∨C,τ̃c := {v ∈ D̃◦C,τ̃ [1/p] : 〈v, w〉λB ∈W (k) for all w ∈ D̃◦C,τ̃c}.

Note that τ̃ ∈ ∆̃(T)+ always implies that τ̃ c ∈ ∆̃(T)−−∆̃(T)+. So, D̃◦C,τ̃ = D̃◦B,τ̃ and D̃◦C,τ̃c ⊃ D̃◦B,τ̃c
with quotient isomorphic to k. This implies that L◦τ̃ ⊆ D̃◦C,τ̃ with quotient isomorphic to k.

As usual, one verifies that L◦ is stable under FB and VB (because it is equal to either D̃◦C,τ̃
or D̃◦,∨C,τ̃c in various cases), and we put L = (L◦)⊕2. The quotient Dieudonné module L/pD̃C
corresponds to a closed subgroup scheme K ⊆ C[p] stable under the action of OD. We put
A = C/K equipped with the induced OD-action and define φA : A→ C as the canonical OD-
equivariant isogeny with kernel C[p]/K. Then φA,∗ : D̃A → D̃C is identified with the natural
inclusion L ↪→ D̃C .

We define λA : A→ A∨ to be the quasi-isogeny:

λA : A
φA−→ C

φB
←− B λB−→ B∨

φ∨B
←− C∨

φ∨A−→ A∨,

and we will verify that λA is a genuine isogeny (hence a polarization since λB is) satisfying
condition (b) of the moduli space ShK′p(G

′
S̃
) as in Theorem 3.14. We may identify D̃◦A[1/p] and

D̃◦A∨ [1/p] with D̃◦B[1/p], and view both D̃◦A,τ̃ and D̃◦A∨,τ̃ as lattices of D̃◦B,τ̃ [1/p]. It suffices to
show that we have a natural inclusion

D̃◦A∨,τ̃ ⊆ (D̃◦A,τ̃c)∨ =
{
v ∈ D̃◦B,τ̃ [1/p] : 〈v, w〉λB ∈W (k) for all w ∈ D̃◦A,τ̃c

}
,

which is an isomorphism unless τ̃ induces a p-adic place of type β] for ShK(GS), in which case
it is an inclusion with quotient k.

– By the construction of A, this is clear for τ̃ ∈ ∆̃(T)+ and hence for all their complex
conjugates (as the duality is reciprocal).

– For all places τ̃ ∈ ΣE,∞/p such that p is not of type β2 and τ̃ /∈ ∆̃(T)±, we know that

τ̃ c /∈ ∆̃(T)±. So, D̃◦A,? = D̃◦B,? for ? = τ̃ , τ̃ c under the identification. The statement is clear.

Note that this includes the case that p is a prime of type β] for ShK(GS).
– The only case left is when τ̃ ∈ ΣE,∞/p for p of type β2. In this case, D̃◦A,τ̃ = D̃◦C,τ̃ , which is

the dual of D̃◦C,τ̃c for all τ̃ ∈ ΣE,∞/p by construction.
This concludes the verification that λA is an isogeny satisfying condition (b) of Theorem 3.14

for the moduli space ShK′p(G
′
S̃
).

We now define the level structure αK′ = αpαp on A. For the prime-to-p level structure αp,
we define it to be the K ′T-orbit of the isomorphism class:

αp : Λ(p) ∼−→
βp

T (p)(B)
∼−−→
φB,∗

T (p)(C)
∼
←−−
φA,∗

T (p)(A).

We take the closed subgroup scheme αp ⊆ A[p] for each p ∈ Σp of type α] for S (and hence for
S(T)) to be the subgroup scheme corresponding to βp under the sequence of isomorphisms (note
that ∆̃(T)±/p = ∅ for p of type α]) of p-divisible groups

A[p∞]
φA−−→∼= C[p∞]

φB
←−−∼= B[p∞].

It is clear that αK′ verifies condition (c) in Theorem 3.14.
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This finishes the construction of all the data y = (A, ιA, λA, αK′ , B, ιB, λB, βK′T , C, ιC ;φA, φB).
To see that y is indeed a k-point of Y ′T , we have to check that y satisfies the conditions (i)–(ix)
for Y ′T in § 5.15. Conditions (ii), (iii), and (vi)–(ix) being clear from our construction, it remains
to check (i), (iv) and (v). Moreover, the Kottwitz signature condition Theorem 3.14(a) follows
from Lemma 5.19 immediately. So, for property (i), it remains to show that the partial Hasse
invariant hτ̃ (A) vanishes if τ = τ̃ |F ∈ T.

We now check these properties (i), (iv), and (v) in various cases. For this, we identify D̃◦A[1/p],
D̃◦B[1/p], and D̃◦C [1/p] via φA,∗ and φB,∗.

(1) Assume that p is a prime of case α1 or β1. We keep the notation as before. If τ̃ does not
lift a place belonging to some chain Ci inside S∞/p∪T/p, the conditions (i), (iv), and (v) trivially
hold. So, we assume that τ̃ |F ∈ Ci for some Ci.

If ri = #(T/p ∩ Ci) is odd, unwinding our earlier construction gives, for 0 6 ` 6 mi + 1,

D̃◦A,σ−`τ̃i = D̃◦C,σ−`τ̃i =

{
p−1Fmi+1−`

B,es (J̃◦
σ−mi−1τ̃i

) if aj 6 ` < aj+1 for some odd j,

D̃◦
B,σ−`τ̃i

otherwise;

D̃◦A,σ−`τ̃ci =

{
pFmi+1−`

B,es (J̃◦,⊥
σ−mi−1τ̃i

) if aj 6 ` < aj+1 for some odd j,

D̃◦
B,σ−`τ̃ci

otherwise; and

D̃◦C,σ−`τ̃ci = D̃◦B,σ−`τ̃ci for all `.

For condition (v) in § 5.15, it is trivial unless τ̃ = σ−`τ̃i for some ` ∈ [aj , aj+1) with j odd. In the
exceptional case, it is equivalent to proving that (for the n as in condition (v))

D̃◦B,σ−`τ̃i = FnA,es(D̃◦A,σ−`−nτ̃i).

Note that n = aj+1− `; it follows that D̃◦
A,σ−`−nτ̃i

= D̃◦
B,σ−aj+1 τ̃i

by definition. As s
T,σ−aj+1 τ̃i

= 2

and sσ−aj+1 τ̃i
= 1, FnA,es(D̃◦A,σ−`−nτ̃i) coincides with FnB,es(D̃◦B,σ−aj+1 τ̃i

) by the definition of

essential Frobenius. The desired equality follows from the fact that FnB,es(D̃◦B,σ−aj+1 τ̃i
) = D̃◦

B,σ−`τ̃i
.

Similarly, condition (iv) is trivial unless τ̃ = σ−`τ̃ ci for some ` ∈ [aj , aj+1) with j odd. In the
exceptional case, it is equivalent to the following equality (for the n as in condition (iv)):

pD̃◦B,σ−`τ̃ci = F̃nA,es(D̃◦A,σ−`−nτ̃ci ).

But n= aj+1−` by definition; so, D̃◦
A,σ−`−nτ̃ci

= D̃◦
B,σ−aj+1 τ̃ci

. Since s
T,σ−aj+1 τ̃ci

= 0 and sσ−aj+1 τ̃ci
=

1, the essential Frobenius of A at σ−aj+1 τ̃ ci is defined to be FA, while that of B at σ−aj+1 τ̃ ci is
defined to be V −1

B . Therefore, Fn
A,es,σ−`τ̃ci

is the same as pFn
B,es,σ−`τ̃ci

. The equality above is now

clear.
We now check the vanishing of partial Hasse invariants hσaj τ̃i(A) with 1 6 j 6 ri − 1. By

Lemma 4.5, it suffices to show that, for any j = 1, . . . , ri − 1 and setting a0 = −1, the image of

F
aj+1−aj−1

A,es : D̃◦
A,σ−aj+1 τ̃i

→ D̃◦
A,σ−aj−1 τ̃i

is contained in pD̃◦
A,σ−aj−1 τ̃i

. First, regardless of the parity of j, we find easily that F
aj+1−aj−1

A,es =

pF
aj+1−aj−1

B,es as maps from D̃◦
A,σ−aj+1 τ̃i

to D̃◦
A,σ−aj−1 τ̃i

by checking carefully the dependence of the

essential Frobenii on the signatures. Now, if j is odd, then

D̃◦A,σ−`τ̃i = D̃◦B,σ−`τ̃i for ` = aj+1 and aj−1.
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Hence, one gets F
aj+1−aj−1

A,es (D̃◦
A,σ−aj+1 τ̃i

) = pD̃◦
A,σ−aj−1 τ̃i

, since F
aj+1−aj−1

B,es (D̃◦
B,σ−aj+1 τ̃i

) =

D̃◦
B,σ−aj−1 τ̃i

. If j is even, then

D̃◦A,σ−`τ̃i = p−1Fmi+1−`
B,es (J̃◦σ−mi−1τ̃i

) for ` = aj+1 and aj−1.

It is also clear that F
aj+1−aj−1

A,es (D̃◦
A,σ−aj+1 τ̃i

) = pD̃◦
A,σ−aj−1 τ̃i

.

If ri = #(T/p ∩ Ci) is even, all conditions can be proved in exactly the same way, except

replacing Fmi+1−`
B,es (J̃◦

σ−mi−1τ̃i
) by Fmi−`B,es (FB(D̃◦

B,σ−mi−1τ̃i
)) and the proof of the vanishing of the

last Hasse invariant hσ−ari τ̃i(A) needs a small modification. In fact, we have

D̃◦A,σ−`τ̃i =

{
D̃◦
B,σ−`τ̃i

for ari 6 ` 6 mi + 1,

p−1Fmi−`B,es (FB(D̃◦
B,σ−mi−1τ̃i

)) for ari−1 6 ` < ari .

Note that the number nσ−ari τi defined in § 4.4 is equal to mi+1−ari , and the essential Frobenius

FA,es : D̃◦
A,σ−ari τ̃i

→ D̃◦
A,σ−ari+1τ̃i

is simply FA. We have

FAF
mi+1−ari
A,es (D̃◦A,σ−mi−1τ̃i

) = F
mi+2−ari
A,es (D̃◦A,σ−mi−1τ̃i

) = pD̃◦
A,σ−ari+1τ̃i

.

This verifies the vanishing of hσ−ari τ̃i(A).

(2) Assume that p is a prime of Case α2. We write Hp = Hq ⊕ Hq̄ and D̃◦Hq,τ̃
⊆ D̃◦B,τ̃ as

before. We have

D̃◦A,τ̃ =


p−1D̃◦Hp,τ̃

if τ̃ ∈ ∆̃(T)−/p,

p(D̃◦Hp,τ̃c
)∨ if τ̃ ∈ ∆̃(T)+

/p,

D̃◦B,τ̃ otherwise,

and D̃◦C,τ̃ =

{
p−1D̃◦Hp,τ̃

if τ̃ ∈ ∆̃(T)−/p,

D̃◦B,τ̃ otherwise.

The same argument as in (1) allows us to check conditions (i), (iv), and (v).
(3) Assume now that p is prime of Case β2 in § 5.1. For each τ̃ ∈ ΣE,∞/p, let λB,∗,τ̃ : D̃◦B,τ̃ →

D̃◦B∨,τ̃ be the map induced by the polarization λB. By condition (b3) of Theorem 3.14, its cokernel

has dimension 1 over k. When viewing D̃◦B∨,τ̃ as a lattice of D̃◦B,τ̃ [1/p] via λ−1
B,∗,τ̃ , we have

D̃◦A,τ̃ = D̃◦C,τ̃ =

{
D̃◦B∨,τ̃ if τ̃ ∈ ∆̃(T)−/p,

D̃◦B,τ̃ otherwise.

The same argument as in (1) allows us to check conditions (i), (iv), and (v). This then concludes
the proof of Step I.

Step II: Let y = (A, ιA, λA, αK′ , B, ιB, λB, βK′T , C, ιC ;φA, φB) ∈ Y ′T be a closed point with values

in k = Fp, and z = η2(y) = (B, ιB, λB, βK′T , J
◦) ∈ Z ′T. We prove that η2 : Y ′T → Z ′T induces a

bijection of tangent spaces η2,y : TY ′T ,y
∼=−→ TZ′T,z. We follow the same strategy as in Lemma 5.20.

Set I = Spec(k[ε]/ε2). The tangent space TZ′T,z is identified with the set of deformations zI =

(BI, ιB,I, λB,I, βK′T,I, J
◦
I ) ∈ Z ′T(I) of z, where J◦I is the collection of subbundles J◦I,τ̃ ⊆HdR

1 (BI/I)◦τ̃ =

Hcris
1 (B/k)◦I,τ̃ for each τ̃ ∈ ĨT. We have to show that every point zI lifts uniquely to a deformation

yI = (AI, ιAI , λAI , αK′,I, BI, ιBI , λBI , βK′T,I, CI, ιCI ;φAI , φBI) ∈ Y ′T(I) with η(yI) = zI.
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We start with CI and φBI . For τ̃ ∈ ΣE,∞, denote by

φcris
B,∗,τ̃ : Hcris

1 (B/k)◦I,τ̃ → Hcris
1 (C/k)◦I,τ̃

the natural morphism induced by φB and by φdR
B,∗,τ̃ the analogous map between the de Rham

homology HdR
1 . The crystalline nature of Hcris

1 implies that φcris
B,∗,τ̃ = φdR

B,∗,τ̃⊗kk[ε]/ε2. To construct

CI and φB,I, it suffices to specify, for each τ̃ ∈ ΣE,∞, a subbundle ω◦C∨,I,τ̃ ⊆ Hcris
1 (C/k)◦I,τ̃ which

lifts ω◦C∨,τ̃ and satisfies

φcris
B,∗,τ̃ (ω◦B∨I ,τ̃ ) ⊆ ω◦C∨,I,τ̃ . (5.23.1)

We distinguish a few cases.

(i) If neither τ̃ nor στ̃ belongs to ∆̃(T)−, both φcris
B,∗,τ̃ and φcris

B,∗,στ̃ are isomorphisms. It follows

that φdR
B,∗,τ̃ (ω◦B∨,τ̃ ) = ω◦C∨,τ̃ . Hence, we have to take ω◦C∨,I,τ̃ = φcris

B,∗,τ̃ (ω◦B∨I ,τ̃
).

(ii) If both τ̃ , στ̃ ∈ ∆̃(T)−, then τ = τ̃ |F ∈ S∞/p by Lemma 5.14. A simple dimension count

similar to Lemma 5.19 implies that dimk(ω
◦
C∨,τ̃ ) = dimk(ω

◦
B∨,τ̃ ) ∈ {0, 2}. We take ω◦C∨,I,τ̃

to be 0 or Hcris
1 (C/k)◦I,τ̃ correspondingly, and (5.23.1) trivially holds.

(iii) If τ̃ ∈ ĨT, the property of the morphism η2 forces ω◦C∨,I,τ̃ = φcris
B,∗,τ̃ (J◦BI,τ̃

).

(iv) For all other τ̃ , τ̃ |F must belong to T. Let n be the number associated to τ̃ as in

Lemma 5.13. By the vanishing of the partial Hasse invariant on A at τ̃ , we have ω◦C∨,τ̃ =

FnC,es(H
dR
1 (C/k)◦σ−nτ̃ ). We take

ω◦C∨,I,τ̃ = FnC,es(H
cris
1 (C(pn)/k)◦I,τ̃ ).

This is not a forced choice now, but it will become one when we have constructed the lift

AI and require AI to have vanishing partial Hasse invariant.

Since FnB,es : Hcris
1 (B(pn)/k)◦I,τ̃ →Hcris

1 (B/k)◦I,τ̃ is an isomorphism, we conclude that (5.23.1)

holds for τ̃ .

We now construct AI and the isogeny φAI : AI → CI. As usual, we have to specify, for each

τ̃ ∈ ΣE,∞, a subbundle ω◦A∨,I,τ̃ ⊆ Hcris
1 (A/k)◦I,τ̃ that lifts ω◦A∨,τ̃ and satisfies φcris

A,∗,τ̃ (ω◦A∨,I,τ̃ ) ⊆
ω◦C∨,I,τ̃ . Let p ∈ Σp be the prime such that τ̃ ∈ ΣE,∞/p.

– If neither τ̃ nor στ̃ belongs to ∆̃(T)+, then φdR
A,∗,τ̃ and hence φcris

A,∗,τ̃ is an isomorphism. We

are forced to take ω◦A∨,I,τ̃ = (φcris
A,∗,τ̃ )−1(ω◦C∨,I,τ̃ ). In particular, if τ̃ ∈ ĨT, we have ω◦A∨,I,τ̃ =

(φcris
A,∗,τ̃ )−1φcris

B,∗,τ̃ (J◦BI,τ̃
).

– In all other cases, we must have τ̃ ∈ ΣE,∞/p for p not of type β2 or β]. Then we have to

take ω◦A∨,I,τ̃ to be the orthogonal complement of ω◦A∨,I,τ̃c (which is already defined in the

previous case) under the perfect pairing

〈 , 〉λA : Hcris
1 (A/k)◦I,τ̃ ×Hcris

1 (A/k)◦I,τ̃c → k[ε]/ε2

induced by the polarization λA. It is clear that ω◦A∨,I,τ̃ is a lift of ω◦A∨,τ̃ . It remains to show
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that φcris
A,∗,τ̃ (ω◦A∨,I,τ̃ ) ⊆ ω◦C∨,I,τ̃ . We consider the following commutative diagram:

Hcris
1 (A/k)◦I,τ̃

φcris
A,∗,τ̃
��

× Hcris
1 (A/k)◦I,τ̃c

φcris
A,∗,τ̃c∼=
��

〈 , 〉λA // I

Hcris
1 (C/k)◦I,τ̃ × Hcris

1 (C/k)◦I,τ̃c

Hcris
1 (B/k)◦I,τ̃

φcris
B,∗,τ̃∼=
OO

× Hcris
1 (B/k)◦I,τ̃c

φcris
B,∗,τ̃c

OO

〈 , 〉λB // I

(5.23.2)

where both duality pairings are perfect. By our choice of τ̃ , we have τ̃ , στ̃ /∈ ∆̃(T)− and
τ̃ c, στ̃ c /∈ ∆̃(T)+; so both φcris

A,∗,τ̃c and φcris
B,∗,τ̃ in (5.23.2) are isomorphisms and they induce

isomorphisms on the reduced differentials. Using the diagram (5.23.2) of perfect duality, the
inclusion φcris

A,∗,τ̃ (ω◦A∨,I,τ̃ ) ⊆ ω◦C∨,I,τ̃ is equivalent to the inclusion φcris
B,∗,τ̃c(ω

◦
B,I,τ̃c) ⊆ ω◦C,I,τ̃c ,

which was already checked.

By construction, the τ̃ -partial Hasse invariant of AI vanishes if τ̃ ∈ ∆̃(T)− and τ̃ |F ∈ T. The
duality guarantees the vanishing of Hasse invariants at their conjugate places. This condition
conversely forces the uniqueness of our choice of CI and AI, as indicated earlier. From the
construction, ω◦A∨,I =

⊕
τ̃∈ΣE,∞

ω◦A∨,I,τ̃ is isotropic under the pairing on Hcris
1 (A/k)◦I induced by

λA. This concludes checking condition (1) of § 5.15.
The lift of the level structure αK′,I is automatic for the tame part, and can be done in a

unique way as in the proof of Theorem 3.14.
It then remains to check that φAI and φBI satisfy conditions (iv) and (v) of § 5.15. For

condition (v), it is obvious except when τ̃ ∈ ∆̃(T)−, in which case

Im(φcris
B,∗,τ̃ ) = Im(φdR

B,∗,τ̃ )⊗k I and φcris
A,∗,τ̃ (Im(Fnes,AI,τ̃ )) = φdR

A,∗,τ̃ (Im(Fnes,A,τ̃ ))⊗k I,

where n > 1 is the number determined in Lemma 5.13. So, condition (v) for the lift follows from
that for φA : A→ C. (Note that n > 1 implies that the image of the essential image is determined
by the reduction.) Exactly the same argument proves condition (iv).

This concludes Step II of the proof of Proposition 5.23. 2

5.24 End of proof of Theorem 5.8
Statement (1) of Theorem 5.8 follows from Propositions 5.17 and 5.23. Statements (2) and (3)
are clear from the proof of (1). It remains to prove statement (4), namely the compatibility of
the twisted partial Frobenius. We use X ′

S̃,T
, Y ′

S̃,T
, and Z ′

S̃,T
to denote the original X ′T, Y

′
T , and Z ′T

in § 5.15 to indicate their dependence on S̃. We will define a twisted partial Frobenius

F′p2,S : Y ′
S̃,T
→ Y ′

σ2
p S̃,σ

2
pT

compatible via η1 with the F′
p2,S̃

on ShK′(G
′
S̃
)k0 defined in § 3.22. For an S-valued point x = (A,

ιA, λA, αK′ , B, ιB, λB, βp, C, ιC ;φA, φB) of Y ′
S̃,T

, its image

F′
p2,S̃

(x) = (A′, ιA′ , λA′ , α
′
K′ , B

′, ιB′ , λB′ , β
′
p, C

′, ιC′ ;φA′ , φB′)

is given as follows. Here, for G = A,B,C, we put G′ = (G/KerG,p2) ⊗OF p, where KerG′,p2 is
the p-component of the p2-Frobenius of G. The induced structures (ιA′ , λA′ , α

′
K′ , ιB′ , λB′ , β

′
p)
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are defined in the same way as in § 3.22. The isogenies φA′ : A′ → C ′ and φB′ : B′ → C ′ are
constructed from φA and φB by the functoriality of the p2-Frobenius. We have to prove that
the induced map on de Rham homologies φA′,∗,τ̃ and φB′,∗,τ̃ satisfies the required conditions in
(v) and (vi) of § 5.15. If τ̃ ∈ ΣE,∞/p′ with p′ 6= p, this is clear, because the p-divisible groups
G′[p′∞] are canonically identified with G[p′∞] for G = A,B,C. Now consider the case p′ = p. As
in the proof of Lemma 4.12, for G = A,B,C, the p-divisible group G′[p∞] is isomorphic to the
base change of G[p∞] via the p2-Frobenius on S. One thus deduces isomorphisms of de Rham
homology groups

HdR
1 (G′/S)◦τ̃ = (HdR

1 (G/S)◦σ−2τ̃ )(p2), (5.24.1)

which are compatible with F and V as τ̃ ∈ ΣE,∞/p varies, and compatible with φA′,∗,τ̃ and
φB′,∗,τ̃ by functoriality. Hence, the required properties on φA′,∗,τ̃ and φB′,∗,τ̃ follow from those
on φA,∗,σ−2τ̃ and φB,∗,σ−2τ̃ . This finishes the construction of F′p2 on Y ′

S̃,T
. Via the isomorphism

η2 : Y ′
S̃,T

∼−→ Z ′
S̃,T

proved in Proposition 5.23, F′p2,S induces a map F′p2,S : Z ′
S̃,T
→ Z ′

σ2
p S̃,σ

2
pT

. Let z =

(B, ιB, λB, βK′T , J
◦) be an S-valued point of Z ′

S̃,T
as described in Proposition 5.22. Then its image

F′
p2,S̃

(z) is given by (B′, ιB′ , λB′ , β′K′T , J
◦,′) ∈ Z ′

σ2
pS,σ

2T
, where (B′, ιB′ , λB′ , β′K′T) are defined as in

§ 3.22, and J◦,′ is the collection of line bundles J◦,′τ̃ ⊆ HdR
1 (B′/S)◦τ̃ for each τ̃ ∈

⋃
p′∈Σp

σ2
p(ĨTp′ )

given as follows. For τ̃ ∈ ĨTp′ with p′ 6= p, we have J◦,′τ̃ = J◦τ̃ since HdR
1 (B′/S)◦τ̃ is canonically

identified with HdR
1 (B/S)◦τ̃ . For τ̃ ∈ σ2

p(ĨTp), we have J◦,′τ̃ = (J◦σ−2τ̃ )(p2), which makes sense thanks
to the isomorphism (5.24.1) for G = B′. After identifying ShK′(G

′
S̃
)k0,T = X ′

S̃,T
with Z ′

S̃,T
, the

projection πT : Z ′
S̃,T
→ ShK′T(G

′
S̃(T)

)k0 is given by (B, ιB, λB, βK′T , J
◦) 7→ (B, ιB, λB, βK′T). It is

clear that we have the following commutative diagram:

Z ′
S̃,T ξrel

//

πT
((

F′
p2,S̃

,,
F′∗p2,S(T)(Z

′
σ2
p S̃,σ

2
pT

)

��

F′∗
p2,S̃(T)

// Z ′
σ2
p S̃,σ

2
pT

π
σ2
pT

��
ShK′T(G

′
S̃(T)

)k0

F′
p2,S̃(T) // ShK′T(G

′
σ2
p(S̃(T))

)k0

where ξrel is given by (B, ιB, λB, βK′T , J
◦) 7→ (B, ιB, λB, βK′T , J

◦,′) with J◦,′ defined above. This
proves statement (4) immediately.

6. Ampleness of modular line bundles

In this section, we suppose that F 6= Q. We will apply Theorem 5.8 to prove some necessary
conditions for the ampleness of certain modular line bundles on quaternionic/unitary Shimura
varieties. In this section, let X ′ = ShK′(G

′
S̃
)k0 be a unitary Shimura variety over k0 considered

in § 4.1. This is a smooth and quasi-projective variety over k0, and projective if S∞ 6= ∅. Let
(A′, ι, λ, αK′) be the universal abelian scheme over X ′. For each τ̃ ∈ ΣE,∞, the OX′-module
ω◦A′∨/X′,τ̃ is locally free of rank 2− sτ̃ . It is a line bundle if τ̃ |F belongs to Σ∞ − S∞.

6.1 Rational Picard group
For a variety Y over k0, we write Pic(Y )Q for Pic(Y )⊗ZQ. For a line bundle L on Y , we denote
by [L] its class in Pic(Y )Q.
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Lemma 6.2. (1) For any τ̃ ∈ ΣE,∞ lifting a place τ ∈ Σ∞ − S∞, we have equalities

[ω◦A′∨/X′,τ̃ ] = [ω◦A′∨/X′,τ̃c ] = [ω◦A′/X′,τ̃ ] = [ω◦A′/X′,τ̃c ].

(2) For any τ̃ ∈ ΣE,∞, we have [∧2
OX′H

dR
1 (A′/X ′)◦τ̃ ] = 0.

(3) Let X ′∗ denote the minimal compactification of X ′ (which is just X ′ if S∞ 6= ∅). Then the
natural morphism j : Pic(X ′∗)→ Pic(X ′) is injective. Moreover, for each τ̃ ∈ ΣE,∞ lifting
a place τ ∈ Σ∞ − S∞, [ω◦A′∨/X′,τ̃ ] belongs to the image of jQ : Pic(X ′∗)Q→ Pic(X ′)Q.

Proof. (1) Suppose that τ ∈ Σ∞/p − S∞/p for p ∈ Σp. Clearly, p is not of type α] or β]. The
equality [ω◦A′∨/X′,τ̃ ] = [ω◦A′/X′,τ̃c ] follows from the isomorphism ω◦A′∨/X′,τ̃

∼= ω◦A′/X′,τ̃c thanks to

the polarization λ on A′. To prove the equality [ω◦A′∨/X′,τ̃ ] = [ω◦A′∨/X′,τ̃c ], we consider the partial

Hasse invariants hτ̃ ∈ Γ
(
X ′, (ω◦A′∨/X′,σ−nτ τ̃ )⊗p

nτ ⊗ ω◦,⊗(−1)
A′∨/X′,τ̃

)
, and hτ̃c defined similarly with τ̃

replaced by τ̃ c. By Lemma 4.5 and Proposition 4.7, the vanishing of hτ̃ and hτ̃c defines the same
divisor: X ′τ ⊆ X ′. Hence, for each τ̃ ∈ ΣE,∞ lifting some τ ∈ Σ∞/p− S∞/p, we have an equality

pnτ [ω◦A′∨/X′,σ−nτ τ̃ ]− [ω◦A′∨/X′,τ̃ ] = pnτ [ω◦A′∨/X′,σ−nτ τ̃c ]− [ω◦A′∨/X′,τ̃c ]. (6.2.1)

Let C be the square matrix with coefficients in Q, whose rows and columns are labeled by those
places τ̃ ∈ ΣE,∞ lifting a place τ ∈ Σ∞/p − S∞/p, and whose (τ̃1, τ̃2)-entry is

cτ̃1,τ̃2 =


−1 if τ̃1 = τ̃2,

pnτ2 if τ̃1 = σ−nτ2 τ̃2,

0 otherwise.

One checks easily that C is invertible and hence it follows from (6.2.1) that [ω◦A′∨/X′,τ̃ ] =

[ω◦A′∨/X′,τ̃c ].
(2) Assume first that τ̃ ∈ ΣE,∞ lifts some τ ∈ Σ∞/p − S∞. From the Hodge filtration 0→

ω◦A′∨,τ̃ → HdR
1 (A′/X ′)◦τ̃ → Lie(A′/X ′)◦τ̃ → 0, one deduces that

[∧2
OX′H

dR
1 (A′/X ′)◦τ̃ ] = [ω◦A′∨/X′,τ̃ ] + [Lie(A′/X ′)◦τ̃ ].

Then statement (2) follows from (1) and the fact that [Lie(A′/X ′)◦τ̃ ] = −[ω◦A′/X′,τ̃ ] =

−[ω◦A′∨/X′,τ̃c ]. Consider now the case when τ̃ ∈ ΣE,∞ lifts some τ ∈ S∞/p for a place p of type α

or β. Then there is an integer m > 1 such that σmτ ∈ Σ∞−S∞ and σiτ ∈ S∞ for all 0 6 i 6m−1
and we have a sequence of isomorphisms

HdR
1 (A′/X ′)◦,(p

m)
τ̃

FA′,es

∼=
// HdR

1 (A′/X ′)◦,(p
m−1)

στ̃

FA′,es

∼=
// · · ·

FA′,es

∼=
// HdR

1 (A′/X ′)◦σmτ̃ .

From this, one gets

pm[∧2
OX′H

dR
1 (A′/X ′)◦τ̃ ] = [∧2

OX′H
dR
1 (A′/X ′)◦σmτ̃ ] = 0.

Finally, if τ̃ ∈ ΣE,∞/p for a place p of type α] or β] and if m is the inertia degree of p over
p, then the sequence of isomorphisms

HdR
1 (A′/X ′)◦,(p

2m)
τ̃

FA′,es

∼=
// HdR

1 (A′/X ′)◦,(p
2m−1)

στ̃

FA′,es

∼=
// · · ·

FA′,es

∼=
// HdR

1 (A′/X ′)◦σ2mτ̃
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gives rise to an equality

p2m[∧2
OX′H

dR
1 (A′/X ′)◦τ̃ ] = [∧2

OX′H
dR
1 (A′/X ′)◦σ2mτ̃ ] = [∧2

OX′H
dR
1 (A′/X ′)◦τ̃ ]

as σ2mτ̃ = τ̃ . This forces [∧2
OX′H

dR
1 (A′/X ′)◦τ̃ ] = 0.

(3) If X ′ is a Shimura curve, then X ′∗ = X ′ as F 6= Q. Assume now that X ′ has dimension
at least 2. The injectivity of j : Pic(X ′∗)→ Pic(X ′) follows from the facts that X ′∗ is normal
[Lan13, Proposition 7.2.4.3] and that the complement X ′∗−X ′ has codimension > 2. Recall from
(1) that the partial Hasse invariant defines the class as described in (6.2.1). Note that the inverse
matrix of C has all entries positive. It follows that each [ω◦A′∨/X′,τ̃0 ] for τ̃0 lifting τ0 ∈ Σ∞−S∞ is

a positive linear combination of the OX′(X ′τ ). Let X ′n−ord =
⋃
τ∈Σ∞−S∞ X

′
τ ⊆ X ′ be the union

of the Goren–Oort strata of codimension 1. Since X ′n−ord is closed in X ′∗ and is disjoint from
the cusps, each line bundle OX′(X ′τ ) extends to a line bundle OX′∗(X ′τ ). By linear combination,
each [ω◦A′∨/X′,τ̃0 ] extends to a class in Pic(X ′∗)Q. 2

Notation 6.3. For any τ ∈ Σ∞−S∞, we put [ωτ ] = [ω◦A′/X′,τ̃ ] for simplicity, where τ̃ is a lift of τ .

This is a well-defined element in Pic(X ′∗)Q by Lemma 6.2.

Proposition 6.4. Let p be a p-adic place such that #(Σ∞/p − S∞/p) > 1. When T consists of a
single element τ ∈ Σ∞/p with p not of type β2, let nτ = nτ,S be as in § 4.4. Let NX′T

(X ′) denote
the normal bundle of the embedding X ′T ↪→ X ′. Then the equality [NX′T

(X ′)] = [O(−2pnτ )]

holds in Pic(X ′T)Q, where O(1) is the canonical quotient bundle of the P1-bundle πτ : X ′T =
ShK′(G

′
S̃
)k0,T→ ShK′(G

′
S̃(T)

)k0 and O(−2pnτ ) is the dual of O(1)⊗2pnτ .

Proof. By the construction in § 5.22, the set ĨT = {σ−nτ τ̃} for a specific lift τ̃ of τ . We have

J◦σ−nτ τ̃ = φ−1
B,∗,σ−nτ τ̃ ◦ φA,∗,σ−nτ τ̃ (ω◦A∨,σ−nτ τ̃ )

in terms of the moduli description of Y ′T ∼= X ′T. So, the restriction of [ωσ−nτ τ ] to X ′T is [O(−1)].
The Goren–Oort stratum X ′T is defined as the zero locus of

hτ̃ : ω◦A′∨/X′,τ̃ → (ω◦A′∨/X′,σ−nτ τ̃ )⊗p
nτ
.

So, firstly, the class of NX′T
(X ′) in Pic(X ′T)Q is given by the restriction of pnτ [ωσ−nτ τ ] − [ωτ ] to

X ′T and, secondly, on X ′T we have an isomorphism

ω◦A′∨/X′,τ̃
∼=−→ HdR

1 (A′/X ′)◦,(p
nτ )

τ̃ /(ω◦A′∨/X′,σ−nτ τ̃ )⊗p
nτ
.

This implies that [ωτ ] equals −pnτ [ωσ−nτ τ ] in Pic(X ′T)Q.
To sum up, we have equalities in Pic(X ′T)Q:

[NX′T
(X ′)] = pnτ [ωσ−nτ τ ]− [ωτ ]

= 2pnτ [ωσ−nτ τ ] = [O(−2pnτ )]. 2

Theorem 6.5. Let t = (tτ ) ∈ QΣ∞−S∞ . If the element [ωt] =
∑

τ∈Σ∞−S∞ tτ [ωτ ] of Pic(X ′)Q is
ample, then

pnτ tτ > tσ−nτ τ (and tτ > 0) for all τ. (6.5.1)

Here we put the second condition in parentheses, because it follows from the first one.
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Proof. Assume that [ωt] is ample. Let τ ∈ Σ∞ − S∞ and p ∈ Σp be the prime of F such that
τ ∈ Σ∞/p. We distinguish two cases.

– Σ∞/p − S∞/p = {τ}. Condition (6.5.1) for τ is simply tτ > 0. We consider the GO-stratum
X ′Tτ with Tτ = Σ∞−(S∞∪{τ}). Then X ′Tτ is isomorphic to a Shimura curve by Theorem 5.8
and we let iτ : X ′Tτ → X ′ denote the canonical embedding. For any τ̃ ′ ∈ ΣE,∞ − SE,∞ with
restriction τ ′ = τ̃ ′|F 6= τ , let

F
nτ ′
A′,es,τ̃ ′ : HdR

1 (A′(p
nτ )/X ′)◦τ̃ ′ → HdR

1 (A′/X ′)◦τ̃ ′ (6.5.2)

be the nτ ′th iteration of the essential Frobenius in § 4.4. We always have Ker(F
nτ ′
A′,es,τ̃ ′) =

(ω◦
A′∨/X′,σ−nτ ′ τ̃ ′

)(pnτ ′ ). The vanishing of hτ̃ ′ on X ′Tτ is equivalent to

Im(F
nτ ′
A′,es,τ̃ ′)|X′Tτ = (ω◦A′∨/X′,τ̃ ′)|X′Tτ .

Therefore, one deduces an equality in Pic(X ′Tτ )Q:

pnτ i∗τ [ωσ−nτ ′ τ ′ ] + i∗τ [ωτ ′ ] = 0.

Letting τ ′ run through the set Σ∞/q − S∞/q with q 6= p, one obtains that i∗τ [ωτ ′ ] = 0.
Therefore, we have i∗τ [ωt] = tτ i

∗
τ [ωτ ], which is ample on X ′Tτ since so is [ωt] on X ′Tτ by

assumption. By the ampleness of det(ω) =
⊗

τ̃ ′∈ΣE,∞
ω◦A′,τ̃ ′ on X ′ and hence on X ′Tτ , we

see that i∗τ [ωτ ] is ample on X ′Tτ . It follows that tτ > 0.
– Σ∞/p − S∞/p 6= {τ}. Consider the GO-stratum X ′τ given by T = {τ}; then S(T) = S ∪ {τ,
σ−nτ τ} in the notation of § 5.1. By Propositions 5.17 and 5.23, X ′τ is isomorphic to a
P1-bundle over ShK′τ (G′

S̃(T)
)k0 . Let π : X ′τ → ShK′τ (G′

S̃(T)
)k0 denote the natural projection.

The ampleness of [ωt] on X ′ implies the ampleness of its restriction to each closed fiber P1
s

of π. By the proof of Proposition 6.4, we have

ω◦A′∨/X′,τ̃ ′ |P1
s
'


OP1

s
(−1) if τ ′ = σ−nτ τ,

OP1
s
(pnτ ) if τ ′ = τ,

OP1
s

otherwise.

The relation (6.5.1) follows immediately. 2

Since the Hilbert modular varieties and the unitary Shimura varieties have the same neutral
geometric connected components, the following is an immediate corollary of Theorem 6.5.

Corollary 6.6. Let X denote the special fiber of the Hilbert modular variety and X∗ its
minimal compactification. Then, for each τ ∈ Σ∞, the class [ωτ ] ∈ Pic(X)Q uniquely extends
to a class [ωτ ] ∈ Pic(X∗)Q. Moreover, [ωt] =

∑
τ∈Σ∞

tτ [ωτ ] is ample only when tτ > 0 and
ptτ > tσ−1τ for all τ ∈ Σ∞.

For the converse to Theorem 6.5, we have the following conjecture.

Conjecture 6.7. The conditions in Theorem 6.5 and Corollary 6.6 are also sufficient for [ωt]
to be ample.

Remark 6.8. In the case of a Hilbert modular surface, Corollary 6.6 and the sufficiency of the
condition were proved by Andreatta and Goren [AG04, Theorem 8.1.1], and relies heavily on
some intersection theory on surfaces. It seems difficult to generalize their method.

Using our global geometric description, it seems possible to prove, for small inertia degrees
(at least when all inertia degrees are 65), Conjecture 6.7 using variants of the Nakai–Moishezon
criterion. The combinatorics becomes complicated when the inertia degree is large.
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7. Link morphisms

We will introduce certain generalizations of the partial Frobenius morphisms, called the link
morphisms, on unitary Shimura varieties associated to quaternionic ones. These morphisms
appear naturally when considering the restriction of the projection maps πT in Theorem 5.8
to other Goren–Oort strata. The explicit descriptions of these morphisms are essential for the
application considered in the forthcoming paper [TX14]. For simplicity, we will assume that p is
inert of degree g in the totally real field F. Denote by p the unique prime of F above p. Let E
be a CM extension of F . If p splits in E, fix a prime q of E above p and denote the other prime
by q̄; if p is inert in E, we denote by q the unique prime of E above p.

7.1 Links
We introduce some combinatorial objects. Let n > 1 be an integer. Put n points aligned equi-
distantly on a horizontal section of a vertical cylinder. We label the n points by the elements of
Z/nZ so that the (i+ 1)st point is next to the ith point on the right. Let S be a subset of the n
points above. To such an S, we associate a graph as follows: we start left to right with the plot
labeled 0 ∈ Z/nZ and draw a plus sign if the element is in S and a node if it is in Z/nZ − S.
We call such a picture a band of length n associated to S. For instance, if n = 5 and S = {1, 3},
then the band is •+ •+ •.

Let S′ be another subset of Z/nZ of the same cardinality as S. Then a link η : S → S′ is
a graph of the following kind: put the band attached to S on the top of the band for S′ in the
same cylinder; draw non-intersecting curves from each of the nodes from the top band to a node
on the bottom band. We say that a curving is turning to the left (respectively to the right) if
it is moving from the top band to the bottom band. If a curve travels m-numbers of points (of
both plus signs and nodes) to the right (respectively left), we say that the displacement of this
curve is m (respectively −m). When both S and S′ are equal to Z/nZ (so that there are no
nodes at all), then we say that η : S → S′ is the trivial link. We define the total displacement
of a link η as the sum of the displacements of all curves in η. For example, if n = 5, S = {1, 3},
and S′ = {1, 4}, then

(7.1.1)

is a link from S to S′, and its total displacement is v(η) = 3 + 3 + 3 = 9.
For a link η : S → S′, we denote by η−1 : S′ → S the link obtained by flipping the picture

about the equator of the cylinder. For two links η : S → S′ and η′ : S′ → S′′, we define the
composition of η′ ◦ η : S→ S′′ by putting the picture of η on top of the picture of η′ and identify
the nodes corresponding to η′. It is obvious that v(η−1) = −v(η) and v(η′ ◦ η) = v(η′) + v(η).

7.2 Links for a subset of places of F or E
We return to the setup of Notation 1.12 and recall that p is inert in F . We fix an isomorphism
Σ∞ ∼= Z/gZ, so that i 7→ i+ 1 corresponds to the action of Frobenius on Σ∞.

For an even subset S of places in F , we have the band for S when applying § 7.1 to the subset
S∞ of Σ∞. Let S′ be another even subset of places of F such that #S∞ = #S′∞ and S′ contains
the same finite places of F as S does. A link η from the band for S to that for S′ is denoted by
η : S→ S′. When S′ = S and S∞ = Σ∞, η : S→ S′ is necessarily the trivial link (so that there
are no curves at all).

The Frobenius action on Σ∞ defines a link σ : S→ σ(S), in which all curves turn to the right
with displacement 1; the total displacement of this link σ is v(σ) = g−#S∞. Here σ(S) denotes
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the subset of places of F whose finite part is the same as S and whose infinite part is the image
of Frobenius on S∞.

Notation 7.3. Recall the definition of nτ for τ ∈ Σ∞ − S∞ from Notation 4.3. For simplicity,
we write τ− for σ−nτ τ and we use τ+ to denote the unique place in Σ∞ − S∞ such that τ =
(τ+)− = σ−nτ+ τ+. When there are several S involved, we will write nτ (S) for nτ to emphasize
its dependence on S.

7.4 Link morphisms
Let η : S→ S′ be a link of two even subsets of places of F . If S∞ 6= Σ∞, we denote by m(τ) the
displacement of the curve at τ in the link η for each τ ∈ Σ∞−S∞, and put m(τ) = 0 for τ ∈ S∞.

Let ShK′(G
′
S̃
)k0 and ShK′(G

′
S̃′

)k0 denote the special fibers of some unitary Shimura varieties

of type considered in § 3.7. (There is no restriction on the signatures, i.e. the sets S̃∞ and
S̃′∞ that lift S∞ and S′∞; but we fix them.) Here we have fixed (compatible) isomorphisms
OD := ODS

∼= ODS′
∼= M2×2(OE) and G′

S̃
(A∞) ∼= G′

S̃′
(A∞), and regard K ′ as an open compact

subgroup of both of the groups; this is possible because S and S′ have the same finite part, and
the argument in Lemma 5.4 applies verbatim in this situation. Note that K ′p is assumed to be
hyperspecial as in § 3.7. Let A′

S̃,k0
be the universal abelian scheme over ShK′(G

′
S̃
)k0 . For a point

x of ShK′(G
′
S̃
)k0 with values in a perfect field k(x), we denote by A′

S̃,x
the base change of A′

S̃
to

x, and D̃(A′
S̃,x

)◦ the reduced part of the covariant Dieudonné module of A′
S̃,x

(cf. § 4.1 and the

proof of Lemma 5.18). For each τ̃ ∈ ΣE,∞ − SE,∞, we have the essential Frobenius map defined
in Notation 4.2:

FA′,es : D̃(A′
S̃,x

)◦σ−1τ̃ → D̃(A′
S̃,x

)◦τ̃ .

Finally, recall that a p-quasi-isogeny of abelian varieties means a quasi-isogeny of the form
f1 ◦ f−1

2 , where f1 and f2 are isogenies of p-power order. The degree of the quasi-isogeny is
deg f1/deg f2.

Definition 7.5. Assume that m(τ) > 0 for each τ ∈ Σ∞, i.e. all curves (if any) in η are either
straight lines or all turning to the right. Let n be an integer. If p is inert in E, we assume that
n = 0. A link morphism of indentation degree n associated to η on ShK′(G

′
S̃
)k0 (if it exists) is a

morphism of varieties
η′(n),] : ShK′(G

′
S̃
)k0 → ShK′(G

′
S̃′)k0

together with a p-quasi-isogeny of abelian varieties

η′](n) : A′
S̃,k0
→ η′∗(n),](A

′
S̃′,k0

),

such that the following conditions are satisfied:

(1) η′(n),] induces a bijection on geometric points;

(2) the quasi-isogeny η′](n) is compatible with the actions of OD, level structures, and the

polarizations on both abelian varieties;

(3) there exists, for each τ̃ ∈ ΣE,∞ − SE,∞, some tτ̃ ∈ Z, such that, for every Fp-point x of
ShK′(G

′
S̃
)k0 with image x′ = η′(n),](x),

η′](n),∗
(
F
m(τ)
es,A′

S̃,x

(D̃(A′
S̃,x

)◦τ̃ )
)

= ptτ̃ D̃(A′
S̃′,x′)

◦
σm(τ)τ̃

,

where τ ∈ Σ∞ is the image of τ̃ ;
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(4) the quasi-isogeny of the q-divisible group

η′](n),q : A′
S̃,k0

[q∞]→ η′∗(n),]A
′
S̃′,k0

[q∞]

has degree p2n. Here our convention for q is as at the beginning of this section. In particular,
if p splits in E, then the quasi-isogeny on the q̄∞-divisible groups

η′](n),q̄ : A′
S̃,k0

[q̄∞]→ η′∗(n),]A
′
S̃′,k0

[q̄∞]

has necessarily degree p−2n. Here the exponent 2n is due to the fact that A′k0
[q∞] is two

copies of its reduced part A′k0
[q∞]◦.

Let ηi : Si → Si+1 for i = 1, 2 be two links with all curves turning to the right, and let
(η′i,], η

′]
i ) for i = 1, 2 be a link morphism of indentation degree ni on ShK′p(G

′
S̃i

)k0 attached to ηi.

The composition of (η′2,], η
′]
2 ) with (η′1,], η

′]
1 ) defined by

η′12,] : ShK′p(G
′
S̃1

)k0

η′1,]−−→ ShK′p(G
′
S̃2

)k0

η′2,]−−→ ShK′p(G
′
S̃3

)k0

and

η′]12 : A′
S̃1,k0

η′]1−→ η′∗1,](A
′
S̃2,k0

)
η′∗1,](η

′]
2 )

−−−−−→ η′∗12,](A
′
S̃3,k0

)

is a link morphism attached to the composed link η12 := η2 ◦ η1 with indentation degree n1 +n2.

7.6 Variants
The formulation of link morphisms on ShK′(G

′
S̃
)k0 is compatible with changing the tame level

K ′p. By taking the inverse limit of K ′p, one can define a link morphism on ShK′p(G
′
S̃
)k0 associated

to η in the obvious way.
One can define similarly a link morphism of indentation degree n on ShK′′p (G′′

S̃
)k0 as a pair

(η′′(n),], η
′′
(n),]), where

η′′(n),] : ShK′′p (G′′
S̃
)k0 → ShK′′p (G′′

S̃′)k0

is a morphism of varieties and

η′′](n) : A′′
S̃,k0
→ η′′∗(n),](A

′′
S̃′,k0

)

is a p-quasi-isogeny of abelian schemes such that the same conditions (1)–(4) in Definition 7.5 are
satisfied (except the primes are replaced by double primes). Here A′′

S̃,k0
is the family of abelian

varieties constructed in § 3.20.

Example 7.7. (1) Consider the second iteration of the Frobenius link σ2 = σ2
p : S→ σ2(S). The

twisted (partial) Frobenius map (3.22.3)

F′p2 : ShK′(G
′
S̃
)k0 → ShK′(G

′
σ2S̃

)k0

together with the isogeny η′p2 defined in (3.22.4) is a link morphism associated to σ2; the

indentation degree is 0 if p is inert in E/F , and is 2#S̃∞/q̄ − 2#S̃∞/q if p splits in E/F .
(2) Assume that S∞ = Σ∞ and p /∈ S (so that p splits in E by our choice of E). The

Shimura variety ShK′(G
′
S̃
)k0 is just a finite union of closed points. Let τ0 ∈ Σ∞ and τ̃0 ∈ S̃∞

be the lift of τ0 with signature sτ̃0 = 0. We assume that σ−1τ̃0 /∈ S̃∞ (so that σ−1τ̃ c0 ∈ S̃∞).
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Let S̃′ denote the subset of places of F containing the same finite places as S̃ and such that
S̃′∞ = S̃∞∪{τ̃ c0 , σ−1τ̃0}\{τ̃0, σ

−1τ̃ c0}. Let S′ be the subset of places of F defined by the restriction

of S̃′∞. Then there exists a link morphism (δ′τ0,], δ
′]
τ0) from ShK′(G

′
S̃
)k0 to ShK′(G

′
S̃′

)k0 associated
to the trivial link S → S′ defined as follows; its indentation is 0 if p is inert in E/F , is 2 if p
splits in E/F and τ̃ induces the p-adic place q, and is −2 if p splits in E/F and τ̃ induces the
p-adic place q̄.

It suffices to define δ′τ0,] on the geometric closed points, as both Shimura varieties are

zero dimensional. For each Fp-point x = (A, ι, λA, αK′) ∈ ShK′(G
′
S̃
)(Fp), let D̃◦A,τ̃ denote the

τ̃ -component of the reduced covariant Dieudonné module of A for each τ̃ ∈ ΣE,∞. We put
M◦τ̃ = D̃◦A,τ̃ for τ̃ 6= τ̃0, τ̃

c
0 and

M◦τ̃c0 = pD̃◦A,τ̃c0 , M◦τ̃0 =
1

p
D̃◦A,τ̃0 ⊆ D̃

◦
A,τ̃0

[
1

p

]
.

It is straightforward to check that the signature condition implies that the Mτ̃ are stable under
the actions of Frobenius and Verschiebung of D̃◦A,τ̃0 [1/p]. As in the proof of Proposition 5.17, this
gives rise to an abelian variety B of dimension 4g with an action of OD and an OD-quasi-isogeny
φ : B → A such that the induced morphism on Dieudonné modules φ∗ : D̃◦B,τ̃ → D̃◦A,τ̃ [1/p] is

identified with the natural inclusion M◦τ̃ ↪→ D̃◦A,τ̃ [1/p] for all τ̃ ∈ ΣE,∞. The polarization λA
induces naturally a polarization λB on B such that λB = φ∨ ◦ λA ◦ φ, since M◦τ̃ is the dual
lattice of M◦τ̃c for every τ̃ ∈ ΣE,∞. When p is of type α2, then K ′p is the Iwahoric subgroup and

the level structure at p is equivalent to the data of a collection of submodules L◦τ̃ ⊂ D̃◦A,τ̃ for
τ̃ ∈ ΣE,∞/q which are stable under the action of Frobenius and Verschiebung morphisms and

such that D̃◦A,τ̃/L◦τ̃ is a one-dimensional vector space over Fp for each τ̃ . This then gives rise to a

level structure at p for Bx by taking L′◦τ̃ = L◦τ̃ if τ̃ 6= τ̃0 and L′◦τ̃0 = p−1L◦τ̃0 . It is clear that other
level structures of A transfer to those of B automatically. This then defines a morphism

δ′τ0,] : ShK′(G
′
S̃
)k0 → ShK′(G

′
S̃′)k0 .

One checks easily that one can reverse the construction to recover A from B. So, δ′τ0,] is an
isomorphism and there exists a p-quasi-isogeny

δ′]τ0 : A′
S̃,k0
→ (δ′τ0,])

∗A′
S̃′,k0

,

whose base change to x is φ−1 : A → B constructed above. It is evident by construction that
(δ′τ0,], δ

′]
τ0) is a link morphism of the prescribed indentation associated to the trivial link S→ S′.

The following proposition will play a crucial role in our application in [TX14].

Proposition 7.8. For a given link η : S→ S′ with all curves (if any) turning to the right and
an integer n ∈ Z (with n = 0 if p is inert in E), there exists at most one link morphism of
indentation degree n from ShK′p(G

′
S̃
)k0 to ShK′p(G

′
S̃′

)k0 (or from ShK′′p (G′′
S̃
)k0 to ShK′′p (G′′

S̃′
)k0)

associated to η.

Proof. Since ShK′p(G
′
S̃
)k0 and ShK′′p (G′′

S̃
)k0 have a canonically isomorphic neutral connected

component (and the restrictions of A′
S̃,k0

and A′′
S̃,k0

to this neutral connected component are

also canonically isomorphic), it suffices to treat the case of ShK′p(G
′
S̃
)k0 . Let (η′i,], η

′]
i ) for i = 1, 2
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be two link morphisms of indentation degree n associated to η. By the moduli property of
ShK′p(G

′
S̃′

)k0 , it suffices to show that the p-quasi-isogeny of abelian varieties

φ : η′∗1,](A
′
S̃′,k0

)
η′]1
←− A′

S̃,k0

η′]2−→ η′∗2,](A
′
S̃′,k0

)

is an isomorphism. By [RZ96, Proposition 2.9], the locus where φ is an isomorphism is a closed
subscheme of ShK′(G

′
S̃
)k0 . As ShK′p(G

′
S̃
)k0 is a reduced variety, φ is an isomorphism if and only

if it is so after base changing to every Fp-point of ShK′p(G
′
S̃
)k0 .

Let x be an Fp-point of ShK′(G
′
S̃
)k0 and put xi = η′i,](x) for i = 1, 2. Consider first the case

S∞ 6= Σ∞. By condition 7.5(3), there exists an integer uτ̃ for each τ̃ ∈ ΣE,∞/q−S′E,∞/q such that

φx,∗
(
D̃(AS̃′,x1

)◦τ̃
)

= puτ̃ D̃(AS̃′,x2
)◦τ̃ .

We claim that uτ̃ must be 0 for all τ̃ . Note that the cokernel of

Fnτes,AS̃′,xi
: D̃(AS̃′,xi

)◦σ−nτ τ̃ → D̃(AS̃′,xi
)◦τ̃

has dimension 1 over k(xi) for i = 1, 2. Since φx,∗ commutes with Fnτes , we see that uτ̃ = uσ−nτ τ̃ .
Consequently, for all τ̃ ∈ ΣE,∞/q, uτ̃ takes the same value, which we denote by u. However, both

η′]1,q and η′]2,q have degree p2n by condition 7.5(4). It follows that

φx,q : η′∗1,](A
′
S̃′,x1

)[q∞]→ η′∗2,](A
′
S̃′,x2

)[q∞]

is a quasi-isogeny of degree 0, which forces u to be 0. Hence, φ∗ is an isomorphism.
When S∞ = Σ∞, we have similarly an integer uτ̃ for all τ̃ ∈ ΣE,∞ such that φ∗

(
D̃(AS̃′,x1

)◦τ̃
)

=

puτ̃ D̃(AS̃′,x2
)◦τ̃ . Since ShK′(G

′
S̃
)k0 and ShK′(G

′
S̃′

)k0 are both zero dimensional and

Fes,A′
S̃,xi

: D̃(AS̃′,xi
)◦σ−1τ̃ → D̃(AS̃′,xi

)◦τ̃

is an isomorphism for all τ̃ ∈ ΣE,∞ and i = 1, 2, the commutativity of φ∗ with essential Frobenii
shows that uτ̃ = uσ−1τ̃ . The same arguments as above show that φ∗ is an isomorphism. 2

Remark 7.9. This proposition does not guarantee the existence of the link morphism associated
to a given link. However, we do expect the link morphisms to exist in general (for links with all
curves turning to the right).

7.10 Link morphisms and Hecke operators
Assume that S∞ = Σ∞, so that p is of type α or α] and the band associated to S consists of only
plus signs. Let q and q̄ be the two primes of E above p. We will focus on the compatibility of
link morphisms with the Hecke operators at q, whose definition we recall now.

We have the following description:

G′′
S̃
(Qp) ∼= GL2(Fp)×F×p (E×q × E×q̄ )

∼−→ GL2(Eq)× F×p ,

where the last isomorphism is given by (g, (λ1, λ2)) 7→ (gλ1, det(g)λ1λ2) for g ∈ GL2(Fp),
λ1 ∈ E×q , and λ2 ∈ E×q̄ . Then G′

S̃
(Qp) is the subgroup GL2(Eq) × Q×p of G′′

S̃
(Qp). Let γq

(respectively ξq) be the element of G′
S̃
(A∞) which is equal to((

p−1 0
0 p−1

)
, 1

)
∈ GL2(Eq)×Q×p

(
respectively

((
p−1 0
0 1

)
, 1

)
∈ GL2(Eq)×Q×p

)

2205

https://doi.org/10.1112/S0010437X16007326 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X16007326


Y. Tian and L. Xiao

at p and is equal to 1 at other places. Assume that K ′ ⊆ G′
S̃
(A∞) is hyperspecial at p, i.e. K ′p =

GL2(OEq)×Z×p . We use Sq and Tq to denote the Hecke correspondences on ShK′(G
′
S̃
) defined by

K ′γqK ′ and K ′ξqK ′, respectively. Explicitly, if Iw′p = Iwq ×Z×p ⊆ G′S̃(Qp) with Iwq ⊆ GL2(OEq)
the standard Iwahoric subgroup reducing to upper triangular matrices when modulo p, then the
Hecke correspondence Tq is given by the following diagram:

ShK′pIw′p
(G′

S̃
)

pr2

''

pr1

ww
ShK′(G

′
S̃
) ShK′(G

′
S̃
)

(7.10.1)

where pr1 is the natural projection and pr2 is induced by the right multiplication by ξq. Note that
Sq is an automorphism of ShK′(G

′
S̃
) and there is a natural p-quasi-isogeny of universal abelian

schemes
ΦSq : A′

S̃
→ S∗qA′

S̃

compatible with all structures such that the induced quasi-isogeny of p-divisible groups ΦSq [q
∞] :

A′
S̃
[q∞]→ (S∗qA′

S̃
)[q∞] is the canonical isogeny with kernel A′

S̃
[q].

Similarly, the elements γq and ξq induce Hecke correspondences on ShK′′(G
′′
S̃
), which we

denote still by Sq and Tq, respectively.

Proposition 7.11. Assume that S∞ = Σ∞. Let S̃∞ and S̃′∞ be two different choices of signatures
in § 3.4. Suppose that there exists a link morphism (η′], η

′]) from ShK′(G
′
S̃
)k0 to ShK′(G

′
S̃′

)k0 (of

some indentation) associated to the trivial link S→ S′, where K ′p = GL2(OEq)×Z×p ⊆ G′(Qp) is

hyperspecial. Then (η′], η
′]) lifts uniquely to a link morphism (η′],Iw, η

′]
Iw) on ShK′pIw′p

(G′
S̃
)k0 such

that the following commutative diagrams are Cartesian:

ShK′(G
′
S̃
)k0

η′]
��

ShK′pIw′p
(G′

S̃
)k0

pr1oo

η′],Iw
��

pr2 // ShK′(G
′
S̃
)k0

η′]
��

ShK′(G
′
S̃
)k0

η′]
��

Sq // ShK′(G
′
S̃
)k0

η′]
��

ShK′(G
′
S̃′

)k0 ShK′pIw′p
(G′

S̃′
)k0

pr1oo pr2 // ShK′(G
′
S̃′

)k0 ShK′(G
′
S̃′

)k0

Sq // ShK′(G
′
S̃′

)k0

where the top and the bottom lines of the left-hand diagram are the Hecke correspondences Tq
defined above. The same holds for the link morphism (η′′] , η

′′]): ShK′′(G
′′
S̃
)k0 → ShK′′(G

′′
S̃′

)k0 .

Proof. Note that Sq is in fact an isomorphism of Shimura varieties; so the compatibility with
Sq-action follows from the uniqueness of the link morphism by Proposition 7.8.

We prove now the existence of the lift (η′],Iw, η
′]
Iw), whose uniqueness is proved in

Proposition 7.8. Let x = (A, ι, λ, αK′p) be a point of ShK′(G
′
S̃
)(Fp). Put x′ = η′](x) = (A′, ι′, λ′,

α′K′p). By Definition 7.5(3), for any τ̃ ∈ ΣE,∞, there exists tτ̃ ∈ Z independent of x such that

η′]∗ (D̃◦A,τ̃ ) = ptτ̃ D̃◦A′,τ̃ . Fix a τ̃0 ∈ ΣE,∞/q. Giving a point y of ShK′pIw′p
(G′

S̃
)k0 with pr1(y) = x is

equivalent to giving a W (Fp)-submodule H̃◦τ̃0 ⊆ D̃
◦
A,τ̃0

such that F ges,A(H̃◦τ̃0) = H̃◦τ̃0 and D̃◦A,τ̃0/H̃
◦
τ̃0

is one dimensional over Fp. We put H̃ ′◦τ̃0 = p−tτ̃0η′]∗ (H̃◦τ̃0) ⊆ D̃◦A′,τ̃0 . Then one sees easily that the

quotient D̃◦A′,τ̃0/H̃
′◦
τ̃0

is one dimensional over Fp and H̃ ′◦τ̃0 is fixed by F ges,A′ . This gives rise to a point

y′ of ShK′pIw′p
(G′

S̃′
)k0 with pr1(y′) = x′. One thus defines η′],Iw(y) = y′, and the quasi-isogeny η′]Iw

as the pullback of η′] via pr1. It is clear by construction that η′] ◦ pr1 = pr1 ◦ η′],Iw.
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It remains to prove that η′] ◦pr2 = pr2 ◦ η′],Iw. Let y = (A, ι, λ, αK′p , H̃
◦
τ̃0

) ∈ ShK′pIwp(G
′
S̃
)(Fp)

be a point above x as above. We put D̃◦A,q :=
⊕

τ̃∈ΣE,∞/q
D̃◦A,τ̃ and we define D̃◦A,q̄ similarly

with q replaced by q̄. Then H̃◦q := 1/p
⊕g−1

i=0 F
i
es,A(H̃◦τ̃0) is a W (Fp)-lattice of D̃◦A,q[1/p] stable

under the action of F and V . Let H̃◦q̄ = H̃◦,∨q ⊆ D̃◦A,q̄[1/p] denote the dual lattice of H̃◦q under

the perfect pairing between D̃◦A,q[1/p] and D̃◦A,q̄[1/p] induced by λ. By the theory of Dieudonné
modules, there exists a unique abelian variety B equipped with OD-action ιB together with an
OD-linear p-quasi-isogeny φ : B → A such that φ∗(D̃◦B) is identified with the lattice H̃◦q ⊕ H̃◦q̄
of D̃◦A[1/p]. Note that B satisfies the signature condition of ShK′(GS̃)k0 . Since H̃◦q and H̃◦q̄ are
dual to each other, the quasi-isogeny λB = φ∨ ◦ λ ◦ φ : B → B∨ is a prime-to-p polarization λB
on B. We equip moreover B with the K ′p-level structure βK′p such that αK′p = φ ◦ βK′p . Thus,
z := (B, ιB, λB, βK′p) gives rise to an Fp-point of ShK′(G

′
S̃
)k0 and we have z = pr2(y) by the

moduli interpretation of pr2.

Let (B′, ιB′ , λB′ , β′K′p) denote the image η′](z). Then D̃◦B′,τ̃0 is identified via (η′]∗ )−1 with the

lattice p−tτ̃0 D̃◦B,τ̃0 of D̃◦B,τ̃0 [1/p] and hence with the lattice p−tτ̃0−1H̃τ̃0 of D̃◦A,τ̃0 [1/p]. By our

construction of y′ = η′],Iw(y), it is easy to see that, if pr2(y′) = (B′′, ιB′′ , λB′′ , β′′K′p), then D̃◦B′′,τ̃0
can be canonically identified with D̃◦B′,τ̃0 as lattices of D̃◦A,τ̃0 [1/p]. Since other components D̃◦B′,τ̃
or D̃◦B′′,τ̃ for τ̃ ∈ ΣE,∞ are determined from D̃◦B′,τ̃0 and D̃◦B′′,τ̃0 by the same rules (i.e. stability
under the essential Frobenius and the duality), we see that B′ is canonically isomorphic to B′′,
compatible with all structures. This concludes the proof of pr2 ◦ η′],Iw = η′] ◦ pr2. 2

For the rest of this paper, we discuss two topics, whose proofs are nested together. One topic is
to understand the behavior of the description of the Goren–Oort strata under the link morphisms;
the other is to understand the restriction of the P1-bundle description of the Goren–Oort strata
to other Goren–Oort strata.

Proposition 7.12. Let τ ∈ Σ∞ − S∞ be a place such that τ− 6= τ and let πτ : ShK′(G
′
S̃
)k0,τ →

ShK′(G
′
S̃(τ)

)k0 be the P1-bundle fibration given by Theorem 5.8 for the Goren–Oort stratum

defined by the vanishing of the partial Hasse invariant at τ . Let T be a subset of Σ∞ − S∞
containing τ .

(1) If τ+ /∈ T, then we put Tτ = T\{τ, τ−} and we have a commutative diagram.

ShK′(G
′
S̃
)k0,T

� � //

��

ShK′(G
′
S̃
)k0,τ

πτ

��
ShK′(G

′
S̃(τ)

)k0,Tτ
� � // ShK′(G

′
S̃(τ)

)k0

(7.12.1)

If τ− ∈ T, the left vertical arrow is an isomorphism. If τ− /∈ T, this diagram is Cartesian.

(2) If τ, τ− ∈ T and τ+ 6= τ−, then we put Tτ = T\{τ, τ−}, and πτ induces a natural isomorphism

πτ : ShK′(G
′
S̃
)k0,T→ ShK′(G

′
S̃(τ)

)k0,Tτ . (7.12.2)

Moreover, all descriptions above are compatible with the natural quasi-isogenies on universal
abelian varieties, and analogous results hold for ShK′′(G

′′
S̃
)k0 .

Proof. The statements for ShK′′(G
′′
S̃
)k0 follow from those analogs for ShK′(G

′
S̃
)k0 by § 2.12 (or

in this case more explicitly by § 3.20). Thus, we will just prove the proposition for ShK′(G
′
S̃
)k0 .
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(1) If τ+ /∈ T, the prime p must be of type α1 or β1. By the proof of Proposition 5.17,
the natural quasi-isogeny φ : π∗τ (A′

S̃(τ),k0
) → A′

S̃,k0
|ShK′ (G′S̃)k0,τ

induces an isomorphism on the

(reduced) differential forms at τ̃ ′ for all τ̃ ′ ∈ ΣE,∞ not lifting τ, σ−1τ, . . . , σ−nτ τ = τ−. So, πτ
induces a Cartesian square

ShK′(G
′
S̃
)k0,Tτ∪{τ}

� � //

πτ

��

ShK′(G
′
S̃
)k0,τ

πτ

��
ShK′(G

′
S̃(τ)

)k0,Tτ
� � // ShK′(G

′
S̃(τ)

)k0

This already proves (1) in case τ− /∈ T. Suppose now that τ− ∈ T. By Proposition 5.23,
ShK′(G

′
S̃
)k0,Tτ∪{τ} is the moduli space of tuples (B, ιB, λB, βK′Tτ

; J◦τ̃−), where:

– (B, ιB, λB, βK′Tτ
) is a point of ShK′(G

′
S̃(τ)

)k0,Tτ with values in a scheme S over k0;

– J◦τ̃− is a subbundle of HdR
1 (B/S)◦τ̃− of rank one (here τ̃− ∈ ΣE,∞ is the specific lift of τ−

defined in § 5.21).
Then the closed subscheme ShK′(G

′
S̃
)k0,T of ShK′(G

′
S̃
)k0,Tτ∪{τ} is defined by the condition:

J◦τ̃− = F
nτ−
B,es

(
HdR

1 (B(p
n
τ− )/S)◦

σ
−n

τ− τ̃−

)
.

This shows that the restriction of πτ : ShK′(G
′
S̃
)k0,Tτ∪{τ}→ ShK′(G

′
S̃
)k0,Tτ to ShK′(G

′
S̃
)k0,T is an

isomorphism.
(2) When τ+ /∈ T, this was proved in (1). Assume now that τ+ ∈ T. To complete the proof,

it suffices to prove that, for a k0-scheme S, the τ+th partial Hasse invariant vanishes at an
S-point x = (A, ιA, λA, αK′) ∈ ShK′(G

′
S̃
)k0,{τ} if and only if it vanishes at πτ (x) = (B, ιB, λB,

βK′) ∈ ShK′(G
′
S̃(τ)

)k0 . Let τ̃ be the lift of τ contained in ∆̃(τ)+ (see § 5.11 for the notation

∆̃(τ)+). Put τ̃+ = σnτ+ τ̃ and τ̃− = σ−nτ τ̃ . By Lemma 4.5, it suffices to show that

F
nτ+

A,es

(
HdR

1 (A/S)
◦,(pnτ+ )
τ̃

)
= ω◦A∨/S,τ̃+

⇔ F
nτ++nτ+nτ−
B,es

(
HdR

1 (B/S)
◦,(pnτ++nτ+n

τ− )

σ
−n

τ− τ̃−

)
= ω◦B∨/S,τ̃+ . (7.12.3)

But this follows from the following three facts.

(a) By the definition of essential Frobenius in Notation 4.2, one deduces a commutative diagram.

HdR
1 (A/S)

◦,(pnτ+ )
τ̃

F
n
τ+

A,es //

φ∗,τ̃
��

HdR
1 (A/S)◦τ̃+

φ∗,τ̃+∼=
��

HdR
1 (B/S)

◦,(pnτ+ )
τ̃

F
n
τ+

B,es // HdR
1 (B/S)◦τ̃+

(b) It follows from condition (v) of the moduli description in § 5.15 that

φ∗,τ̃ (HdR
1 (A/S)◦τ̃ ) = F

nτ−+nτ
B,es

(
HdR

1 (B/S)
◦,(pnτ+n

τ− )

σ
−n

τ− τ̃−

)
.

(c) The condition τ− 6= τ+ implies that the quasi-isogeny φ : A→ B induces an isomorphism
φ∗,τ̃+ : HdR

1 (A/S)◦τ̃+
∼= HdR

1 (B/S)◦τ̃+ preserving the Hodge filtrations, in particular
identifying the submodules φ∗,τ̃ (ω◦A∨/S,τ̃+) = ω◦B∨/S,τ̃+ . 2
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7.13 Compatibility of link morphisms and the description of Goren–Oort strata
We first recall that, although the subset S(τ) is completely determined by S and τ as in § 5.1,
the lift S̃(τ)∞, which consists of all τ̃ ′ ∈ ΣE,∞ with signature sτ̃ ′ = 0 (see § 3.4), depends on an
auxiliary choice in § 5.3: a lift τ̃ of τ to be contained in S̃(τ)∞. We assume that #(Σ∞−S∞) > 2.
If p splits as qq̄ in E for a fixed place q, then the τ̃ contained in S̃(τ)∞ is always chosen to be the
one in ΣE,∞/q. If p is inert in E, then there are two possible choices: τ̃ and its conjugate τ̃ c for a

fixed lift τ̃ of τ . In the latter case, we denote by τ̃ the lift of τ contained in S̃(τ)∞, by S̃(τ)′ = (S(τ),
S(τ)′∞) the lift of S(τ) such that τ̃ c ∈ S̃(τ)′∞, and let π′τ : ShK′(G

′
S̃
)k0,τ → ShK′(G

′
S̃(τ)′

)k0 be the

corresponding P1-bundle. The following proposition says that πτ and π′τ differ from each other
by a link isomorphism.

Proposition 7.14. Assume that p is inert in E. Then there exists a link isomorphism

(η′
S̃(τ),S̃(τ)′,], η

′]
S̃(τ),S̃(τ)′

) : ShK′(G
′
S̃(τ)

)k0

∼−→ ShK′(G
′
S̃(τ)′)k0

(of indentation degree 0) associated to the identity link η : S(τ)→ S(τ) such that the diagram

ShK′(G
′
S̃
)k0,τ

πτ

vv

π′τ

((
ShK′(G

′
S̃(τ)

)k0 ηS̃(τ),S̃(τ)′,]

∼= // ShK′(G
′
S̃(τ)′

)k0

commutes. Similar statements hold for ShK′′(G
′′
S̃(τ)

)k0 and ShK′′(G
′′
S̃(τ)′

)k0 .

Proof. Consider the closed subvariety ShK′(G
′
S̃
)k0,{τ,τ−} of ShK′(G

′
S̃
)k0,τ . Then, by Proposition

7.12(2) (note that p being inert in E implies that τ+ 6= τ−), π|ShK′ (G′S̃)k0,{τ,τ−}
is an isomorphism.

We put
η′
S̃(τ),S̃(τ)′,] : = π′τ ◦ (π|ShK′ (G′S̃)k0,{τ,τ−}

)−1

and define η′]
S̃(τ),S̃(τ)′

as the pullback via (πτ |ShK′ (G′S̃)k0,{τ−,τ}
)−1 of the quasi-isogeny

π∗τA
′
S̃(τ),k0

→ A′
S̃,k0
|ShK′ (G′S̃)k0,{τ,τ−}

→ π′∗τ AS̃(τ)′,k0
,

where the two quasi-isogenies are given by Theorem 5.8(2). By Proposition 7.12(2) again,
π′τ |ShK′ (G′S̃)k0,{τ,τ−}

is an isomorphism and hence so is η′
S̃(τ),S̃(τ)′,]

. It remains to show that

(η′
S̃(τ),S̃(τ)′,]

, η′]
S̃(τ),S̃(τ)′

) is a link morphism associated to the identity link on S. Let x be a

geometric point of ShK′(G
′
S̃(τ)

)k0 , and x′ = η′
S̃(τ),S̃(τ)′,]

(x). By construction, it is easy to see

that the quasi-isogeny η′]
S̃(τ),S̃(τ)′

induces an isomorphism D̃(A′
S̃(τ),k0,x

)◦τ̃ ′
∼−→ D̃(A′

S̃(τ)′,k0,x′
)◦τ̃ ′ for

τ̃ ′ 6= σaτ̃ , σaτ̃ c with a = 0, . . . , nτ − 1. In the exceptional cases, we have

η′]
S̃(τ),S̃(τ)′

(D̃(A′
S̃(τ),k0,x

)◦τ̃ ′) =

pD̃(A′
S̃(τ)′,k0,x′

)◦τ̃ ′ for τ̃ ′ = σaτ̃ for a = 0, . . . , nτ − 1,
1

p
D̃(A′

S̃(τ)′,k0,x′
)◦τ̃ ′ for τ̃ ′ = σaτ̃ c for a = 0, . . . , nτ − 1.

Hence, (η′
S̃(τ),S̃(τ)′,]

, η′]
S̃(τ),S̃(τ)′

) verifies Definition 7.5. 2

The following lemma will be needed in the proof of the main result of this section.
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Lemma 7.15. Assume that S∞ 6= ∅. Let χ(ShK′(G
′
S̃
)Fp) :=

∑+∞
i=0 (−1)i dimH i

et(ShK′(G
′
S̃
)Fp ,Q`)

denote the Euler–Poincaré characteristic of ShK′(G
′
S̃
)Fp for some fixed prime ` 6= p. Then we

have χ(ShK′(G
′
S̃
)Fp) 6= 0.

Proof. The assumption that S∞ 6= ∅ implies that the Shimura variety ShK′(G
′
S̃
) is proper.

Consider the integral model ShK′(G
′
S̃
) over O℘̃ and choose an embedding O℘̃ ↪→ C. By the

proper base change theorem and the standard comparison theorems, we have

χ(ShK′(G
′
S̃
)Fp) = χ(ShK′(G

′
S̃
)C) :=

∞∑
i=0

(−1)i dimH i
sing(ShK′(G

′
S̃
)C,C),

where H i
sing(ShK′(G

′
S̃
)C,C) denotes the singular cohomology of ShK′(G

′
S̃
)C for the usual complex

topology. For each τ̃ lifting an element of Σ∞−S∞, put ω◦τ̃ = ω◦A′
S̃,C,τ̃

and t◦τ̃ = Lie(A′
S̃,C)◦τ̃ = ω◦,∨τ̃

to simplify the notation. They are line bundles over ShK′(G
′
S̃
)C. We have a Hodge filtration

0→ ω◦τ̃c → HdR
1 (A′

S̃,C/ShK′(G
′
S̃
)C)◦τ̃ → t◦τ̃ → 0.

Note that HdR
1 (A′

S̃,C/ShK′(G
′
S̃
)C)◦τ̃ is equipped with the integrable Gauss–Manin connection, so

that its Chern classes are trivial by classical Chern–Weil theory. One thus obtains{
c1(ω◦τ̃c)c1(t◦τ̃ ) = c2(HdR

1 (A′
S̃,C/ShK′(G

′
S̃
)C)◦τ̃ ) = 0,

c1(ω◦τ̃c) + c1(t◦τ̃ ) = c1(HdR
1 (A′

S̃,C/ShK′(G
′
S̃
)C)◦τ̃ ) = 0

=⇒

{
c1(ω◦τ̃ )2 = 0,

c1(ω◦τ̃ ) = c1(ω◦τ̃c),

where ci(E) ∈H2i
sing(ShK′(G

′
S̃
)C,C) denotes the ith Chern class of a vector bundle E . Let T denote

the tangent bundle of ShK′(G
′
S̃
)C and put det(ω) :=

⊗
τ̃∈ΣE,∞−SE,∞ ω

◦
τ̃ . By Corollary 3.17, we

get

cd(T ) =
∏

τ∈Σ∞−S∞
(−2c1(ω◦τ̃ )),

where τ̃ ∈ ΣE,∞ is an arbitrary lift of τ and d = #Σ∞ −#S∞ is the dimension of ShK′(G
′
S̃
)C.

Note that c1(ω◦τ̃ )2 = 0 and c1(ω◦τ̃ ) = c1(ω◦τ̃c) imply that

(c1(det(ω)))d = 2dd!
∏

τ∈Σ∞−S∞
(c1(ω◦τ̃ )) = (−1)dd!cd(T ).

It is well known that det(ω) is ample (see [Lan13], for instance) and hence it follows that
cd(T ) 6= 0. On the other hand, there exists a canonical isomorphism

Tr: H2d
sing(ShK′(G

′
S̃
)C,C)

∼−→ C,

which sends the cycle class of a point to 1. The lemma follows immediately from the non-vanishing
of cd(T ) and the well-known fact that Tr(cd(T )) = χ(ShK′(G

′
S̃
)C). 2

We state now the main result of this section, which will play a crucial role in our application
to Tate cycles in [TX14].

Theorem 7.16. Keep the same notation as in Proposition 7.12, that is, let τ ∈ Σ∞ − S∞ be a
place such that τ− is different from τ and let T be a subset of Σ∞ − S∞ containing τ .
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(1) If τ− /∈ T and τ, τ+ ∈ T, we put Tτ+ = T\{τ, τ+}. Let η = ητ−→τ+ : S(τ+) → S(τ) be
the link given by straight lines except sending τ− to τ+ (to the right) with displacement
v(η) = nτ + nτ+ :

(a) We consider the composition

η′] : ShK′(G
′
S̃(τ+)

)
πτ+
←−−∼= ShK′(G

′
S̃
)k0,{τ,τ+}

iτ+−−→ ShK′(G
′
S̃
)k0,τ

πτ−→ ShK′(G
′
S̃(τ)

)k0 ,

and let η′] denote the natural quasi-isogeny of abelian varieties on ShK′(G
′
S̃(τ+)

)k0

given by (the pullback via (πτ+|ShK′ (G
′
S̃
)
k0,{τ,τ+}

)−1,∗ of)

(πτ+ |ShK′ (G′S̃)k0,{τ,τ+}
)∗A′

S̃(τ+),k0
← i∗τ+(A′

S̃,k0
|ShK′ (G′S̃)k0,τ

)→ i∗τ+π
∗
τ (A′

S̃(τ),k0
).

Then (η′], η
′]) is the link morphism associated to the link η of indentation degree

n = nτ+ −nτ if p splits in E/F and n = 0 if p is inert in E/F . Moreover, the following
diagram:

ShK′(G
′
S̃
)k0,T

� � //

∼=
��

ShK′(G
′
S̃
)k0,{τ,τ+}

� � iτ+ //

πτ+ |ShK′ (G
′
S̃
)
k0,{τ,τ+}

∼=
��

ShK′(G
′
S̃
)k0,τ

πτ

��
ShK′(G

′
S̃(τ+)

)k0,Tτ+

� � // ShK′(G
′
S̃(τ+)

)k0

η′] // ShK′(G
′
S̃(τ)

)k0

(7.16.1)

is commutative, where the two vertical isomorphisms are given by Proposition 7.12(2).

(b) For τ̃ ′ ∈ ΣE,∞\SE,∞, the quasi-isogeny η′] : A′
S̃(τ+),k0

→ η′∗] A′
S̃(τ),k0

induces a canonical

isomorphism

η′∗] Lie(A′
S̃(τ),k0

)◦τ̃ ′ ∼=

Lie(A′
S̃(τ+),k0

)
◦,(pv(η))

σ−v(η)τ̃ ′
if τ̃ ′ is a lifting of τ+,

Lie(A′
S̃(τ+),k0

)◦τ ′ otherwise.

(c) The morphism η′] is finite flat of degree pv(η) = pnτ+nτ+ .

(2) Assume that Σ∞ − S∞ = {τ, τ−} = T (so that τ+ = τ− and p is of type α2 for T). Then
there exists a link morphism (η], η

]) : ShK′(G
′
S̃(τ−)

)k0→ ShK′(G
′
S̃(τ)

)k0 of indentation degree

2(g − nτ ) = 2nτ− associated with the trivial link η : S(τ−)→ S(τ) such that the diagram

ShK′(G
′
S̃
)k0,{τ,τ−}

πτ

vv

πτ−

))
ShK′(G

′
S̃(τ)

)k0 ShK′(G
′
S̃(τ−)

)k0

η] // ShK′(G
′
S̃(τ)

)k0

coincides with the Hecke correspondence Tq (7.10.1) if we identify ShK′(G
′
S̃
)k0,{τ,τ−} with

ShK′pIw′p
(G′

S̃(τ)
)k0 via the isomorphism given by Theorem 5.8.
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All descriptions above are compatible with the natural tame Hecke operator actions and

similar results apply to ShK′′(G
′′
S̃
)k0 .

Proof. The statements for ShK′′(G
′′
S̃
)k0 follow from those analogs for ShK′(G

′
S̃
)k0 by § 2.12 (or

in this case more explicitly by § 3.20). Thus, we will just prove the theorem for ShK′(G
′
S̃
)k0 .

(1)(a) The commutativity of the left square of (7.16.1) is tautological and the commutativity

of the right square was proved in Proposition 7.12(1). It remains to show that πτ ◦
(πτ+ |ShK′ (G′S̃)k0,{τ,τ+}

)−1 is the link morphism η′] on ShK′(G
′
S̃(τ+)

)k0 associated to the link

η = ητ−→τ+ .
Let τ̃ ∈ ΣE,∞ (respectively τ̃+) denote the lift of τ (respectively τ+) contained in S̃(τ)∞

(respectively S̃(τ+)∞). By § 5.3, we have τ̃ = σ−nτ+ τ̃+ if p splits in E. If p is inert in E, it is also
harmless to assume that τ̃ = σ−nτ+ τ̃+ in view of Propositions 7.14 and 7.17. Put τ̃− = σ−nτ τ̃ . Let
y = (B, ιB, λB, β

′
K′) be an S-point of ShK′(G

′
S̃(τ+)

)k0 for a locally noetherian k0-scheme S. Then

the preimage of y under πτ+ |ShK′ (G′S̃)k0,{τ,τ+}
is given by x = (A, ιA, λA, αK′) ∈ ShK′(G

′
S̃
)k0,{τ,τ+},

for which there exists a quasi-isogeny φ : B → A such that φ∗,τ̃ ′ : HdR
1 (B/S)◦τ̃ ′ → HdR

1 (A/S)◦τ̃ ′
is a well-defined isomorphism for all τ̃ ′ ∈ ΣE,∞ except for τ̃ ′ = σaτ̃ or σaτ̃ c with a = 1, . . . , nτ+ .
Note that σaτ̃ ∈ ∆̃(τ+)− and σaτ̃ c ∈ ∆̃(τ+)+. So, in the exceptional cases, φ∗,σaτ̃ and (φ−1)∗,σaτ̃c
are well defined, where φ−1 : A→ B denotes the quasi-isogeny inverse to φ, and we have (by the
proof of Proposition 5.23)

Ker(φ∗,σaτ̃ ) = Fnτ+a
B,es

(
HdR

1 (B/S)
◦,(pnτ+a)
τ̃−

) ∼= Lie(B/S)
◦,(pnτ+a)
τ̃− (7.16.2)

Im((φ−1)∗,σaτ̃c) = Fnτ+a
B,es

(
HdR

1 (B/S)
◦,(pnτ+a)
τ̃−,c

) ∼= Lie(B/S)
◦,(pnτ+a)
τ̃−,c . (7.16.3)

If πτ sends x = (A, ιA, λA, αK′) to z = (B′, ιB′ , λB′ , βK′) ∈ ShK′(G
′
S̃(τ)

)(S), there is a quasi-

isogeny ψ : A → B′ such that ψ∗,τ̃ ′ is an isomorphism for all τ̃ ′ ∈ ΣE,∞ except for τ̃ ′ = σbτ̃−

or σbτ̃−,c with b = 1, . . . , nτ . In the exceptional cases, ψ∗,σbτ̃−,c and (ψ−1)∗,σbτ̃− are well defined,
and we have (by the proof of Proposition 5.17 or rather the moduli description in § 5.15)

Ker(ψ∗,σbτ̃−,c) = F bA,es

(
HdR

1 (A/S)
◦,(pb)
τ̃−,c

)
Im((ψ−1)∗,σbτ̃−) = F bA,es

(
HdR

1 (A/S)
◦,(pb)
τ̃−

)
.

By definition, we have η′](y) = z and the composed quasi-isogeny ψ ◦ φ : B→ B′ is nothing but

the base change of η′] to S. For later reference, we remark that ψ and φ induce isomorphisms

Lie(B/S)◦τ̃ ′ ∼= Lie(A/S)◦τ̃ ′ ∼= Lie(B′/S)◦τ̃ ′ (7.16.4)

for all τ̃ ′ with restriction τ ′ ∈ Σ∞ − S∞ different from τ−, τ, τ+, and

Lie(B/S)
◦,(pnτ+n

τ+ )
τ̃−

(7.16.2)
−−−−→∼= Ker(φ∗,τ̃+) ∼= Coker(φ∗,τ̃+) ∼= Lie(A/S)◦τ̃+

ψ∗,τ̃+

−−−→∼= Lie(B′/S)◦τ̃+ ,

(7.16.5)

Lie(B/S)
◦,(pnτ+n

τ+ )
τ̃−,c

(7.16.3)
−−−−→∼= Im((φ−1)∗,τ̃+,c) ∼= Lie(A/S)◦τ̃+,c

ψ∗,τ̃+,c

−−−−→∼= Lie(B′/S)◦τ̃+,c .

(7.16.6)

Consider the case when S = Spec(k) with k a perfect field containing k0. Denote by D̃◦B,τ̃ ′ the

τ̃ ′-component of the reduced covariant Dieudonné module of B. From the discussion above, one
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sees easily that D̃◦B′,τ̃ = D̃◦B,τ̃ ′ for all τ̃ ′ ∈ ΣE,∞ except for τ̃ ′ ∈ {σaτ̃ , σaτ̃ c | 1 6 a 6 nτ+}∪{σbτ̃−,
σbτ̃−,c | 1 6 b 6 nτ}. In the exceptional cases, we have

(ψ ◦ φ)−1
∗ D̃◦B′,τ̃ ′ =



p−1Fnτ+a
B,es (D̃◦B,τ̃−) if τ̃ ′ = σaτ̃ ,

Fnτ+a
B,es (D̃◦B,τ̃−,c) if τ̃ ′ = σaτ̃ c,

p−1F bB,es(D̃◦B,τ̃−,c) if τ̃ ′ = σbτ̃−,c,

F bB,es(D̃◦B,τ̃−) if τ̃ ′ = σbτ̃−.

Since the essential Frobenius FB,es is bijective after inverting p, one sees easily that D̃◦B can be
recovered from D̃◦B′ . This implies immediately that η′] : ShK′(G

′
S̃(τ+)

)k0 → ShK′(G
′
S̃(τ)

)k0 induces

a bijection on k-valued points, i.e. η′] verifies condition (1) in Definition 7.5. By the discussion

above, it is also obvious that conditions (2) and (3) of Definition 7.5 are also verified for (η′], η
′]).

Finally, from the formulas for D̃◦B,τ̃ , one sees easily that the degree of the quasi-isogeny

(ψ ◦ φ)q : B[q∞]→ B′[q∞]

is 2(nτ+ − nτ ) if p splits in E, and is 0 if p is inert in E. This shows that (η′], η
′]) is the link

morphism associated to η with the said indentation degree.
Statement (1)(b) follows from the isomorphisms (7.16.4)–(7.16.6) applied to the case when B

is the universal abelian scheme A′
S̃(τ+),k0

. It remains to prove (1)(c). The morphism η′] is clearly

quasi-finite and hence finite because ShK′(G
′
S̃(τ+)

)k0 is proper by Proposition 4.7. Since both

ShK′(G
′
S̃(τ)

)k0 and ShK′(G
′
S̃(τ+)

)k0 are regular, we conclude by [Mat86, Theorem 23.1] that η′]
is flat at every point of ShK′(G

′
S̃(τ)

)k0 . It remains to see that the degree of η′] is pv(η). For this,

one might be able to argue geometrically, but we found it more convenient to compare the top
Chern classes of the tangent bundle.

Let Tτ and Tτ+ denote respectively the tangent bundles of ShK′(G
′
S̃(τ)

)k0 and ShK′(G
′
S̃(τ+)

)k0 ,

and let d = #Σ∞ −#S(τ)∞ be the common dimension of these Shimura varieties. Fix a prime
` 6= p. For a vector bundle E over a proper and smooth k0-variety X, we denote by ci(E) ∈
H2i

et (XFp ,Q`)(i) the ith Chern class of E . By Proposition 4.7, we have

cd(Tτ ) =
∏

τ ′∈Σ∞−S(τ)∞

c1

(
Lie(A′

S̃(τ),k0
)◦τ̃ ′ ⊗ Lie(A′

S̃(τ),k0
)◦τ̃ ′c
)
,

where τ̃ ′, τ̃ ′c ∈ ΣE,∞ denote the two liftings of τ ′. A similar formula for cd(Tτ+) holds with τ
replaced by τ+. By (1)(b), we have

η′∗] cd(Tτ ) = cd(η
′∗
] Tτ ) = pv(η)cd(Tτ+).

Let
Tr? : H2d

et (ShK′(G
′
S̃(?)

)Fp ,Q`)(d)
∼−→ Q` for ? = τ, τ+

be the `-adic trace map. Then we have

deg(η′])Trτ (cd(Tτ )) = Trτ (η′∗] cd(Tτ )) = pv(η)Trτ+(cd(Tτ+)).

It is well known that Trτ (cd(Tτ )) = χ(ShK′(G
′
S̃(τ)

)Fp) (see [SGA5, Exposé VII, Corollaire 4.9]),

where

χ(ShK′(G
′
S̃(τ)

)Fp) :=
2d∑
i=0

(−1)i dimH i
et(ShK′(G

′
S̃(τ)

)Fp ,Q`)
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is the (`-adic) Euler–Poincaré characteristic. Hence, one obtains

deg(η′]) · χ(ShK′(G
′
S̃(τ)

)Fp) = pv(η) · χ(ShK′(G
′
S̃(τ+)

)Fp).

Since η′] is purely inseparable, we have χ(ShK′(G
′
S̃(τ)

)Fp) = χ(ShK′(G
′
S̃(τ ′)

)Fp). By Lemma 7.15,

we have χ(ShK′(G
′
S̃(τ)

)) 6= 0 and hence deg(η′]) = pv(η).

(2) Note that p splits in E and fix a prime q of E dividing p. As before, we denote by τ̃ and
τ̃− the liftings of τ and τ− in ΣE,∞/q, respectively.

We define first a link morphism (η], η
]) : ShK′(G

′
S̃(τ−)

)k0 → ShK′(G
′
S̃(τ)

)k0 of indentation

degree p2(g−nτ ) as follows. Let y = (B′, ιB′ , λB′ , βK′) be an Fp-point of ShK′(G
′
S̃(τ−)

)k0 , so that

dimω◦B′∨/k0,τ̃
= 0 and dimω◦B′∨/k0,τ̃c

= 2. We define first a lattice M◦τ̃ ′ of D̃◦B′,τ̃ ′ [1/p] for each

τ̃ ′ ∈ ΣE,∞ as follows: we put

M◦σiτ̃ =


1

p
D̃◦
B′,σiτ̃ for i = 1, . . . , nτ− = g − nτ ,

D̃◦
B′,σiτ̃ for i = nτ− + 1, . . . , g

and M◦
σiτ̃c

= M◦,∨
σiτ̃

. One checks easily that M =
⊕

τ̃ ′∈ΣE,∞
M◦,⊕2
τ̃ ′ is stable under the action of

Frobenius and Verschiebung homomorphisms and hence a Dieudonné submodule of D̃B′ [1/p]. As
in the proof of Proposition 5.17, this gives rise to an abelian variety B′′ equipped with an action
by OD and an OD-equivariant quasi-isogeny φ : B′→ B′′ such that the induced morphism on the
Dieudonné module φ−1 : D̃B′′ → D̃B′ [1/p] is identified with the inclusion M ⊂ D̃B′ [1/p]. Since
the lattice M ⊆ D̃B′ [1/p] is self-dual by construction, the polarization λB′ induces a prime-to-p
polarization λB′′ on B′′ such that λB′ = φ∨ ◦ λB′′ ◦ φ. Finally, the K ′p-level structure βK′ on B′

induces naturally a K ′p-level structure β′′K′ on B′′. Moreover, an easy computation shows that
dimω◦B′′∨/k0,τ̃

= 2 and dimω◦B′′∨/k0,τ̃c
= 0, and dimω◦B′′∨/k0,τ̃ ′

= dimω◦B′∨/k0,τ̃ ′
at other τ̃ ′. Thus,

(B′′, ιB′′ , λB′′ , β′′K′) is a point of ShK′(G
′
S̃(τ)

)k0 . Let

η] : ShK′(G
′
S̃(τ−)

)k0 → ShK′(G
′
S̃(τ)

)k0

be the map sending y = (B′, ιB′ , λB′ , βK′) 7→ (B′′, ιB′′ , λB′′ , β′′K′) and let

η] : A′
S̃(τ−),k0

→ η∗]A
′
S̃(τ),k0

be the p-quasi-isogeny whose base change to each y is φ : B′→ B′′ constructed above. Then it is
clear by construction that (η], η

]) is the link morphism of indentation degree 2(g − nτ ) associated
to the trivial link from S(τ−) to S(τ).

Denote by π{τ,τ−} : ShK′(G
′
S̃
)k0,{τ,τ−}

∼−→ ShK′pIw′p
(G′

S̃(τ)
)k0 the isomorphism given by

Theorem 5.8. Let x = (A, ιA, λA, αK′) be an Fp-point of ShK′(G
′
S̃
)k0,{τ,τ−}. Then its image

(B, ιB, λB, βK′p, βp) under π{τ,τ−} is characterized as follows.

(a) There exists an OD-equivariant p-quasi-isogeny φ : B → A such that φ induces an
isomorphism φ∗ : D̃◦B,τ̃ ′

∼−→ D̃◦A,τ̃ ′ for τ̃ ′ different from σiτ̃− with i = 1, . . . , nτ and their
complex conjugates. In the exceptional cases, we have

φ∗(D̃◦B,σiτ̃−) = Im(F iA,es : D̃◦A,τ̃− → D̃
◦
A,σiτ̃−)

φ∗(D̃◦B,σiτ̃−,c) =
1

p
Im(F iA,es : D̃◦A,τ̃−,c → D̃

◦
A,σiτ̃−,c).
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(b) We have λB = φ∨ ◦ λA ◦ φ and βK′p = φ ◦ αK′p .
(c) Let M◦τ̃ ⊆ D̃◦B,τ̃/pD̃◦B,τ̃ be the one-dimensional subspace given by the image of pD̃◦A,τ̃ via

φ−1
∗ . Then M◦τ̃ is stable under F gB,es and M :=

⊕g−1
i=0 F

i
B,es(M

◦
τ̃ )⊕2 is a Dieudonné submodule

of DB[q] =
⊕g−1

i=0 D̃B,σiτ̃/pD̃B,σiτ̃ . Let Hq be the subgroup scheme of B[q] associated to M .
Then the Iwahoric level structure of B at p is given by βp = Hq ⊕Hq̄, where Hq̄ ⊆ B[q̄] is
the orthogonal complement of Hq under the natural duality between B[q] and B[q̄].

It is clear that the image of x under πτ is (B, ιB, λB, βK′p) by forgetting the Iwahoric
level structure at p of π{τ,τ−}(x). This shows that, via the isomorphism π{τ,τ−}, the map
πτ |ShK′ (G′S̃)k0,{τ,τ−}

coincides with the projection pr1 in (7.10.1).

To finish the proof of (2), it remains to show that the composition

η] ◦ πτ− ◦ π−1
{τ,τ−} : ShK′pIw′p

(G′
S̃(τ)

)k0 → ShK′(G
′
S̃(τ)

)k0

is the second projection pr2 in (7.10.1). Let x = (A, ιA, λA, αK′) be a point of ShK′(G
′
S̃
)k0,{τ,τ−}

with image π{τ,τ−}(x) = (B, ιB, λB, βK′p, βp), together with the p-quasi-isogeny φ : B → A
as described above. The image of (A, ιA, λA, αK′) under πτ− is given by (B′, ιB′ , λB′ , βK′) ∈
ShK′(G

′
S̃(τ−)

)k0 , which admits a quasi-isogeny ψ : B′ → A compatible with all structures such

that ψ∗ : D̃◦B′,τ̃ ′ ∼= D̃◦A,τ̃ ′ for all τ̃ ′ except for those τ̃ ′ lifting σiτ for any i = 1, . . . , g − nτ = nτ− .
In the exceptional cases, we have

ψ∗(D̃◦B′,σiτ̃ ) = Im(F iA,es : D̃◦A,τ̃ → D̃◦A,σiτ̃ ) and ψ∗(D̃◦B′,σiτ̃c) =
1

p
Im(F iA,es : D̃◦A,τ̃c → D̃◦A,σiτ̃c).

Consider the composed isogeny φ−1 ◦ ψ : B′ → B. Let M̃◦τ̃ ⊆ D̃◦B,τ̃ be the inverse image of the

one-dimensional subspace M◦τ̃ ⊆ D̃◦B,τ̃/pD̃◦B,τ̃ given by the image of pD̃◦A,τ̃ as in (c) above. Then
we have

(φ−1 ◦ ψ)∗(D̃◦B′,σiτ̃ ) =


F iB,es(M̃

◦
τ̃ ) for i = 1, . . . , nτ− = g − nτ ,

1

p
F iB,es(M̃

◦
τ̃ ) for i = nτ− + 1, . . . , g;

and (φ−1 ◦ ψ)∗(D̃◦B′,σiτ̃c) is the orthogonal complement of (φ−1 ◦ ψ)∗(D̃◦B′,σiτ̃ ).

Let (B′′, ιB′′ , λB′′ , β′′K′) be the image of (B′, ιB′ , λB′ , βK′) ∈ ShK′(G
′
S̃(τ−)

)k0 under η]. Then

the composed p-quasi-isogeny B
ψ−1◦φ−−−−→ B′

η]−→ B′′ identifies D̃◦
B′′,σiτ̃ with the lattice

1

p
F iB,es(M̃

◦
τ̃ ) ⊆ D̃◦B,σiτ̃ [1/p] for all i = 1, . . . , g.

Thus, one sees immediately that the map (B, ιB, λB, βK′p, βp) 7→ (B′′, ιB′′ , λB′′ , β′′K′) is nothing
but the second projection in (7.10.1). This finishes the proof of (2). 2

Our last proposition explains the compatibility of the description of the GO-divisors as in
Theorem 5.8 with respect to the link morphism, especially to the link morphism appearing in
Theorem 7.16(1).

Proposition 7.17. Assume that #Σ∞ −#S∞ > 2. Let τ0 ∈ Σ∞ − S∞ and η : S→ S′ be a link
such that all curves are straight lines except for (possibly) one curve turning to the right, linking
τ0 ∈ Σ∞ − S∞ with τ ′0 = η(τ0) = σm(τ0)τ0 for some integer m(τ0) > 0. Assume that the link
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morphism (η′], η
′]) : ShK′(G

′
S̃
)k0 → ShK′(G

′
S̃′

)k0 of (some) indentation degree n ∈ Z associated

to η exists. The setup automatically implies that τ+
0 = τ ′+0 and τ−0 = τ ′−0 . Let τ ∈ Σ∞ − S∞.

Then the following statements hold.

(1) The link morphism η′] sends the GO-divisor ShK′(G
′
S̃
)k0,τ into the GO-divisor

ShK′(G
′
S̃′

)k0,η(τ).

(2) Let ητ : S(τ)→ S′(η(τ)) denote the link given by removing from η the two curves attached

to τ and τ−. Then there exists a link morphism (η′τ,], η
′]
τ ) (of some indentation degree m)

from ShK′(G
′
S̃(τ)

)k0 to ShK′(G
′
S̃′(η(τ))

)k0 , associated to the link ητ , such that we have the

following commutative diagram of Shimura varieties:

ShK′(G
′
S̃
)k0,τ

πτ //

η′]
��

ShK′(G
′
S̃(τ)

)k0

η′τ,]
��

ShK′(G
′
S̃′

)k0,η(τ)

πη(τ) // ShK′(G
′
S̃′(η(τ))

)k0

(7.17.1)

and a similar commutative diagram of quasi-isogenies of universal abelian varieties.
Moreover, the indentation degree of the link morphism η′τ,] is given by

m = n+ nτ − nη(τ)(S
′) =


0 if p is inert in E/F,

n if p splits in E/F and τ 6= τ0, τ
+
0 ,

n−m(τ0) if p splits in E/F and τ = τ0,

n+m(τ0) if p splits in E/F and τ = τ+
0 .

(3) Suppose moreover that the link η and the link morphism (η′], η
′]) are those appearing

in Theorem 7.16(1) (so our S̃ being S̃(τ+), S′ being S̃(τ), and τ0 being τ− therein,
respectively). If Oτ (1) (respectively Oη(τ)(1)) denotes the tautological quotient line bundle
on ShK′(G

′
S̃
)k0,τ (respectively on ShK′(G

′
S̃′

)k0,η(τ)) for the P1-fibration πτ (respectively
πη(τ)), then we have a canonical isomorphism

η′∗] (Oη(τ)(1)) ∼=

{
Oτ (1) if τ 6= τ+

0 ,

Oτ (pm(τ0)) if τ = τ+
0 .

(7.17.2)

Moreover, the induced link morphism η′τ,] is finite flat of degree pv(ητ ), i.e. it is an

isomorphism if τ ∈ {τ+
0 , τ0}, and it is finite flat of degree pm(τ0) if τ /∈ {τ0, τ

+
0 }.

The analogous results hold for link morphisms for the ShK′′(G
′′
S̃
)k0 .

Proof. (1) Since ShK′(G
′
S̃
)k0,τ is reduced, it suffices to prove that η′] sends every Fp-point of

ShK′(G
′
S̃
)k0,τ to ShK′(G

′
S̃′

)k0,η(τ). Let x = (A, ι, λ, αK′p) be an Fp-point of ShK′(G
′
S̃
)k0,τ and

η′](x) = (A′, ι′, λ′, α′K′p) be its image. Let τ̃ ∈ ΣE,∞ be a place above τ and put τ̃− = σ−nτ τ̃

and τ̃+ = σnτ+ τ̃ . By Lemma 4.5, the condition hτ (A) = 0 is equivalent to Fnτes,A(D̃◦A,τ̃−) = ω̃◦A∨,τ̃ ,

where ω̃◦A∨,τ̃ ⊆ D̃◦A,τ̃ denotes the inverse image of ω◦A∨,τ̃ ⊆ D◦A,τ̃ . The latter condition is in turn

equivalent to F
nτ+

es,A ◦ F
nτ
es,A(D̃◦A,τ̃−) = pD̃◦A,τ̃+ . We set η(τ̃−) = σm(τ−)τ̃−, where m(τ−) is the

displacement of the curve in η connecting τ− and η(τ−) (which equals 0 except when τ− = τ0);

similarly, we put η(τ̃+) = σm(τ+)τ̃+. Since η′]∗ : D̃◦A[1/p]→ D̃◦A′ [1/p] commutes with Frobenius
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and Verschiebung homomorphisms, one sees easily from condition (3) in Definition 7.5 that

F
nη(τ+)(S

′)

es,A′ ◦ Fnη(τ)(S
′)

es,A′ (D̃◦A′,η(τ̃−)) = puD̃◦A′,η(τ̃+) for some integer u ∈ Z. Here nη(τ)(S
′) is the

integer defined in Notation 4.3 associated to τ for the set S′. But F
nη(τ+)(S

′)

es,A′ ◦Fnη(τ)(S
′)

es,A′ (D̃◦A′,η(τ̃−))

is a W (Fp)-sublattice of D̃◦A,η(τ̃+) with quotient of length 2 over W (Fp). Hence, the integer u has

to be 1. By the same reasoning using Lemma 4.5, this is equivalent to saying that hη(τ)(A
′) = 0

or equivalently η′](x) ∈ ShK′(G
′
S̃′

)k0,η(τ).
(2) Assume first that #Σ∞ − #S∞ > 2. By Proposition 7.12(2), πτ |ShK′ (G′S̃)k0,{τ,τ−}

is an

isomorphism. We define

η′τ,] : = πη(τ) ◦ η′] ◦ (πτ |ShK′ (G′S̃)k0,{τ,τ−}
)−1

and η′]τ as the pullback via (πτ |ShK′ (G′S̃)k0,{τ−,τ}
)−1 of the quasi-isogeny

π∗τA
′
S̃(τ),k0

φ−1
τ−−→ (A′

S̃,k0
|ShK′ (G′S̃)k0,τ

)
η′]−→ η′∗] (A′

S̃′,k0
|ShK′ (G′S̃′ )k0,η(τ)

)
η′∗] (φη(τ))
−−−−−−→ η′∗] π

∗
η(τ)(A

′
S̃(η(τ))k0

)

of abelian schemes on ShK′(G
′
S̃
)k0,τ . Here the first and the third quasi-isogenies are given by

Theorem 5.8(2). It is clear that the diagram (7.17.1) is commutative. It remains to show that

(η′τ,], η
′]
τ ) defines a link morphism. Conditions (1) and (2) of Definition 7.5 being clear, condition

(3) can be verified by a tedious but straightforward computation. To see condition (4) on the
indentation degree, we need only to discuss the case when p splits in E/F . In this case, φ−1

τ [q∞]
has degree p2nτ , η′][q∞] has degree p2n, and φη(τ)[q

∞] has degree p−2nη(τ)(S
′). So, the total degree

of the quasi-isogeny of η′]τ is p2m = p2n+2nτ−2nη(τ)(S
′). A case-by-case discussion proves condition

(4) of Definition 7.5 on indentation degrees.
Assume now that #Σ∞ − #S∞ = 2, so that Σ∞ − S∞ = {τ0, τ

+
0 = τ−0 }. This implies that

p splits as qq̄ in E. Since the Shimura variety ShK′(G
′
S̃(τ)

)k0 is zero dimensional, we just need

to define the desired link morphism (η′τ,], η
′]
τ ) on Fp-points. For each τ̃ ′ ∈ ΣE,∞ with restriction

τ ′ ∈ {τ0, τ
−
0 }, let tτ̃ ′ ∈ Z denote the integer as in Definition 7.5(3) attached to τ̃ ′ for the link

morphism (η′], η
′]). Let y = (B, ιB, λB, βK′p) be an Fp-point of ShK′(G

′
S̃(τ)

)k0 . We now distinguish
two cases.

(a) Consider first the case τ = τ0. Let τ̃−0 be the lift of τ0 in ΣE,∞/q. We define M◦
τ̃−0

= p−tτ̃0 D̃◦B,τ̃0
and M◦

σiτ̃−0
= p−δiF i(M◦

τ̃−0
) for each integer i with 1 6 i 6 g−1, where δi denotes the number

of integers j with 1 6 j 6 i such that σj τ̃−0 ∈ S̃′(η(τ))∞. Put M◦q =
⊕

06i6g−1M
◦
σiτ̃−0

and

let M◦q̄ ⊆ D̃◦B,q̄[1/p] be the dual lattice of M◦q with respect to the pairing induced by λB.

Then M◦ := M◦q ⊕M◦q̄ is a Dieudonné submodule of D̃◦B[1/p]. By the same argument as
in the proof of Proposition 5.17, there exists a unique abelian variety B′ equipped with
an OD-action ιB′ together with a p-quasi-isogeny φ : B → B′ such that the induced map
φ−1
∗ : D̃◦B′ → D̃◦B[1/p] is identified with the natural inclusion M◦ ↪→ D̃◦B[1/p]. As usual, since
M is a self-dual lattice, λB induces a prime-to-p polarization λB′ such that φ∨◦λB′ ◦φ = λB.
We equip B′ with the K ′p-level structure β′K′p = φ◦βK′p . By the construction, one also sees
easily that B′ satisfies the necessary signature condition, so that y′ = (B′, ιB′ , λB′ , β′K′p) is
a point of ShK′(G

′
S̃′(η(τ))

)k0 . We define

η′τ,] : ShK′(G
′
S̃(τ)

)k0 → ShK′(G
′
S̃′(η(τ))

)k0 and η′]τ : A′
S̃(τ),k0

→ A′
S̃′(η(τ)),k0
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by η′τ,](y) = y′ and η′]τ,y = φ. It is evident that (η′τ,], η
′]
τ ) is a link morphism. It remains to

check the commutativity of the diagram (7.17.1). Let x = (A, ιA, λA, αK′p) ∈ ShK′(G
′
S̃
)k0,τ

be a point above y and x′ = (A′, ιA′ , λA′ , α′K′p) ∈ ShK′(G
′
S̃′

)k0,η(τ) be the image of x under η′].
We need to prove that πη(τ)(x

′) = y′. Let y′′ = (B′′, ιB′′ , λB′′ , β′′K′p) ∈ ShK′(G
′
S̃′(η(τ))

)k0,η(τ)

denote temporarily the point πη(τ)(x
′). Denote by ψ : A→ B and ψ′ : A′ → B′′ the quasi-

isogenies given by Theorem 5.8. Then we have ψ∗(D̃◦A,τ̃−0
) = D̃◦

B,τ̃−0
and ψ′∗(D̃◦A′,τ̃−0

) = D̃◦
B′′,τ̃−0

by § 5.15, and η′]∗ (D̃◦
A,τ̃−0

) = p
t
τ̃−0 D̃◦

A′,τ̃−0
by Definition 7.5(3) as η is a straight line at τ−0 .

Consider the quasi-isogeny ψ′ ◦ η′] ◦ ψ−1 ◦ φ−1 : B′ → B′′. It induces an isomorphism
D̃◦
B′,τ̃−0

∼−→ D̃◦
B′′,τ̃−0

. But the other components of the Dieudonné modules are determined by

that at τ̃−0 , as S′(η(τ))∞ = Σ∞. It follows that ψ′◦η′]◦ψ−1◦φ−1 : B′→ B′′ is an isomorphism
compatible with all structures, i.e. y′′ = y′. The computation of the indentation degree is
the same as that in the case when #Σ∞ −#S∞ > 2.

(b) In the case τ = τ+
0 = τ−0 , the construction is similar. Let τ̃0 be the lift of τ0 in ΣE,∞/q

and η(τ̃0) = σm(τ0)τ̃0. Put M◦η(τ̃0) := p−tτ̃0Fm(τ0)(D̃◦B,η(τ̃0)) and M◦
σiη(τ̃0)

:= p−δiF i(M◦η(τ̃0))

for each integer i with 1 6 i 6 g − 1, where δi is the number of integers j with 1 6 j 6 i
such that σjη(τ̃0) ∈ S̃′(η(τ))∞. Let M◦q =

⊕
06i6g−1M

◦
σiη(τ̃0)

and M◦q̄ ⊆ D̃◦B,q̄[1/p] be the

dual lattice. As in case (a) above, such a lattice M◦ := M◦q ⊕M◦q̄ gives rise to an Fp-point
y′ = (B′, ιB′ , λB′ , β′K′p) together with a p-isogeny φ : B→ B′ compatible with all structures.

We define the desired link morphism (η′τ,], η
′]
τ ) such that η′τ,](y) = y′ and η′]τ,y = φ. The

commutativity of (7.17.1) is proved by the same arguments as in (a). We leave the details
to the reader.

(3) We note that, if τ̃− is the lifting of τ− not contained in S̃(τ)∞, then we have a canonical
isomorphism Oτ (1) ∼= Lie(A′

S̃,k0
)◦τ̃− by the construction of πτ . Similarly, one has Oη(τ)(1) ∼=

Lie(A′
S̃′,k0

)◦η(τ̃−). Now the isomorphism (7.17.2) follows immediately from Theorem 7.16(1)(b). We

prove now the second part of (3). By the construction of η′τ , it follows from Theorem 7.16(1)(b)

that η′]τ : A′
S̃(τ),k0

→ η′∗τ,](A
′
S̃(η(τ)),k0

) induces, for any τ̃ ′ ∈ ΣE,∞ lifting an element Σ∞− S(η(τ)),

an isomorphism

η′∗τ,](Lie(A′
S̃(η(τ)),k0

)◦τ̃ ′) ∼=

Lie(A′
S̃(τ),k0

)
◦,(pm(τ0))

σ−m(τ0)τ̃ ′
if τ̃ ′ lifts η(τ0),

Lie(A′
S̃(τ),k0

)◦τ̃ ′ otherwise.

If τ ∈ {τ0, τ
+
0 } or equivalently τ0 ∈ S(τ), then the first case above never happens. Therefore, by

Proposition 4.7, we see that η′τ,] induces an isomorphism of tangent spaces between ShK′(G
′
S̃(τ)

)k0

and ShK′(G
′
S̃(η(τ))

)k0 . Since η′τ,] is bijective on the closed points by the definition of link

morphism, η′τ,] is actually an isomorphism. If τ /∈ {τ0, τ
+
0 } or equivalently τ0 /∈ S(τ), we conclude

by the same arguments as in the proof of Theorem 7.16(1)(d). 2
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Publ. Math. Inst. Hautes Études Sci. 28 (1966), 5–255.

GO00 E. Goren and F. Oort, Stratifications of Hilbert modular varieties, J. Algebraic Geom. 9 (2000),
111–154.

Gro74 A. Grothendieck, Groupes de Barsotti–Tate et cristaux de Dieudonné, Séminaire de
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