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ABSTRACT

Let F' be a totally real field in which a prime p is unramified. We define the Goren—
Oort stratification of the characteristic-p fiber of a quaternionic Shimura variety of
maximal level at p. We show that each stratum is a (P!)"-bundle over other quaternionic
Shimura varieties (for an appropriate integer r). As an application, we give a necessary
condition for the ampleness of a modular line bundle on a quaternionic Shimura variety
in characteristic p.
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1. Introduction

This paper is intended as the first in a series [TX13, TX14], in which we study the Goren—Oort
stratification for quaternionic Shimura varieties. The purpose of this paper is to give a global
description of the strata, saying that they are in fact (P')"-bundles over (the special fiber of)
other quaternionic Shimura varieties for a certain integer r. We fix p > 2 a prime number.

1.1 Motivation: the case of modular curves

Let N > 5 be an integer prime to p. Let X denote the modular curve with level I'; (N); it admits
a smooth integral model X over Z[1/N]. We are interested in the special fiber X := X ®z; /n .
The curve X has a natural stratification by the supersingular locus X*° and the ordinary locus
X°rd, In concrete terms, X is defined as the zero locus of the Hasse invariant h € H°(X,
w®(p_1)), where w®®~1) ig the sheaf for weight p — 1 modular forms. The following deep result
of Deuring and Serre (see e.g. [Ser96]) gives an intrinsic description of X
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ON GOREN—QORT STRATIFICATION FOR QUATERNIONIC SHIMURA VARIETIES

THEOREM 1.2 (Deuring and Serre). Let A> denote the ring of finite adeles over Q and AP its
prime-to-p part. We have a bijection of sets

{Fp-points of X*} «— BX \B) . (A®)/K1(N)B) «(Zp)

equivariant under the prime-to-p Hecke correspondences, where B, , is the quaternion algebra
over Q which ramifies at exactly two places: p and oo, B (Zy) is the maximal open compact
subgroup of B, (Qy), and K1(N) is an open compact subgroup of GLa(A>P) = B (A%P)
given by

Ki(N) = {(Z Z) € GLy(ZP)

¢c=0,d=1 (mod N)} . where ZP) = HZ;.
I#p

The original proof of this theorem uses the fact that all supersingular elliptic curves over F,
are isogenous and the quasi-endomorphism ring is exactly B, .. We however prefer to understand
the result as: certain special cycles of the special fiber of the Shimura variety for GLo are just
the special fiber of the Shimura variety for B

The aim of this paper is to generalize this theorem to the case of quaternionic Shimura
varieties. For the purpose of simple presentation in this introduction, we focus on the case of
Hilbert modular varieties. We will indicate how to modify the result to adapt to general cases.

1.3 Goren—Oort stratification

Let F be a totally real field and let O denote its ring of integers. We assume that p is unramified
in F. Goren and Oort [GOO00] defined a stratification of the special fiber of the Hilbert modular
variety Xqar,,. More precisely, let A% denote the ring of finite adeles of F' and AOFO’p its prime-to-p
part. We fix an open compact subgroup K? C GLp(A%""). Let Xgr,, denote the Hilbert modular
variety (over Q) with tame level KP. Its complex points are given by

XaL,(C) = GLo(F) \ (627 Y x GLy(A%)) / (KP x GLa(Op)),

where h* := C\R and Oryp := Of ®z Zy. The Hilbert modular variety X1, admits an integral
model X, over Z,); let Xq1, denote its special fiber over Fp.

Since p is unramified in F', we may and will identify the p-adic embeddings of F' with the
homomorphisms of O to Fp, i.e. Hom(F, @p) >~ Hom(Op,F,). Let Yo denote this set. (We
shall later identify the p-adic embeddings with the real embeddings, hence the subscript co.)

Under the latter description, the absolute Frobenius ¢ acts on X, by taking an element 7 to the

. T = a—>aP — . . . C e .
composite o7 : Op — F, —— ;. This action decomposes ¥, into a disjoint union of cycles,

parametrized by all p-adic places of F'.
Let A denote the universal abelian variety over Xgr,. The sheaf of invariant differential
1-forms w 4, Xar, 18 then locally free of rank one as a module over

Or ®2 Oxqp, = @ Oxer, -

Tezoo

where (’)XGLN is the direct summand on which Op acts through 7 : Op — E,. We then write
accordingly WA/Xgr, = D, ex. wr; each w; is locally free of rank one over Oxar,-
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DEFINITION 1.4. The Verschiebung map induces an Op-morphismw Xan, — WA® /XqL, which
2

further induces a homomorphism h; : w; — wfg 1, for each 7 € ¥,. This map then defines a

global section h, € HO(XGLQ,u@*I ® w?flT), which we call the partial Hasse invariant at 7. We
use X, to denote the zero locus of h,. For a subset T C ¥, we put Xt = ﬂTeT X,. These Xt
give the Goren—Qort stratification of Xgr,.

An alternative definition of X7 is given as follows: z € X1(F,) if and only if Hom(a,, A.[p])
under the action of OF has eigenvalues given by those embeddings 7 € T. We refer to [GO00] for
the proof of equivalence and a more detailed discussion.

It is proved in [GOO00] that each X is a smooth and proper divisor and these divisors intersect
transversally. Hence, X7 is smooth of codimension #T for any subset T C Y; it is proper if T # 0.

1.5 Description of the Goren—Oort strata
The goal of this paper is to give a global description of the Goren—Oort strata.

Prior to our paper, most works focused on the p-divisible groups of the abelian varieties,
which often provides a good access to the local structure of Goren—QOort strata, e.g. dimensions
and smoothness. Unfortunately, there has been little understanding of the global geometry of
X1, mostly in low dimension. We refer to the survey article [AG04] for a historical account.
Recently, Helm made a break-through progress in [Hell2, HellO] by taking advantage of the
moduli problem; he was able to describe the global geometry of certain analogous strata of the
special fibers of Shimura varieties of type U(2).

Our proof of the main theorem of this paper is, roughly speaking, to complete Helm’s
argument to cover all cases for the U(2)-Shimura varieties and then transfer the results from the
unitary side to the quaternionic side.

Rather than stating our main theorem in an abstract way, we prefer to give more examples
to indicate the general pattern.

When F = Q, this is discussed in §1.1. For F' # Q, we fix an isomorphism C 2 @p and hence
identify Yo, = Hom(F,Q,) with the set of real embeddings of F'.

1.5.1 F real quadratic and p inert in F'. Let co; and ocos denote the two real embeddings of
F and 71 and 7 the corresponding p-adic embeddings (via the fixed isomorphism C = @p). Then
our main Theorem 5.2 says that each X, is a P!-bundle over the special fiber of the discrete
Shimura variety Sh B, voy? where By, o0, stands for the quaternion algebra over F’ which ramifies
at both archimedean places. The intersection X, N X, is isomorphic to the special fiber of the
discrete Shimura variety SihBoxo _(Iwp), where (Iwp) means to take Iwahori level structure at
p instead. The two natural emBeddings of X, N X,, into X, and X, induce two morphisms
STBél,WQ (Iwp) — ﬁBoXo Loy this gives (a certain variant of) the Hecke correspondence at p (see
Theorem 7.16).

We remark here that it was first proved in [BG99] that the one-dimensional strata are disjoint
unions of P! and the number of such P! is also computed in [BG99]. This computation relies
on the intersection theory and does not provide a natural parametrization as we gave above.
Our proof will be different from theirs. One can easily recover their counting from our natural
parametrization.

1.5.2 Quaternionic Shimura varieties. Before proceeding, we clarify our convention on
quaternionic Shimura varieties.
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For S an even subset of archimedean and p-adic places of F, we use Bs to denote the
quaternion algebra over F' which ramifies exactly at those places in S. We fix an identification
Bg (A*P) =2 GLo(AP). We fix a maximal open compact subgroup Bg (OF,) of Bg (F ®g Qp).
We use S to denote the subset of archimedean places of S. The Shimura variety Sh B for the

algebraic group Res F/QBSX has complex points
F:Q]—#8c e}
Shyx(C) = BE(F)\ (057975 5 BX(AR)) / (K7 x BE (Ory)).

Here and later, the tame level K? is uniformly matched up for all quaternionic Shimura varieties.
Unfortunately, Sh By itself does not possess a moduli interpretation. We follow the
construction of Carayol [Car86] to relate it with a unitary Shimura variety Y and ‘carry over’
the integral model of Y. The assumption that p > 2 comes from the verification of the extension
property for the integral canonical model following Moonen [Mo098, Corollary 3.8].
In any case, we use ngx to denote the special fiber of the Shimura variety over Fp. When

we take the Iwahori level structure at p instead, we write %Bsx (Iwyp).

1.5.3 F real quartic and p inert in F'. Let coq,...,004 denote the four real embeddings of
F, labeled so that the corresponding p-adic embeddings 7i,...,74 satisfy o, = 7,41 with the
convention that 7; = T;(oq 4)- We list the description of the strata as follows.

Strata Description
X, for each i P!-bundle over Shpx

{o0j—1,004}

X{r 7y for each i Sh

{ooi—1,00;}

(P1)2-bundle over Sh

X{le,,.s} and X{TQ,T4} ;
007 ,009,003,004 }
Xr with #T =3 P!-bundle over %Bx
{o01,002,003,004}
X{71772,T3,T4} ShB>< (pr)

{c01,002,003,004}

In particular, we point out that for a codimension-2 stratum, its shape depends on whether
the two chosen 7; are adjacent in the cycle 11 — -+ — 74 — 771.

1.5.4 F general totally real of degree g over Q and p inert in F'. As before, we label the real
embeddings of F' by 001, . ..,004 such that the corresponding p-adic embeddings 71, . .., 7, satisfy
oT; = Ti+1 with the convention that 7; = 7; (;nod ¢)- The general statement for Goren—Oort strata
takes the following form: for a subset T C ¥, the stratum X7 is isomorphic to a (P!)"-bundle
over the special fiber of another quaternion Shimura variety %Bx . We now explain, given T,

S(T
what S(T) and r are. "

— When T € Y, we construct S(T) as follows: if 7 ¢ T and o~ !7,...,07™7 € T, we put
o 'r,...,072[m21 into S(T). In other words, we always have T C S(T), and S(T) contains
the additional element ¢~ !7 if and only if the corresponding m is odd. The number 7 is
the cardinality of S(T) — T.

— When T = Y, r is always 0; for S(T), we need to distinguish the parity:

*if #¥ is odd, we put S(T) = X U {p};
*if #3 is even, we put S(T) = ¥ and we put an Iwahori level structure at p.
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1.5.5 F general totally real and p unramified in F'. The general principle is: different places
above p work ‘independently’ in the recipe of describing the strata (e.g. which places of the
quaternion algebra are ramified); so we just take the ‘product’ of all recipes for different p-adic
places.

More concretely, let pOp = py - - - pg be the prime ideal factorization. We use ¥, to denote
the set of all archimedean embeddings of F', which is identified with the set of p-adic embeddings.
We use X, /p, to denote those archimedean embeddings or equivalently p-adic embeddings that
give rise to the p-adic place p;. Given any subset T € Yoo, we put Tp, = T N X, Applying
the recipe in §1.5.4 to each Ty, viewed as a subset of ¥ /,., we get a set of places S(Tp,) and
a non-negative number 7,,. We put S(T) = Ule S(Tp,) and r = Z?:l Tp, = Zg:1 #(S(Tp,) — Tp,).
Then X7 is a (P!)"-bundle over Sh B, (with possibly some Iwahori level structure at appropriate

places above p).

We also prove analogous results on the global description of the Goren—QOort strata on general
quaternionic Shimura varieties (Theorem 5.2). We refer to the content of the paper for the
statement. The modification we need to do in the general quaternionic case is that one just
‘ignores’ all ramified archimedean places and applies the above recipe formally to the set ¥
after ‘depriving all ramified archimedean places’.

1.6 Method of the proof

We briefly explain the idea behind the proof. The first step is to translate the question into
an analogous question on (the special fiber of) unitary Shimura varieties. We use X’ to denote
the special fiber of the unitary Shimura variety we start with, over which we have the universal
abelian variety A’. Similar to the Hilbert case, we have naturally defined analogous Goren—Qort
stratification given by divisors X7 . We consider X¢ = _o; X_.

The idea is to prove the following sequence of isomorphisms: X7 St Y7 = Zr, where Z7 is
the (P')-power bundle over the special fiber of another unitary Shimura variety, which comes
with a universal abelian variety B’; Y7 is the moduli space classifying both A’ and B’ together
with a quasi-isogeny A’ — B’ of certain fixed type (with very small p-power degree); and the
two morphisms are just simply forgetful morphisms. We defer the characterization of the quasi-
isogeny to the content of the paper. To prove the two isomorphisms above, we simply check that
the natural forgetful morphisms are bijective on the closed points and induce isomorphisms on
the tangent spaces.

Remark 1.7. We point out that we have been deliberately working with the special fiber over the
algebraic closure F,. This is because the description of the stratification is not compatible with
the action of the Frobenius. In fact, a more rigorous way to formulate the theorem is to compare
the special fiber of the Shimura variety associated to GLa(F') x px E* and that to BSX(T) X px EX.
The homomorphism from the Deligne torus into the two E* are in fact different, causing the
incompatibility of the Frobenius action. (See Corollary 5.9 for the corresponding statement.)
The result about quaternionic Shimura varieties is obtained by comparing geometric connected
components of the corresponding Shimura varieties, in which we lose the Frobenius action. See

Remark 5.10 for more discussion.

1.8 Ampleness of automorphic line bundles

An immediate application of the study of the global geometry of the Goren—Oort stratification
is to give a necessary condition (hopefully also sufficient) for an automorphic line bundle to be
ample. As before, we take I to be a totally real field of degree g in which p is inert for simplicity.
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Let X¢,p,, denote the special fiber of the minimal compactification of the Hilbert modular variety.
We label all p-adic embeddings as 71,...,7, with subindices considered modulo g, such that
o7; = Tiy1. Then wr, ... ,wy, form a basis of the group of automorphic line bundles. The class
[wr,] in Pic(X)g := Pic(X) ®z Q of each wy, extends to a class in Pic(X¢y, )g, still denoted by
[wy,]. For a g-tuple k = (k1,...,ky) € Z9, we put [w¥] = >°9_, k;[w,,]. Probably slightly contrary
to the common intuition from the case of modular forms, we prove the following theorem.

THEOREM 1.9. If the rational class of line bundle [w¥] is ample, then
pk; > ki_1 for alli (and all k; > 0). (1.9.1)

Here we put the second condition in parentheses because it automatically follows from
the first condition. This theorem is proved in Theorem 6.5. When F' is a real quadratic field,
Theorem 1.9 is proved in [AG04, Theorem 8.1.1].

To see that the condition (1.9.1) is necessary, we simply restrict to each of the Goren—Oort
(GO) strata X,,, which is a P!-bundle as we discussed before. Along each of the P!-fibers, the
line bundle w® restricts to O(pk; — k;_1). The condition (1.9.1) is clear.

We do expect the condition in Theorem 1.9 to be necessary (which was proved for Hilbert
modular surfaces in [AG04]), but we are not able to prove it due to a combinatorics complication.

1.10 Forthcoming works in this series

We briefly advertise the other papers of this series to indicate the potential applications of the
technical result in this paper. In the subsequent paper [TX13], we discuss an application to the
classicality of overconvergent Hilbert modular forms, following the original proof of R. Coleman.
In the third paper [TX14], we show that certain generalizations of the Goren—QOort strata realize
Tate classes of the special fiber of certain Hilbert modular varieties, and hence verify the Tate
conjecture under some genericity hypothesis.

1.11 Structure of the paper

In §2, we review some basic facts about integral models of Shimura varieties, which will be used
to relate the quaternionic Shimura varieties with the unitary Shimura varieties. One novelty is
that we include a discussion about the ‘canonical model’ of certain discrete Shimura varieties; this
can be treated uniformly together with usual Shimura varieties. In § 3, we construct the integral
canonical model for quaternionic Shimura varieties, following Carayol [Car86]. However, we tailor
many of the choices (e.g. the auxiliary CM field and signatures) for our later application. In §4,
we define the Goren—Oort stratification for the unitary Shimura varieties and transfer them to
the quaternionic Shimura varieties; this is a straightforward generalization of the work of Goren
and Oort [GOO00]. In § 5, we give the global description of Goren—Oort stratification. The method
is very close to that used in [Hell2]. In §6, we give a more detailed description for Goren—-Oort
divisors, including a necessary condition for an automorphic line bundle to be ample, and a
structure theorem relating the Goren-Qort stratification along a P!-bundle morphism provided
by Theorem 5.8. In §7, we further study some structures of the Goren—Oort strata which will
play an important role in the forthcoming paper [TX14].

1.12 Notation

1.12.1  For a scheme X over a ring R and a ring homomorphism R — R, we use Xp/ to
denote the base change X Xgpec r Spec R'.

For a field F', we use Galg to denote its Galois group.
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For a number field F', we use Ap to denote its ring of adeles and A (respectively A")
to denote its finite adeles (respectively prime-to-p finite adeles). When F' = Q, we suppress the
subscript F' from the notation. We use the superscript cl to mean closure in certain topological
groups. For example, F*! means the closure of F* inside A%"™ or A% (depending on the
situation). We put Z= I1,Z; and 7P = [ Zi

For each finite place p of F, let F}, denote the completion of F' at p and O, its valuation ring,
which has uniformizer w, and residue field k,. (When F, is unramified over Q,, we take w, to
be p.)

We normalize the Artin map Arty : FX\AX — Gal¥® so that for each finite prime p, the
local uniformizer at p is mapped to a geometric Frobenius at p.

1.12.2 For A an abelian scheme over a scheme S, we denote by AV the dual abelian scheme,
by Lie(A) the Lie algebra of A, and by w5 the module of invariant 1-differential forms of A
relative to S. We sometimes omit S from the notation when the base is clear.

For a finite p-group scheme or a p-divisible group G over a perfect field k of characteristic
p, we use D(G) to denote its covariant Dieudonné module. For an abelian variety A over k, we
write Dy for D(A[p]) and write Dy for D(A[p™]).

1.12.3  Throughout this paper, we fix a totally real field F' of degree g > 1 over Q. Let X
denote the set of places of F' and ¥, the subset of archimedean places or, equivalently, all real
embeddings of F'.

We fix a prime number p which is unramified in /. Let ¥, denote the set of places of I’ above

p. We fix an isomorphism ¢, : C = @p so that we identify >, as the set of p-adic embeddings
of F'. For each p € %), we use ¥/, to denote the subset of p-adic embeddings 7 € ¥ which
induce the p-adic place p. Since p is unramified, each 7 induces an embedding Op — W (F,).
Post-composition with the Frobenius o on the latter induces an action of ¢ on the set of p-adic
embeddings and makes each X/, into one cycle. We use o7 to denote this action, i.e. o7 =oor.

1.124 We will consider a CM extension E over F, in which all places above p are
unramified. Let ¥ o, denote the set of complex embeddings of F. For 7 € X, we often use 7 to
denote a/some complex embedding of F extending 7, and we write 7¢ for its complex conjugate.
Using the isomorphism ¢, above, we view 7 and 7¢ as p-adic embeddings of E.

Under the natural two-to-one map Y g o — Yoo, We use Xg o /p to denote the preimage of
Yo/p- In the case when p splits as qq° in E/F, we use Y E0o/q to denote the set of complex
embeddings 7 such that ¢, o 7 induces the p-adic place q.

1.12.5 For S an even subset of places of F', we denote by Bs the quaternion algebra over F'
ramified at 8. Let Nmp, p : Bs — F denote the reduced norm and Trpg/p : Bs — F the reduced
trace.

We use the following lists of algebraic groups. Let Gg denote the algebraic group Res F/QBSX.
Let E be the CM extension of F' above and put Tp 5 = Resg/gGm; see §3.4 for the meaning
of the subscript S. We put éé = (g X Tpg and G’S’ = (Ggs Xz Ty, which is the quotient of éé
by the subgroup Z = Resp oG, embedded as z — (z, z71). Let G denote the subgroup of G
consisting of elements (g, e) such that Nmp,,r(g) - Nmpg/p(e) € Gyp.

We put 8o = Yoo M 8. For each place p € X, we set S/ = Yoy N 8.
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2. Basics of Shimura varieties

We first collect some basic facts on integral canonical models of Shimura varieties. Our main
references are [Del71, Del79, Mil05, Kis10]. (Our convention follows [Mil05, Kis10].) We focus
on how to transfer integral canonical models of Shimura varieties from one group to another
group. This is well known to the experts. We include the discussion here for completeness. One
novelty of this section, however, is that we give an appropriate definition of ‘canonical model’
for certain discrete Shimura varieties, so that the construction holds uniformly for both usual
Shimura varieties and these zero-dimensional ones. This will be important for later applications
to transfer the description of the Goren—Oort strata between Shimura varieties for different
groups.

Notation 2.1. Fix a prime number p. Fix an isomorphism ¢ : C = @p. We use Q to denote the
algebraic closure of Q inside C (which is then identified with the algebraic closure of Q inside
Q, via v).

In this section, let G be a connected reductive group over Q. We use G(R)™ to denote the
neutral connected component of G(R). We put G(Q)* = G(R)* N G(Q). We use G*! to denote
the adjoint group and G9° its derived subgroup. We use G(R); to denote the preimage of
G*(R)* under the natural homomorphism G(R) — G®(R). We put G(Q); = G(R); N G(Q).

For S a torus over Qy, let S(Z,) denote the maximal open compact subgroup of S(Qy).

2.2 Shimura varieties over C
Put S = Resc/rGp. For a real vector space V, a Deligne homomorphism h : S — GL(V') induces
a direct sum decomposition Vg = @%bez V@b such that z € S(R) = C* acts on V*® via the
character z=2z~%. Let r denote the C-homomorphism Gm,c — Sc such that 270z b oy = (r —
x~ ).

A Shimura datum is a pair (G, X) consisting of a connected reductive group G over Q and
a G(R)-conjugacy class X of homomorphisms h : S — G satisfying the following conditions:

(SV1) for h € X, only characters z/z,1,z/z occur in the representation of S(R) =2 C* on
Lie(G*!)¢ via Ad o h;

(SV2) for h € X, Ad(h(i)) is a Cartan involution on G&%; and

(SV3) G has no Q-factor H such that H(R) is compact.

The G(R)-conjugacy class X of h admits the structure of a complex manifold. Let X+ denote
a fixed connected component of X.

A pair (G, X) satisfying only (SV1), (SV2), and the following (SV3)' is called a weak Shimura
datum.

(SV3)" G*(R) is compact (and hence connected by [Bor91, p. 277]; this forces the image of h
to land in the center Zy of GRg).

For an open compact subgroup K C G(A>), we define the Shimura variety for (G, X) with
level K to be the quasi-projective variety Shi (G, X)c, whose C-points are

Shi (G, X)(C) := GQ\X x G(A®)/K = G(Q)\X " x G(A®)/K.

When (G, X) is a weak Shimura datum, Shg (G, X)c is just a finite set of points.
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2.3 Reflex field

Let (G, X) be a (weak) Shimura datum. The reflex field, denoted by E = E(G, X), is the field
of definition of the conjugacy class of the composition hor : Gy, c — Sc — Gc. It is a subfield
of C, finite over Q. We refer to [Del71] for the definition of the canonical model Shi (G, X) of
Shi (G, X)c over this reflex field E. We assume from now on that all (weak) Shimura varieties we
consider in this section admit canonical models. (In fact, [Del71] excludes the case when (G, X)
is a weak Shimura datum. We will give the meaning of the canonical model in this case in §2.8
later.)

We will always assume that K is the product KPK), of an open compact subgroup K? of
G(A™P) and an open compact subgroup K, of G(Q,). Taking the inverse limit over the open
compact subgroups K?, we have Shy (G, X) := l(ir_nKpSthKp(G, X). This is actually a scheme
locally of finite type over E carrying a natural (right) action of G(A*P).

2.4 Extension property

Let O be the ring of integers in a finite extension of @,. A scheme X over O is said to have the
extension property over O if for any smooth O-scheme S, a map S ® Frac(O) — X extends to S.
(Such an extension is automatically unique if it exists by the normality of S.) Note that this
condition is weaker than the one given in [Kis10, 2.3.7] but is enough to ensure the uniqueness.

The chosen isomorphism C & @p identifies F as a subfield of @p. Let E, denote the p-adic
completion of £ and O, its valuation ring with F, as the residue field. Let EJ" be the maximal
unramified extension of E, and OF its valuation ring.

An integral canonical model Shg,(G,X)o, of Shg, (G,X) over O, is an Og-scheme
Shr, (G, X)o,,, which is an inverse limit of smooth Og-schemes Shg, k»(G, X)o, with finite
étale transition maps as KP varies, such that:

— there is an isomorphism Shx (G, X)o, ®o, E, = Shi (G, X) ®E E, for each K compatible
with transition maps as K varies; and
~ Shg, (G, X)o, = LiﬂleSthKp(Gv X)o,, satisfies the extension property.

Existence of integral canonical models of Shimura varieties of abelian type with hyperspecial
level structure was proved by Kisin [Kis10]. Unfortunately, our application requires, in some
special cases, certain non-hyperspecial level structures, as well as certain non-quasi-split groups
at p. We have to establish the integral canonical models in two steps: we first prove the existence
for some group G’ with the same derived and adjoint groups as G (as is done in §3); we then
reproduce a variant of an argument of Deligne to show that the integral canonical model for
the Shimura variety for G’ gives that of G. The second step is well known at least for regular
Shimura varieties when K, is hyperspecial [Kis10]. Our limited contribution here is to include
some non-hyperspecial case and to cover the case of discrete Shimura varieties, in a uniform way.

HypoTHESIS 2.5. Let (G, X) be a (weak) Shimura datum. From now on, we assume that the
derived subgroup G is simply connected, which will be the case when we apply the theory
later. Let Z denote the center of G. Let v : G — T denote the maximal abelian quotient of G. We
fix an open compact subgroup K, of G(Q)) such that v(K,) =T (Z,) and K, N Z(Q,) = Z(Zy,).

2.6 Geometric connected components

We put T(R)f = Im(Z(R) — T(R)) and T(Q)" = T(R)' nT(Q). Put T(Q)"P = T(Q)’ NT(Z,)
for ? =@ or {. Let Y denote the finite quotient T'(R)/T(R)', which is isomorphic to T(Q)/T(Q)f
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because T'(Q) is dense in T'(R). The morphism v : G — T then induces a natural map

12

v: G(Q)\XT x G(A®)/K > T(Q)NT(A®)/v(K) = T(Q)MP\T(A®?) /v(K?)

T(Q)P\Y x T(A™P)/v(KP). (2.6.1)

1

If (G, X) is a Shimura datum, this map induces an isomorphism [Mil05, Theorem 5.17] on the
set of geometric connected components mo(Shi (G, X)g) = T(Q)PN\Y x T(A®P)/v(KP). Taking
the inverse limit gives a bijection

mo(Shi, (G, X)g) = T(@MPN\T(A%7) = @Y x T(47).

Here and later, the superscript cl means taking closure in 7'(A°P) (or in appropriate topological
groups).

2.7 Reciprocity law
Let (G, X) be a (weak) Shimura datum. The composite

h G(C v T(C

vhr : Gy, c "~ Sc

does not depend on the choice of h (in the conjugacy class) and is defined over the reflex field
E. The Shimura reciprocity map is given by

Res vhr N
Rec(G, X) : Resg/(Gm) s/t h) Tk 5T

We normalize the Artin reciprocity map Artg : A/ (E* Ey’ +)Cl — Gal? so that the local
parameter at a finite place [ is mapped to a geometric Frobemus at [, where E T is the identity
connected component of Ey. We denote the unramified Artin map at p by Artp EJ / Oy —
Gal%l;ur (again normalized so that a uniformizer is mapped to the geometric Frobemus).

The morphism Rec(G, X) induces a natural homomorphism

Rec = Ree(G, X) : Gali L5 (px gt gy HoET)

TQ™NY x T(A%).
When (G, X) is a Shimura datum, the Shimura reciprocity law [Mil05, §13] says that the
action of o € Galg on my(Shg, (G, X)g) = T(Q)N\Y x T(A%®)/T(Z,) is given by multiplication
by Rec(G, X)(0). As a corollary, mo(Shk,(G,X)g) = m0(Shk, (G, X)gu), ie. the geometric
connected components are seen over an unramlﬁed extension of E,.

The action of Galab " = Galp, on the geometric connected component is then given by
multiplication by the i 1mage of the Galms group element under the following map:

Arty,

Recy, = Recy, (G, X): Galp, — EZ/Og

Rec(G,X)
— 5

— (B By )N\AR/OF T(Q)PN\Y x T(A®P),  (2.7.1)

o —

where Eg /O denotes the profinite completion of E/OJ.
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2.8 Integral canonical model for weak Shimura datum

When (G, X) is a weak Shimura datum, the associated Shimura variety is, geometrically, a finite
set of points. We define its canonical model by specifying the action of Galg. The key observation
is that condition (SV3)’ ensures that the morphism Rec(G, X) factors as

Resg/q(hr) Resg/q(v)
Resg/q(Gm) ZB Tg
RN N N
Recz (G,X) ~ _ J, B J, Ba
Y ——=T

We consider the natural homomorphism

R G, X
Recy : GaldP % (EXEx ) NAS Reez(@X)

(@Z(R)\Z(A) = Z(Q)NZ(AX).
We define the canonical model Shi (G, X) to be the (pro-)E-scheme whose base change to C is
isomorphic to Shi (G, X)c, such that every o € Galg acts on its Q-points by multiplication
by Recz(o). In comparison to §2.7, we have v(o(z)) = Rec(G, X)(0) - v(z) for any x €
Since Shi (G, X) is just a finite union of spectra of some finite extensions of F, it naturally
admits an integral canonical model over O, by taking the corresponding valuation rings. With
the map PRec, as defined in (2.7.1), we have v(o(z)) = Rec,(G, X)(0) - v(x) for any closed point
r € Shi (G, X)o,, and o € Galp,,.

Notation 2.9. We put K3 = K, N G4(Q,). Let K2% denote the image of K, in G*4(Q,). Set
G'(Q)® =G"Q)n K; for 7 = ¢, ad and der; they are the subgroups of p-integral elements. Put
G(Q)+®) = GH(R)* N G*(Q)P and GY(Q)P = G*(R), N GH(@Q)® for ? = § or der.

2.10 A group theoretic construction
Before proceeding, we recall a pure group theoretic construction. See [Del79, §2.0.1] for more
details.

Let H be a group equipped with an action r of a group A and I' C H a A-stable subgroup.
Suppose that we are given a A-equivariant map ¢ : I' — A, where A acts on itself by inner
automorphisms, and suppose that for v € I, ¢(y) acts on H as inner conjugation by .

Given the data above, we can first define the semi-product H x A using the action r. The
conditions above imply that the natural map v + (v, @(7)~!) embeds I" as a normal subgroup
of H x A. We define the star extension H 1 A to be the quotient of H x A by this subgroup.

Two typical examples we will encounter later are

GIT(A®P)  gaer gy G(QP) = GIT(A®P) - GQP) and  GI"(A®P) xgaer gy G Q)P

2.11 The connected components of the integral model

Let (G, X) be a (weak) Shimura datum. Suppose that there exists an integral canonical model

Shg, (G, X)o,. For KP an open compact subgroup of G(A*"), let Shgrg, (G, X)gHu denote
©

the open and closed subscheme whose C-points consist of the preimage of {1} under the
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v-map in (2.6.1). When (G, X) is a Shimura datum, this gives a connected component of
SthKp(G,X)Og)r. We put

Shi, (G, X)oy = lim Shiric, (G, X))o and  Shi, (G, X)3 = Shi, (G, X)ou @0y Fy.
Kp
(2.11.1)

Note that the set of C-points of Shg, (G, X)gu is nothing but Gd’”((@)y_g)’Cl\(XJr x Gder(A>oPY).
[
When (G, X) is a Shimura datum, strong approximation shows that this is a projective limit of
a connected complex manifold. In any case, this implies that Shg, (G, X Jou depends only on
©

X, the groups G°" and G (as opposed to the group G), and the subgroups ngr and Kgd (as
opposed to Kj).
We also point out that (2.6.1) gives rise to a natural map

v: mo(Shi, (G, X)ow) = mo(Shx, (G, X)g, ) = mo(Shi, (G, X)g) — T(QP\Y x T(A®?).
(2.11.2)
By abuse of language, we call (2.11.1) the geometric connected components of the Shimura
varieties, and the target of (2.11.2) the set of connected components (although this is not the
case if (G, X) is a weak Shimura datum).

The Shimura varieties Shg, (G, X)7 for ? = O and F, admit the following actions.

(1) The natural right action of G(A>*?) on Shg,(G,X)g extends to a right action on
Shg, (G, X)2. The subgroup Z(Q)W) := Z(Q) N G(Z,) acts trivially. So, the right multiplication
action above factors through G(A>®?)/Z(Q)®)<!. The induced action on the set of connected
components is given by v : G(A®P)/Z(Q)P)el — T(Q)FP)\T(A%P),

(ii) There is a right action p of G*(Q)*®) on Shg, (G, X)owr such that the induced map on
C-points is given by, for g € G24(Q)t®),

p(9): GQIXT x G(A®) /K, GQPXT x G(A®)/K,

[z, a] l9~

1

z,int,-1(a)].

Here note that K, is stable under the conjugation action of Kgd and hence of G4 (Q)J“(p). One
extends the action p(g) to the integral model and hence to the special fiber using the extension
property. Moreover, this action preserves the connected component Shg, (G, X )5-

(iii) For an element g € G(Q)f), the two actions above coincide. Putting them together, we
have a right action of the group

G = (G(A>7)/2(@V) w GQ@TY (2:11.3)

*o@P/z@
on Shg, (G, X)7. The induced action on the set of connected components is given by
vxtriv: G —» T(Q)T’(p)’CI\T(AOOJ)),

i.e. v on the first factor and trivial on the second factor.
(iv) The Galois group Gal(E'/E) acts on Shg, (G)7, according to (2.7.1) (and §2.8).
Let &g, denote the subgroup of G x Gal(EJ"/E) consisting of pairs (g,0) such that

(v * triv)(g) is equal to Recy, (o)™t in T(Q)HPHN\T(A%P). Then, by the discussion above, the
group &g, acts on the connected component Shg, (G, X)5.
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Conversely, knowing Shx, (G, X )3 together with the action of g, we can recover the integral
model Shg, (G, X)o, or its special fiber Shg, (G, X)r,, of the Shimura variety as follows. We
consider the (pro-)scheme Shp (G, X)?Q;r XEq.o (G x Gal(E;r/Ep)). Since this is a projective
limit of quasi-projective varieties, by Galois descent, it is the base change of a projective system
of varieties Shy, (G, X)o,, from O, to OfF. The same argument applies to the special fiber.

In general, for a finite unramified extension E’@ of E,, we put 8G7 By to be the subgroup of £¢ ,

consisting of elements whose second coordinate lives in Gal(Eg"/ E@). Knowing the action of £, By
on Sh, (G, X)gur or Sh, (G, X)z allows one to descend the integral model to Shg, (G, X)
& ©

Op, -
2.12 Transferring mathematical objects

One can slightly generalize the discussion above to €G7 E@—equivariant mathematical objects
over the Shimura variety. More precisely, for 7 = F,,, O, by a mathematical object P over
Shg» (G, X)2, we mean, for each sufficiently small open compact subgroup K? of G(A*>P),
we have a (pro-)scheme or a vector bundle (with a section) Pg» over Shg, r»(G,X)?, such

that, for any subgroup K7 C K7, PK{) is the base change of PKS along the natural morphism
Shg,kr (G, X)7 — SthKggG,X)?. We say that P is G x Gal(E;r/Esg)—equivariant if P carries
an action of G x Gal(EJ"/Eg) that is compatible with the actions on the Shimura varieties.

Similarly, a mathematical object P° over Shi» (G, X )5 is a (pro-)scheme or a vector bundle
(with a section) as above, over the connected Shimura variety Shx»(G, X )5, viewed as a pro-
scheme. It is called 5G7 E@—equivariant if it carries an action of the group compatible with the
natural group action on the base Shimura variety.

Similar to the discussion above, we have the following corollary.

COROLLARY 2.13. There is a natural equivalence of categories between the category of
G x Gal(E;r/E@)—equivariant mathematical objects P over the tower of Shimura varieties
Shg,kv»(G, X )2, and the category of mathematical objects P° over Shi» (G, X)su:, equivariant
for the action of SGE@.

Proof. As above, given P, we can recover P° by taking the inverse limit with respect to
the open compact subgroup K? and then restricting to the connected component Shg, (G,
X)5u:. Conversely, we can recover P from P° through the isomorphism Pow = P° x o r

TR

(G x Gal(Eg'/ Ez)) and then use Galois descent if needed. O

Remark 2.14. If one does not consider the Galois action, Theorem 2.16 below implies that

Shi, (G, X)ouw = Shi, (G, X)our X (gaer(aoopy ,Gad(@)+@) 9

@qder (Q)f

and the same applies to the mathematical objects.

LEMMA 2.15. We have V(G(Q)S{”)) = T(Q)"®),

Proof. By §2.6, we have v(G(Q)4) = T(Q)'. The lemma follows from taking the kernels of the
following morphism of exact sequences:

1 1

GT(Q) G(Q)+ T(Q)t

| | |

P Gder(@p)/ngr - G(Qp)/Kp — T(Qp)/T(ZP) —1
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Here the left vertical arrow is surjective by the strong approximation theorem for the simply
connected group G9°7(Q). The bottom sequence is exact because the corresponding sequences
are exact both for Q, (because H'(Q,, G4") = 0) and for Z, (by Hypothesis 2.5). O

The following structure theorem for £g , is the key to transfer integral canonical models of
Shimura varieties for one group to those for another group.

THEOREM 2.16. For a finite unramified extension ENK; of E,, we have a natural short exact
sequence

1 — Gler(A%P) 4 o GNP — &, 5 — Gal(BY/Eg) — 1. (2.16.1)

Gder ((@)+

Proof. By the definition of £, By it fits into the following short exact sequence:

1 — Ker(G — T(Q)FPN\T(A®P)) — &, 5, — Gal(E)'/Eg) — L.
By Lemma 2.15, the kernel above is isomorphic to

(CQPE BN 2@ P) x g 00) gym CHQTP, (2.16.2)

where both closures are taken inside G(A®P).

We claim that we can remove the two completions. Indeed, put Z’ = ZNG9" and Z/(Q)®) =
Z'(Q) N Z(Q)®): the latter is a finite group. Consider the following commutative diagram of
exact sequences.

1—Z (Q)(p) - Z(Q)(p) % Gder(Aoo‘p) N G(Q)f)Gder(Aw,p) - o T(Q)f@)/lm(Z((@)(P) N T(Q)(f’)) I |

H | | i

1— Z/(Q)®el > Z(Q)(p) el s Ger (A%P) —> (G(Q)(f)cder(Aoo,p))cl s T(Q)f,(p),cl/Im(Z(Q)(p),cl N T(Q)(p),cl) 1

By diagram chasing, it suffices to prove that the right vertical arrow is an isomorphism. Since
the kernel of Z — T is finite, [Del79, §2.0.10] implies that Im(Z(Q)* — T(Q)*) = (Im(Z(Q) —
T(Q)))" and the right vertical arrow is an isomorphism.

Now the exact sequence (2.16.1) follows from a series of tautological isomorphisms

(G - Ger (A7) ) Z(QP)) » GHUQ@TP

c@®P/z(Q)
= [(Gder(Aoqp) Gder(Q (p)G ) )/Z( ) }*G(@)f)/z((@)(p) Gad(@)-i—,(p)

@Q
= [Gder(AOO,P) *Gder (p> ( ( ) /Z( ) )} *G(Q)f)/Z(Q)(p) Gad(Q)J“(p)
(

~ Gder(Aoo,p) Gder(@ ®) Gad Q) -

COROLLARY 2.17. Let ¢ : G — G’ be a homomorphism of two reductive groups over Q
satisfying Hypothesis 2.5, which induces isomorphisms between the derived and adjoint groups
as well as isomorphisms G*(Q)®) = G”7(Q)®) for ? = der,ad. A G*(R)*-conjugacy class X+
of homomorphisms h : S — Gpg induces a G"*4(R)*-conjugacy class X't of homomorphisms
WS — Gi. Put X = G(R)- X* and X' = G'(R) - X'*. Then, for any field Es containing
both E, and E;D, and unramified over them, there exist a natural isomorphism of groups
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Ea B 5 SG, By and a natural isomorphism of geometric connected components of Shimura

varieties Sth(G X)* ShK{j(G/ X")%.., equivariant for the natural actions of the groups

Eur Fur’
15

gG,E@ — 5G,7E~,g3.

As a corollary, if the Shimura variety for one of G or G’ admits an integral canonical model
and both E, and E;}, are unramified extensions of Q,, then the other Shimura variety admits
an integral canonical model.

Moreover, when there are canonical integral models, we have an equivalence of categories
between the category of G x Gal(EJ"/ E; 5)-equivariant mathematical objects P over the tower
of Shimura varieties Sh, r» (G, X)? (for 7 = Og or F) and the category of G’ x Gal(E“r/E )-
equivariant mathemat1cal objects P’ over the tower of Shimura varieties Shyc xkw (G X )7/ (for
?/ = Oﬁ or Fgg/).

Proof. The first part follows from Theorem 2.16 and the discussion in §2.11. For the second
part, the existence of an integral canonical model over E@ follows from the first part and the
discussion at the end of §2.11. The extension property allows one to further descend the integral
canonical model to O, (or O,). The last part follows from Corollary 2.13. a

3. Integral canonical models of quaternionic Shimura varieties

Classically, the integral model for a quaternionic Shimura variety is defined by passing to a
unitary Shimura variety, as is done in the curve case by Carayol [Car86]. As we pointed out earlier
that we will encounter some groups which are not quasi-split at p, Kisin’s general work [Kis10]
unfortunately does not apply. We have to work out a generalization of Carayol’s construction for
completeness. This will also be useful later when discussing the construction of the Goren—Oort
stratification.

We tailor the choice of the unitary group to our application of Helm’s isogeny trick later.
In particular, we will assume certain places above p to be inert in the CM extension.

3.1 Quaternionic Shimura varieties

Recall the notation from §1.12.3. Let S be an even subset of places of F'. Put S,o = SN X and
Sp =8MNX,. Let Bs be the quaternion algebra over F' ramified precisely at S. Let G's denote the
reductive group Resp/q(Bg' ). Then Ggg is isomorphic to

[ x [ GLog

TESoo TEY 00 —Soo

We define the Deligne homomorphism to be hg : S — Gs R, sending z = z+iy to (Z@s)rezoo, where
26, = 1if 7 € Soc and 27, = (_my ?;) if 7 € ¥oo—So. Let Hg denote the Gs(R)-conjugacy class of the
homomorphism hg; it is isomorphic to the product of #(Xs —Swo) copies of h* = P1(C) —P'(R).
We put g = (h+)¥<~5= where hT denotes the upper half plane.

We will consider the following type of open compact subgroups of Gs(A*): K = KPK),
where K? is an open compact subgroup of Bg (AR") and K, = Hpezp K, with K, an open
compact subgroup of Bg' (Fy).

From this point onward, we write Shx (G) instead of Shx (G, X) for Shimura varieties when
the choice of X is clear. Associated to the data above, there is a Shimura variety Shy (Gs) whose
C-points are

Shi (Gs)(C) = Gs(Q)\(Hs x Gs(A™))/K

2148

https://doi.org/10.1112/50010437X16007326 Published online by Cambridge University Press


https://doi.org/10.1112/S0010437X16007326

ON GOREN—QORT STRATIFICATION FOR QUATERNIONIC SHIMURA VARIETIES

The reflex field Fs is a subfield of C characterized as follows: an element o € Aut(C/Q) fixes
Fs if and only if the subset Sy, of Y is preserved under the action of o by post-composition.
Following §2.2, we put Shg, (Gs) =lim _ Shgrg,(Gs). (Note that the level structure at p is fixed
in the inverse limit.)

Put Tr = Resp/gGm. The reduced norm on Bs induces a homomorphism Nm = Nmp/p :
Gs — Tp. This homomorphism induces a map

T (Shi(Gs)) —> Tr(Q\(Tr(A™) x {£1}9)/Nm(K),

which is an isomorphism if S, € Y. We will make the Shimura reciprocity law (§2.7) explicit
for Shx (Gs) later when it is in use.

3.2 Level structure at p
We fix an isomorphism ¢, : C ~ @p. For each p € 3, let 3, /, denote the subset of Yo, consisting
of real embeddings, which, when composed with ¢, induce the p-adic place p. We put S/, =
S N Y /p- Similarly, we can view the reflexive field Fs as a subfield of @p via ¢, which induces
a p-adic place p of F5. We use O, to denote the valuation ring and &, the residue field.

In this paper, we always make the following assumption on S.

HypoTHEsIs 3.3. If Bs does not split at a p-adic place p of F, then S/, = X /p-

For each p € X, we now specify the level structure K, C Bg (Fp) of Shi (Gs) to be considered
in this paper. We distinguish four types of the prime p € X,,.
— Types a and of: Bg splits at p and the cardinality # (3o /p — Soosp) 18 even. We fix an
identification Bg (Fy) ~ GLa(Fy). We take K, to be:
* either GL2(Oy); or
* Twy = (f(;i ((99;)’ which we allow only when ¥/, = S5 /p-
We name the former case as type o and the latter as type af. (Under our definition, when
Yoo/p = Soo/p, the type of p depends on the choice of the level structure.)
— Type B: Bs splits at p and the cardinality # (X /p — Sco /p) is odd. We fix an identification
Bg (Fp) ~ GLa(F,). We take K, to be GL2(O,).
—  Type B': Bs ramifies at p and Soo/p = Zioo/p- In this case, Bs @ Fy is the division quaternion
algebra B, over F}. Let OBFp be the maximal order of Bp,. We take Ky to be OEF .

P
The aim of this section is to construct an integral canonical model of Shx (Gs) over O, with
K, = Hp|p K, specified above. For this, we need to introduce an auxiliary CM extension and a
unitary group.

3.4 Auxiliary CM extension
We choose a CM extension E over F' such that:
— every place in S is inert in E//F; and
— aplace p € ¥, is split in E/F if it is of type a or of, and is inert in E/F if it is of type f3
or .

We remark that our construction slightly differs from [Car86] in that Carayol requires all
places above p to split in E//F'. For later convenience, we fix some totally negative element 0 € Op
coprime to p, so that £ = F(1/9). (The construction will be independent of such a choice.)

Let X g o denote the set of complex embeddings of F£. We have a natural two-to-one map
Y Eoco = Yoo. For each 7 € ¥, we often use 7 to denote a complex embedding of E extending
7, whose complex conjugate is denoted by 7°¢.
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We fix a choice of a subset S C 2 E,0 Which consists of, for each 7 € S, a choice of exactly
one lift 7 € ¥ . This choice is equivalent to a collection of the numbers sz € {0,1,2} for all
T € Y E,00 such that:

— if 7 € ¥ 5o — Sso, We have sz = 1 for all lifts 7 of 7;
— if 7 € S and 7 is the lift in So, we have s; = 0 and sze = 2.

We put S = (S, Ss). Consider the torus 7' £5 = Resg/qGm together with the following choice
of the Deligne homomorphism:

hgpg: S(R) =C* TpsR)= @ (Fer,R)*~ H C~

TEZOO TEEOO
2t (ZE,T)T'

Here zp, = 1if 7 € ¥ — S and zZg , = Z otherwise, where, in the latter case, the isomorphism
(E®p.R)* ~ C* is given by the lift 7 € So. The reflex field Fj is the subfield of C corresponding
to the subgroup of Aut(C/Q) which stabilizes the set Soo C ¥ E,00- It contains Fg as a subfield.

The isomorphism ¢, : C ~ Q,, determines a p-adic place @ of Eg. We use Og to denote the
valuation ring of the completion of Fg at ¢ and kg its residue field. Note that [kg : )] is always
even whenever there is a place p € X, of type 3.

We take the level structure Kg to be K7, Kp,, where Kg, = (Op ®z Z,)* and K% is an
open compact subgroup of A%”*. This gives rise to a Shimura variety Shg, (Tps) and its
limit Shyp, (Tps) = @K@ShKE,pKfé (T 5). They have integral canonical models Shy, (Tf 5)

and Shg, (Tp 5) over O, as specified in §2.8.
We also consider the product group Gs X Ty 5 with the product Deligne homomorphism
hg =hs x hyg: S(R) = C* —> (Gs x T 5)(R).
This gives rise to the product Shimura varieties:
Shix iy (Gs x Tpg) = Shi(Gs) Xy, Shicy (T ),
SthXKEJ)(GS X TE,§) = Sth(Gs) XFS,gJ ShKE,p(TE,é)'

Let Z = ResF/Q(Gm denote the center of Gg. Put G’é’ =Gs Xz TES’ which is the quotient
of Gs x Ty g by Z embedded anti-diagonally as z +— (2,271). The corresponding Deligne
homomorphism A{ : S(R) — GZ(R) is the one induced by hs. We will consider open compact
subgroups K" C GZ(A*) of the form K"PKj/, where K"P is an open compact subgroup of
G%(A°P) and K, is an open compact subgroup of G%(Qp). Finally, the G%(R)-conjugacy class

of hg can be canonically identified with $s. We then get the Shimura variety ShK//(G’g’) and its
limit Shgy (Gg) over the reflex field Eg. The set of C-points of Shg(Gg) is

Shin (G5)(C) = G5(Q)\(9s x Gg(A™))/K".

3.5 Unitary Shimura varieties
We now introduce the unitary group. Consider the morphism

I/:NmB/FXNmE/Ft Gg:Gs XzTEHT:ReSF/QGm
(9,2) —— Nm(g)zz.

Viewing Gy, naturally as a subgroup of T' = Resp;gGm, we define G’g to be the reductive
group v~ 1(G,,). This will be our auxiliary unitary group, whose associated Shimura variety will
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provide Shg (Gs) with an integral canonical model. We will occasionally use the algebraic group
G’é,1 = Kerv, but we view it as a reductive group over F'.

Note that the Deligne homomorphism hg : S(R) — GZ(R) factors through a homomorphism
hg : S(R) — GL(R). The G§(R)-conjugacy class of hg can be canonically identified with $s.

We will consider open compact subgroups of G%(AOO) of the form K’ = K, K'P, where K, is
an open compact subgroup of G/g(@p) (to be specified later in §3.9) and K'P is an open compact
subgroup of G(A>?). We will always take K to be sufficiently small so that K’ is neat and
hence the moduli problem we encounter later would be representable by a fine moduli space.
Given the data above, we have a Shimura variety Sh K/(G’g) whose C-points are given by

Shy (G5)(C) = G5(Q)\(9s x Gg(A™))/ K.

The Shimura variety Shy/(Gg) is defined over the reflex field Es. We put Shyy(Gj) =
i, Sl ().

The upshot is the following lemma, which verifies the conditions listed in Corollary 2.17.
This allows us to bring the integral canonical models of the unitary Shimura varieties to those
of the quaternionic Shimura varieties.

LEMMA 3.6. The natural diagram of morphisms of groups
GS < GS X TE,§ —> Gg = GS Xz TE,é < G/g (361)

(1) is compatible with the Deligne homomorphisms; and
(2) induces isomorphisms on their associated derived and adjoint groups.

Proof. This is straightforward. O

3.7 PEL Shimura data
We put Ds = Bs ®@p E. It is isomorphic to Ma(E) under Hypothesis 3.3. This is a quaternion
algebra over E equipped with an involution [ — [ given by the tensor product of the natural

involution on Bs and the complex conjugation on E. Let D™ denote the subsets of symmetric

elements, i.e. those elements § € Dg such that § = 6. For any element § € (D5™)*, we can define
a new involution on Dg given by [ — [* = §~1§. In the following Lemma 3.8, we will specify a
convenient choice of such a 4.

Let V' be the underlying Q-vector space of Dg with the natural left Ds-module structure.

Define a pairing v : V xV — E on V by
Yvp(v,w) = TrDS/E(\[D ~vow™), wv,w e V. (3.7.1)

It is easy to check that ¢ is skew-hermitian over E for x, i.e. Yp(v,w) = —¢p(w,v) and
Ye(lv,w) = Yg(v,*w) for | € Ds and v,w € V. We define the bilinear form

b ="TrggoYp: V X V—Q,

which is skew-symmetric and hermitian for . One checks easily that the subgroup consisting of
elements | € Dg satisfying ¥ (vl, wl) = ¢(1)y(v, w) for some c(l) € Q* is exactly the subgroup
Gé C Dg'. We make the above right action of Gé on V into a left action by taking the transpose
action. This is different from the convention used in [Car86], which used the inverse action,
because taking the transpose action is naturally compatible with the setup of Hilbert modular
varieties (see §3.24), and is also compatible with our earlier choice of Deligne homomorphism.
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The group G’g is identified with the Dgs-linear unitary group of V' with similitudes in Q*, i.e.
for each Q-algebra R, we have

Glg(R) = {9 € Endpseor(V ®g R) = D | (v'g,w'g) = c(g)v (v, w) with ¢(g) € R*}. (3.7.2)

We describe Dgp = Dg ®p F,, by distinguishing three cases according to the types of p € ¥,
in §3.2.

— Types o or af: In this case, the place p splits into two primes q and § in E. We have
natural isomorphisms Fj, = F; = E5. We fix an isomorphism Bs ® g F, ~ Ma(F}) as above;
then Dg, ~ Ma(FE;) @ Ma(F5). Under these identifications, we put Op,, = M2(O,) and
Ops, = M2(Oq) & M2(Oq).

— Type B: In this case, the place p is inert in E/F and we let q denote the unique place in E
above p. Using the fixed isomorphism Bs ® g F}, ~ Ma(Fy), we have Dgp ~ My (E;). We put
Opsp = M2(0p) and Opgp = M2 (0y).

— Type B%: Let q be the unique place in E above p. The division quaternion algebra Bp, =
Bs @ F, over I} is generated by an element WBy, Over E,, with the relations w%Fp =p

and @By, 0 = AWBy, for a € E;. We identify Br, ®f, Eq with Ma(Ey) via the map

(a+bwp, ) ®cr— (ac bc) (3.7.3)

pbe ac)’
This also identifies Dsy with Ma(E,). We put Op,, = OBFp and take Opg, to be the

preimage of Ma(Oy) in Ds ®p F.
We put Op;p = [lpex, Obsp-

LEMMA 3.8. (1) We can choose the symmetric element § € (Dg™)* above such that:

(a) 6 € Ogs,p for each p € ¥, not of type 3%, and 6 € (po
Bt; and
(b) the following (symmetric) bilinear form on Vi is positive definite:

(v, w) = P (v,w - h(i)).

(2) Through the homomorphism hg : S(R) — G§(R), hi(i) acts on the vector space Vg and
gives it a Hodge structure of type {(—1,0), (0,—1)}. For | € Dg, we have

' (1)) le?s,p for each p € 3, of type

tr(l; Ve /F°Ve) = < > 57:7~'> (Trpg/u(l)).
TEXE, 00
The reflex field Ej is the subfield of C generated by these traces for all | € Ds.
(3) With the choice of ¢ in (1), the group Gé | Is unramified at p € ¥, not of type G%, and it

is non-quasi-split at p € ¥, of type 5%, Moreover, O Ds,p 18 @ maximal x-invariant lattice of
Ds(Qp) (up to scaling).

Proof. (1) Since F'is dense in F' ®g Q, @& F ®g R, the symmetric elements of V' are dense in the
symmetric elements of V ®qg Q, ®V ®g R. The conditions at places above p are clearly open and
non-empty; so are the conditions at archimedean places, which follows from the same arguments
in [Car86, 2.2.4].

(2) This follows from the same calculation as in [Car86, 2.3.2].
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(3) We first remark that G/é,l, F does not depend on the particular choice of § and hence we
may use a convenient 0 to ease the computation. We discuss each of the types separately.

If p is of type a or of, G’g’l(Fp) is isomorphic to the kernel of GLa(F}) X (Ey x Ef) — F
given by (I,z,y) = Nm(l)zy. Hence, [ — (I,Nm(l)~!,1) induces an isomorphism GLy(F,) —

s.1(Fp). They are of course unramified.

If p is of type B, when we identify Ds, with M2(E,), the convolution [ +— [ is given by
(a8 — (_35 _aB) for a,b,c,d € E;. We take the element § to be (). The hermitian form on
M (Ey) is then given by

_ = _ - _ a b a v
(v,w) = Ny (Eq) ) Ey (vwd) = —ab/ +ba' +cd —ded, v= (c d) and w = (c’ d')'

One checks easily that ¢ = ((1) 8) is invariant under the *-involution. So, Dg, is isomorphic to

(eDS’p)692 as a *-hermitian space and G’g LF, is the unitary group for eDg . It is clear from the
expression above that e¢Ds, is a hyperbolic plane [Minll, Example 3.2]. Hence, G

5 £y being
the unitary group of such hermitian space, is unramified.
If p is of type %, the identification of Ds, with Ma(E,) using (3.7.3) implies that the

convolution [ — [ is given by

a b a —c¢/p
(c d) — (—pl_) i > for a,b,c,d € Ej.

We take the element § to be (pgl [1)) The hermitian form on Ma(Ej) is then given by

_ _ Y
<U,w> = TrMQ(Eq)/Eq (Uﬂ;é) = aa//p— bb,—cél/p_Fdd,’ v = <CCL z) and w = <Ccl, Z,) (381)

Similar to above, ¢ = ((1) 8) is invariant under *-involution and Dy, is isomorphic to (eDs,)®? as

x-hermitian spaces. The unitary group Gé | g, 18 just the usual unitary group of ¢eDsp. But the
sy d'p

hermitian form there takes the form of aa’/p — bb’, which is a typical example of an anisotropic
plane [Minl1, Example 3.2]. So, Glé,l, £ is a non-quasi-split unitary group.

To see that Opy p is a maximal *-stable lattice, it suffices to prove it for Op, , for each p € ).
When p is of type «, af, or 3, this is immediate. When p is of type 5%, we write § as (pgl ?)u for
u € Op, - The involution * is given by

a b _1(p O a —¢/p\(p' 0\ a —c
<c d>|—>u (0 1) <—pb i )(O | Ju=u 5 od)v for a,b,c,d € Ej.

It is then clear that Op,j is a maximal *-stable lattice. O

3.9 Level structures at p in the unitary case
We specify our choice for K, corresponding to the level structure K, = Hp|p K, C lep(Bs ®F
F,)* considered in §3.2.

By (3.7.2), giving an element g, € G’g((@p) is equivalent to giving tuples (gy)pex, with g, €
Endpsepr, (V @F Fy) such that there exists v(g,) € Q) independent of p satisfying

VEp(gpv, gpw) = v(gp)VEp(v,w), Vo,w €V QF B,
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where g, is the base change of ¢p to V ®p F, = Dgy. In the following, we will give a chain
of lattices A,(,I) C A;(JQ) in Dg for each p, and define K]’D - G’é((@p) to be the subgroup consisting

of the elements (gp)pes, With g, belonging to the stabilizer of A'(Jl) C A‘(Jz) and with v(gp) € Z,

independent of p.
— When p is of type «, we take Aél) = Al(f) to be Opy p.
— When p is of type of, we take

0 0; 05 2y (Of O . (T O
A(l):< ] q) < ] q) d A(>:( ] q> < q)_
v =0, q)Flog o)) M =, o) Plgt o

— When p is of type 3, we take Af,l) = A)(QQ) = Opsp-
— When p is of type B!, we take

W _ (a9 O @ _ (Oq Oq
Ap _<q Oq>gAp _(Oq Oq)

Note that these two lattices are dual to each other under the hermitian form (3.8.1).
Similarly, we give the level structure at p for the Shimura variety associated to the group
GY: take K) to be the image of K}, x K, under the natural map (Gs x T 5)(Q,) — G5(Qp).

LEMMA 3.10. The Shimura data for Gs, Gs x Ty, 5, G5, and G satisfy Hypothesis 2.5. Moreover,
the natural diagram of morphisms of groups

GS <~ GS X TE7§ g Gg = GS Xz TES < G/é (3101)
induces isomorphisms on the p-integral points of the derived and adjoint groups.

Proof. This is straightforward from definition. In fact, both K3 = [] K24 and Kder =
P pET, P P
Hpezp KSer are products and we give the description case by case:
— if p is of type o or 3, then KJ® = SLy(O,) and Kgd =PGL2(0y);

— if p is of type af, then ngr = SL2(Op) N <Op” gi) and Kgd = <Opp gi)/ox; and
p p
— ifpisof type A%, then K;ler and K, ;‘d are the maximal compact open subgroups of (Bg )der(Fp)
and (Bg)*(F,), respectively. 0

COROLLARY 3.11. The natural morphisms between Shimura varieties
Sth(Gs) < SthXKE,p(GS X TE,§) — Sth’)’(Gg) < ShK;(G/g) (3.11.1)

induce isomorphisms on the geometric connected components. Moreover, the groups £g ; defined
in §2.11 (and made explicit below) are isomorphic for each of the groups; and (3.11.1) is
equivariant for the actions of the £g s on the geometric connected components. Moreover, if
one of the Shimura varieties admits an integral canonical model, so do the others.

Proof. This follows from Corollary 2.17, for which the conditions are verified in Lemmas 3.6
and 3.10. O
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3.12 Structure groups for connected Shimura varieties
In order to apply the machinery developed in § 2, we now make explicit the structure groups G
in (2.11.3) and £g,s in §2.11 in the case of our interest.

We use Gs (respectively Gi, GI) to denote the group defined in (2.11.3) for G = Gs
(respectively G, G%). Explicitly, since the center of Gs is Resp/gGm, we have G34(Q) = BS/F*.

Taking the positive and p-integral part as in Lemma 2.15, we have G34(Q) ™) = B >0,(p) /(’)F o)
where the superscript > 0 means to take the elements whose reduced norm is pos1t1ve for all
real embeddings. It follows that Gs = Gs(A*P)/ (’)X’Cl) The same argument applies to G whose

center is Resg /Gy, and shows that G = GZ(A>P)/ O 87 Determination of G{ is more subtle.

By Lemmas 3.6 and 3.10, we have (Gg)ad((@) (p) = (G”)ad(Q) (), So, if we use Z to denote
the center of G§, then we have

o0, (p);cl ad () +:(p)
/§(A p)/Zé(Q) P ) *Gé(Q)S?)/Zé(Q)(p) (G,g) (Q) b
00, ,cl (»)
Gy(A®)/Z5(Q)P ) “ay0 7@ (G5 @1 /05 ;)

(AN GHQT /055 (3.12.1)

g/

The subgroup G%(A*P)GY (Q)S{D) can be characterized by the following commutative diagram
of an exact sequence as the pullback of the right square.

1 Gy (A7) —— GYQ VG (AP) — OF | (AF)< ——1

[ j (3.12.2)

L= Gy | (A7) G (A>P) (AP — 1

We use £g s, to denote the group g g defined in §2.11. As an abstract group, it is isomorphic
for all groups Gf, G§, and Gg. But we point out that it is important (see Remark 5.10) to know
how they sit as subgroups of Gs x Galy,,, G x Galy, and GF x Gal, respectively, according to
the Shimura reciprocity map.

3.13 Integral models of unitary Shimura varieties

We choose a finite extension kg of kg that contains all residual fields k4 for any p-adic place q
of E. Then the ring of Witt vectors W (ko) may be viewed as a subring of @p, containing O as
a subring.

We fix an order Op, of Dg stable under the involution [ — [* such that Op; ®0,. OFy >~ Opg p.
Recall that V is the abstract Q-vector space Ds. We choose and fix an Opg-lattice A of V' such
that:

— for each p € 3, we have A ®p,, O, = Af,l); and
— if we put AP =A@y Z®) as a lattice of V ®qg AP, we have

A® C APV ynder the bilinear form 1, or equivalently, w(K(p),K(p)) czZ®. (3.13.1)

We call such A admissible.

THEOREM 3.14. Let K, be the open compact subgroup of G§(Qy) considered in § 3.9, and K'P C
G5(A>P) be sufficiently small so that K' = K'PK, is neat. Then there exists a unique smooth
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quasi-projective scheme ShK/(G’g) over W (ky) representing the functor that sends a locally
noetherian W (kg )-scheme S to the set of isomorphism classes of tuples (A, t, A\, i), as described
as follows.

(a) A is an abelian scheme over S of dimension 4g equipped with an embedding v : Opy —
Endg(A) such that the characteristic polynomial of the endomorphism ¢(b) on Lie(A/S) for
b € Og is given by
I @-7e)>.
FEXE o

(b) A: A— AV is a polarization of A such that:

(b1) the Rosati involution associated to A\ induces the involution | — I* on Opg;

(b2) (Ker A)[p™] is a finite flat closed subgroup scheme contained in [ [, ,¢ e gt AlP] such
that (Ker \)[p>] N Alp] for each p of type 3* has rank (#ky)*; and

(b3) the cokernel of A, : H®(A/S) — H{R(AV/S) is a locally free module of rank two over

@ Og ®z, (OF ®0y kp).
p of type 3¢

(¢) akr is a pair (af.,, ;) defined as follows.

(c1) For each connected component S; of S, we choose a geometric point 5; and let T (Asg,)

be the product of l-adic Tate modules of A at §; for all | # p. Then of.,, is a collection

of 1 (S, 5;)-invariant K'P-orbits of pairs (a?, v(aF)), where of is an Op, @7 Z®)-linear
isomorphism A®) 5 T®)(Ag) and v(al) is an isomorphism Z®) = ZP)(1) such that

the following diagram commutes.

A®) « A®) ¥ 7
afxafl V(O‘f)
T®)(4;,) x TP (A;,) —22 L 70)(1)

(c2) For each prime p € ¥, of type of, let q and § be the two primes of E above p. Then
ay, is a collection of Opg-stable closed finite flat subgroups oy, = Hq® Hg C Alq] @ Alq]
of order (#k:p)4 such that Hy and Hy are dual to each other under the perfect pairing

Ala] < Afa] — pp

induced by the polarization .

By Galois descent, the moduli space ShK/(G’g) can be defined over Og. Moreover, if the
ramification set S, Is non-empty, ShK/(G’g) is projective.

We will postpone the proof of this theorem until after Notation 3.16. The intuition behind the
proof is the following. It is well known that the corresponding moduli problem of hyperspecial
level is representable by a quasi-projective smooth scheme over W(kp). In our situation, the
hyperspecial level occurs merely at primes p € ¥, of type a# or B#, but the condition 3., /=
Soo/p for such primes p implies that the extra levels at those primes are representable by finite
étale maps over the hyperspecial moduli. Hence, the resulting moduli problem is still smooth.
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3.15 Deformation theory
We recall briefly the crystalline deformation theory of abelian varieties due to Serre-Tate and
Grothendieck—Messing. This will be used in the proof of Theorem 3.14.

We start with a general situation. Let S be a Z,-scheme on which p is locally nilpotent, and
Sy = S be a closed immersion whose ideal sheaf 7 is equipped with a divided power structure
compatible with that on pZ,, e.g. Sy = Speck — S = Speckle]/(e?) with k a perfect field of
characteristic p. Let (So/Zp)cris be the crystalline site of Sy over SpecZ, and (’)groi?Zp be the
structure sheaf. Let Ay be an abelian scheme over Sy, and H{'(Ag/Sp) be the dual of the
relative crystalline cohomology H}. (Ao/So) (or isomorphically H{'(Ay/Sy) = HL. (AY/S0)).
Then H{™S(Ag/So) is a crystal of locally free (’)g‘g?zp—modules whose evaluation H{"S(Ay/Sp)s
at the pd-embedding Sy — S is a locally free Og-module. We have a canonical isomorphism
H{S(Ao/So)s ®og Osy, ¥ H fR(AO /So0), which is the dual of the relative de Rham cohomology
of Ay/Sp. For each abelian scheme A over S with A xg Sy ~ Ay, we have a canonical Hodge
filtration

0— wA\//S d Hfris(Ao/So)S ad Lie(A/S) — 0.

Hence, w4v /g gives rise to a local direct factor of H (A /Sp) s that lifts the subbundle w Ay /50 ©
H fR(AO /So). Conversely, the theory of deformations of abelian schemes says that knowing this
lift of the subbundle is also enough to recover A from Agy. More precisely, let AVg be the category
of abelian schemes over S, and let AV'g0 denote the category of pairs (Ag,w), where Ay is an
abelian scheme over Sy and w is a subbundle of H{™S(Aq/Sp)s that lifts way /s, © H{R(Ag/Sp).
The main theorem of the crystalline deformation theory (cf. [Gro74, pp. 116-118] and [MM74,
ch. II, §1]) says that the natural functor AVg — AVjSC0 given by A — (A xg So,wAV/S) s an
equivalence of categories.

Let A be a deformation of Ay corresponding to a direct factor w C H{™S(Ay/Sp)s that lifts
WAY /S If Ag is equipped with an action ¢g by a certain algebra R, then ¢y deforms to an action
v of R on A if and only if wg C H{"S(A/Sy)s is R-stable. Let Ao : Ag — Ay be a polarization.
Then )¢ induces a natural alternating pairing [BBMS82, 5.1]

() Yag: H{S(Ao/So)s x H{™(Ag/Sp)s — Os,

which is perfect if Ag is prime-to-p. Then there exists a (necessarily unique) polarization A : A —
AV that lifts A if and only if wg is isotropic for (,),, by [Lanl3, 2.1.6.9, 2.2.2.2, and 2.2.2.6].

Notation 3.16. Before going to the proof of Theorem 3.14, we introduce some notation. Recall
that we have an isomorphism Opg, ~ My(Op ® Z,). We denote by ¢ € Op,,, the element
corresponding to (§9) in Ma(Op ® Zy). For S a W (kg)-scheme and M an Og-module locally
free of finite rank equipped with an action of Op, ), we call M° := eM the reduced part of M.
We have M = (M°)®? by Morita equivalence. Moreover, the Og-action induces a canonical

decomposition
e] (¢]
M= P Mg,
71625700

where Op acts on each factor M2 by 7: O — W (ko).
Let A be an abelian scheme over S carrying an action of Op,. The construction above gives
rise to locally free Og-modules wf g, Lie(A/S)°, and H(A/S)°, which are of rank § dim A,

%dim A, and dim A, respectively. We call them the reduced invariant differential 1-forms, the
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reduced Lie algebra, and the reduced de Rham homology of A, respectively. For each 7 € ¥ g ,
we have a reduced Hodge filtration in T-component

0= wiv g7 = HIR(A/S)2 — Lie(4/9)2 — (3.16.1)

If the abelian scheme A comes from the moduli problem in Theorem 3.14, the dimensions of
these three factors are 2 — sz, 2, and sz, respectively, where the number s is defined in § 3.4.

Proof of Theorem 3.14. The representability of ShK/(G ) by a quasi-projective scheme over
W (ko) is well known (cf. for instance [Lan13, 1.4.13, 2.3.3, and 7.2.3.10]). To show the smoothness
of Shy/(GY), it suffices to prove that it is formally smooth over W (ko). Let R be a noetherian
W (kg)-algebra, I C R be an ideal with I? = 0, and Rq = R/I. We need to show that every point
xo = (Ao, Lo, Ao, g7 ) of She (G’ ) with values in Ry lifts to an R-valued point x of ShK/(G’é). We
apply the deformation theory recalled in §3.15. The relative crystalline homology H{"(Ag/Ro)
is naturally equipped with an action of Op, ® Z,. Let H{™S(Ag/Rp)° := eHC“S(Ao/Ro) be its
reduced part and H{(Aq/ Ry)% be its evaluatlon on R. This is a free R ® Og-module of rank
A[F : Q], and we have a canonical decomposition

crls(A /RO @ HCrlb A /RO)%,%

TEZE %)

The polarization A\g on Ag induces a pairing
H{™(Ao/Ro)% 7 x Hi™(Ao/Ro) % zc— R, (3.16.2)

which is perfect for 7 € ¥p o/, with p not of type %, By the deformation theory §3.15, giving
a deformation of (A, ) to R is equivalent to giving, for each 7 € ¥ o, a direct summand
wp z C H{™(Ao/Ro)p > which lifts wi‘g/RO ;- Let p € X, with 7 € Xp /. We distinguish several
cases.

— If 7 restricts to 7 € So, Lie(Ag/Ro)% has rank sz € {0,2} by the determinant condition
(a). By duality or the Hodge filtration (3.16.1), wAg/RO,% has rank 2 — sz, i.e. wAg/RO,T =0
when sz = 2 and wilg/Ro,% ~ HfR(AO/RO)g when s; = 0. Therefore, wj’w =0orwp;=
H{S(Ag/ Ro)% 7 is the unique lift in these cases, respectively.

— If 7 restricts to 7 € Yoy — S, then wZV/R _ and WZV/R 7o are both of rank one over Ry,
and we have ""ng JRo7 = ("Jixg JRo7 .)* under the perfect pairing between H{F(Ag/Rg)2 and
HfR(AO/RO)ﬁc induced by Ag. (Note that 7 € Yoo/p — Sec means that p is not of type (% and
hence the Weil pairing is perfect.) Within each pair {7,7¢}, we can take an arbitrary direct
summand wp - C H{"™(Ao/Ro)% » which lifts wzg /R, and let W . be the orthogonal
complement of w -. under the perfect pairing (3.16.2). By the Hodge filtration (3.16.1),
such choices of (w =, w%ic) form a torsor under the group

Hompg, (""AV/R ,Lie(Ap)3?) ® I = Lie(Ap); ®@r, Lie(Ap)3e

where in the second isomorphism we have used the fact that Lie(Ay)2 ~ Lie(Aq)2
We take liftings wR~ for each 7 € ¥ as above, and let (A,¢) be the corresponding
deformation to R of (Ao, to). It is clear that @, oy (W ® wh =) is isotropic for the pairing
on Hfris(Ao/Ro)ﬁ% induced by Ag. Hence, the polarization A lifts uniquely to a polarization
A A — AY satisfying condition (bl) in the statement of the theorem. By the criterion
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of flatness by fibers [EGAIV, 11.3.10], Ker(\) is a finite flat group scheme over R, and
the condition (b2) is thus satisfied. Condition (b3) follows from the fact that the morphism
At HB(A/R) — H{R®(A/R) is the same as A\« : HS"S(Ag/Ro)r — H{"S(AY/Ro) g under the
canonical isomorphism H{®(B/R) ~ H{"S(By/Ro)r for B = Ag, A.

We have to show moreover that the level structure ags g = (b, ap ) extends uniquely to A.
It is clear for of). For oy, let Hy = H)g of type at Op be the product of the closed subgroups in
the data of oy . Let fo : A9 — By = Ao/Hy be the canonical isogeny. It suffices to show that
By and fy deform to R. The abelian variety By is equipped with an induced action of Opg, a
polarization A, satisfying conditions (a) and (b). The isogeny fy induces canonical isomorphisms
HfriS(AO/RO)}’%ﬁ o HfriS(BO/RO)‘I’%f for 7 € ¥ o p With p not of type of. So, for such primes p
and 7 € Xy, the liftings wp, ~ chosen above give the liftings of W%OV/RO,? C H{®(By/Ry)2. For
T € Yoo p With p of type of, we note that at each closed point z of Ry, w%g/kx’% is either trivial

or isomorphic to the whole H ?R(Bo /kz)2 as in the case for Ag. Hence, the same holds for Ry in
place of k;. Therefore, wj’gov JRo/7 admits a unique lift to a direct summand of H{"*(By/ Ro)% -
Such choices of liftings of w%g JRo,7 8lVE Tise to a deformation B/R of By/Ry. It is clear that
fo: Ag = By also lifts to an isogeny f : A — B. Then the kernel of f gives the required lift of
Hp. This concludes the proof of the smoothness of Shx/(GY).

The dimension of Shg(GY) follows from the calculation of the tangent bundle of Shx(GY),
as the following corollary shows. When the ramification set S, is non-empty, it is a standard
argument to use a valuative criterion to check that ShK/(G’g) is proper. We will postpone the
proof to Proposition 4.7, where a more general statement is proved. (One can check that there
is no loophole in our argument.) O

COROLLARY 3.17. Let Sy — S be a closed immersion of locally noetherian kg-schemes with
ideal sheaf T such that T? = 0. Let x¢ = (Ao, to, Mo, akro) be an Sy-valued point of ShK/(G’é).
Then the set-valued sheaf of local deformations of zg to S forms a torsor under the group

P (Lie(A0)2 ® Lie(4p)2.) & L.

TGEOO*SOO

In particular, the tangent bundle TShK/(Gé) of Sh K/(G’g) is canonically isomorphic to

where A’ = A¢ ., denotes the universal abelian scheme over Shy(GY%).

cris

Proof. A deformation of xo is determined by the liftings wg > C H{"*(Ao/So)g 7 of wjlg /50,7 for
T € YE 0. From the proof of Theorem 3.14, we see that the choices for wg . are unique if 7
restricts to 7 € Su. For 7 € ¥, — S, the possible liftings wgi and wgic determine each other
and form a torsor under the group

Homog, (Wixg/so,%’ Lie(A40)?) ®og, T = Lie(Ap)z @ Lie(A4p)2 ®oy, L.

The statement for the local lifts of xp to S follows immediately. Applying this to the universal
case, we obtain the second part of the corollary. O
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Remark 3.18. We remark that the moduli space Shg(G%) does not depend on the choice of the
admissible lattice A in §3.13; but the universal abelian scheme A’ does in the following way. If
A1 and As are two admissible lattices, we put IA\EP ) = A ®7 7P and we use A’ to denote the
corresponding universal abelian variety over Sh K/(Gé) and d’}(,p’i to denote the universal level
structure (away from p) for i = 1,2.

Then there is a natural prime-to-p quasi-isogeny 7 : A} --» AJ, such that

is a commutative diagram up the action of K'P, where the left-hand vertical arrow is the isogeny
of lattices inside V ®g A*P. (For more detailed discussion, see [Lan13, 1.4.3].)

COROLLARY 3.19. The integral model ShKr(G/g) defined in Theorem 3.14 gives an integral
canonical model Shg,(G§) of Shk,(Gg). Consequently, the quaternionic Shimura variety
Shg,(Gs) admits an integral canonical model over O,,. Similarly, the Shimura varieties
Shr,xkp,(Gs x Tpg) and Shgy(Gg) both admit integral canonical models over Og. The
geometric connected components of these integral canonical models are canonically isomorphic.

Proof. We first assume that S, # Y. We need to verify that for any smooth Og-scheme S, any
morphism g : S ®o, Es 5 — ShKI/)(G’é) extends to a morphism s : S — Shg, (G§). Explicitly,
we have to show that a tuple (A, ¢, A aPay) over S ®o, Eg ; extends to a similar tuple over S.
Here aPay, is the projective limit in K7 of level structures af.,,c; as in Theorem 3.14(c). The
same arguments as [Mo098, Corollary 3.8] apply to proving the existence of extension of A, ¢, A,
and the prime-to-p level structure o. It remains to extend the level structure o,. Let Sh I?;,(Glé)

denote the similar moduli space as ShK;(G’g) by forgetting the p-level structure o,. We have
seen in the proof of Theorem 3.14 that there is no local deformation of «,, which means that
the forgetful map Shy, (Gz) — Shg, (Gg) is finite and étale. The discussion above shows that
p
Shz, (G}) satisfies the extension property. Hence, there exists a morphism 5 : S — Shg, (G§)
P p

such that the square of the following diagram is commutative.

S ®o, By 5 ——= Shg (GY)

S
7
s -
-
-
-
- ~

5'1444444§4>-Sllﬁz((;é)

We have to show that there exists a map s as the dotted arrow that makes the whole diagram

commutative. Giving such a map s is equivalent to giving a section of the finite étale cover

S Xsh_, (cL) Shy, (Gg) — S extending the section corresponding to sg. Since a section of a
s S

finite étale cover of separated schemes is an open and closed immersion, the existence of s

follows immediately. The existence of integral canonical models for Shg, (Gs), Sth(G’é’), and

Shg,x kg, (Gs % TE,é) follows from Corollary 2.17.
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When S, = Y, we need to show that the action of the arithmetic Frobenius o5 on the
moduli space Shy (Gé) is given by the reciprocity law as in §2.8. Put ng = [kg : Fp]. Let
Recyr : Galg, - Z'(Q)\Z'(A>)/Z'(Zy) denote the reciprocity map defined in §2.8, where Z’
is the center of Gé, which is the algebraic group associated to the subgroup of E* consisting of
elements with norm to F* lying in Q*. By definition, Recy (o) is the image of wgl under the
composite of

ec /(G’g,.ﬁs)
d Z'(Qy) /2 (Zp)

and the natural map Z'(Q,)/Z"(Z,) — Z'(Q)"\Z'(A>)/Z'(Z,). Explicitly, one has

R
. X X
Sieczlﬁ : E§7@/Op~

Z/(Qp> = {((wp)pEEpay) |y € Q;a Lp € Ep><7 and NmEp/Fp (:Cp) = y}

We note that there is no p-adic primes of F' of type 8 and the valuation of y determines the
valuation of x, for p of type (¥, For each prime p € Y, of type o or of, choose a place q of E
above p; then the map ((xp)p,y) = (val,(y), (valy(zq))p) defines an isomorphism

¢ 2'(Qy)/2(Zy) > T x 11 A

p of type a Or of

where we have written x, = (x4, x3) for each prime p € ¥, of type a or of. By the definition of

MReczr s in §2.8, using hg, we see that £ o meczl,@(wgl) is equal to

(—ng, (=#So0/q - 16/ fo)p) (3.19.1)

where ng = [kg : )] and f, is the inertia degree of p in F//Q. (Note that the homomorphism
hp g sends z to z with respect to the embeddings 7 € Seo-)

On the other hand, og takes a closed point z = (A, ¢, A\, ak) of ShK/(Gé)Fp to og(x) =
(05(A), ', N, Frobg o akr), where o5(A) denotes the pullback of A via the Frobenius o5 = o™¢
on the residue field x(z), equipped with the induced Op,-action and the polarization, and Frobg :
A — oA is the relative Frobenius map. For a p-adic prime p of F' (or of E), denote by D(A),
the covariant Dieudonné module of A[p>°]. We observe that, if p is a prime of F' of type [, then

D(05(A))p = p "oV D(A),
and, if p is of type o or af with q a place of E above p, then

D(05(A))q = p~ #oerame/ T ymoD(A),.

Let g, € Z'(Qy) be an element such that £(g,) is given by (3.19.1), where g, denotes the image
of gp in Z'(Qp)/Z'(Zp). Then via the isogeny Frobg : A — o%A, which corresponds to V"¢ :
D(A) — ZND(O'Z;A), {)(O';A) is identified with the lattice g,D(A) of D(A)[1/p]. This agrees with

the computation of fRec Z/@(wpfl) above. O

The rest of this section is devoted to understanding how to pass the universal abelian varieties
on ShKlzj(Gé) to other Shimura varieties, as well as natural partial Frobenius morphisms among
these varieties and their compatibility with the abelian varieties.
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3.20 Actions on universal abelian varieties in the unitary case
We need to extend the usual tame Hecke algebra action on the universal abelian variety A’., over
p

Shy, (G%) to the action of a slightly bigger group ég = G’g(AOO’p)Gg(Q)(f). We follow [Sai09].
Take an element g € ég and let K’ and K’ be two open compact subgroups of G5 (A>P)
such that g~'K{’§g C K7 (note that G% normalizes G%). We put K| = K;pK; for i = 1,2.

Then, starting from the universal abelian variety A/Ki together with the tame level structure

aK’P A = 70 A’K,, we may obtain an abelian variety B’ over Shy/(Gy), together with
1
a prime-to-p quasi-isogeny 7 : A’ K|~ B’ and a tame level structure such that the following

diagram commutes:

A0 ar

A S (AKi)

[ ‘T<p)(77)
~ g1 /\Y ~ ¥
Alp) 9 GA®) = T®) (B

o

where the left vertical arrow is the natural quasi-isogeny as lattices inside V ®g A®P. Since
g 'KP§ C K, we may take the K. -orbit of the composite of the bottom homomorphism as
the tame level structure on B’.

One can easily transfer other data in the moduli problem of Theorem 3.14 to B’, except for

the polarization, for which we make the modification as follows: since g € G%(A>P)GY (Q)f), we

have v(g) € O; (;;) Aoo’p’ = (’);’é? . ZP):* We can then write v(§) as the product Vg - u for

Vg € O;’é;} and u € Z( )X In fact, 1/;r is uniquely determined by this restriction. We take the
polarization on B’ to be the composite of a sequence of quasi-isogenies

+
V2 Aps

)\ :B, A/ g / \Y B/\/.

B’ Ak — K{) -

Such modification ensures that B’ satisfies condition (c1) of Theorem 3.14.
The moduli problem then implies that B = (H, §)*(A/K§) for a uniquely determined morphism
H; i‘shKi(Gé) — Shp;, (G). This gives the action of Gs on Shr; (Gg). Moreover, we have a
quasi-isogeny
n ~ *
HY : Al > B' = (Hy)" (Al

giving rise to an equivariant action of G~ on the universal abelian varieties A/, over Sh K;)(Gg).
P

One easily checks that the action of the dlagonal O% .\ on the Shimura variety Shg, (G§)

E,(p)

is trivial and hence we have an action of G; = G5/ Oy ‘(311)) on Shy, (G§). However, the action of

(’)2 (p) 01 the universal abelian variety A’ is not trivial. So, the latter does not carry a natural
) p

action of gg. So, our earlier framework for Shimura varieties does not apply to the universal
abelian varieties directly. However, we observe that, by the construction at the end of §2.11,

ShKu(G ) = ShK/ (G/g) Xgé gg = ShK;;(G,é) Xég Gg(AOOJ’)

So,
K” = AK/ Xg/ g~ AK’ >< G”(Aoo’p)
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gives a natural family of abelian variety over Sh K;/(Gg ). We will not discuss families of abelian
varieties over the quaternionic Shimura variety Shy, (Gs) (except when S = ¢).

3.21 Automorphic l-adic systems on Shgy(GZ) and their geometric interpretation
By a multiweight, we mean a tuple (k,w) = ((k;)rex..,w) € NF'U » N such that k, > 2 and
w = kr(mod 2) for each 7. We also fix a section of the natural map Y g o — Yoo, that is, to fix
an extension 7 to E of each real embedding 7 € Yo of F. Use ¥ to denote the image of this
section. In this subsection, we use 7 to denote this chosen lift of 7. We fix a subfield L of Q ¢ C
containing all embeddings of F, as the coefficient field.

Let [ be a finite place of L over a prime [ with [ # p. Fix an isomorphism ¢ : C ~ L.

Consider the injection

GgXQL = (RGSF/Q(BSX)XReSF/@GmReSE/QGm)XQL — ResE/@D§ XQL = H GL27L’%XGL27L7%C7
TEEOO

where E* acts on GLg 1, 7 (respectively GLj 1, zc) through 7 (respectively 7¢). For a multiweight
(k,w), we consider the following representation of G§ xq L:

”(k Y =) plF) oprs for i =1,2 with pl=") = Sym* 2 @ det (W F7)/2,

res

where 7 is the restriction of 7 to F', and pr: is the contragradient of the natural projection to the 7-
'(, w)

is trivial on the maximal anisotropic
U k w)

component of G% xg L = Resg/gDg XqL. Note that Py

R-split subtorus of the center of G, i.e. Ker(Resp/@Gm — Gyy,). By [Mil90, ch. III, §7], p

/(k w)

corresponds to a lisse L-sheaf .Z over the Shimura variety ShKu(Gé) compatible as the

level structure changes. >

We now give a geometric interpretation of this automorphic [-adic sheaf on Sh Ku(G’é’ ). For
this, we fix an isomorphism Dg ~ My(E) and let ¢ = (} }) € M2(Op) denote the idempotent
element. Let A” = A’S’ xn denote the natural family of abelian varieties constructed in §3.20.
Let V(A”) denote the l-adic Tate module of A”. We then have a decomposition

V(A e L= P (VAo V(A")x) = P (VAT e V(A"Z),

TEY o TEY o

where V(A");z (respectively V(A”)zc) is the component where O acts through (o7 (respectively
y o7 and V(A”)2 := eV (A"); (respectively V(A”)2. := eV(A”)z) is a lisse L-sheaf of rank
two. For a multiweight (k,w), we put

£(§E,w) (A”) _ ® (Syka_QV(A”);’v ® (/\QV(AII);,V)(w—kT)/Q).
Tei

Note that the duals on the Tate modules mean that we are essentially taking the relative first
étale cohomology. The moduli interpretation implies that we have a canonical isomorphism

Lo = LAY
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3.22 Twisted partial Frobenius

The action of the twisted partial Frobenius and its compatibility with the GO-strata description

will be important to later applications in [TX13]. We first define the twisted partial Frobenius

on the universal abelian scheme Af = Alé, o over the unitary Shimura variety Shy/(Gg).
Fix p € ¥,,. We define an action of o, on X g o as follows: for 7 € X g o, we put

P ifFey
o7 =47°7 1T EZBoofp (3.22.1)
T 1f7'§éEE7OO/p,

where X o/, denotes the lifts of places in ¥, /,. Note that o, induces a natural action on
Yoo, and Hpezp op = o is the Frobenius action. Let Jp§ denote the image of S under op. Note
that a prime p’ € ¥, has the same type with respect to S or apé. We fix an isomorphism
By,s @A™ ~ Bs®A*, which induces in turn an isomorphism Ggpg(Aoo) ~ G%(A>). We regard K’
as an open subgroup of G;p 5(A°) and have a well-defined unitary Shimura variety ShK/(G:T'g 5)-
We also point out that the reflex fields for G’g and for G; 3 have the same completion at .

Let S be a locally noetherian kgs-scheme and let (A, ¢, A\, &x) be an S-point on ShK/(G’g);%.
We will define a new S-point (A', ', \', @) on Shy/(GY o5 )k, as follows. The kernel of the relative
P

p?-Frobenius Fr: A — A®?*/9) carries an action of O F, and we denote by Ker2 its p-component.
We put A" = (A/Kery2) ®o, p with its induced action by Op;. It also comes equipped with a
quasi-isogeny 7 given by the composite

n:A— A/Kerp «— (A/Kery) @0, p = A’

It induces canonical isomorphisms of p-divisible groups A’[q*°] ~ A[q>°] for q € ¥, with q # p,
and A'[p>] ~ A[p>]®"). From this, one can easily check the signature condition for A’. We define
the polarization A’ to be the quasi-isogeny defined by the composite

DL RN\ L M (3.22.2)

We have to check that A is a genuine isogeny, and it verifies condition Theorem 3.14(b) on X at
the prime p. By the flatness criterion by fibers, it suffices to do this after base change to every
geometric point of S. We may thus suppose that S = Spec(k) for an algebraically closed field k
of characteristic p. Let ﬁ(A)p be the covariant Dieudonné module of the p-divisible group A[p]
and define D(A’), similarly. By definition, we have

D(A")p = pD(A/Kerp2)y = pV >D(A)y = p~ F*D(A)y,

where pV‘zf?(A)p means the inverse image of f?(A)p under the bijective endomorphism V2 on
D(A)y[1/p]. Applying the Dieudonné functor to (3.22.2), we get

X, D(A'), = pV2D(A), <~ D(A), = D(AY), <“— D(AY) = p L F*D(4Y),.

Now it is easy to see that A is an isogeny, and the condition in Theorem 3.14(b) on X\ follows
from that on A. The tame level structure &, is given by the composition

AW 2K ) 4 S TP (A /Kery) < TP ((A/Kery) @0, p) = TP (A).

2164

https://doi.org/10.1112/50010437X16007326 Published online by Cambridge University Press


https://doi.org/10.1112/S0010437X16007326

ON GOREN—QORT STRATIFICATION FOR QUATERNIONIC SHIMURA VARIETIES

We are left to define the subgroups a;, for all p’ € 3, of type af. The definition is clear for
p’ # p, since A’[p’*°] is canonically identified with A[p’*°]. Assume thus that p’ = p is of type
a#. In the data of o, = Hy @ Hg C A'lp], the subgroup Hj is determined as the orthogonal
complement of Hy under the Weil pairing on Afp]. Therefore, it suffices to construct Hy or
equivalently an Ops-isogeny f' : A" — B’ = A’/H; with kernel in A'[q] of degree #k‘g Let
f+A— B = A/H, be the isogeny given by a,. We write Kery p for the p-component of the
kernel of the relative p?>-Frobenius B — B®) . Tt is easy to see that we have a natural isogeny
fo2 : A/Kerp2 — B/Kerp2 g. Then Hy is defined to be the kernel of

frz®1: A" = (A/Kerp2) ® p —> (B/Kery2 p) @ p =: B,

and «, is the direct sum of Hj and its orthogonal dual Hg.
To sum up, we obtain a morphism

%;32 . ShK’(Gé)k@ — ShK'(G;gé)k@ (3223)

In all cases, we call the morphism 5;2 the twisted partial Frobenius map on the unitary Shimura
varieties. Moreover, if A% and A/, are respectively the universal abelian schemes over Shx(G%)
P

and Shy/ (G .5), we have the following universal quasi-isogeny:
p
Mo : Alé,kgs — 2 ( ;557,%) (3.22.4)

It is clear from the definition that the ( ;2,17;2) for different p € ¥, commute with each other.

Let Sp : Shy/(Gy) — Shp(G5) be the automorphism defined by (A, ¢, A, axr) = (4,1, A,
pa). It is clear that Sy AL = A%, Hence, S), induces an automorphism of the cohomology groups

kaw .
H}y(Shic (GY), 22 (AL, 1)), still denoted by S,. If

2
b (G S (G, — Shie (Glag), = Shi (G}

denotes the relative p>-Frobenius, then we have S, Lo thK,( G Jhs = Hp es, Sp2. Similarly, if
S e o)

. A(P?) 1(p?) O lient
[p] : Ag" 7 — Ay’ denotes the multiplication by p and

2, 2 * 1(p°)
Fy: Alé,z% - (FShK/(Gé)k@/k@) (Aiﬂé,k@) Aé,k@

I

denotes the p*-Frobenius homomorphism, we have [p] 1 o F3 = Hpezp 77}’32.

Finally, we note that all the discussions above are equivariant with respect to the action of
the Galois group and the action of G5 = Gg(@)+’(p)Gé(Am’p) ~ Gggg(Q)Jr’(p)G;gé(Aoo’p) when
passing to the limit. (The isomorphism follows from the description of the group Gs in (3.12.2).)

So, applying — X ~_ G’g’ (A°°P) to the construction gives the following proposition.
S

PROPOSITION 3.23. Let AF denote the natural family of abelian varieties over Shy, (Gg). We
identify the level structure for Gg with that of Gg o similarly. Then, for each p € ¥, we have a
p

Gg (A°®P)-equivariant natural twisted partial Frobenius morphism and an quasi-isogeny of family
of abelian varieties:

3;’2: Sth(Gg)k@ — Shgy (Ggy);% and 77;'2: Alél,kg; — (A,

2 a .
pS p O'ps,kgg)
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This induces a natural Gg (A°°P)-equivariant homomorphism of étale cohomology groups:
* k2w ”5 * kaw *
HE (Shicy (Gl ), L5 (Allyg)) —— HE, (Shicy (GI)s,» L5 (315 Alg))

ogé Fp? o p?
/1%
UMW)
d o i 4
p

* kw
Hy, (Shiy (GL)z , L5 (AL)).

Moreover, we have an equality of morphisms

[T @ =8, 0 F2: H (Shucy (Gllag)s, L8 (AlLsg)) —> HE (Shicy (G, . L5 (AY)),
peXp

where F? is the relative p*-Frobenius and S, is the Hecke action given by multiplication by ]3*1.

Here p is the idele element which is p at all places above p and 1 elsewhere.
Proof. This is clear from the construction. O

3.24 Comparison with the Hilbert modular varieties

When S = @, we have Gy = Resp/Q(Gsz) and K, = GL2(Op ®z Zyp). It is well known that
Shg, (Gy) = 1<£n . Shirk,(Gy) is a projective system of Shimura varieties defined over Q, and it
parametrizes polarized Hilbert-Blumenthal abelian varieties (HBAVs for short) with prime-to-p
level structure. Using this moduli interpretation, one can construct an integral canonical model
over Zy of Shg, (Gy) as in [Rap78, Lan13]. By the uniqueness of the integral canonical model, we
know that this classical integral model is isomorphic to Shg,(Gy) constructed in Corollary 3.19.
For this ‘abstract’ isomorphism to be useful in applications, we need to relate the universal HBAV
A on Shg, (Gy) and the abelian scheme Ay on Shiy(Gy) constructed at the end of §3.20.

Let G C Gy be the inverse image of Gy, C Tr = Resp/g(Gm,g) via the determinant
map v : Gy — Tr. The homomorphism hy : C* — Gy(R) factors through Gj;(R). We can
talk about the Shimura variety associated to (G, hy). We put K = K, N G3(Qp). Then,
by Corollary 2.17, Shg,(Gy) and Shgy(Gj) have isomorphic neutral connected components
Sh KP(G@)(O@;r =~ Shg: (Gg)f@;r. The Shimura variety Shy(Gj) is of PEL type, and the universal
abelian scheme on ShK;(Gg)f@;r is identified with that on Sth(Gﬂ)(O@gr via the isomorphism
above. Actually, if K? C GLy(A%"") is an open compact subgroup such that det(K? N Oy) =
det(KP) N C’);’Jr, where C’);’Jr denotes the set of totally positive units of F', then Shxrk, (Gy) is
isomorphic to a finite union of Shg+«p K (G};) for some appropriate tame level structure K*? (see

[Hid04, 4.2.1] or [TX13, Proposition 2.4]).
We now describe the Hilbert moduli problem that defines an integral canonical model of

ShK;(Gg). Let @gj) =11 Opf, and put ng) = @;?)61 &) @g)bgleg. We endow Kgf) with the
symplectic form

vipoo

wF(a1€1 + ases, breq + b2€2) = TrF/Q(a2b1 — albz) € i(p)

for a1,b1 € @g}) and as,by € 0;11(5;?). It is an elementary fact that every rank-two free

@g)—module together with a perfect Z(P) linear Op-hermitian symplectic form is isomorphic to
AP, vp).
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Let K; = GL2(OF ® Zp) N G3(Qp) be as above. For an open compact subgroup K*?, we

put K* = K*PKJ. Assume that K*7 stabilizes the lattice K;{)). We consider the functor that
associates to each locally noetherian Z,-scheme S the set of isomorphism classes of quadruples
(A, 1, \, ag=p), where:

(i) (A4,t) is a HBAV, i.e. an abelian scheme A/S of dimension [F : Q] equipped with a
homomorphism ¢ : O — Endg(A);

(i) A: A— AV is an Op-linear Z(Xp)—polarization in the sense of [Lanl3, 1.3.2.19];

(iii) choosing a geometric point §; for each connected component S; of S, ag«r is a collection
of m1(S;, §;)-invariant K*P-orbits of @g)—linear isomorphisms /AX%?) 5 1)(AL), sending
the symplectic pairing 1r on the former to the A-Weil pairing on the latter for some
identification of Z(® with Z®)(1).

This functor is representable by a quasi-projective and smooth scheme Shg~(Gj) over Z,
such that Shp+(Gj)g, ~ Shi+(G}) [Rap78] and [Lanl3, 1.4.1.11]. By the same arguments of
[Mo098, Corollary 3.8], it is easy to see that Shi (Gj) satisfies the extension property § 2.4. This
then gives rise to an integral canonical model Shg,(Gy) of Shg, (Gy). We could pull back the
universal abelian variety A* over Shs (Gy) to a family of abelian varieties over Sh, (Gy) using
[Hid04, 4.2.1] cited above. But we prefer to do it more canonically following the same argument

as in §3.20. More precisely, there is a natural equivariant action of G* = G(A(Q)Sf) - G*(A°P)
on the universal abelian variety A* over Shy(Gj). Then

A= A* x5, GLy(AP) (3.24.1)

gives a natural family of abelian variety over Shg, (Gy).

The natural homomorphism GLy p — GLg r X px E* induces a closed immersion of algebraic
groups G — Gy, compatible with the Deligne homomorphisms hg and hj. Therefore, one obtains
a map of (projective systems of) Shimura varieties f : Shxs(Gj) — Shg, (Gj), which induces an
isomorphism of the neutral connected component Shp (Gé)ﬁégr = ShK,G(G(/Z))?@gr' We will extend
f to a map of integral models Shy(Gj) — Shy (Gy).

Now let £ be a CM extension of F' unramifoied alut \% as before. In the process of constructing
1/vd é
totally negative element chosen in §3.7. It is easy to check that it satisfies the conditions in

Lemma 3.8(1), and the *-involution given by &y on Dy = My(E) is given by (24) — (§5) for
a,b,c,d € E. The x-hermitian pairing on My (FE) is given by

(v, w) = Trngy(m)/0 (m (? —01>), for v = (Cc‘ Zz) and w = (‘C‘Z Zz> € My(E)

the pairing ¥ on Dy, we may take dy to be ( ), which is coprime to p, where 0 is the

= Trg/q(by@w — ayby + dyCyp — Cpdy).

Or 7'Op
Or 7'Op
A ®y 7®) satisfies A® C A®):V for the bilinear form 1 above. Moreover, if we equip A%) RO
Op with the symplectic form g = Yp(Trg/p(e), Trg/p(e)), then (7\(7’),1/1) is isomorphic to
((Kgf) ®0, Op)®2,9%?%) as a +-hermitian symplectic Ma(Op)-module.

In defining the PEL data for Gj;, we take the Op,-lattice A to be ( ) Clearly, AP =

PROPOSITION 3.25. For any open compact subgroup K'P of Gj(A*P?), we put K** = K'P N
GJ5(A>P). Then we have a canonical morphism

f: Shicwwics (Gf) — Shim i (G)

2167

https://doi.org/10.1112/50010437X16007326 Published online by Cambridge University Press


https://doi.org/10.1112/S0010437X16007326

Y. TiAN AND L. X1A0

such that, if A and Aj denote respectively the universal abelian scheme on Shyr ks (G) and
that on Shgwk, (Gy), then we have an isomorphism of abelian schemes f*Aj = (A ®o,, Op)®?
compatible with the natural action of My(Op) and polarizations on both sides. By passing to
the limit, the morphism f induces an isomorphism between the integral models of connected

Shimura varieties Shy (Ga)%;r o ShK{a(Gflﬂ)%g“

Proof. By Galois descent, it is enough to work over W (kg) for ko in Theorem 3.14. Let S be a
locally noetherian W (ko)-scheme and z = (4, ¢, A, ax+r) be an S-valued point of Shyr i (G7).
We define its image f(z) = (A',¢//, N, axw) as follows. We take A’ = (A ®0, Or)®? equipped
with the naturally induced action ' of Ma(Op). It is clear that Lie(A’); is an Og-module locally
free of rank two for all 7 € ¥ g o. The prime-to-p polarization X\ on A’ is defined to be

(A®1)®?
e

)\/ : A, :) (A ®OF OE)®2 (A\/ ®OF OE)EBZ = A/\/ b2 5E/F - A/\/’

where g/ is the different ideal of E over F'. We define the K 'P_level structure to be the K'P-orbit
of the isomorphism

®2

agw: AP 5 (AP @0, 05)%2 25 (T (A5) 0, Og)* ~ TP (AL).

By the discussion before the proposition, it is clear that a» sends the symplectic form v on the
left-hand side to the \'-Weil pairing on the right. This defines the morphism f from Shc» 3 (Gj)
to Shp K, (G})- By looking at the complex uniformization, we note that f extends the morphism
f: Shicr ks (Gh)a, = Shkwk, (Gy)q, defined previously by group theory. Since both Shy (G7)
and Sh K}, (Gj;) satisfy the extension property §2.4, it follows that f induces an isomorphism
ShK; (G’é)%;r ~ ShKI’, <G(/b)%gr O

COROLLARY 3.26. Let A denote the universal HBAV over Shy (Gy) and Ay be the family of
abelian varieties over Sth(G/@/) defined in § 3.20. Then, under the natural morphisms of Shimura

varieties o
r (87
Sth(G@) (—1 SthXKE,p(G(Z) X TEﬂ) — Sth’,’(G/é)a (3.26.1)

one has an isomorphism of abelian schemes over Shy, KE’p(Gg X Tk g)

a* Al = (priA ®o, Of)%? (3.26.2)
compatible with the action of My(Op) and prime-to-p polarizations.
Proof. This follows from the constructions of A and Aj and the proposition above. O

3.27 Comparison of the twisted partial Frobenius
Keep the notation as in §3.24. The Shimura variety Shy«(Gj)r, also admits a twisted partial
Frobenius @2 for each p € %, which we define as follows. Let S be a locally noetherian [F;,-scheme.
Given an S-point (A, ¢, A, ag+r) of Shg+(G)E,, we associate a new point (A’,//, N, o/.p):
— A’ = A/Kery ®o, p, where Kery: is the p-component of the kernel of the relative Frobenius
homomorphism Fr124 A — A(pQ); it is equipped with the induced Op-action ¢/
— using the natural quasi-isogeny 1 : A — A’, X' is given by the composite of quasi-isogenies
AL AN A g (which is a Z(Xp)-isogeny by the same argument as in § 3.22);

— @eup 1s the composite Kg’) LR TP (A) <L T@)(A).
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The construction above gives rise to a twisted partial Frobenius morphism
3;2 : Shi+(Gy)r, — Shg+(Gy)r, and 7 : Ap, — (3";2)*«413‘,]-

Using the formalism of Shimura varieties (Corollary 2.17 and more specifically (3.24.1)), it gives
rise to a twisted partial Frobenius morphism

%'gg : ShK(G@)Fp —> ShK(GVJ)Fp and 17?2 : A]Fp — (Sgg)*.AFp

COROLLARY 3.28. The twisted partial Frobenius morphism ;’2 on Shy (Gy)r, and the twisted
partial Frobenius 3?2 on Sth(Gg)Fp are compatible, in the sense that there exists a morphism

§p2 so that both squares in the following commutative diagram are Cartesian.

Shg,(Gg)r, S Shg,xky,(Gy X Teg)r, —— Shk,(Gy)r,

» i 1

Shg,(Gg)r, St Shy,xky,(Gy % Tpg)r, —— Shxy (Gy)w,

Moreover, ngg is compatible with 1y, in the sense that the following diagram commutes.

p27

(3.26.2)

" Ajp, (priAr, ®o, Op)®”

la*(n;lz) 77?2®1l
(3.26.2) “ 2
a*&{a’;‘ Iﬂ/,Fp e (pr’{gp;" (Ar,) ®op OE)

Proof. This follows from the definition of the partial Frobenii in various situations and the
comparison Proposition 3.25 above. O

4. Goren—Oort stratification

We define an analog of the Goren—Oort stratification on the special fibers of quaternionic Shimura
varieties. This is first done for unitary Shimura varieties and then pulled back to the quaternionic
ones. Unfortunately, the definition a priori depends on the auxiliary choice of CM field (as well
as the signatures s;z). In the case of the Hilbert modular variety, we show that our definition
of the GO-strata agrees with Goren—Oort’s original definition in [GOO00] (and hence does not
depend on the auxiliary choice of data).

4.1 Notation
Keep the notation as in the previous sections. Let kg be a finite extension of F, containing all
residue fields of O of characteristic p. Let X’ := Sth(G’g)k0 denote the base change to kg of
the Shimura variety Shg(GY%) considered in Theorem 3.14.

Recall that ¢ € Op,, corresponds to (§9) when identifying Op,, with Ma(Op,). For an
abelian scheme A over a locally noetherian kp-scheme S carrying an action of Op,, we have
the reduced module of invariant differential 1-forms w$ /s the reduced Lie algebra Lie(A/S)®,

and the reduced de Rham homology H{®(A/S)° defined in §3.16. Their 7-components w /57
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Lie(A/S)2, and H{R(A/S)2 for 7 € Y fit in an exact sequence, called the reduced Hodge

filtration,
0— wfiW/S’; — H®(4/9)2 — Lie(A/S)z — 0.

Let A®) denote the base change of A via the absolute Frobenius on S. The Verschiebung Ver :
AP — A and the Frobenius morphism Fr : A — A® induce respectively maps of coherent
sheaves on S:

Fyu: HR®(A4/9)>®) > HIR(A/8)° and Vy: HIR(A/9)° - HIR(A/S)>P),

which are compatible with the action of Q. Here, for a coherent Og-module, M®) denotes the
base change M ®og F,,. Os. If there is no confusion, we drop the subscript A from the notation
and simply write F' and V for the two maps. (Although the letter F' also stands for the totally
real field, we think that this should not cause confusion.) Moreover, we have

Ker(F) =Tm(V) = (wgv,g)"” and TIm(F) = Ker(V) = Lie(A®)/S)°.

Let (A,t,A\,axs) be an S-valued point of X’ = Shy/(G%)x,. By Kottwitz’ determinant
condition 3.14(a), for each 7 € ¥ g o, Lie(A/S)2 is a locally free Og-module of rank sz. (The
numbers sz are defined as in §3.4.) By duality, this implies that w¢, /57 is locally free of rank

sze = 2—sz. Moreover, when 7 € 3/, with p not of type (%, the universal polarization A induces
an isomorphism of locally free Og-modules

Wav /g7 = Wy g e (4.1.1)

4.2 Essential Frobenius and essential Verschiebung
We now define two very important morphisms: essential Frobenius and essential Verschiebung;
we will often encounter later their variants for crystalline homology and Dieudonné modules, for
which we shall simply refer to the similar construction given here.

Let (A, ¢, A\, akr) be as above. For 7 € ¥ o lifting a place 7 € Sy, we define the essential
Frobenius to be

Fug = Faor s (HR(A/S)21,) ) = HIRAD /)2 — HIR(4/8):
{F(x) when s -1z = 1 or 2,
€r ——

V~Yz) when s,-1; = 0. (4.2.1)

Note that in the latter case, the morphism V : H{®(4/5)2 & H{R(AP)/S)2 is an isomorphism
by Kottwitz’ determinant condition.
Similarly, we define the essential Verschiebung to be

Vo = Vi + HIR(A/8)2 — HINAW/9)2 = (HIR(4/5)5-, )
{V(x) when s,-1z =0 or 1,
T —

F~Y(z) when s,-1; = 2. (4.2.2)

Here, in the latter case, the morphism F : H{®(A®)/S)° — H{R(A/S)2 is an isomorphism.
When no confusion arises, we may suppress the subscript A and/or 7 from F4 s 7 and V4 es 7.
Thus, if s,-1; = 0 or 2, both Fus 7 : H{®(AP)/9)2 — HIR(A/S)2 and Vis 7 : HIR(A/S)2 —

H fR(A(p) /S)2 are isomorphisms and both Feg7Ves 7 and Vg 7Fes 7 are isomorphisms. When

Sy—1z = 1, we usually prefer to write the usual Frobenius and Verschiebung.
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We will also use composites of Frobenii and Verschiebungs:

O] v h
Ve HIR(A)S)2 L gaR(A®) jg)e T L T R 4G fg)e(4.2.3)
" (»"?)
oz HR (AP /5)2 27 a0 jgye = 0L L0 g g)e (4.2.4)

Suppose now that S = Spec(k) is the spectrum of a perfect field of characteristic p > 0.
Let D4 denote the covariant Dieudonné module of A[p™®]. We have a canonical decomposition
DA = ®TEZE DA 7. We put DA - =e- DA 7. Then we define the essential Frobenius and essential
Verschiebung’

Fes = Faes : @31,0—17‘ g 1521,% and  Ves = Vaes,7 1531,% d 15?4,0—1%
in the same way as in (4.2.1) and (4.2.2) for lj[iiR(A/S)g. The morphisms Fg es 7 and V4 es7 on
H{R(A/S)2 can be recovered from those on D5, 7 by reduction modulo p.

Notation 4.3. For 7 € Yoo — So, We define n, = nr-g > 1 to be the integer such that o~ Lr
o Hr eS8 and 07T ¢ Soe.

4.4 Partial Hasse invariants
For each 7 lifting a place 7 € Yoo — S0, we must have sz = 1. So, in the definition of VI7. in (4.2.3),

all morphisms are isomorphisms except the last one. Similarly, in the definition of F ”1 in (4.2.4),

all morphisms are isomorphisms except the first one. It is clear that VeT:TTF eT;TT = FGZTTVGZTT =0,

coming from the composition of V(" _;) and F @" s i in both ways. Note also that the cokernels
of V%= and FT- are both locally *free O X/~ modules ‘of rank one.

The restrlctlon of VGZTT to the line bundle w /87 induces a homomorphism

T
h#(A) 1 Wiy jg = Wov.onm) 5.5 = (Whv g -nr )0

Applied to the universal case, this gives rise to a global section

& (W&/V/X/’;.)@(_l)), (441)

T

hi— c F(X/, (w,OA’V/X’,a'fan')@p

where A’ is the universal abelian scheme over X' = Shg(G%)k,- We call hz the 7-partial Hasse
inwvariant. With 7 replaced by 7¢ everywhere, we can define similarly a partial Hasse invariant
hze. They are analogs of the partial Hasse invariants in the unitary case.

LEMMA 4.5. Let (A, 1, \, &gr) be an S-valued point of X' as above. Then the following statements
are equivalent for 7 lifting T € Yo — Seo

(i) we have hz(A) = 0;

(ii) the image of F[T- H{R(AP™)/S)2 — H{R(A/S)2 is Wi /57

(iii) we have hzc(A) = 0;

the image of F!'7., : H{®(A®")/8)2. — H{R(A/S)2. is Wiy /g e

es,7¢ *

)

)

)

(iv)

Proof. The equivalences (1) < (2) and (3) < (4) follow from the fact that the image of F

coincides with the kernel of V. We prove now (2) < (4). Let p € ¥, be the prime above p so
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that 7 € X . Since X /p # S /p, P can not be of type (% by Hypothesis 3.3. We consider the
following diagram:

HIR(AW)/S)2 x  HIRAC) /)2 s 0

VZS“’ < >FeT;TT FCZTTC \< > ‘/;ZTTC

HRA/S)2  x H{R(4/9)%

L) Og,

where the pairings ( , ) are induced by the polarization A, and they are perfect because p is not
of type Bf. We have (F"".z,y) = (z Vo) Tt follows that

es% e

(Wivys)" = ivysre and  Im(FLL)" = Im(FL),

es,T es,T¢

where | means the orthogonal complement under ( , ). Therefore, we have

(2) whv sz = Im(FLT) < (WZV/S,T) = Im(Fe’;TT) = (4) Wiv gz =Im(Fe). g
DEFINITION 4.6. We fix a section 7 — 7 of the natural restriction map ¥g o, = Yoo. Let T C
Yoo — S be a subset. We put Shy/(G%)k,p = X', and Xp := Shg/(G§)k, 1 to be the closed
subscheme of Shy(G)g, defined as the vanishing locus of {h7 : 7 € T}. Passing to the limit, we
put

Shy, (Gg)ko,r := lim Shw i, (G ko -
K'P
We call {Shy/(Gg)ko,1: T C Yoo —Soc} (respectively {Shy (G)ro,r: T C Yoo —Scc}) the Goren—
Oort stratification (or GO-stratification for short) of Shy(G3)x, (respectively Shy (Gg)x,)-

By Lemma 4.5, the GO-strata X1 do not depend on the choice of the section 7 — 7.

PROPOSITION 4.7. For any subset T C Yo, — S, the closed GO-stratum X3 C X' is smooth of
codimension #T, and the tangent bundle Ty, is the subbundle

P  (LieA);@Lie(A)%) v € P (Lie(A"): ® Lie(A")2)] x,

TEY o —(SeoUT) TEX oo —S0

where the latter is identified with the restriction to X7 of the tangent bundle of X' computed in
Corollary 3.17. Moreover, Xy is proper if So, UT is non-empty.

Proof. We follow the same strategy as in [Hell2, Proposition 3.4]. First, the same argument
as [Hell2, Lemma 3.7] proves the non-emptyness of X7. We now proceed as in the proof of
Corollary 3.17. Let Sy — S be a closed immersion of locally noetherian kg-schemes whose ideal
of definition Z satisfies Z? = 0. Consider an Sy-valued point zo = (Ao, to, Ao, ax) of X4. To prove
the smoothness of X7, it suffices to show that, locally for the Zariski topology on Sy, there exists
x € X7(9) lifting x¢. By Lemma 4.5, we have, for every 7 € T,

Wy ssor = Far-(HTR (AL 180)2).

The reduced ‘crystalline homology’ Hfris(Ao/So)OS is equipped with natural operators F' and
V, lifting the corresponding operators on H{®(A4y/Sp)°. We define the composite of essential
Frobenius 5 . . ‘

Fly - HS(AT)[50)5 > H{™(Ao/S0)57
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in the same manner as F'"- on HflR(A(()pnT)/So)g in Notation 4.2. Let w3y ¢ - denote the image
0 )

es,T
of F,7- for 7 € T. This is a local direct factor of H{"*(Ao/Sp)g ; that lifts wilov/So,f‘ As in the
proof of Theorem 3.14, specifying a deformation z € X'(S) of zy to S is equivalent to giving
a local direct summand wg: C HfriS(Ao/So)f% that lifts Wﬁxg/so,f for each 7 € Yoo — Soo. By
Lemma 4.5, such a deformation x lies in X7 if and only if wg - = W /50,7 for all 7 € T. Therefore,
: y/So,
to give a deformation of xg to S in X7, we just need to specify the liftings wg 7 of wzg /S0, for
T € Yoo — (800 UT). The set-valued sheaf of liftings wg - for 7 € Yoo — (Soo U T) forms a torsor
under the group

Homog, Wy 5,7 Lie(40)2) ®og, T = Lie(A0)2 ®og, Lie(Ao)% ®og, I.

Here, in the last isomorphism, we have used (4.1.1). The statement for the tangent bundle of X7
now follows immediately.

It remains to prove the properness of X7 when S, U T is non-empty. The arguments are
similar to those in [Hell2, Proposition 3.4]. We use the valuative criterion of properness. Let
R be a discrete valuation ring containing Fp and L be its fraction field. Let zp = (AL, ¢, A,
akr) be an L-valued point of X;. We have to show that z; extends to an R-valued point
zr € X1 up to a finite extension of L. By Grothendieck’s semi-stable reduction theorem, we
may assume that, up to a finite extension of L, the Néron model Ar of Ay over R has a
semi-stable reduction. Let A be the special fiber of Ar and T C A be its torus part. Since
the Néron model is canonical, the action of Op, extends uniquely to Ar and hence to T. The
rational cocharacter group X, (T)g := Hom(G,,,T) ®z Q is a Q-vector space of dimension at
most dim(A4) = 4g =  dimg(Ds), and equipped with an induced action of Dg = My(E). By the
classification of My(E)-modules, X, (T)q is either 0 or isomorphic to E%2. In the latter case, we
have X, (T)qg ® L = Lie(AL), and the trace of the action of b € E on X«(T)q is 2} - 7(b),
which implies that Sy, = (. Therefore, if So, # @, T has to be trivial and Ap is an abelian scheme
over R with generic fiber Ay. The polarization A and level structure a g extend uniquely to Ar
due to the canonicality of the Néron model. We thus obtain a point xp € X'(R) extending x7,.
Since X1 C X’ is a closed subscheme, we see easily that 2r € X};. Now consider the case Soo = ¢
but T is non-empty. If X, (T)q = E®2 then the abelian part of A is trivial. Since the action of
Verschiebung on wr is an isomorphism, the point z; cannot lie in any X7 with T non-empty.
Therefore, if T # @, T must be trivial, and we conclude as in the case S # @. )

Remark 4.8. Tt seems that Xy is still proper if S is non-empty. But we do not know a convincing
algebraic argument.

4.9 GO-stratification of connected Shimura varieties

From the definition, it is clear that the GO-stratification on ShK;)(G’g) ko is compatible with the
action (as described in §3.20) of the group Gz (introduced in §3.12). By Corollary 2.13, for each
T C Yoo — S0, there is a natural scheme

Shr (G)z

Fp,T

c ShK;,(Gé)%p

equivariant for the action of £g 1,. We call them the Goren—Qort stratification for the connected
Shimura variety.
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Using the identification of connected Shimura variety in Corollary 3.11 together with
Corollary 2.13, we obtain the Goren-Oort strata Sh, (Gs)k,,r CShk, (Gs)k, and Shy (Gg)kgr C
Sth(Gg )k, for each subset T C ¥ — Soo. Explicitly, for the latter case, we have

Shycy (GZko = ShK;,(Gé)kO,T Xé GY(AP).

Alternatively, in terms of the natural family of abelian varieties A’é’, the stratum Sth(Gg ko, T
is the common zero locus of partial Hasse invariants

T
he S WAL Sy (@7 T (war /Shyn (GY) a—nr%)®p
S,ko/ PHEY \ Vg ko S,ko/ DM EY Vs koo

for all 7 lifting 7 € T.

THEOREM 4.10. When S = @, the GO-stratification on Shg, (Gy)r, defined above agrees with
the original definition given in [GOO00]. Moreover, for each subset T C ¥, under the morphisms
(3.26.1), we have

pri(Shk, (Ga)k,r) = & (Shrcy (Gi)ro 1),

where Shy, (Gy)r,,r denotes the GO-stratum for T defined in [GOO0].

Proof. Put X = Shg,(Gy)y, for simplicity. By Proposition 3.25, we have an isomorphism
of abelian varieties a*Ajf = (pri(A) ®o, Op)®? on Shg,xk, ,(Gy x Trpg). Let way /X =
DPres w AY X be the canonical decomposition, where w AY /X7 is the local direct factor on
oo 0 ’ o 0 b
which OF acts via t,07: O — Z;r —» [F,. Then we have a canonical isomorphism of line bundles
over SthXKE,p (G@ X TE,Q))kO
a*wzgov/xj_ ~ pI'Tw_A}C/O /X,

for either lift 7 € ¥ o of 7. Via these identifications, the (pullback of) the partial Hasse invariant
a*(hz) defined in (4.4.1) coincides with the pullback via pr; of the partial Hasse invariant

h; € T(X, wi?x,a—lr ®w§/_§,7) defined in [GOO00]. Therefore, for any T C X, the pullback along
pr; of the GO-stratum Xt C X defined by the vanishing of {h, : 7 € T} is the same as the
pullback along a of the GO-stratum defined by {hz : 7 € T}. O

Remark 4.11. It would be interesting to know, in general, whether the GO-strata on quaternionic
Shimura varieties depend on the auxiliary choice of CM field E.

To understand the ‘action’ of the twisted partial Frobenius on the GO-strata, we need the
following lemma.

LEMMA 4.12. Letz = (A, 1, \, &) be a point of X' with values in a locally noetherian kg-scheme
S, and 3;2 (x) = (A",/, N, &),) be the image of x under the twisted partial Frobenius at p § 3.22
(which lies on another Shimura variety). Then hz(x) = 0 if and only if hag;( ;2 (x)) =0.

Proof. The statement is clear if 7 ¢ X ./, since 6’;2 induces a canonical isomorphism of p-
divisible groups A[q>°] =~ A’[q*°] for q € ¥, with q # p. Consider the case 7 € X o /,- We claim
that there exists an isomorphism

H{™(A'/S)g 2 (H{™(A4/8)5-2:)")

o
o027

2174

https://doi.org/10.1112/50010437X16007326 Published online by Cambridge University Press


https://doi.org/10.1112/S0010437X16007326

ON GOREN—QORT STRATIFICATION FOR QUATERNIONIC SHIMURA VARIETIES

compatible with the action of F' and V' on both sides with 7 € X/, varying. By Lemma 4.5,
the lemma follows from the claim immediately. It thus remains to prove the claim. Note that the
p-component of the de Rham homology

H{iR(A//S)p = @ HfR(A//S);,@Q

%EEE,oo/p

is canonically isomorphic to the evaluation at the trivial pd-thickening S — S of the reduced
covariant Dieudonné crystal of A’[p°°], which we denote by D(A’[p>])s. By definition of 3;2, the
p-divisible group A’[p>] = (A/Ker,2)[p] is isomorphic to the quotient of A[p>] by its kernel
of p2-Frobenius A[p™®] — (A[p>°])#*). Therefore, by functoriality of Dieudonné crystals, one has
D(A'p™))s = D(A[poo])g)2), whence the claim. O

One deduces immediately the following corollary.

COROLLARY 4.13. For Shg = Shy (G3)k, and Shiy(GE)k,, the twisted partial Frobenius map
Fp2 : Shg — @035 takes the subvariety SihgyT to %agé,o‘gT for each T C Yoo — Soc.

5. The global geometry of the GO-strata: Helm’s isogeny trick

In this section, we will prove that each closed GO-stratum of the special fiber of the unitary
Shimura variety defined in Definition 4.6 is a (P!)V-bundle over the special fiber of another
unitary Shimura variety for some appropriate integer N. This then allows us to deduce the
similar result for the case of quaternionic Shimura varieties.

This section is largely inspired by Helm’s pioneering work [Hell2], where he considered the
case when p splits in Ey/Q and S is ‘sparse’ (we refer to [Hell2] for the definition of a sparse
subset; essentially, this means that, for any 7 € ¥, 7 and o7 cannot belong to S simultaneously).

5.1 The associated quaternionic Shimura data for a GO-stratum

We first introduce the recipe for describing general GO-strata. We recommend first reading the

light version of the same recipe in the special case of Hilbert modular varieties, as explained in

the introduction 1.5, before diving into the general but more complicated definition below.
Keep the notation as in the previous sections. Let T be a subset of Y, — Ss. Our main

theorem will say that the Goren—QOort stratum ShK(GS)Fp’T is a (P1)N-bundle over ShKT(GS(T))Fp

for some N € Z>(, some even subset S(T) of places of F', and an open compact subgroup Kt C

Gs(r) (A™).
We describe the set S(T) now. For each prime p € ¥, we put T/, = TN X, /,. We define first
a subset T’/’g CYpU {p} containing T/, which depends on the types of p as in § 3.2 and we put

T=]] 7, and s(T)=suT. (5.1.1)
peXp
We separate the discussion into several cases.
— If p is of type of or type % for Shy (Gs), we put T’/p =0.
— If p is of type a for S, i.e. (X /p — Soo/p) has even cardinality, we distinguish two cases.

* (Case al) T)y © Yoo/p — Soosp- We write Sy, UTy, = [[C; as a disjoint union of
chains. Here, by a chain Cj, we mean that there exist 7; € S/, UT/, and an integer
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m; > 0 such that C; = {o7%7; : 0 < a < m;} belong to Seo/p UT)p and ot 0 M ¢
(Soc/p UTyp). We put T’/p =1, C;, where

o CiNTy if #(C; N'T),) is even,

P UGNTp) U{om ™ i) i #(CiNT)y) is odd.
For example, if X/ = {70,071 10,...,07 %70}, Soofp = {07279,07 %79}, and T/ =
{07379,0 79,0 "0}, then Seo/p U T is separated into two chains C7 = {0727,

4 5

o310} and Cy = {07579, 0 %79,0 "10}. We have T’/p = {07379,0 410,07 579,0 10 }.
An alternative way to understand the partition of T/, is to view it as a subset of
Yoo/p — Sso/p With the cycle structure inherited from X, /,. Then C; N'T, is just to
group elements of T, into connected subchains.

* (Case a2) T = Eoo/p — Soo/p- We put T//p =T/p.

— If p is of type B for S, i.e. (Xo/p — Soojp) has odd cardinality and Bs splits at p. We
distinguish two cases.

* (Case B1) T), C Yg/p — Sooyp- In this case, we define T’/p using the same rule as in
Case al.

* (Case 82) T)y = Boo/p — Soosp- We put Ty, =T, U {p}.

In either case, we put T'oo/p = T'/)g N Yso. It is equal to T’/)J unless in case /32.

It is easy to see that each T'/)g has even cardinality. Therefore, S(T) is also an even set, and it
defines a quaternion algebra Bgr) over F'. Note that S(T) still satisfies Hypothesis 3.3.

Let Ggr) = ResF/Q(BSX(T)) be the algebraic group over QQ associated to BSX(T). We fix an
isomorphism Bs ® Fy ~ Bg(t) ®r Fy whenever {I} NS = {[} N S(T). We define an open compact
subgroup Kt = K{Kr, C Gs(r)(A%) determined by K as follows.

— We put KX = KP. This makes sense, because Bs @ Fy ~ Bg(ry ®F Fi for any finite place [
prime to p.
— For Kr) = Hpezp Ky, we take Kty = K, unless we are in case a2 or 2.
* If p is of type a2 for Shi(Gs), we have Bgy ®@p Iy =~ Bs @ Fy, ~ M2(OF,). We take
Krp =Ky if Ty = (X/p — Soosp) =9, and K = Iw, if T), # 0.
* If we are in case 32 (and (%), Bgr) is ramified at p. We take Krp = OEFP, where OBFp
is the unique maximal order of the division algebra over F, with invariant 1/2.

The level Kt fits into the framework considered in §3.2. We thus obtain a quaternionic
Shimura variety Shy;(Gg(r)), and its integral model Shy;(Gg(r)) is given by Corollary 3.19.
Note that:

— if we are in case al above, then p is of type a for the Shimura variety Shy, (Ggr));

— if we are in case a2 above, then p is of type a! for Shg; (Gg(r)) unless p is of type o for
Shi(Gs) and T, = Yoo jp — Soo/p = @, in which case p remains of type o for Sh, (Gg(r));

— if we are in case 81 above, then p is of type 3 for Sh, (Gg());

— if we are in case 52 or S above, then p is of type ¢ for Shr (Gs())-

THEOREM 5.2. For a subset T C Yoo — Soo, the GO-stratum ShK(Gs)vaT is isomorphic to a
(PY)r-bundle over ShKT(Gs(T))ﬁpa where S(T) is as described above and the index set is given by

It =8(T)oo — (S UT) = | J (Tho s — Tjp)-
peXy
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Moreover, this isomorphism is compatible with the action of Gs(A*P), when taking the limit
over open compact subgroups KP C Gg(A>P).

As an example, the situation It = ¢ happens exactly when T/ = T), for every p, which
means that, for each p, either T,, is divided into a union of chains of an even number of
‘consecutive’ elements of Y, — Sog/p, OF T/ = Mg /-

Theorem 5.2 will follow from the analogous statements (Theorem 5.8 and Corollary 5.9) in
the unitary case. But note Remark 5.10.

5.3 The signatures at infinity for the unitary Shimura varieties

In order to describe the unitary Shimura data associated to Shk,(Ggr)) as in §§3.4 and 3.5,
we need to pick a lift S(T) of the set S(T) to embeddings of E. More precisely, we will define
a subset S(T)o = [ies, S(T)oo/p» Where S(T), consists of exactly one lift 7 € X o for each

7 € 8(T)oo/p- Then we put S(T) = (S(T), $(T)s). So, we just need to assign such choices of lifts.

— When 7 € S(T)oo/p belongs to S/, we choose its lift 7 € ¥ g o to be the one that belongs
to S.

We now specify our choices of the lifts in S(T)q sp for the elements of T/ Jp> Which are
collectively denoted by T’/p. We separate into cases and use freely the notation from §5.1. There

is nothing to do if p is of type af or type B* (for S).

— p is of type a (for S). In this case, p splits into two primes q and q° in E. For a place
T € Yo /p, We use T to denote its lift to ¥ g o, which corresponds to the p-adic place g.

* (Case al) For a chain C; = {07%7,0 < a < m;} C Sy, UT), and the corresponding
set C/ = {o~%7;,...,07%i7;} as defined in 5.1 with some 0 < a3 < -+ < ap, <m;+1
(note that r; is always even by construction), we put

! __ —al z=, —a2~c —as x=. —Qr; ~C
Ci={o M7,0" 7,0 B7,...,0 "7}

Set T’/p =1L
* (Case a2) We need to fix 79 € T/, = Yo /p — S0/ and write T/, as {0~ % 7,...,07 710}
for integers 0 = a1 < --- < ag, < fp, — 1. We put
—aop ~C

] —a1~ —aszc _—azx
T)y = {0 " 70,07 75,0 %7, ...,0” 75}

— p is of type § (for S). In this case, p is inert in E/F, and we do not have a canonical choice
for the lift 7 of an embedding 7.

* (Case (1) In this case, we fix a partition of the preimage of C} under the map YEoo/p =
Yoo/p into two chains C' 1 C, where

N —a1 ~ —Qp, ~ e —ai ~c —Qp, ~C
C/={o%%,...,0 %7} and C;°={c "7,...,0 "7 }.
Here the choice of 7; is arbitrary, and r; is always even by construction. We put
X —a1~ _—as~ —a3 ~ —ar, ~
Ci={oc 7,0 27,07 B%,...,0 T}

Finally, we set T’/p =11, C..
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* (Case 32) We fix an element 7y € ¥ o /,- Then the preimage of T’/]J under the natural
map Yg o /p — Loo/p CaN be written as {0747, ..., 07 T} (Where r = # (Yoo —Soo)
is odd) with 0 = a1 < --- < ag, < 2f, — 1 and a,4; = a; + f, for all i. We put

T,/p = {O'_a17~'0, o BT, 0 BT, ..., O‘_a2T*17~'0}.

Since 7 is odd, this consists of exactly one lift of each element of T/ /p-

Now we can assign integers st 7 according to S(T):
— if 7 € ¥oo — 8(T) oo, we have sz =1 for all lifts 7 of 7;
— if 7 € S(T)oo and 7 is the lift in §(T)s, we have stz = 0 and st zc = 2.

We put T = Upezp T’/13 and T, the complex conjugations of the elements in T'.

Now we compare the PEL data for the Shimura varieties for Gé and Gé(T). We fix an

isomorphism 61 : Ds — Dgr) that induces an isomorphism between Opgy and ODs(r) p for

each p € ¥, where Opg, and ODs(T),p are respectively fixed maximal orders of Dg ®p F, and
DS(T) ®F Fp as ln §37

LEMMA 5.4. Let ds € (D&™)* be an element satisfying Lemma 3.8(1). Then there exists an
element g1y € (DZ%;I)I)X satisfying the same condition with S replaced by S(T) such that, if

xg 1 [ — 5§1Z55 and *g(ry : | — 5s(}r)i58(T) denote the involutions on Ds and Dgr) induced by
ds and dg(ry, respectively, then 01 induces an isomorphism of algebras with positive involutions

(Ds, *s) o (DS(T)7 *S(T))'

ym

Proof. We choose first an arbitrary 5é(T) € (DZ(T))X satisfying Lemma 3.8(1). Let >|<’S(T) denote the
involution [ — (5é(T))*1l5§(T) on Dg1). By the Skolem-Noether theorem, there exists g € D?(T)

such that HT(x)*é(T> = gfr(x*s)g~! for all z € Ds. Since both *2 and *’SQ(T) are the identity, we get
g*ls(ﬂ = gu for some p € E* with fip = 1. By Hilbert 90, we can write u = A/ for some A € E*.

Up to replacing g by g\, we may assume that g*é“) = g or, equivalently, 5é(T) g = 5é(T) g and

ym

hence (5é(T) g€ (Dg(T))X. Note that we still have the freedom to modify g by an element of F'*
without changing *g). We claim that, up to such a modification on g, dgr) = (5é(T) g will answer
the question. Indeed, by construction, 6t is an *-isomorphism, i.e. O7(z)*s™ = O (z*s). Note that

tr sends Opg p isomorphically to ODS(T)’p for every p € ¥, and both lattices are invariant under

/
S(1)?

p for all p € X,. Then it is clear that dg(r) satisfies Lemma 3.8(1)(a),

the involutions *g and respectively. So, up to modifying g by an element of F'*, we may

assume that g € OBS(T)

)

’
8(T)

of O©F, .\, the hermitian form
F\(p)

since so does J, ., by assumption. It remains to prove that, up to multiplying g by an element

(U’ w) = wés(‘[‘) (U, wh/é(T) (i)) = TrDS(T)’R/R(\/S’Uh/é(T) (i)_lw(SS(T))

on Dg(r)r := Dg(r) ®q R is positive definite, where Vsgp 1s the *g(r)-hermitian alternating form
on Dg(r) defined as in § 3.7. Since the elements ds and 5é(T) satisfy similar positivity conditions by
assumption, we get two semi-simple R-algebras with positive involutions (Ds g, *s) and (Dg(r) g,

*s(7))- By [Kot92, Lemma 2.11], there exists an element b € DSX(T),]R such that bfr(z*s)b~! =

(boz(z)b~1) "5 Tt follows that g = b"s® b with A € (F @g R)*. Up to multiplying g by an element

of O;ﬁ(p)’ we may assume that \ is totally positive so that A = ¢2 with € € (F ®g R)*. Then, up
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to replacing b by b&, we have g = b*s®b. Then the positivity of the form s, s follows immediately
from the positivity of ¢5§< and the fact that ¢s, (v, wh ( ) = ¢5/ (bv bwhs (T)( i)). O
LEMMA 5.5. We keep the choice of dg1) as in Lemma 5.4. Then there exists an isomorphism
Or : Ds(A°P) — Dg(1)(A°P) of skew *-hermitian spaces compatible with the actions of Ds and
Dg 1y, respectively.

Proof. This could be done explicitly. We however prefer a sneaky quick proof. Under Morita
equivalence, we are essentially working with two-dimensional hermitian spaces and the associated
unitary groups. It is well known that, over a non-archimedean local field, there are exactly two
hermitian spaces and the associated unitary groups are not isomorphic (see e.g. [Minl1, 3.2.1]). In

our situation, we know that G’S 1o = G’ 5(T).1 for any place v { poo. It follows that the associated
hermitian spaces at v are isomorphic. The lemma follows. O

COROLLARY 5.6. The isomorphisms 01 and ©r induce an isomorphism 6% : Qé 5 gé ()" Moreover,
07 x id takes the subgroup £g g, C gé x Galg, to the subgroup Eg gty k, C Qé(T) x Galg, .

Proof. The first statement follows from the description of the two groups in (3.12.1) and (3.12.2)
and the interpretation of these groups as certain automorphic groups of the skew x-hermitian
spaces. The second statement follows from the description of both subgroups in §3.12 and the
observation that the choice of signatures in §5.3 ensures that the reciprocity maps Recy, for
both Shimura data are the same at p. O

5.7 Level structure of ShKé(Gé(T))

We now specify the level structure Ky C Gé(T)(AOO).

— For the prime-to-p level, since ©r induces an isomorphism Glé(T) (AP) ~ G’g(Aoo’p), the
subgroup K? C G§(A°P) corresponds to a subgroup KP C G’~( )(Aoo’p)
— For Kép, we take it as the open compact subgroup of G (Qp) corresponding to Kr, C

Gé(T (Qp) by the rule in §3.9. According to the discussion there it suffices to choose a chain

of lattices A%g C Agg in Dgiry ®p Fy for each p € 3. Using the isomorphism 61, we can
identify Dgy ®p Fy with Ds ®@p F, and hence with Ma(E ®F Fp).
* For p € ¥, with K1, = K, we take A§3 C A( ) t0 be the same as the chain A( ) Ag )
for deﬁmng K, C Gs(Qp).
* Forped, with Kty # Ky, Kt is either the Iwahori subgroup of GL2(OF,) or OX

We take then A%) - A( ) to be the corresponding lattice as in §3.9 that defines the
Iwahori level at p.

We also specify the lattices we use for both Shimura varieties: if Ag denotes the chosen lattice
of Ds, we choose the lattice of Dg(ry to be Ag) = 0r(As). With these data, we have a unitary
Shimura variety ShK;(G,g(T)) over the reflex field Egpy, which is the field corresponding to the
Galois group fixing the subset S(T) C ¥ . To construct an integral model of Sh Iq(G,g (T)),
need to choose an order ODS(T)‘ Let Op, be the order stable under * and maximal at p used to
define the integral model Shy/(Gg). We put Op, ., = 61(Ops). For any p € ¥, both Op, and

Oy » can be identified with Ma (O ®0, OF,).

we
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We have now all the PEL data needed for Theorem 3.14, which ensures that ShKé(Gé(T))
admits an integral model ShKé(Gé(T)) over W (ko). Using ShK;(Gé(T)), we can construct an
integral model Shy; (Gg(r)) of the quaternionic Shimura variety Shy, (Gg(r))-

THEOREM 5.8. For a subset T C Yoo — Soo, let Shy/(GY)ryr C Shx/(GY)y, denote the GO-
stratum defined in Definition 4.6. Let It be as in Theorem 5.2. Then we have the following.

(1) (Description) Shg:(G%)k, 1 is isomorphic to a (PYHYr-bundle over ShKé(G/g(T))kO'

(2) (Compatibility of abelian varieties) Let mr : Shg:(G%)k, 1 — ShK{(G,g(T))ko denote the
projection of the (PY)*-bundle in (1). The abelian schemes Alé,ko and T3 AL &, Over Shy (G%)ko

§()

are isogenous, where A’é ko and A’§ ().ko denote respectively the universal abelian varieties over
b 9

ShK’(G/g)ko,T and over ShK.} (G%(T))ko

(3) (Compatibility with Hecke action) Taking the limit over the open compact subgroups
K'? C G%(A‘X”p), the isomorphism as well as the isogeny of abelian varieties is compatible with
the action of the Hecke correspondence given by Gg = Gg(@)+’(p)Gé(A°O’p) = éé(T)'

(4) (Compatibility with partial Frobenius) The description in (1) is compatible with the
action of the twisted partial Frobenius (§ 3.22) in the sense that we have a commutative diagram

b8
ShK’(G%)kO,T po= ;;;S(T)(ShK/<G;_g§)k0,o'gT)) Tsm) ShK/(ijgg)ko,UgT
P,
\ l lﬁa%
T g
Shye, (G B0 s (@
}({( g(T))ko }(LET( a%(é(T)))kO

where the square is Cartesian, we added subscripts to the partial Frobenius to indicate the
corresponding base scheme, and the morphism £ is a morphism whose restriction to each fiber
77 H(x) = (PL)T is the product of the relative p?-Frobenius of the P indexed by It N Yoosp =
T’OO/p — Ty, and the identity on the other P}.

The proof of this theorem will occupy the rest of this section and concludes in §5.24. We
first state a corollary.

COROLLARY 5.9. (i) The Goren-Oort stratum Shy; (Gg)z . is isomorphic to a (PYHYr-bundle
V22l
over ShK},(G/é(T))%p7 equivariant for the action of £gs 5 = Eqg(r), (Which are identified as in
Corollary 5.6) with trivial action on the fibers.
(i) The GO-stratum Shycy (Gg)g,,r is isomorphic to a (P')*-bundle over Shg, (G
that the natural projection 7y : Sth(Gg)ko,T — ShK;,’(Gg(T))ko is equivariant for the tame Hecke

g(T))km such

action.

. " * 1 1" .
(iii) The abelian schemes Ay, and 77 (Ag ) over Shy(Gg)k,,1 are isogenous.

(T)7k0
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(iv) The following diagram is commutative:

p2.§
Sth(Gg)ko,T grel S;zyg(—[)(ShKZ/,/(GZgg)kg,ogT) T> ShK”(G 2S)ko, 2T
p2,5(1)
\ l l%
" ;Jl2,§(T) "
Shac, (Ggmy Shucs,, (Cozem i

where the square is Cartesian, S 23 and 3p2 5(1) denote the twisted partial Frobenii (§3.22)
on Shgy (G3)k, and ShK{p(GS(T))

ko» Tespectively, and ¢! is a morphism whose restriction to
each fiber 77 '(x) = (PL)* is the product of the relative p>-Frobenius of the P. indexed by

ItNYp = TOO/p T)y, and the identity on the other PL.
Proof. This is an immediate consequence of Corollary 5.9 above. The claims regarding the
universal abelian varieties follow from the explicit construction of Ag and A's’ R in §3.20. O

Remark 5.10. We emphasize that the analog of Corollary 5.9(ii) for quaternionic Shimura
varieties only holds over F,. This is because the subgroups &asp and Eggm),p, although
abstractly isomorphic, sit in Gs x Galy, = Gg1) x Galy, as different subgroups. The two Deligne
homomorphisms are different.

The rest of this section is devoted to the proof of Theorem 5.8, which concludes in §5.24.

5.11 Signature changes
The basic idea of proving Theorem 5.8 is to find a quasi-isogeny between the two universal abelian
varieties Az and B := A§(T) (over an appropriate base). We view this quasi-isogeny as two genuine

isogenies Ag E) C il B for some abelian variety C. Each isogeny is characterized by the set of
places 7 € X o where the isogeny does not induce an isomorphism of the 7-components of the
de Rham cohomology of the abelian varieties. We define these two subsets A(T)* and A(T)™ of

Y B now, as follows. As before, A(T)* HpeE A(T )jE for subsets A(T )7 C X oo/p- When p
is of type af or B! for S, we set A(T )/ = (. For the other two types, we use the notation in §5.3

in the corresponding cases (in particular, our convention on 7 and the a;).
— (Case al) Put

0~
U {07 1a; <l < ajq — 1}
j odd
1<5<r;

We set A(T ) =1L, C; and A(T )/p (A(T )/p) :
— (Case a2) Put

U {O'_Z7~'(] tagi—1 <1< &21'} and A( )/p (A( )/P)c'
1<i<r
— (Case 1) Put
U {07 % 1a; << aj — 1}

j odd
1<gsr;
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We set A(T)/*p =11,C; and A(T)ZJ = (A(T)/*p)‘i (Formally, this is the same recipe as in
case al, but the choice of 7; is less determined; see §5.3.)
— (Case f2) Put

A(T)ZJ = U {U_l7~'0 tagi_1 < I < (121'}.

1<ir

Unlike in all other cases, we put A(T)Zﬂ =0.
We always have A(T)*T N A(T)” = 0.

Notation 5.12. We use Tg (respectively T’;) to denote the preimage of T (respectively T') under
the map Yg o = Yo.

The following two lemmas follow from the definition by a case-by-case check.

LEMMA 5.13. For each 7 € A(T)* (respectively A(T)™), let n be the unique positive integer such
that 7,0~ '%,...,0'""F all belong to A(T)t (respectively A(T)~) but ¢~"F does not. Then, for
this n, 0~ "7 € T%y. Moreover, if T also belongs to T%,, then n equals the number n, introduced
in §4.4.

LEMMA 5.14. (1) If both 7 and o7 belong to A(T)* (respectively A(T)~), then 7| belongs to
Seo-
(2) If 7 € A(T)~ but o7 ¢ A(T)~, then 7 € T
(3) If 7 ¢ A(T)” but o7 € A(T)~, then 7 € T".

5.15 Description of the strata Shk/(G%)k,,r via isogenies

To simplify the notation, we put X’ = Shy/(G§)k, and X7 = Shy(G§)k,,r for a subset T C
Yoo — Seo. We will first prove statement (1) of Theorem 5.8. Following the idea of Helm [Hel12],
we introduce auxiliary moduli spaces Y{ and Z; and establish isomorphisms

m

Xp<~2—Y{ —= 74, (5.15.1)

where Z% is a (P!)/*-bundle over the special fiber of ShK;(G/g(T))ko-

Recall that we have fixed an isomorphism 67 : (Dsg, *s) —> (Dg(ry, *3(1)) of simple algebras
over E with positive involution, and put Op,, = 01(Opg). To ease the notation, we identify
ODS(T) with Opg via 01, and denote them by Op when there is no confusion.

We start now to describe Y{: it is the moduli space over ko which attaches to a locally
noetherian kg-scheme S the set of isomorphism classes of (4, ¢4, Aa, ax, B,tp, g, Bry: C,ics ga,
¢pB), where we have the following.

(i) (A,ta,Aa,ak) is an element in X(S5).
(i) (B,tB, B, Bkz) is an element in ShKé(Gé(T))(S).
(iii) C is an abelian scheme over S of dimension 4g, equipped with an embedding ¢ : Op —
Endg(C).
(iv) ¢a: A— Cis an Op-isogeny whose kernel is killed by p, such that the induced map

Gaz : HIN(A)S) — H{™(C/S)3
is an isomorphism for 7 € X o, unless 7 € A(T)*, in which case we require that

Ker(da,7) = Im(F} o 7), (5.15.2)
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where n is as determined in Lemma 5.13 and F}j - is defined in (4.2.4). (When 7 itself
belongs to T/, the number n equals n., introduced in §4.4. In this case, condition (5.15.2)
is equivalent to saying that Ker(¢a .z) = WiV /s7-)

(v) ¢p: B — Cis an Op-isogeny whose kernel is killed by p such that ¢p . 7 : H®(B/S)2 —
H{®(C/S)2 is an isomorphism for 7 € ¥ o, unless ¥ € A(T)™, in which case we require
that Im(¢p,,7) is equal to ¢4 . 7(Im(F7 . -)), where n is as determined in Lemma 5.13.

(Note that as 7 ¢ A(T)", ¢a+ is an isomorphism by (iv).)

(vi) The tame level structures are compatible, i.e. T®)(¢4) o o, = T® (pp) o a’;(ép as maps
from /A\ép ) Kgg) to T®)(C), modulo K, if we identify the two lattices naturally as in

§5.7.

(vii) If p is a prime of type af for the original quaternionic Shimura variety Shx (Gs), then
and (3, are compatible, i.e. pa(ap) = ¢B(By), where o, C Alp] denotes the closed finite
flat group scheme given by Theorem 3.14(c2). (Note that ¢4 and ¢ induce isomorphisms
between A[p], C[p], and B[p] for a prime p of type o for S.)

(vili) Let p be a prime in Case a2, splitting into qq in E. Then 8, = Hq® Hy. If ¢4 : B — By =
B/Hy is the canonical isogeny, then the kernel of the induced map ¢, : H{®(B/S)2 —
H?R(BS/S)E coincides with that of ¢p . : HR(B/S)2 — H{R(C/S)2 for all 7 € A(T)/_p.

(ix) We have the following commutative diagram.

A A

AAl lAB
¢\/

v_ 9% v % py
AV <—CY ——B

Remark 5.16. Compared to [Hell2], our moduli problem appears to be more complicated. This
is because we allow places above p of F' to be inert in the CM extension E. It is clear that B is
quasi-isogenous to A. So, when S is the spectrum of a perfect field k, the covariant Dieudonné
module Dp is a W (k)-lattice in D4[1/p]. The complicated conditions (v) and (vi) can be better
understood by looking at Dp (see the proof of Proposition 5.17 below).

PRrROPOSITION 5.17. The natural forgetful functor

m: (Aa LA, >\A7 K, Ba LB, >\By BK{.) 07 Lc, QSA’ ¢B) = (Aa LA, )‘Aa OZK/)
induces an isomorphism 7 : Y{ — Xj.
Proof. By the general theory of moduli spaces of abelian schemes due to Mumford, Y{ is
representable by an kg-scheme of finite type. Hence, to prove the proposition, it suffices to show
that the natural map Y{ — X induces a bijection on closed points and the tangent spaces at each

closed point. The proposition will thus follow from Lemmas 5.18 and 5.20 below. This is a long
and tedious book-keeping check, essentially following the ideas of [Hell2, Proposition 4.4]. O

LEMMA 5.18. Let © = (A, 14, 4, ax) € Xp(k) for a perfect field k. Then there exist unique
(Bal’B?)‘B?/BK{JCv LC;¢A7¢B) SUCh that (A7LA7)\A7aK’7B7LBvABaBK,fuC7 LC;¢A7¢B) € Y'I{(k)
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Proof. We first recall some notation regarding Dieudonné modules. Let D4 denote the covariant
Dieudonné module of A[p™]. Then Dy := D4/p is the covariant Dieudonné module of A[p].
Given the action of Op ®z Z), ~ My(Of ®z Z,) on A, we have direct sum decompositions

Dy=eDa= P Dis Dh:=eDa= P Djs,

%EEE,OO ‘FEZEQO

where ¢ denotes the idempotent ((1] 8). By the theory of Dieudonné modules, we have canonical
isomorphisms

H{S(A/R)wy = Da,  HIR(A/k) = Da,

compatible with all the structures. For 7 € ¥ o, we have the Hodge filtration 0 — wfjlvf —
D5z — Lie(4)z — 0. We use wjv ; to denote the preimage of w3y > € D - under the reduction
map 151‘217,; —» Di&,i—‘

We first construct C from A. For each 7 € ¥ o, we define a W (k)-module M2 with ﬁilf -
Mz C p*1@f47% as follows. We put Mz = @; unless 7 € A(T)". In the exceptional case, let n be
the integer as determined in Lemma 5.13 (or as in property (v) of Y7 above), and put

o -1 MO
Mf' =p FX,eS(DA,a*"%)v

where F . is the n-iteration of the essential Frobenius on 151‘21 defined in Notation 4.2.

If 7 € A(T)t N Tg, then the number n for 7 in Lemma 5.13 coincides with n, introduced in
§4.4. Since the partial Hasse invariant hz(A) vanishes for any 7 € Ty by the definition of X}, we
see that M2 = pilcbfjw for 7 € A(T)" NTg.

We now check that, for any 7 € X g ,

Fa(M°.,.) C M2 and Va(M2)C M2 .. (5.18.1)

Note that we are using the genuine but not essential Frobenius and Verschiebung here. We
distinguish several cases.
- 7,077 ¢ A(T)". Then Mg = D5 ; and M, = D} .. Hence, (5.18.1) is clear,
~ 7€ A(T)* and 0717 ¢ A(T)*. Then we have M°_,. =D% __,. and M2 = p~ ' F4(D5 ho—17)-
Hence, Fa(M?_,.) C Mz is trivial, and V4(M2) = ;,1%.
- F07 7 ¢ A(T)*. Let n be the positive integer for 7 as in Lemma 5.13. Then we have

Mﬂg = pilFZ,eS(ﬁZ,U*"’F) = FA,GS( 71FA ,es (DA Ko "7')) FA es (M —1F )

The inclubions (5. 18 1) are clear from this.

— 7 ¢ A(T)t and 017 € A(T)*. In this case, 0~ '7 must be in Ty by Lemma 5.13. Hence,
we have M? DA~ and M?° o-l7 = p_lwAa 17 as remarked above. We thus see that
Fa(M?_,.) = M2 and Vao(Mz) = pM;_,..

Consequently, if we put M° = GB%GEEOO MS and M = (M°)®2, then M is a Dieudonné

module, and @A CMC p_lﬁA with induced F' and V on M. Consider the quotient M/ZSA.
It corresponds to a finite subgroup scheme K of A[p] stable under the action of Op by the
covariant Dieudonné theory. We put C' = A/K and let ¢4 : A — C denote the natural quotient,
so that the induced map ¢ A :D i DC is identified with the natural inclusion D 4 — M. The
morphisms F and Vi on D¢ are induced from those on D4[1/p]. It is clear that C is equipped
with a natural action (¢ by Op, and ¢ 4 satisfies conditions (iii) and (iv) for the moduli space Y7.
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Conversely, if C' exists, the conditions (iii) and (iv) imply that Dg - has to coincide with M.
Therefore, C' is uniquely determined by A. We finally remark that, by construction, {)E‘i /751"47%

is isomorphic to k if 7 € A(T)T and trivial otherwise.
We now construct the abelian variety B and the isogeny ¢p : B — C. Similarly to the
construction for C, we will first define a W (k)-lattice N° = ..y, N7 C Dg, with N7 =

ﬁa? unless 7 € A(T)™. In the exceptional case, we put N2 = Fﬁ’es(ﬁao_n%), where n is the
positive integer given by Lemma 5.13. Here we view ﬁg,a*n% as a lattice of f)ix,afn%[l/p]» so that
Fz,es (Dé',a—"f'
4.4, and we have N7 = &g, - ~ @ -, since hz(A) vanishes. We now check that N° is stable under
Fc and Vg, ie. Fo(N7_;.) € N2 and Ve (N2) C N7_i. for all 7 € ¥g . The same arguments
for M above work verbatim in this case (with A(T)~ in place of A(T)"). Again, we point out
that, by construction, 15007% /ﬁ%i is isomorphic to k if 7 € A(T)~ and trivial otherwise.
Therefore, N = (N°)®2 is a Dieudonné module such that the inclusions pDo € N C D¢
respect the Frobenius and Verschiebung actions. In particular, the Dieudonné submodule
N/pDc C D¢ /pDe is the covariant Dieudonné module of a closed finite subgroup scheme
H C C|p] stable under the action of Op. We put B = C/H and define ¢p : B — C to be

the isogeny such that the composite C — B = C/H 95, C is the multiplication by p. Then the
induced morphism ¢p  : Dp — Dg¢ is identified with the natural inclusion N C De¢. It is clear
that B is equipped with a natural action by Op, and the condition (v) for the moduli space Y7
is satisfied. Conversely, if the abelian variety B exists, then condition (v) implies that 155’9 has
to be N° defined above. This means that B is uniquely determined by C' and thus by A.

To see condition (ix) of the moduli space Y{, we consider the quasi-isogeny

) makes sense. Note once again that, if 7 € A(T)” NTg, then n equals n, defined in

Vv Vv
Ap B 5 0 40 4y 24 ov B gy
We have to show that A\p is a genuine isogeny and verify that it satisfies conditions (b2) and
(b3) in Theorem 3.14 for the Shimura variety Sh K{(G%(T))' It is equivalent to proving that, when
viewing f)%f as a W (k)-lattice of f)i‘i[l /p] via the quasi-isogeny B 8 02 A, the perfect
alternating pairing . .
(3 Maa s Daz[1/p] X D ze[1/p] > W(k)[1/p]
for 7 € ¥ o p induces a perfect pairing of 25}’37% X 15}’37;@ — W(k) if p is not of type S* for S(T),
and induces an inclusion 15?37%6 C 15;3\/% with quotient equal to k if p is of type 8 for S(T). We
discuss this case by case.
— If pis of type % for S, then both ¢4 and ¢p induce isomorphisms on the p-divisible groups
and the statement is clear in this case. ) .
- Ifp is in Case (2, A(T);rp = @N By thNe construction of B, we have Dp - = Dj - unless
TE A(T)ZJ; in the latter case, Dy - = F -
isomorphic to k. Note that Yg o/, = A(T)/_p ]_[(A(T)/_p)c. This implies that the pairing
(', )a,,7 induces an inclusion 75%7%0 C 75%\; with quotient equal to k.
— In all other cases, we have A(T);rp = (A(T)7,)°. So,

(15‘134 ,—nz) is a submodule of DS, - with quotient

/v
Dhs if 7 ¢ (A(T)7, UA(T)},),
Dz =0 'Fi (DG ,-nz) 1T EA(T)], (5.18.2)
E,QS(Dzyo—fn%) if7e A(T);
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It is clear that { , )y, induces a perfect pairing on D% - 7 X D3 o (A(T )/p UA(T )/p) If
7e (AT} In UA(T) /p) the perfect duality between DB and DS B 7 follows from the equality

n

-1
<p Fg,esuv FX,es’Ub\Aﬂ: = <u7 U>§A,a—”7‘

for all u € 1521 P and v € DZU nie-
This completes the verification of condition (viii) of the moduli space Y{ and conditions (b2)
and (b3) in Theorem 3.14 for ShKé(G’é(T)). It is also clear that Ap induces the involution xgr)
on Op = ODs(w)'

We now check that the abelian variety B has the correct signature required by the moduli

space Sh Ké(G/é(T))‘ For convenience of future reference, we put this into the following lemma.
LEMMA 5.19. In the setup above, that is, knowing
dim Coker(¢a 4 7) = OA(T)+ (7), dimCoker(¢pz) = OA (1)~ (7),

where 04(7) is 1 if 7 € @ and is 0 if ? ¢ 8, we have dimw$, gz =2— stz forall T € Xp o if and
only ifdimwAv/k% =2—szforall T € EEOO, with the numbers stz defined as in § 5.3.

Proof. This is a simple dimension count. We prove the sufficiency, and the necessity follows by
reversing the argument. Using the signature condition for the Shimura variety X7, we have

Comparing this with the abelian variety B, we have

150 5 150 B 150 B 130 B 150 150 )
i, 27 = dim, A (i 7 i, 07 ) (i, SO i 007 )
V(DB JT) V(DA ‘7%) ,DBJZ DA T DB ,oT DA oT

here we used the fact that the quotient DC /D% o+ has the same dimension as V(DC o7)/

V(DO % .,+) and the same for A in place of B because V' is equivariant. Using our construction of
the abelian varieties B and C', we deduce that

dimy (D 7/V(Dg07)) = 87 = (0aa)- () = 95+ (7)) + (6aa)- (07) = 6xzy (07)). (5.19.1)

Using the definition of A(T)*, one checks case-by-case that the expression (5.19.1) is equal to
st7. We will only indicate the proof when 7 € ¥ ./, for p in Case a1, and leave the other cases
as an exercise for the interested reader. Indeed, under the notation from §5.11, when p € ¥, is
of type al, A(T ) =11, CF. Then

1 if 7isoneof o”M7F, 07 BT, ...,
6A(T)+ (7:) - 6A(T)+ (0-7:) == _1 if 7‘: iS one Of O-_aQ%,L‘C7 0.—(147':2‘0’ ceey
0  otherwise;

1 if 7isone of 77,077, ...,
and 6A(T)*(7~—) - 6A(T),(U%) =< —1 if 7isone of 07%27;, 077, ...,
0  otherwise.

Putting these two formulas together and using the notation from §5.3, we have

(Oawmy+ () = 0amy+ (07)) = (0x (1)~ (F) = 0z (r)- (07)) = 6¢/(F%) — 03 (7).
This implies that (5.19.1) is equal to st and concludes the proof of Lemma 5.19. O
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We now continue our proof of Lemma 5.18 (as part of the proof of Proposition 5.17). To fulfill
condition (vi) of the moduli space Y{, the tame level structure on B is chosen and determined
as the composite

T® (pa) T® (¢p)~"

~ o1 ~ a
5;7(,1, : Aép,)r) BLEN Aép) & 1) (A)
T

( T(p)(B),

T(p)(c)
where both T®)(¢4) and T®)(¢p) are isomorphisms because ¢4 and ¢p are p-isogenies.

It remains to show that there exists a unique collection of subgroups [, satisfying
Theorem 3.14(c2) for ShKé(Gé(T)) and properties (vii) and (viii) of Y{. So, the corresponding
prime p € ¥, is either of type af for S or in the Case a2 of §5.1. In the former case, we have
T/, = @, which forces A(T)ﬁ = ) by definition. So, the induced morphisms ¢4 : A[p>] = C[p™]
and ¢p, : B[p>®] — C[p*>] are isomorphisms. Now condition (vii) of the moduli space Y7
determines that the level structure g, is taken to be ¢]_3,1p (pap(ay)).

If p is in Case @2 of §5.1, the prime p splits into two primes q and g in F. Using the
polarization Ag, we just need to show that there exists a unique subgroup H, C Blq] satisfying
condition (vii). Since stz = 0 or 2 for 7 € EE,OO/p, both Fg es 7 and Vp ¢ 7 are isomorphisms. We
define a one:dimensional ki-vector subspace D?fi C @%’i / pﬁ%i for each 7 € X o /¢ as follows.

- If7re A(T)ZJ, then DJOB,% is contained in Da; = DZ,? with quotient isomorphic to k. Put
D3, = pD%+/9D5 . )

- If7¢ A(T)/_p, let n € N be the least positive integer such that c™"7 € A(T)/_p (such n exists
because 7y in § 5.3 belongs to A(T)/_p). Put Dy, - = Fg (D} ).

Hyq,o—nT7
Put Du, = Drex, - DZ’,??_. Using the vanishing of the partial Hasse invariants {hz(A) :
T € Tg,oo/p ), One checks easily that Dy, C Dpyq is a Dieudonné submodule. We define Hy C Blq]
as the finite subgroup scheme corresponding to Dy, by covariant Dieudonné theory. Then Dy,

is canonically identified with the kernel of the induced map
¢q: D = H{"(B/k) — Dpypr, = H{"((B/H,)/k).

Therefore, Hy satisfies condition (viii) of the moduli space Y7. This shows the existence of Hj.
For the uniqueness, the condition (viii) forces the choice of Dy, 7 for 7 € A(T)/_p and the stability
under Fp and Vp forces the choice at the other 7. This concludes the proof that Y{ — X7 induces
a bijection on closed points. O

LEMMA 5.20. The map n; : Y7 — X7 induces an isomorphism of tangent spaces at every closed
point.

Proof. Let y = (A, 14,4, k7, B, LB, AB, By, Cies ®4,dp) be a closed point of Y] with values
in a perfect field k, and x = (A, 14, Aa, ak’) be its image in X;. We have to show that Y{ — X;
induces an isomorphism of k-vector spaces between tangent spaces: TYT’,y =t T)q,x-

Set I = Spec(k[e]/€?). By deformation theory, T'x; . is identified with the I-valued points zy =
(Ar,ean, Aa1, ok g) of X¢ with reduction 2z € X¢(k) modulo e. In the proof of Proposition 4.7,
we have seen that giving an xy is equivalent to giving, for each 7 € X g , a direct factor wf 17 C
HfriS(A//c)]‘ff that lifts w3y - C H{R(A/k)2 and satisfies the following properties.

7
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(a) If T € ¥poop With p not of type G for S, then wWhv 1+ and w9y . are orthogonal
complements of each other under the perfect pairing

HES(AR)S % HS™ (A/R)5 7o — Klel/ e

induced by the polarization A 4.

(b) If 7 € Sxo, then w1~ = 0 and WSy g zc = H{S(A/k)] -

(c) If 7 restricts to 7 € T, then wjv - has to be FZTeS(HfriS(A(pnT)/k)ﬁ;), where n; is as
introduced in §4.4 and F7  on the crystalline homology are defined in the same way as
F)) . on the de Rham homology as in Notation 4.2. Since we are in characteristic p, we have

Fir (HPS(AP T /k)p ) = wiy - @ kle] /€.
Note also that the crystal nature of HSS(A/k) implies that there is a canonical isomorphism

HY™(A/k)y = HY®(A/k) @ kle] /€

We have to show that, given such an zy, or equivalently given the liftings w9y ;- as
above, there exist unique (By, tp 1, AB 1, Bry1, Crston; @Al ¢p 1) over I deforming (B, ¢p, )\37,’61(4,
C,io;¢a, qu) such that (A]I, LA, >\A,]Ia QK T, By, LB, )\B,Hu BK{.,]I» Ch, LoT; ¢A7H7 ¢B,]I) is an I-valued
point of Y{.

We start with C1. To show its existence, it suffices to construct, for each 7 € ¥ g o, a direct
factor wew - C HC“S(C/k)]‘I”% that lifts wgy - C D¢z = H{R(C k).

— When neither 7 nor 7 belongs to A(T)*, ¢a.r : HI®(A/k)S 5 HIE(C/K)S is an
isomorphism for 7 = 7,07. We take wgy j - C HC“S(C/l{)]‘I’f to be the image of wjy ;- C
H{S(A/ k)]I - under the induced morphism gzﬁC“S - on the crystalline homology.

— When either one of 7 and o7 belongs to A( )*, an easy dimension count argument similar
to Lemma 5.19 (using Lemma 5.14) shows that wg. - is either 0 or of rank two. So, there
is a unique obvious such lift wocv 7

This finishes the construction of wg.y 17 for all 7; hence, one gets a deformation Cf of C,
carrylng a natural action of Op. It is clear that the map qSC“S H{s(A/ k)i H{S(C/ k)i =
sends w? av iz to WCV,H,% Hence, ¢4 deforms to an Op- equlvarlant isogeny of abehan schemes
¢aq: A — Cp by [Lanl3, 2.1.6.9].

We check now that ¢4, satisfies condition (iv) of the moduli space Y{. We note that the map
Ga.s 2 HIB(Ap/T) — HIR(Cy/I) is canonically identified with gzb““s H{S(A/K) — HC“S(C/k‘)
by crystalline theory, which is in turn isomorphic to the base change of ¢4, : Hi®(A/k) —
HIR(C/k) via k < kl[e]/€%. Let 7 € A(T)*. Since the Frobenius on k[e]/e? factors as

TP 2

klel/€ — k = k — k[e]/¢*,

we see that .
Fi o (HEAPD /1)2) = F (HRA [1)2) @y, kle] /€

Hence, the kernel of ¢, .7 : HIR(A/T)2 — HIR(Cy/I)2 coincides with F7? _(HIRAP™ /1)2),
since it is the case after reduction modulo e. This shows that ¢4, satisfies ‘the condition (iv).
Conversely, it is clear that, if Cp and ¢4, satisfy the condition (iv), then they have to be of the
form as above.

We show now that there exists a unique deformation (By, ¢p,) over I of (B, ¢p) satisfying
condition (vi) of the moduli space Y{. To construct By, one has to specify, for each 7 € X o, a
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subbundle wpy ;- C HSS(B/E)S - lifting wly » € H{®(B/k)2. Similar to the discussion above,
we have the followmg 7 7
~ If neither 7 nor o7 belongs to A(T)~, then ¢p.» : HI®(B/k)3 = H{R(C/k)3 is an
isomorphism for 7 = 7,07. We take wpy ;- C Hfris(B/k:)]'i% to be the image of wew j- C
H{s(C/ k)]‘f% under the induced morphism gb;*i on the crystalline homology.

— If at least one of 7 and o7 belongs to A(T)_, then an easy dimension count argument similar
to Lemma 5.19 (using Lemma 5.14) shows that w}y - is either 0 or of rank two. There is a
unique obvious such lift W%V,Hi' 7

This defines wyy 1 - for all 7 € ¥ o. Hence, one gets a deformation By of B over k[e|/ €2 Tt is
immediate from the construction that the action of Op lifts to By, and gZ)CBfii 7 H{S(B/k)S -~ — P

C’“S(C'/k:)]I - sends wypy 2 to wiy g for all 7 € Y. Hence, ¢p : B - C deforms to an

Op- equlvarlant isogeny ¢BH B — C’H In the same way as for ¢4,, we prove that ¢p, satisfies
the condition (v) of the moduli space Y7, and conversely the condition (v) determines By uniquely.

Let (, )ap : H{™S(B/k)? x H{'S(B/k)S — kle]/€? be the pairing induced by the polarization
Ap. To prove that Ap deforms (necessarily uniquely) to a polarization Ap, on By, it suffices to
check that ( , )g\r}i; vanishes on wpy 1= X Wy - for all 7 € Lp o (cf. [Lanl3, 2.1.6.9, 2.2.2.2,
and 2.2.2.6]).

— If 7 = 7|p lies in 8(T)co, this is trivial, because one of wpv 7 and wipy g - is equal to 0 and
the other one is equal to H{''(B/ k) - by construction.

— If 7 = 7|F is not in S(T)so, then the natural isomorphism HC“S(B/k)H* = HCHS(A/k)fﬂ*
sends w%vyﬂ,* to W%V,}I,* for « = 7,7¢. The vanishing of (, )5, on va’M X wBVJLTC follows
from the similar statement with B replaced by A.

Therefore, we see that Ap deforms to a polarization A, on Bj. Since )\%1;* . HI®(B/T) —
HR(BY/T) is canonically identified with AE : HS(B/k); — H{S(BY /k)j, which is in turn
identified with the base change of A, via k‘ <> k[e]/€2, it is clear that condition (ii) regarding
the polarization is preserved by the deformation \ By-

It remains to prove that Sp; deforms to Sk; 1. The deformation of the tame level structure
is automatic; the deformation of the subgroup at p-adic places of type af and a2 is also unique,
by the same argument as in Theorem 3.14. O

5.21 A lift of It

Recall that It is the subset S(T)oo — (Seo U T) defined in Theorem 5.2. We use It to denote the
subset of complex embeddings of E consisting of the unique lift 7 of every element 7 € I, for
which 7¢ € §(T)oo. We describe this set explicitly as follows.

We write Iy, = It N X, and IT/p =INYg oo/p for p € Xy, They are empty sets unless
p is of type al or S1. When p is of type ol or g1, using the notation of §5.1, IT/p consists of

o~™i~17; for all i such that #(C; N T/p) is odd. In the notation of §5.3, the set IT/p consists of
o~ i7; for all i such that #(C; N'T/,) is odd. We remark that, in either case, for any 7 lifting a

place 7 € I, 7 ¢ A(T)T UA(T)~

5.22 Isomorphism of Y/ with Z;
Let Z; be the moduli space over kg representing the functor that takes a locally noetherian
ko-scheme S to the set of isomorphism classes of tuples (B, g, Ap, Ko °), where:

(i) (B,tB,AB,BK;) is an S-valued point of ShK/(Gi( ));
(i) J° is the collection of subbundles J2 € HR(B/S)2 locally free of rank one for each 7 € I.
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It is clear that Z; is a (P')r-bundle over ShK;(Glg(T))-

We define a morphism 7, : Y{ — Z; as follows: let S be a locally noetherian kg-scheme
and z = (4,14, 4, ax, By, AB, Bk, Csto; da, ¢p) be an S-valued point of Y. We define
n2(x) € Zy(S) to be the isomorphism class of the tuple (B, tp, Ap, Bk, J°), where J2 is given by
d)l;,l*i o¢ A,*,%(Wfqvﬂ:) for the isomorphisms

¢A,*,7- ¢B,*,7‘-

™(A/8)s == H{™C/S)g <2~ H{™(B/S)3.
Note that 7 ¢ A(T)* implies that both ¢ A7 and ¢p . 7 are isomorphisms.
PROPOSITION 5.23. The morphism 19 : Y{ — Zi is an isomorphism.
We note that Theorem 5.8 follows immediately from this proposition and Proposition 5.17.

Proof. As in the proof of Proposition 5.17, it suffices to prove that 7 induces a bijection on the
closed points and on tangent spaces.

Step I. We show first that 72 induces a bijection on closed points. Let z = (B, ¢p, )\B75K47 J°)
be a closed point of Z; with values in k = Fp. We have to show that there exists a unique
point y = (A, 14, A4, axr, B, 1B, Ap, Biy, Cstos da, ¢) € Yy(k) with n2(y) = 2. To prove this, we
basically reverse the construction in the proof of Lemma 5.18. 3 .

We start by reconstructing C' from B and J°. We denote by Dp = (D%)®? the covariant
Dieudonné module of B and by D3 = GB%GEEOO Df, ; the canonical decomposition according
to the Op-action. We construct a Dieudonné submodule M° = @ 5, M2 C D%[1/p] with
Dy € M° C p~'DY, as follows. Let 7 € Sp o with p € £, If # ¢ A(T)~, we put M2 = D5, ..
To define M2 in the other case, we separate the discussion according to the type of p.

— (Case al and 1) Recall our notation from §§5.1, 5.3, 5.11, and 5.21. There are two subcases
according to the parity of #(C; NT/,), where C; is a chain of S/, UT/, as in §5.1. (It
should not be confused with the abelian variety C')

* When r; = #(C; N'Ty) is odd, o mimly € fT/p, so that J°_,,, 15 is defined. In this
case, all 7 = o77; belong to S(T) sy for 0 < € < mj + 1; 50 57405, € {0,2} and the
essential Frobenii

m;+1—4 o = o = _= o
e Phgomie 5 Phomin 7ol s Dt

are isomorphisms for such an £. If a; < £ < a;11 for some odd number j, we put

MO

—1 m;+1—£
oty T FB ,es (Ja*mi’lﬁ-)’

where J° o—mi—1z, denotes the inverse image in Do Bo-mi-1z, i
under the natural reduction map modulo p. For other £, we have already defined M O,p
to be D° Bo—tr"

* When r; = #(C; NTy,) is even, there is no J° involved in this construction. Note that

all 7 = o~ '; belong to S(T Joosp for 0 < €< my. So, sy ;-7 € {0,2} and in the sequence
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of essential Frobenii

~

—(+1 . o o o = o
Fri- 'D . ——=1D _=.De —s...—>7D
Bies i1, Ti Fp B,o™miT; Fp ,es B,g™m +1T1 Fp ,es FBes BU_ZT'L

all the maps except the first one are isomorphisms. If a; < ¢ < a;11 for some odd
number j, we put
o —1 i—0+1 /o .
Ma_éﬁ =p Fgl,es (DB,O'_mi_lf'i)’

then we have dimk(M;_é%,/f)j’B ,—¢z) = 1, since the cokernel of Fg : D}’B e
D% —— has dimension 1, as sy ;-m;-1z = 1. (For other ¢, we have already defined

o Mo
MU,% to be DB,U,%_.)

~ (Case a2) In this case, p is a prime of type af for Shr; (Gg(ry) and it splits into two
primes q and q in E. Let Hy C Blq] be the closed subgroup scheme given in the data
Br;y. Let Hg be its annihilator under the Weil pairing between Blq] and B[q] induced by
AB. (We collectively write H, for Hy x Hj.) Let Dy, = 69?6219,00/.3 Dy, » € Dy be the
reduced covariant Dieudonné module of H, = Hy X Hy. Then each D;Ip,% is necessarily one

dimensional over k for all 7 € X /. For 7 € A(T);p, we define
M; = pilﬁ?{p,i—ﬂ

where 13}’{ - denotes the inverse image in 15%7% of the subspace D - € Dy ~. (We have
defined M° = DB _ for 7 ¢ A(T ) before.)

— (Case 32) In this case, p is a prime of type 3! for Shr; (Gs(r)). For 7 € A(T)/_p, let Ap sz :
Df’B + = Dpv ; be the morphism induced by the polarization Ap. By Theorem 3.14(b3),
J2 :=Ker(Ap ) is a k-vector space of dimension 1. We set M? = p*1j§ for such 7, where
Jj is the preimage of J: under the reduction map DB,% — DB’T. Note that when viewing
Dy ; as a lattice of Dy -[1/p] using the polarization, we have M2 = D, .. (We have
defined M¢ = D% 7 for 7 §£ A(T ) before.)

This concludes the definition of M° C p_lD%. One checks easily that M° is stable under Fip
and Vp. Consider the quotient Dieudonné modules

M/’bB = (MO/'ZS%)EBz - pilﬁB/'bB = Dpg.

Then M/Dg corresponds to a closed finite group scheme G C Bp| stable under the action of
Op. We put C = B/G with the induced Op-action and define ¢p : B — C as the canonical
Op-equivariant isogeny. Then the natural induced map ¢p . : DO — DC is identified with the
inclusion 15% — M°.

We now construct A from C. Similar to above, we first define a W(k)-lattice L° =
Diesx,, Lz c Dg, with L2 = 7587 unless 7 € A(T)*. If 7 € A(T)*, then the corresponding

4
p-adic place p € X, cannot be of type 52 or B In this case, we identify D%[1/p] with Dg[1/p],
so that D% and DC are both viewed as W (k)-lattices in D B[l /p]. The polarization Ap induces a
perfect pairing

(s Mg Dpz[1/p] x D ze[1/p] — W(k)[1/p],
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which induces a perfect pairing between 155’31% and D% -.. We put (for EA(T)*)
L2 = ﬁé\;c ={ve f)ocj[l/p] s (v, W), € W(k) for all w e 25&;0}.

Note that 7 € A(T)T always implies that 7¢ € A(T)~ —A(T)*. So, 7500’% = 7579,; and 75%7;0 > 75}’3’%0
with quotient isomorphic to k. This implies that L2 C 1500’% with quotient isomorphic to k.

As usual, one verifies that L° is stable under Fp and Vg (because it is equal to either f?ocj
or @gvfc in various cases), and we put L = (L°)®2. The quotient Dieudonné module L/pD¢
corresponds to a closed subgroup scheme K C C[p] stable under the action of Op. We put
A = C/K equipped with the induced Op-action and define ¢4: A — C as the canonical Op-
equivariant isogeny with kernel C[p]/K. Then ¢4 : Dy — De is identified with the natural
inclusion L — ﬁc.

We define A4 : A — AV to be the quasi-isogeny:

Vv \
A A ol g e gy 2B v 04 v

and we will verify that A4 is a genuine isogeny (hence a polarization since Ap is) satisfying
condition (b) of the moduli space Shk/(G%) as in Theorem 3.14. We may identify D4 [1/p] and
D% [1/p] with D[1/p], and view both 751047; and DY, - as lattices of 75037%[1/1)]. It suffices to
show that we have a natural inclusion 7

Doz C (Dze)Y = {v € Dy 2[1/p] : (v,w), € W(k) for all w € Dz},

which is an isomorphism unless 7 induces a p-adic place of type 3% for Shx (Gs), in which case
it is an inclusion with quotient k.

~ By the construction of A, this is clear for 7 € A(T)t and hence for all their complex
conjugates (as the duality is reciprocal).

— For all places 7 € Xp o/, such that p is not of type 52 and 7 ¢ A(T)*, we know that
7¢ ¢ A(T)*. So, 1574’? = ﬁ%f? for 7 = 7,7¢ under the identification. The statement is clear.
Note that this includes the case that p is a prime of type 3¢ for Shy (Gs).

— The only case left is when 7 € ¥/, for p of type 52. In this case, 15?4,? = 75&%, which is
the dual of 75&%6 for all 7 € X o/, by construction.

This concludes the verification that A4 is an isogeny satisfying condition (b) of Theorem 3.14
for the moduli space Sh; (G§).

We now define the level structure ag = aPay, on A. For the prime-to-p level structure o?,
we define it to be the Ky-orbit of the isomorphism class:

of: AP = 1) () = 7)) L T (4).
/81) ¢B,* ¢A,*

We take the closed subgroup scheme oy, C Alp] for each p € 3, of type of for S (and hence for
S(T)) to be the subgroup scheme corresponding to 3, under the sequence of isomorphisms (note
that A(T)ﬁ = ¢ for p of type of) of p-divisible groups

Ap] 225 0[p>] L2 Bp™].

It is clear that ax verifies condition (c) in Theorem 3.14.
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This finishes the construction of all the datay = (A4, 14, A4, agr, B, tp, A, Bry: C,ics da, oB)-
To see that y is indeed a k-point of Y7, we have to check that y satisfies the conditions (i)—(ix)
for Y{ in §5.15. Conditions (ii), (iii), and (vi)—(ix) being clear from our construction, it remains
to check (i), (iv) and (v). Moreover, the Kottwitz signature condition Theorem 3.14(a) follows
from Lemma 5.19 immediately. So, for property (i), it remains to show that the partial Hasse
invariant hz(A) vanishes if 7 = 7|p € T.
~ We now check these properties (i), (iv), and (v) in various cases. For this, we identify D4 [1/7p],
Dg(1/p], and Dg[1/p] via ¢4« and ¢p ..

(1) Assume that p is a prime of case al or S1. We keep the notation as before. If 7 does not
lift a place belonging to some chain C; inside S, /, UT ,, the conditions (i), (iv), and (v) trivially
hold. So, we assume that 7|p € C; for some C;.

If r; = #(T/, N C;) is odd, unwinding our earlier construction gives, for 0 < £ < m; + 1,

—1 ml-i-l—é Jo 1 . . ]
o _ o P PR (Ja,mi,lﬂ_) if a; < ¢ < ajyq for some odd j,
A,O’fl‘f'i - 070-7[7% - @O

B.o-t7, otherwise;

+1—0, 50,1 . .
7 B ngtgl E(J;’_ml._l_h) if a; < ¢ < a;4q for some odd j,
Ao =t7g DY —eze otherwise; and

D¢ j—tze = DY 4z forall L.
’ 7 ’ 7

For condition (v) in §5.15, it is trivial unless 7 = o ~“%; for some ¢ € [a;, ;1) with j odd. In the
exceptional case, it is equivalent to proving that (for the n as in condition (v))

D};,U_Zﬁ = Fg,es(Dzﬁ—e—nﬁ).
Note that n = a;11 —¢; it follows that 752, =D° by definition. As s; —a;;1. =2

o=t B,o~%+17;
and s -a;i1; = 1, FZES(DZ,U_@_WZ_) coincides with Fges(l?; by the definition of

O’iaj‘i’l’h‘)

essential Frobenius. The desired equality follows from the fact that £y es(D%,g—aHlﬁ) = DE,U,%.
Similarly, condition (iv) is trivial unless ¥ = o~*7¢ for some £ € [a;,a;j41) with j odd. In the

exceptional case, it is equivalent to the following equality (for the n as in condition (iv)):

NO _mn MO
pDB,a*Z%; = FA,GS(,DA,U*Z*"%Z-C)'

o LIS No _ To : _ _
But n = a;41—¢ by definition; so, DA,afé’fn%; = DB,U—GHI%Z.C' Since S0 +17e = 0 and Syajiize =

1, the essential Frobenius of A at 0~%+17{ is defined to be F)y, while that of B at o~%+17{ is
defined to be Vg ! Therefore, F)\ o o—tzc 18 the same as pF'j The equality above is now

—Llzc*
Bes,oc~¢7f

clear.
We now check the vanishing of partial Hasse invariants h,e;= (A) with 1 <j <r; — 1. By
Lemma 4.5, it suffices to show that, for any j = 1,...,r; — 1 and setting ag = —1, the image of
Aj+1—aj—1 | 440 NO
Faes 7 1 Dhoraing 7 Phgeis,

is contained in pf)jw,aji A First, regardless of the parity of j, we find easily that FZ?;F;*CLJ'—I =

1

Aj+1—05-1 No o :
PFg o as maps from D Ao, to D Ao %i-17, by checking carefully the dependence of the
essential Frobenii on the signatures. Now, if j is odd, then

NO __ 1O . )
DAJ,% = DB,U*% for £ = a;j;1 and a;_1.
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aj+1-aj-1 Ao _ P : aj+1=a5-1 o —
Hence, one gets F’ (DA’U,QH%) = pDAyg,aj_lﬁ, since Fp' (DBJ%H%) =
Dj’B —aj_1- If j is even, then
oML

NO _ o —1lpmi+1-£/ Jo0 . .
Dotz =0 Frpoo (Jj—m—1z) for L=a;11 and a;;.

. Aj4+1—05—1 /4 o ~NO
It is also clear that F’ ;" ™ (Dz,a’“jﬂﬁ) =P ajoiz
If 7; = #(T, N C;) is even, all conditions can be proved in exactly the same way, except
replacing Fer '™ (2,12 ) by Fi(FB(DY s,
last Hasse invariant A —a,, - (A) needs a small modification. In fact, we have

)) and the proof of the vanishing of the

150

B 7579,0_% for a,, <€ <m;+1,
A,o—t7 — <
~

p_ngfge(FB(ﬁ%,g*mrlﬁ)) for a,,—1 <4 < ay,.

Note that the number n_-a,,  defined in §4.4 is equal to m; +1—a;,, and the essential Frobenius

Fpes:D°

A,O'_ari 7:7;

— ﬁ: R is simply F4. We have

mi+1l—ar, ~o . mi+2—ar, ,~o B =~
FAFA,es ' (DA,U*W*I%Z-) - FA ' (DA,o*mz'*lﬁ) - pDA,U*“rﬁlﬁ'

This verifies the vanishing of h_

—ar; = (A).
’LTZ ~ -
(2) Assume that p is a prime of Case a2. We write Hy, = Hy @ Hg and Dy - C Dj - as
before. We have

piDy - T EA(T),

N A N “Ipe, . if e A(T),
Doz =14p(Dy )V if7€A(T)], and Dg;= b Phyz ,( v
’ e P> horwi /v ’ Dg, - otherwise.

B otherwise, ’

The same argument as in (1) allows us to check conditions (i), (iv), and (v). )

(3) Assume now that p is prime of Case 42 in §5.1. For each 7 € Xp oy, let Ap 7 : Dy :—
Dj’Bv’ - be the map induced by the polarization Ag. By condition (b3) of Theorem 3.14, its cokernel
has dimension 1 over k. When viewing f)OBVﬁ' as a lattice of 25%7%[1 /p] via A]_g}*7%, we have

O K
’ ’ Dy ;  otherwise.

The same argument as in (1) allows us to check conditions (i), (iv), and (v). This then concludes
the proof of Step 1.
Step II: Let y = (A, 14, A4, g, B, LB A, Bry, C, Lo oA, dB) € Y{ be a closed point with values
in k =F,, and z = mu(y) = (B,LB,)\B,BK;,JO) € Z;. We prove that 72 : Y] — Z; induces a
bijection of tangent spaces 72,y : Tyy ,, = Tz .. We follow the same strategy as in Lemma 5.20.
Set T = Spec(kle]/e?). The tangent space Ty;.. is identified with the set of deformations 2 =
(B1,tB1, AB 1, By 1, J7 ) € Z1 (1) of 2, where Jp is the collection of subbundles Jy - C H®(B/I)2 =
H{'s(B/ k)j 7 for each 7 € It. We have to show that every point 21 lifts uniquely to a deformation
y1 = (Ar tay, Ay, akr 1, Br tgys Ay, By Ot toys @4y, 6,) € Yr(I) with n(yn) = 1.
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We start with Cp and ¢p,. For 7 € ¥ , denote by
O - HER(BIR)E - — H™(C/R)E

the natural morphism induced by ¢p and by gi)%R* = the analogous map between the de Rham
homology H{®. The crystalline nature of H{'™® implies that gb%“i = = ¢R B Orklel/ €2. To construct
Cr and ¢p, it suffices to specify, for each 7 € ¥ o, a subbundle wg, ;- C H cris(C/ k)]cf% which

lifts WCV,% and satisfies
gb%ji,T(va 2) Cwev 7 (5.23.1)

We distinguish a few cases.

(i) If neither 7 nor o7 belongs to A(T)™, both ¢%s . and ¢$ . are isomorphisms. Tt follows
that ¢B . 7(Whv z) = wiv ;. Hence, we have to take wgw j - = ¢CBr,ii,%(W%HV,;)'

(ii) If both 7,07 € A(T)*, then 7 = 7|p € S,y by Lemma 5.14. A simple dimension count
similar to Lemma 5.19 implies that dimy(wgy -) = dimg(w3y z) € {0,2}. We take wgw -

to be 0 or H{''S(C/ k)] > correspondingly, and (5.23.1) trivially holds.

cris o

(iii) If 7 € Ir, the property of the morphism 7 forces wov 17 = B,*,?(JBH,%)'

(iv) For all other 7, 7|p must belong to T. Let m be the number associated to 7 as in
Lemma 5.13. By the vanishing of the partial Hasse invariant on A at 7, we have w¢y - =
FCeS(HdR(C/k) —nz). We take

Wi 17 = Fo s (H™(CP) [R)E 7).

This is not a forced choice now, but it will become one when we have constructed the lift
Ar and require Ay to have vanishing partial Hasse invariant.

Since Fj . : chris(B(pn)/k)]‘fi — HfriS(B/k)]"fj is an isomorphism, we conclude that (5.23.1)
holds for 7.

We now construct Ay and the isogeny ¢4, : A1 — C1. As usual, we have to specify, for each
T € X0, a subbundle wjy ;- C HC“S(A/k)]‘i% that lifts wQ, - and satisfies (ﬁ'j”iT(wAv 17) C
WCV,JL? Let p € ¥ be the prime such that 7 € Xg /-

— If neither 7 nor o7 belongs to A(T)Jr, then ¢f14 - and hence ¢C“S - is an isomorphism. We

are forced to take wiy - = ( CArf§7;)_1(wgv7H7%). In particular, if 7 € It, we have Wav s =

(655 2) 7 0B 2 (TB7)-

— In all other cases, we must have 7 € X/, for p not of type 52 or (. Then we have to
take wfﬁlv,w to be the orthogonal complement of w2v7wc (which is already defined in the
previous case) under the perfect pairing

() dans HIS(A/R)] 2 x HY™™(A/K)] 7o — Kle] /¢

induced by the polarization A4. It is clear that wQy  » is a lift of w$y ~. It remains to show
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that qﬁfjli Awiv I T) C wew g5+ We consider the following commutative diagram:

H{"™™(A/k);z < H{™(A/K)f 2o

d)cris N ~
Ak, T =

cris
A,*, 7€

HS(O/k)g,  x HE™(C/R)G x

~ cris
= B,*,T

cris
B,*,7C

<7>>‘A ]I

<’>>‘B

(5.23.2)

H{™S(B/k)y > x  H{S(B/k)p e — 1

where both duality pairings are perfect. By our choice of 7, we have 7,07 ¢ A(T)” and
7¢,07¢ ¢ A(T)™; so both ¢4 - and ¢F% - in (5.23.2) are isomorphisms and they induce
isomorphisms on the reduced differentials. Using the diagram (5.23.2) of perfect duality, the
inclusion ¢f4“i #(Wiviz) © wev s is equivalent to the inclusion ¢FY -c(whyze) C Wiy ze,

which was already Checke?i.

By construction, the 7-partial Hasse invariant of Ay vanishes if 7 € A(T)~ and 7| € T. The
duality guarantees the vanishing of Hasse invariants at their conjugate places. This condition
conversely forces the uniqueness of our choice of Cp and Ap, as indicated earlier. From the
construction, wjy y = @?EZE,OO wjv 17 18 isotropic under the pairing on H ris(A/k)s induced by
A4. This concludes checking condition (1) of §5.15.

The lift of the level structure akj is automatic for the tame part, and can be done in a
unique way as in the proof of Theorem 3.14.

It then remains to check that ¢4, and ¢p, satisfy conditions (iv) and (v) of §5.15. For
condition (v), it is obvious except when 7 € A(T)~, in which case

Im( CBrfif) Im(¢B +7) @l and Gﬁrli AIm(Fgg 4,7) = ¢A v (Im(Fg 4 7)) @ L

where n > 1 is the number determined in Lemma 5.13. So, condition (v) for the lift follows from
that for ¢4 : A — C. (Note that n > 1 implies that the image of the essential image is determined
by the reduction.) Exactly the same argument proves condition (iv).

This concludes Step II of the proof of Proposition 5.23. O

5.24 End of proof of Theorem 5.8
Statement (1) of Theorem 5.8 follows from Propositions 5.17 and 5.23. Statements (2) and (3)
are clear from the proof of (1). It remains to prove statement (4), namely the compatibility of
the twisted partial Frobenius. We use X pe YS’ r» and Zg _ to denote the original X7, Y7, and Z7
in §5.15 to indicate their dependence on S. We will define a twisted partial Frobenius

Blog: Yy — Y,

2S 0'2T
compatible via n; with the S’ s on Shg(G%)g, defined in §3.22. For an S-valued point = (A,
LA, )\A7 QKr, B LB, )\B7 /8p7 C LCv ¢A7 d)B) of YS/,T7
Spe (@) = (A e, A, e, B'oupr, Ay, B, Cvers ¢, o)

is given as follows. Here, for G = A, B,C, we put G' = (G/Kerg 2) ®0, p, where Kerg 2 is
the p-component of the p?-Frobenius of G. The induced structures (tar, Aar, rstpr, Aprs By)

its image
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are defined in the same way as in §3.22. The isogenies ¢4 : A’ — C' and ¢p : B' — C' are
constructed from ¢4 and ¢p by the functoriality of the p>-Frobenius. We have to prove that
the induced map on de Rham homologies ¢4 . 7 and ¢p , 7 satisfies the required conditions in
(v) and (vi) of §5.15. If 7 € ¥ o/ with p’ # p, this is clear, because the p-divisible groups
G'[p'*°] are canonically identified with G[p'*>] for G = A, B, C. Now consider the case p’ = p. As
in the proof of Lemma 4.12, for G = A, B, C, the p-divisible group G'[p*°] is isomorphic to the
base change of G[p™] via the p?-Frobenius on S. One thus deduces isomorphisms of de Rham
homology groups

H{R(G'/8)2 = (HIR(G/S)s-25) P, (5.24.1)

which are compatible with F' and V' as 7 € Yg o/, varies, and compatible with ¢4/, 7 and

¢p x5 by functoriality. Hence, the required properties on ¢4/, 7 and ¢p . 7 follow from those
on ¢4 4,27 and ¢, ;2. This finishes the construction of S;z on Yél'r‘ Via the isomorphism

My : YélT 5 Zé 7 proved in Proposition 5.23, 3;2 g induces a map 8’;2 g Zé ™ A Let 2 =

028,02T"
p=¥p
(B,tB, A\B, B, J°) be an S-valued point of Zé ; as described in Proposition 5.22. Then its image

Sl (Z) is given by (BlaLB’v)‘B’aB}anO’/) € Z,2

p2,8 058,021’ N
§3.22, and J°' is the collefztion of line bundles J2' C H{R(B'/S)2 for each 7 € Upes, O'g(ITp/)
given as follows. For 7 € Ir, with p’ # p, we have J2' = J2 since H{®(B'/S)2 is canonically
identified with H{®(B/S)2. For 7 € ag(pr), we have J2' = (Jg_z%)(pQ), which makes sense thanks
to the isomorphism (5.24.1) for G = B’. After identifying Shy(Gg)k,r = X5 with Zg , the
projection 7y : Zé;r — Shfq(Gé(T))ko is given by (B, g, A, Bk, J°) = (B,tB,AB, Bry)- 1t is

where (B',1p/, Ap, B),) are defined as in
T

clear that we have the following commutative diagram:

2

p2.8
S,T 1 p2,8(T 028,02T 1% 028,02T
gre (T) p=:9p 02 5(T) pe:9p
T 2
opT
TrT i ’ l
p2,5(T)

ShK{ (G,g(T))ko - ShK;(G;g(g(T)))ko
where €' is given by (B, B, AB, Br1y J°) = (BB, AB, By, Jo') with J°' defined above. This
proves statement (4) immediately.

6. Ampleness of modular line bundles

In this section, we suppose that F' # Q. We will apply Theorem 5.8 to prove some necessary
conditions for the ampleness of certain modular line bundles on quaternionic/unitary Shimura
varieties. In this section, let X’ = Sh K/(G’é) k, be a unitary Shimura variety over ko considered
in §4.1. This is a smooth and quasi-projective variety over kg, and projective if S, # @. Let
(A’,1, A\, ak) be the universal abelian scheme over X'. For each 7 € X o, the Ox/-module
W?&/V/X/,% is locally free of rank 2 — s;z. It is a line bundle if 7|r belongs to Yo, — Scc.

6.1 Rational Picard group
For a variety Y over kg, we write Pic(Y)q for Pic(Y) ®z Q. For a line bundle £ on Y, we denote
by [£] its class in Pic(Y)q.

2197

https://doi.org/10.1112/50010437X16007326 Published online by Cambridge University Press


https://doi.org/10.1112/S0010437X16007326

Y. TiaN AND L. X1A0
LEMMA 6.2. (1) For any 7 € ¥  lifting a place T € ¥o, — Soo, we have equalities

[WZ/V/X/,%] = [W,OA'V/X',%c] = [Wi//){',f] = [WZ’/X’,%C]'

(2) For any T € ¥ o, we have [/\%QX/HfR(A’/X’)g] =0.

(3) Let X™ denote the minimal compactification of X' (which is just X' if Soc # ¥). Then the
natural morphism j : Pic(X"™) — Pic(X') is injective. Moreover, for each T € X o lifting
a place T € Yoo — Sco, [MZ’V/X’,%] belongs to the image of jg : Pic(X"*)g — Pic(X')q.

Proof. (1) Suppose that 7 € ¥/, — S, for p € %y Clearly, p is not of type of or B The
equality [w v X = = [wi I -] follows from the isomorphism wg Jx17 = War xo ze thanks to
the polarization A on A’. To prove the equality [w} X = = [win I -c], we consider the partial

Hasse invariants hz € F(X ! (Wi /X J,HT%)@"”T ® wx%(/}l/)%), and hzc defined similarly with 7

replaced by 7¢. By Lemma 4.5 and Proposition 4.7, the vanishing of hz and hze defines the same
divisor: X C X'. Hence, for each 7 € ¥  lifting some 7 € ¥/, — S /p, We have an equality

pnT [WX/\//le.—an-] - [W_Z/V/X/ﬂ’:] = pnT [WOA/\//X/J—nT.;c] - [wZ/V/X/7,'T'-C:|~ (621)

Let C be the square matrix with coefficients in Q, whose rows and columns are labeled by those
places 7 € ¥ « lifting a place 7 € X/, — Ss/p, and whose (71, T2)-entry is

1 i =T,
CF = pnT? if 71 =07 "27y,

0 otherwise.

One checks easily that C is invertible and hence it follows from (6.2.1) that [w} /X = =
o 17k

(2) Assume first that 7 € X  lifts some 7 € X/, — Soo. From the Hodge filtration 0 —
War 7 = HR(A’/X")2 — Lie(A’/X")2 — 0, one deduces that

(NG HI (A X")Z] = (Wi xr 5] + [Lie(A'/X")3].

Then statement (2) follows from (1) and the fact that [Lie(A’/X")2] = —lwarx 2 =
—[win /X %C] Consider now the case when 7 € Y o, lifts some 7 € S<>O /p for a place p of type e

or 3. Then there is an integer m > 1 such that ™7 € Yoo —Soo and 0’7 € Sy forall 0 < i <m—1
and we have a sequence of isomorphisms

m) FA/,cs mfl) FA/ es FA’ es
~

dR(A//X/);:(P dR(A//X/)Z,%(p %v . g’ HdR(A//X/)

omT:
From this, one gets

m[a2 dR/ A/ Ol __ A2 dR/ A/ /

P [No Hi " (A/X)Z] = [No HiT (AT X )gmz] = 0.

Finally, if 7 € ¥p o, for a place p of type af or % and if m is the inertia degree of p over
p, then the sequence of isomorphisms

Q'm—l) FA/ es FA ,es

HdR(A’/X’) ? . HdR(A//X’)

o, 2m FA ,es
H?R(A//X/)%(P ™)

o2mF
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gives rise to an equality

PPN HEH (A /XD = (NG, HYM (A X ) gamz] = NG, HIM (A X))
as 0?™F = 7. This forces [/\%)X,HfR(A'/X’)g] =0.

(3) If X’ is a Shimura curve, then X"* = X’ as F' # Q. Assume now that X’ has dimension
at least 2. The injectivity of j : Pic(X"*) — Pic(X’) follows from the facts that X’* is normal
[Lan13, Proposition 7.2.4.3] and that the complement X’* — X’ has codimension > 2. Recall from
(1) that the partial Hasse invariant defines the class as described in (6.2.1). Note that the inverse
matrix of C' has all entries positive. It follows that each [w} / X’,%o] for 7y lifting 79 € Yoo — So 18
a positive linear combination of the Ox/(X7). Let X7 =) . ¢ X/ C X' be the union
of the Goren—Oort strata of codimension 1. Since X™~°' is closed in X”* and is disjoint from
the cusps, each line bundle Ox/(X”) extends to a line bundle Ox~(X”). By linear combination,
each [wf&,v/X,’%O] extends to a class in Pic(X"™)q. O

Notation 6.3. For any 7 € Yo, — Soo, We put [wy] = [WZ’/X’ -] for simplicity, where 7 is a lift of 7.
This is a well-defined element in Pic(X"*)g by Lemma 6.2.

PROPOSITION 6.4. Let p be a p-adic place such that # (3w /p — Sacsp) > 1. When T consists of a
single element T € ¥/, with p not of type 52, let n; =nrs be as in §4.4. Let Nx; (X') denote
the normal bundle of the embedding Xy < X'. Then the equality [Nx;(X')] = [O(-2p"")]
holds in Pic(X4)q, where O(1) is the canonical quotient bundle of the P'-bundle , : X3 =

Shx/ (Gg)ker — ShK/(Gé(T))kO and O(—2p"") is the dual of O(1)®2P"",

Proof. By the construction in §5.22, the set It = {o~"77} for a specific lift 7 of 7. We have
-1
J;—nrf- = ¢B7*’U—n77- © d’A,*,a—nT%(wiv,g—nri—)

in terms of the moduli description of Y & Xy. So, the restriction of [wy—n,,| to X7 is [O(—1)].
The Goren—Oort stratum Xy is defined as the zero locus of

., 0 o RpnT
h{— : wA’V/X’ﬁ' — (O‘)A’V/X’,o'*”‘rf-) P .

So, firstly, the class of Nx/(X') in Pic(X7)q is given by the restriction of p""[wy—n.,] — [w-] to
X7 and, secondly, on X; we have an isomorphism

wZ’V/X’,i- = H?R(A’/X/);’(p T)/(WR’V/X/,(;*TLT%)@ZMT.

This implies that [w;] equals —p"" [w,—»-,] in Pic(X7)qg.
To sum up, we have equalities in Pic(X7)q:
[NX-f (X/)] = pnT [wa*"ﬂ'} - [wT]
= 2p"" [Wy—nr .| = [O(—2p"7)]. O

THEOREM 6.5. Let t = (t;) € Q¥>~~5<_ If the element [w!] = >
ample, then

res. s, trlwr] of Pic(X')q is

Pty > ty—n.r (andt; >0) for all T. (6.5.1)

Here we put the second condition in parentheses, because it follows from the first one.
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Proof. Assume that [w!] is ample. Let 7 € Yoo — Soo and p € ¥, be the prime of F such that
T € Yo /p- We distinguish two cases.

— Yoo/p — Soosp = {7} Condition (6.5.1) for 7 is simply ¢, > 0. We consider the GO-stratum
X1 with T; = X — (SaoU{7}). Then X7 _ is isomorphic to a Shimura curve by Theorem 5.8
and we let i, : X;_— X' denote the canonical embedding. For any 7/ € ¥ o — Sp oo with
restriction 7/ = 7'|p # 7, let

st HIRA®) XY, — HIR(A/X)S, (6.5.2)

Jes, 7/
be the n,th iteration of the essential Frobenius in §4.4. We always have Ker(FZT'es =) =
(wZIV/X/J,nT,%/)(p ™). The vanishing of hz on X4 is equivalent to
n_s o
Im(FA’,es,?’)|Xf_r = (WZ’V/X’,%/)‘XT’T-
Therefore, one deduces an equality in Pic(Xz_)q:

P83 W]+ i3] = 0.

Letting 7" run through the set Y /q — Soo/q With q # p, one obtains that i}[w./] = 0.
Therefore, we have if[w!] = tri}[w;], which is ample on X{ since so is [w!] on X7 by
assumption. By the ampleness of det(w) = ®%/62Em wasz on X' and hence on Xg_, we
see that i} [w,] is ample on X7 . Tt follows that ¢, > 0.

~ Yoo/p = Socsp # {7} Consider the GO-stratum X given by T = {7}; then S(T) = SU {,
o " 7} in the notation of §5.1. By Propositions 5.17 and 5.23, X is isomorphic to a

P!-bundle over Shy (G/g(T))ko- Let 7: X, — Sh;g(G’g(T))ko denote the natural projection.

The ampleness of [w!] on X’ implies the ampleness of its restriction to each closed fiber P!
of 7. By the proof of Proposition 6.4, we have

Opi(—1) if 7' =o07""r,
wan xrzlpr = Opr(p") i 7' =7,
Op: otherwise.

The relation (6.5.1) follows immediately. O

Since the Hilbert modular varieties and the unitary Shimura varieties have the same neutral
geometric connected components, the following is an immediate corollary of Theorem 6.5.

COROLLARY 6.6. Let X denote the special fiber of the Hilbert modular variety and X* its
minimal compactification. Then, for each T € Yo, the class [w;] € Pic(X)q uniquely extends
to a class [w;] € Pic(X*)q. Moreover, [w] = Y v t-|w,] is ample only when t, > 0 and
pty >t -1, forall T € Y.

For the converse to Theorem 6.5, we have the following conjecture.

CONJECTURE 6.7. The conditions in Theorem 6.5 and Corollary 6.6 are also sufficient for [w!]
to be ample.

Remark 6.8. In the case of a Hilbert modular surface, Corollary 6.6 and the sufficiency of the
condition were proved by Andreatta and Goren [AG04, Theorem 8.1.1], and relies heavily on
some intersection theory on surfaces. It seems difficult to generalize their method.

Using our global geometric description, it seems possible to prove, for small inertia degrees
(at least when all inertia degrees are <5), Conjecture 6.7 using variants of the Nakai-Moishezon
criterion. The combinatorics becomes complicated when the inertia degree is large.
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7. Link morphisms

We will introduce certain generalizations of the partial Frobenius morphisms, called the link
morphisms, on unitary Shimura varieties associated to quaternionic ones. These morphisms
appear naturally when considering the restriction of the projection maps wr in Theorem 5.8
to other Goren—Oort strata. The explicit descriptions of these morphisms are essential for the
application considered in the forthcoming paper [TX14]. For simplicity, we will assume that p is
inert of degree g in the totally real field F. Denote by p the unique prime of F' above p. Let F
be a CM extension of F. If p splits in F, fix a prime q of F above p and denote the other prime
by q; if p is inert in E, we denote by q the unique prime of E above p.

7.1 Links
We introduce some combinatorial objects. Let n > 1 be an integer. Put n points aligned equi-
distantly on a horizontal section of a vertical cylinder. We label the n points by the elements of
Z/nZ so that the (i + 1)st point is next to the ith point on the right. Let S be a subset of the n
points above. To such an S, we associate a graph as follows: we start left to right with the plot
labeled 0 € Z/nZ and draw a plus sign if the element is in S and a node if it is in Z/nZ — S.
We call such a picture a band of length n associated to S. For instance, if n =5 and S = {1, 3},
then the band is e + e + e.

Let S’ be another subset of Z/nZ of the same cardinality as S. Then a link n: S — S’ is
a graph of the following kind: put the band attached to S on the top of the band for S’ in the
same cylinder; draw non-intersecting curves from each of the nodes from the top band to a node
on the bottom band. We say that a curving is turning to the left (respectively to the right) if
it is moving from the top band to the bottom band. If a curve travels m-numbers of points (of
both plus signs and nodes) to the right (respectively left), we say that the displacement of this
curve is m (respectively —m). When both S and S’ are equal to Z/nZ (so that there are no
nodes at all), then we say that n: S — S’ is the trivial link. We define the total displacement
of a link 7 as the sum of the displacements of all curves in 7. For example, if n =5, S = {1, 3},

and S" = {1,4}, then
+ Q
n:%ﬂ (7.1.1)

is a link from S to S, and its total displacement is v(n) =3+ 3+ 3 = 9.

For a link  : S — S’, we denote by n~! : §’ — S the link obtained by flipping the picture
about the equator of the cylinder. For two links  : S — S" and 7' : 8" — S”, we define the
composition of o : S — S” by putting the picture of 1 on top of the picture of ’ and identify
the nodes corresponding to 1. It is obvious that v(n~1) = —v(n) and v(y’' o n) = v(1') + v(n).

7.2 Links for a subset of places of F or FE
We return to the setup of Notation 1.12 and recall that p is inert in F. We fix an isomorphism
Yoo 2 Z/gZ, so that i — i + 1 corresponds to the action of Frobenius on ¥n.

For an even subset S of places in F', we have the band for S when applying § 7.1 to the subset
Seo Of Y. Let S’ be another even subset of places of F' such that #S., = #S., and S’ contains
the same finite places of F' as S does. A link 1 from the band for S to that for S’ is denoted by
n:8— 8. When 8’ =8 and Soo = X0, 7: S — ' is necessarily the trivial link (so that there
are no curves at all).

The Frobenius action on ¥, defines a link o : S — o(S), in which all curves turn to the right
with displacement 1; the total displacement of this link o is v(0) = g — #S~. Here o(S) denotes
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the subset of places of F' whose finite part is the same as S and whose infinite part is the image
of Frobenius on S..

Notation 7.3. Recall the definition of n, for 7 € ¥, — S from Notation 4.3. For simplicity,
we write 77 for 07" 7 and we use 7" to denote the unique place in Yo — Ss such that 7 =
(77)” = o "+ 7F. When there are several S involved, we will write n,(S) for n, to emphasize
its dependence on S.

7.4 Link morphisms
Let n: S — S’ be a link of two even subsets of places of F. If Sy, # Yo, we denote by m(7) the
displacement of the curve at 7 in the link 7 for each 7 € ¥, — Soo, and put m(7) = 0 for 7 € S.

Let Sh K/(Gé) ko and ShK/(G’é,) &, denote the special fibers of some unitary Shimura varieties
of type considered in §3.7. (There is no restriction on the signatures, i.e. the sets S, and
S/ that lift S, and S/_; but we fix them.) Here we have fixed (compatible) isomorphisms
Op = Ops = Op,, = Max2(Op) and G’g(AOO) = Gé,(AOO), and regard K’ as an open compact
subgroup of both of the groups; this is possible because S and S’ have the same finite part, and
the argument in Lemma 5.4 applies verbatim in this situation. Note that Kzlv is assumed to be
hyperspecial as in §3.7. Let A'§k0 be the universal abelian scheme over ShK/(Gé) ko~ For a point
z of Shg(G%)k, with values in a perfect field k(z), we denote by A{iw the base change of A% to
x, and @(Aé ,)° the reduced part of the covariant Dieudonné module of Aéw (cf. §4.1 and the
proof of Lem’ma 5.18). For each 7 € ¥ oo — SE 00, We have the essential Frobenius map defined
in Notation 4.2:

o~ 17 T

Fares : D(AY )55 — D(A] )2,

Finally, recall that a p-quasi-isogeny of abelian varieties means a quasi-isogeny of the form
fiofy ! where f; and f» are isogenies of p-power order. The degree of the quasi-isogeny is

deg f1/deg fo.

DEFINITION 7.5. Assume that m(7) > 0 for each 7 € X, i.e. all curves (if any) in n are either
straight lines or all turning to the right. Let n be an integer. If p is inert in E, we assume that
n = 0. A link morphism of indentation degree n associated to n on Shy(Gg)x, (if it exists) is a
morphism of varieties

nEn)Ji : ShK’(G/g)ko —> ShK’(G,g/)ko
together with a p-quasi-isogeny of abelian varieties
S I /
My * Ao = M) 4 (A p )
such that the following conditions are satisfied:
(1) nén) f induces a bijection on geometric points;

(2) the quasi-isogeny '’

(n)
polarizations on both abelian varieties;

is compatible with the actions of Op, level structures, and the

3) there exists, for each T € ¥ g oo — SE o0, Some tz € Z, such that, for every F,-point = of
b b p
Shg (G§)k, with image 2’ = nén) 4(2),

My (FLR) (D(AE,)2) = P DIAY, ) mir

where 7 € Y is the image of 7;
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(4) the quasi-isogeny of the g-divisible group

Ui 1% /

Nn),q ° AS 1o [0%] = 1 A g 0

]
has degree p?". Here our convention for q is as at the beginning of this section. In particular,

if p splits in E, then the quasi-isogeny on the g°°-divisible groups

/ /% / —oo]

. ! Aa
My * Aol 0 = M) 1A 1
has necessarily degree p~2". Here the exponent 2n is due to the fact that A;CD [q°°] is two

copies of its reduced part Aj [q*]°.

Let n; : S — S;41 for ¢ = 1,2 be two links with all curves turning to the right, and let
(77 4> ngﬁ) for i = 1,2 be a link morphism of indentation degree n; on Sh, (G )k, attached to 7;.

The composition of (5, nlgﬁ) with (77’17ﬁ,77/1ﬁ) defined by

e a4

Moy : ShKl’o(Gél)ko — ShK;,(Gé2)k0 — ShK{,<G/g3)k0
and
/ﬁ . A_, 77/1’i I / ﬂllfu(néﬁ) 1% A/
2 Bg ke Mg §2,k0) ——— Mg ( 53,%)

is a link morphism attached to the composed link 712 := 12 0 1 with indentation degree nj + ns.

7.6 Variants
The formulation of link morphisms on ShK/(G’g)ko is compatible with changing the tame level
K'P. By taking the inverse limit of K7, one can define a link morphism on Sh K;,(G/g)ko associated
to 1 in the obvious way.
One can define similarly a link morphism of indentation degree n on Sh K;)/(G’g’ ko &S a pair
/! /!

(n(n)’u, n(n),ﬁ), where
My * Shicy (Gg)ry = Shiy (GG kg

is a morphism of varieties and

I N e "
Tin) * Asko = M 4 (Ag k)

is a p-quasi-isogeny of abelian schemes such that the same conditions (1)—(4) in Definition 7.5 are

satisfied (except the primes are replaced by double primes). Here A’g’ ko is the family of abelian
varieties constructed in § 3.20.

Example 7.7. (1) Consider the second iteration of the Frobenius link o2 = og :S — 02(S). The
twisted (partial) Frobenius map (3.22.3)

She : Shigr (G, — Shi/ (G ag)k,

together with the isogeny 77;’)2 defined in (3.22.4) is a link morphism associated to o?; the
indentation degree is 0 if p is inert in F/F, and is 2#§’00/ﬁ - 2#§oo/q if p splits in E/F.

(2) Assume that S = Yoo and p ¢ S (so that p splits in E by our choice of E). The
Shimura variety ShK/(Gé)kO is just a finite union of closed points. Let 79 € Yo and 7y € Soo
be the lift of 7y with signature sz, = 0. We assume that 0 17 ¢ S (so that o717 € Su).
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Let S’ denote the subset of places of F' containing the same finite places as S and such that
S = Seo U{7S, 0 170 1\ {70, 0 717E}. Let S’ be the subset of places of F' defined by the restriction
of 8. Then there exists a link morphism ( o7 5% from Shg/(G§)k, to Shy/ (G, )k, associated
to the trivial link S — S’ defined as follows; its indentation is 0 if p is inert in E/F, is 2 if p
splits in E/F and 7 induces the p-adic place g, and is —2 if p splits in F/F and 7 induces the
p-adic place q.

It suffices to define ¢’ , on the geometric closed points, as both Shimura varieties are
zero dimensional. For each Fy-point x = (4,1, A4, /) € ShK/(G’g)(Fp), let 25104’; denote the
7-component of the reduced covariant Dieudonné module of A for each 7 € ¥g . We put

2= 152’; for 7 # 79, 7§ and

~ 1~ ~ 1
Mze = pDj ze, Mz = ];Di;,%o € Das, [p]

It is straightforward to check that the signature condition implies that the M; are stable under
the actions of Frobenius and Verschiebung of 15%’;0 [1/p]. As in the proof of Proposition 5.17, this
gives rise to an abelian variety B of dimension 4¢ with an action of Op and an O p-quasi-isogeny
¢ : B — A such that the induced morphism on Dieudonné modules ¢, : ﬁ%i — 751047%[1 /p] is
identified with the natural inclusion M2 <> DS -[1/p] for all 7 € ¥ . The polarization A4
induces naturally a polarization Ag on B such that A B = @Y o Ag 0 ¢, since M? is the dual
lattice of Mz, for every 7 € X g o. When p is of type ag, then Kzl) is the Iwahoric subgroup and
the level structure at p is equivalent to the data of a collection of submodules LS C 1521 = for
T € X 00/q Which are stable under the action of Frobenius and Verschiebung morphismé and
such that 151047% /L2 is a one-dimensional vector space over I, for each 7. This then gives rise to a
level structure at p for B, by taking LY = L2 if T # 7o and LY = p_lLio. It is clear that other
level structures of A transfer to those of B automatically. This then defines a morphism
! . ShK’(G/g)k‘o — ShK’(G/g/)kO-

TO?ﬁ :

One checks easily that one can reverse the construction to recover A from B. So, 5/7011 is an
isomorphism and there exists a p-quasi-isogeny
"o oAl / * A
57’0 : Ag,ko g ( TD»ﬂ) Aé',k‘o’
whose base change to = is ¢~ : A — B constructed above. It is evident by construction that
(¢ (5/7%) is a link morphism of the prescribed indentation associated to the trivial link S — §’.

TOyﬁ’

The following proposition will play a crucial role in our application in [TX14].

PROPOSITION 7.8. For a given link n : S — §' with all curves (if any) turning to the right and
an integer n € 7 (with n = 0 if p is inert in F), there exists at most one link morphism of
indentation degree n from Shg, (Gg)k, to Shyy (G )k, (or from Shycy(GZ)k, to Shyr (G )k,)
associated to n.

Proof. Since Shg; (G%)x, and Shgy(Gg), have a canonically isomorphic neutral connected

component (and the restrictions of Ag ko and AY g, tO this neutral connected component are

also canonically isomorphic), it suffices to treat the case of Shy (G§)k,- Let (1] ;, ngﬁ) fori=1,2
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be two link morphisms of indentation degree n associated to 7. By the moduli property of
Sh K};(G’é,) ko, it suffices to show that the p-quasi-isogeny of abelian varieties

' (AL 77l1u A/ néﬁ (A
¢ nry( §’,k0) T Ai g Mg ( é',ko)
is an isomorphism. By [RZ96, Proposition 2.9], the locus where ¢ is an isomorphism is a closed
subscheme of Sh K’(G/g)ko- As Shg;, (G’g) ko is a reduced variety, ¢ is an isomorphism if and only

if it is so after base changing to every F,-point of Sh K;}(G’é) ko -
Let  be an F,-point of Shy(Gg)k, and put z; = n;y(z) for i = 1,2. Consider first the case
Soo # Yoo+ By condition 7.5(3), there exists an integer uz for each 7 € X o /g — S 00/ such that

¢ux(D(Ag ,,)2) = p""D(Ag ,,)%.
We claim that wz must be 0 for all 7. Note that the cokernel of
F'r : ﬁ(A§/7xi)o - —> ﬁ(Aé/’xi)o

~ —nr T
es,Ag . o T

has dimension 1 over k(z;) for i = 1,2. Since ¢, . commutes with Fl", we see that uz = tuy—n:z.

Consequently, for all 7 € X o, /q, u7 takes the same value, which we denote by u. However, both

77/1’{q and 173{q have degree p?" by condition 7.5(4). It follows that

boa 1Al )] = niy (AL )]
is a quasi-isogeny of degree 0, which forces u to be 0. Hence, ¢, is an isomorphism.
When S, = Yo, we have similarly an integer uz for all 7 € X g o, such that ¢, (D(Aglwl)?) =
P""D(Ag 4,)

$. Since Shg (G%), and Shg(GY, ), are both zero dimensional and

Fesay, DAy a)e-17 > D(Ag o)z
is an isomorphism for all 7 € ¥ g o and ¢ = 1, 2, the commutativity of ¢, with essential Frobenii
shows that uz = u,—1;. The same arguments as above show that ¢, is an isomorphism. O

Remark 7.9. This proposition does not guarantee the existence of the link morphism associated
to a given link. However, we do expect the link morphisms to exist in general (for links with all
curves turning to the right).

7.10 Link morphisms and Hecke operators
Assume that Soo = Yo, so that p is of type a or of and the band associated to S consists of only
plus signs. Let q and q be the two primes of E above p. We will focus on the compatibility of
link morphisms with the Hecke operators at ¢, whose definition we recall now.

We have the following description:

G3(Qp) = GLy(Fp) x F (Bq % ES) = GLa(E,) x F),

where the last isomorphism is given by (g, (A1, A2)) = (gA1,det(g)AiA2) for g € GLa(Fy),

M € Ef, and Ay € Eg. Then G§(Qp) is the subgroup GL2(Ey) x Q of GZ(Qp). Let 74

(respectively {;) be the element of G5(A) which is equal to

<<P(;1 p91> ,1> € GLa(Eq) x Q) (respectively <<p01 (1)> ’1) € GLy(Eg) x Q;)
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at p and is equal to 1 at other places. Assume that K’ C G5(A*) is hyperspecial at p, i.e. K, =
GL2(Og,) x Z,; . We use Sy and Ty to denote the Hecke correspondences on Shx(GY%) defined by
K'vqK'" and K'¢qK’, respectively. Explicitly, if Iwj, = Iwq x Z5 C G%(Qp) with Iwy € GL2(Op,)
the standard Iwahoric subgroup reducing to upper triangular matrices when modulo p, then the
Hecke correspondence Tj is given by the following diagram:

Sh ey (G)
> 22 (7.10.1)
Shyr(G}) Shy(G})

where pry is the natural projection and pry is induced by the right multiplication by &;. Note that
Sq is an automorphism of Shy/(G%) and there is a natural p-quasi-isogeny of universal abelian
schemes
(I)Sq : Alé — S; A/g

compatible with all structures such that the induced quasi-isogeny of p-divisible groups ®g, [q>°] :
AL[q>] — (S5A%)[9°] is the canonical isogeny with kernel A¢[q].

Similarly, the elements v and &; induce Hecke correspondences on ShKu(Gg), which we
denote still by S; and Tj, respectively.

PROPOSITION 7.11. Assume that Sy = Yoo. Let Soo and égo be two different choices of signatures
in § 3.4. Suppose that there exists a link morphism (1, n'*) from Shy/ (G%)k, to Shy (G )k, (of
some indentation) associated to the trivial link S — §', where K, = GL2(Opg,) x Z;; € G'(Q) is
hyperspecial. Then (n, 0’ lifts uniquely to a link morphism (775 10 nﬁv) on ShK/pr;(G’é)kO such
that the following commutative diagrams are Cartesian:

Shy (Gl )y <~ Shcon, (G5, 22 Shr (G, Shy (G4)ky — = Shgr (GL)k,
na [ na lna lng
r T S
Shycr (Gl kg <= Shyonrr (G ko ———= Shic (G )k, Shir (G, )k, — = Shir (G, )i,

where the top and the bottom lines of the left-hand diagram are the Hecke correspondences Ty
defined above. The same holds for the link morphism (771’1’, n'"%): ShKu(Gg)kO — ShK”<Gg/)ko-

Proof. Note that S is in fact an isomorphism of Shimura varieties; so the compatibility with
Sg-action follows from the uniqueness of the link morphism by Proposition 7.8.

We prove now the existence of the lift (ng Iw,niﬁw), whose uniqueness is proved in

Proposition 7.8. Let = (A, ¢, A\, axw) be a point of Shy/(G%)(Fp). Put 2’ = né(x) = (A, /N,
). By Definition 7.5(3), for any 7 € X o, there exists ¢tz € Z independent of x such that
77?(15317?) = pt+1~)§1/’%. Fix a 7y € ¥ o0/q- Giving a point y of Shypyy, (G%)k, with pry(y) =z is
equivalent to giving a W (F,)-submodule HZ CDj ; such that F, egs’ A(HZ) = HZ and Df - /HZ

is one dimensional over F,. We put H L= p~ o niﬂ(ﬁ%) - f?le/ s,- Then one sees easily that the

quotient DY, - /H % is one dimensional over F), and H 2 is fixed by F?

o es A" This gives rise to a point

1

w

y' of ShK/pIW;(G’g,)kO with pry(y') = z’. One thus defines 7,1, (y) = ¥/, and the quasi-isogeny 77{
as the pullback of 1 via pr;. It is clear by construction that né opr; =pr; o nt/i,IW'
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It remains to prove that 7; o pry = pry 077ﬁ - Let y = (A, 0, N, agem, H 2) € ShK/pIWp (GY)(Fyp)

be a point above x as above. We put Dqu =& DA% and we define DA similarly

TEXE
with q replaced by g. Then .FNI(;’ :z}/p@gz_ol eSA(HO) is a W(F,)-lattice of DAq[l/p] stable
under the action of F" and V. Let H7 = Hg’v - DAﬂ[l/p] denote the dual lattice of Hg under
the perfect pairing between DS ql1/p] and DY 4l1/p] induced by A. By the theory of Dieudonné
modules, there exists a unique abelian variety B equipped with Op-action tp together with an
Op-linear p-quasi-isogeny ¢: B — A such that gzﬁ*(DB) is identified with the lattice H ;D H °
of D%[1/p]. Note that B satisfies the signature condition of Shy(Gg)y,. Since H 2 and H o are
dual to each other, the quasi-isogeny A\g = ¢V o Ao ¢: B — B" is a prime-to-p polarlzatlon AB
on B. We equip moreover B with the K'P-level structure Bx» such that agmw = ¢ o Bxw. Thus,
z = (B,t, g, Bxw) gives rise to an F,-point of Shy (G%)k, and we have z = pry(y) by the
moduli interpretation of pry.

Let (B',tp/, Aprs Bn) denote the image 7;(z). Then 1573,7%0 is identified via (n})~! with the
lattice p_t*Of)%io of 15%7%0[1/]7] and hence with the lattice p~*0~!'H;, of 132770[1/19] By our
construction of y’ = ;1 (y), it is easy to see that, if pry(y') = (B",tp», Apr, Bw), then DB,, -
can be canonically identified with DO b7 as lattices of DY [1/p]. Since other components DS B

or DB” - for 7 € ¥ o are determined from DB' - and DB,, - by the same rules (i.e. stability
under the essential Frobenius and the duality), We see that B’ is canonically isomorphic to B”,
compatible with all structures. This concludes the proof of pr, o nélw = 77& 0 Pry. a

For the rest of this paper, we discuss two topics, whose proofs are nested together. One topic is
to understand the behavior of the description of the Goren—Qort strata under the link morphisms;
the other is to understand the restriction of the P'-bundle description of the Goren—QOort strata
to other Goren—Qort strata.

PROPOSITION 7.12. Let 7 € ¥ — S be a place such that 7~ # 7 and let w, : ShK/(G’g)kO,T —
ShK/(Gé(T)
defined by the vanishing of the partial Hasse invariant at 7. Let T be a subset of Yo, — S

containing T.

)k, be the Pl-bundle fibration given by Theorem 5.8 for the Goren—QOort stratum

(1) If 7+ ¢ T, then we put T, = T\{7,7~ } and we have a commutative diagram.
Shycr (GY) ko 1> Shycr (G ko r

l iﬂr (7.12.1)
ShK’ (G,é(q-))kofr‘r(—) ShK’(G/g(T))ko

If 7= € T, the left vertical arrow is an isomorphism. If 7~ ¢ T, this diagram is Cartesian.
(2) Ifr,7~ € Tand 7" # 7, then we put T, = T\{7,7~ }, and 7, induces a natural isomorphism

Tyt ShK’(G/g)kO,T — ShK/(G,é(T))ko,TT' (7.12.2)

Moreover, all descriptions above are compatible with the natural quasi-isogenies on universal
abelian varieties, and analogous results hold for ShKu(Gé’)kO.

Proof. The statements for Shy(Gg)k, follow from those analogs for Shy/(G%)k, by §2.12 (or
in this case more explicitly by §3.20). Thus, we will just prove the proposition for Sh K/(G’g)ko.
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(1) If 7+ ¢ T, the prime p must be of type al or $1. By the proof of Proposition 5.17,
the natural quasi-isogeny ¢ : W:(Aé(ﬂ,ko) — Alé,k0|ShK/(G§)k0,r induces an isomorphism on the

(reduced) differential forms at 7 for all 7 € $g  not lifting 7,07 17,...,07" 7 = 77. So, 7,

induces a Cartesian square

Shx/ (GY) ko 1,0(r} = Shrr (G ko -

ShK’(Gé(T))ko,TTC—> ShK/(G’g(T))kO
This already proves (1) in case 7~ ¢ T. Suppose now that 7= € T. By Proposition 5.23,
ShK’(G/g)ko,TTU{T} is the moduli space of tuples (B, tp, A, ’BK@ J2_), where:
— (B,tB;AB, BKy_) is a point of ShK/(Gfg(T))
— J2_ is a subbundle of H{®(B/S)2_ of rank one (here 7~ € X o is the specific lift of 7~
defined in §5.21).
Then the closed subscheme Shy/(G)k, 1 of Shi'(G§)py 1, u(r) is defined by the condition:

ko,T, With values in a scheme S over ko;

Jp = (IR,

This shows that the restriction of 77 : Shy/(G%)ry r,u(r} = Shi/(GE)ko.1, to Shir (G, 1 is an
isomorphism.

(2) When 77 ¢ T, this was proved in (1). Assume now that 77 € T. To complete the proof,
it suffices to prove that, for a kg-scheme S, the 7Fth partial Hasse invariant vanishes at an
S-point x = (A, 14, A4, axr) € Shgi(GY)p, (7} if and only if it vanishes at 7-(z) = (B, tp, Ap,
Br) € ShK/(G’é(T))kO. Let 7 be the lift of 7 contained in A(7)* (see §5.11 for the notation
A(r)1). Put 77 = 0™+ 7 and 7~ = 6~ 7. By Lemma 4.5, it suffices to show that

o+
Fyro (Hi™(A/S); 2 ) = WAV /5 7+

p T++”7«T+ —

,es

o FB’Te4;+nT+nT— (HdR(B/S) )) = “’JOSV/S,H' (7.12.3)

But this follows from the following three facts.

(a) By the definition of essential Frobenius in Notation 4.2, one deduces a commutative diagram.

Pt
HdR(A/S) (PTr)  TAes HdR(A/S)T+

¢>*,%l =~ ¢*’;+
n

+

T

FB,cs

[e] nT+ o
H{%(B/s)2w ™) H{%(B/S)2,

(b) It follows from condition (v) of the moduli description in §5.15 that

n__+nr o, (ptT T~
bur (HI(A))2) = Fir 7 (H{™(B/9)70. 7).
(c) The condition 7~ # 77 implies that the quasi-isogeny ¢ : A — B induces an isomorphism
¢+ H®(A/S)2, = H{®(B/S)2, preserving the Hodge filtrations, in particular
identifying the submodules ¢ 7(wy / S,%+) = why /57 O
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7.13 Compatibility of link morphisms and the description of Goren—Oort strata

We first recall that, although the subset S(7) is completely determined by S and 7 as in §5.1,
the lift S(7)co, which consists of all 7 € ¥ o, with signature sz = 0 (see §3.4), depends on an
auxiliary choice in §5.3: a lift 7 of 7 to be contained in S(7)o. We assume that #(Xs — Soo) = 2.
If p splits as qq in E for a fixed place q, then the 7 contained in S(7) is always chosen to be the
one in X o /q- If p is inert in E, then there are two possible choices: 7 and its conjugate 7¢ for a
fixed lift 7 of 7. In the latter case, we denote by 7 the lift of 7 contained in S(7)w, by S(7)" = (S(7),

S(7)%) the lift of S(7) such that 7¢ € S(7)L, and let 7/ Shgr (G)ry.r — ShK/(Gé(T),)kO be the

corresponding P!-bundle. The following proposition says that 7, and «/ differ from each other
by a link isomorphism.

PROPOSITION 7.14. Assume that p is inert in E. Then there exists a link isomorphism

Ui . ~
(M7 50y 42 (e 5y ) SBET(Gr))ho = Shrer (G ko

(of indentation degree 0) associated to the identity link n : S(7) — S(7) such that the diagram

Shr (G5 ko r

/
/ T

~

! — !
ShK/(Gé(T))k0 18(7),5(r) ShK,(Gé(T)’)’“0

commutes. Similar statements hold for Sh K//(Gg ko and Shyr (G2 ko

()’

(T))

Proof. Consider the closed subvariety Shg/(G%)k, (r,r—y of Shi/(G%)k, - Then, by Proposition
7.12(2) (note that p being inert in £ implies that 7 # 77), g, (@ is an isomorphism.
We put

lé)koy{fﬂ'*}

/ o
() 8y gt = r O (Tlshyecy)

)—1

)~1 of the quasi-isogeny

kg, {T,7"}

1

and define Ulg( ) (ry B the pullback via (7TT|ShK,(Gé)k o
T)o\T 0.{7

)
* / / /%
TrAS (ke ™ Ak Shi (G (o) ™ T AS(r) ko

where the two quasi-isogenies are given by Theorem 5.8(2). By Proposition 7.12(2) again,
TrlShy (a1 is an isomorphism and hence so is né(T) S(ry 4" It remains to show that
S ) )

is a link morphism associated to the identity link on S. Let = be a

ko, {T,7"}

/ 1
(M) 8042 o) 3
geometric point of ShK/(Gé(T))kO, and ' = n/é(T),é(T)/,ﬁ(x)‘ By construction, it is easy to see

that the quasi-isogeny n/sﬁ(T),g(T)/ induces an isomorphism ﬁ(Aé(T),ko,x)?—/ = ﬁ(Aé(T),kO’x/)?, for
7 # 0%7,0%7¢ with a = 0,...,n, — 1. In the exceptional cases, we have
> ! o ~ __ _ax _ o
y DAL o) ]iD(Aé(r)’,ko,z’)?’ for 7/ =0 fora=0,...,n, — 1,
Ts(r)3(ry 8(r)ko,a /7 *b(A%(T)/,ko,a:/)?—/ for 7 = 07¢ for a=0,...,n; — 1.
/ /ji . oy
Hence, (né(r),é(ﬂ’,ﬁ’ né(r),é(r)') verifies Definition 7.5. a

The following lemma will be needed in the proof of the main result of this section.
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LEMMA 7.15. Assume that S # 0. Let x(Shx/(GY)
denote the Euler—Poincaré characteristic of Shy/ (G
have x(Shg (Gg)g,) # 0

)= 25 (—1)! dim Hi (Shi (G5 Qo)
) for some fixed prime ¢ # p. Then we

U)z\'ﬁ

Proof. The assumption that S,, # ¥ implies that the Shimura variety ShK/(G’é) is proper.
Consider the integral model Shy/(G%) over Oy and choose an embedding Op — C. By the
proper base change theorem and the standard comparison theorems, we have

[e.9]

X(Shg/(Gf)z,) = X(Shx/(G)e) = Y (1) dim H,y (Shier (Gf)e, ©),
=0

where Hslmg(Sh k'(G%)c, C) denotes the singular cohomology of Shy/(G§)c for the usual complex
o,V

topology. For each 7 lifting an element of Yoo — S, put w3 = wA, -and £2 = Lle(A’ )O ws'

to simplify the notation. They are line bundles over Sh K/(G )C- We have a Hodge ﬁltratlon
0 — wie - Hi"(Ag/Shi/(Gg)c); — 5 — 0.

Note that H dR(A’ C /Shg/ (G ) )2 is equipped with the integrable Gauss-Manin connection, so
that its Chern classes are tr1v1al by classical Chern—Weil theory. One thus obtains

c1(wie)er(t3) = co(H{™(AG o /Shir(Gg)c)3) 07 _ Ja)=o,
cr(wge) +er(tg) = (HdR(A' o/Shg(Gy)e)3) = c1(wg) = e1(wse),

Fc

where ¢;(£) € HZ _(Shy (G%)c, C) denotes the ith Chern class of a vector bundle €. Let T denote

sing

the tangent bundle of Shy/(G%)c and put det(w) = Q:cx, s, . ws. By Corollary 3.17, we
get

M= [ (—2a(wp),

TGEO@*SOO

where 7 € ¥  is an arbitrary lift of 7 and d = #X, — #S is the dimension of ShK/(Gg)(c.
Note that ¢;(w2)? = 0 and ¢ (wg) = ¢1(wg.) imply that

(cr(det(@)? = 2%at [ (a1(w) = (~1)%dlea(T).
TEX 00 —S00

It is well known that det(w) is ample (see [Lanl3], for instance) and hence it follows that
cq(T) # 0. On the other hand, there exists a canonical isomorphism
Tr: H3,(Shg/ (GL)c, €) = C,

sing

which sends the cycle class of a point to 1. The lemma follows immediately from the non-vanishing
of ¢4(T) and the well-known fact that Tr(cq(7)) = x(Shk/(G§)c)- O

We state now the main result of this section, which will play a crucial role in our application
to Tate cycles in [TX14].

THEOREM 7.16. Keep the same notation as in Proposition 7.12, that is, let T € Yo, — Ss be a
place such that 7~ is different from 7 and let T be a subset of ¥, — Sy containing 7.
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(1) If 7~ ¢ T and 7,77 € T, we put T,+ = T\{r,7"}. Let n = n,—_ .+ : S(t7) — S(7) be
the link given by straight lines except sending 7~ to 7+ (to the right) with displacement

v(n) =y + s
+ @teeet@tocetttosot @t
+I+...+l+.%.+.+...+l+

(a) We consider the composition

n : Shic(Gypiy) <= Shic(Gy)iy 771y = Shic(Gylor > Shucr (G, ko

and let i/t denote the natural quasi-isogeny of abelian varieties on Sth(G’g(T +))k0

given by (the pullback via ( )~b* of)

T+
T |ShK/(G/§>k0,{T,T+}

(7T7-+|ShK/(Gé)k07{T’T+})*Aé(Tﬂ’ko <« z’i+(A§’k0|ShK,(G'§)kw) — i T (A g )-

Then (né,n’ﬁ) is the link morphism associated to the link n of indentation degree
n = n;+ —n, if p splits in E/F and n = 0 if p is inert in E/F. Moreover, the following
diagram:

Shyr (G ) o 1= Shcr (GL)y frry = Shr (GL)ro r

ﬂi I~ TrT+‘ShK/<Gé)k0,{T7T+} lﬂ'-r
1
Shicr (G i) hot, . > Shir (G4 o Shyr (G ) )k,
(7.16.1)

is commutative, where the two vertical isomorphisms are given by Proposition 7.12(2).

(b) For# € %5 +\SE 00, the quasi-isogeny n'* : Alé(ﬁ),ko — nﬁ*Afé(T)’ko induces a canonical
isomorphism
Lic(A! ") 5 i g lifting of T
n’*Lie(Ai 2, = ie( é(r+),k0)a—v<m%’ if ¥ is a lifting of 77,
: 8(r)ko’7 Lie(Af otherwise.

(k07

(¢) The morphism né is finite flat of degree p*™M = prr o+
(2) Assume that Yoo — Seo = {7,77} =T (so that 7+ = 7~ and p is of type a2 for T). Then
there exists a link morphism (n,n*) : ShK/(G’é(T_))kO — ShK'(G/g(T))ko of indentation degree
2(g —n;) = 2n,- associated with the trivial link n : S(7~) — S(7) such that the diagram

ShK’ (G,g)ko,{T,T—}

"y
Shic (G, ko Shicr (G, ko

Shcr (Gl ko

coincides with the Hecke correspondence Ty (7.10.1) if we identify Shy/(Gg)k, fr,r—) With

Sh K/pIW;(G’é (T)) ko Via the isomorphism given by Theorem 5.8.
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All descriptions above are compatible with the natural tame Hecke operator actions and
similar results apply to ShKu(G’é’)kO.

Proof. The statements for Shx(Gg)k, follow from those analogs for Shy (Gg)k, by §2.12 (or

in this case more explicitly by §3.20). Thus, we will just prove the theorem for Shy/(G§)k,-
(1)(a) The commutativity of the left square of (7.16.1) is tautological and the commutativity

of the right square was proved in Proposition 7.12(1). It remains to show that =, o

(7T7+’ShK’(G/§)k . +})_1 is the link morphism 7] on ShK/(G’g( +))k0 associated to the link
017 T

Nn="Nr——r+-

Let 7 € Y (respectively 77) denote the lift of 7 (respectively 77) contained in S(7)s
(respectively S(71)s). By §5.3, we have 7 = o=+ 71 if p splits in E. If p is inert in E, it is also
harmless to assume that 7 = o~"++ 71 in view of Propositions 7.14 and 7.17. Put 7~ = o~ "7 7. Let
y = (B, B, AB, Bf/) be an S-point of ShK/(G’é(TJr))kO for a locally noetherian kg-scheme S. Then
the preimage of y under 7+ ’ShK’(G/g)ko ety is given by © = (A, 14, A, axr) € Shr/ (G kg {r.r+1»
for which there exists a quasi-isogeny ¢ : B — A such that ¢, 7 : H®(B/S)2, — H(A/9)2,
is a well-defined isomorphism for all 7 € X g o except for 7/ = %7 or 0%7¢ witha =1,...,n +.
Note that 07 € A(r+)~ and 0?7¢ € A(7+)*. So, in the exceptional cases, ¢, ya7 and (¢~ 1) gaze
are well defined, where ¢~!: A — B denotes the quasi-isogeny inverse to ¢, and we have (by the
proof of Proposition 5.23)

Ker (g go7) = Fprt*(HIR(B/$)2#"7) 2 Lie(B/8)27" ™) (7.16.2)
o nr+a . o nr+a
(¢ Y pere) = Fiyd(HIR(B/S)2 P ) = Lie(B/5)2% ). (7.16.3)

If m; sends © = (A, 14, 4, ax’) to z = (B',1p, \pr, i) € ShK/(G’g(T))(S), there is a quasi-
isogeny w A — B’ such that 9, # is an isomorphism for all 7/ € X g o except for 7/ = 0’7~

or o7 7¢ with b=1,...,n,. In the exceptional cases, 1, obi—c and (Y 1)* ov7— are well defined,
and we have (by the proof of Proposition 5.17 or rather the moduli descrlptlon in §5.15)

Ker (1, gos-c) = Fh oo (H{R(A/S)20))
(1), gor-) = FY o (HIR(A/9)20).

By definition, we have né(y) = z and the composed quasi-isogeny 1 o ¢ : B — B’ is nothing but
the base change of n¥ to S. For later reference, we remark that 1) and ¢ induce isomorphisms

Lie(B/S)2 = Lie(A/S)2 = Lie(B'/S)% (7.16.4)

7=

for all 7/ with restriction 7 € Yo — S different from 7=, 7,7, and

Lie(B/S)2%" ") T2 Kor(, 1) 2 Coker(dy +) = Lie(4/8)2, " Lie(B'/S)2,
B (7.16.5)
Lie(B/8)2% ") L209 ou(67Y), 1v) 2 Lie(4/8)2,. 25 Lie(B/S)2,
) ) (7.16.6)

Consider the case when S = Spec(k) with k a perfect field containing ky. Denote by ﬁj’& = the
7/-component of the reduced covariant Dieudonné module of B. From the discussion above, one
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sees easily that D3, -~ = DS, -, for all 7 € X o, except for 7 € {097, 097¢ | 1 < a < nps JU{0bF,

gbF—e | 1 < b < n;}. In the exceptional cases, we have
pFELN(DY -0) i =0,
—11~0 FgTe—:a(DOB T C) lf 7:/ = O-G%C’
('¢ © ¢)* ,DB/,?/ = —1 b o . ~/ b"’— c
P FB&S(DBT o) AT =0T7C
Fh o (Dg 2 if 7/ = o%7 7.

Since the essential Frobenius Fp s s bijective after inverting p, one sees easily that 7579 can be
recovered from DY,. This implies immediately that né : ShK/(G’é r +))k0 — Sh K/(Gé (T)) &, induces
a bijection on k-valued points, i.e. né verifies condition (1) in Definition 7.5. By the discussion
above, it is also obvious that conditions (2) and (3) of Definition 7.5 are also verified for (1, 7" n.

Finally, from the formulas for 15]037%, one sees easily that the degree of the quasi-isogeny

(¢ 0 ¢)q: Bla™] > B'[q™]
is 2(n+ — n,) if p splits in E, and is 0 if p is inert in E£. This shows that (né,n’ﬁ) is the link
morphism associated to n with the said indentation degree.
Statement (1)(b) follows from the isomorphisms (7.16.4)—(7.16.6) applied to the case when B
is the universal abelian scheme Alé(T ko’ It remains to prove (1)(c). The morphism 7 is clearly
quasi-finite and hence finite because ShK/(G’é(T +))k0 is proper by Proposition 4.7. Since both

ShK/(Gé(T))kO and ShK’(G,g(T+))

is flat at every point of Shx/(GY (7)) ko- It Temains to see that the degree of 7 is p*(M . For this,

k, are regular, we conclude by [Mat86, Theorem 23.1] that né

one might be able to argue geometrically, but we found it more convenient to compare the top
Chern classes of the tangent bundle.

Let T; and 7.+ denote respectively the tangent bundles of ShK/(G’é(T))kO and ShK/(Gé(T+))k07
and let d = #X o — #S(7)oo be the common dimension of these Shimura varieties. Fix a prime

¢ # p. For a vector bundle £ over a proper and smooth kg-variety X, we denote by ¢;(€) €
Hgg(X?p, Q¢)(7) the ith Chern class of £. By Proposition 4.7, we have

ca(T7) = I « (Lie(Ag () k)3 © Lie(Ag 4 )3e),
T'€X00—5(T) o

where 7/, 7 € ¥ o denote the two liftings of 7. A similar formula for ¢4(7,+) holds with 7
replaced by 7. By (1)(b), we have

S ea(Tr) = ca(nf Tr) = p*Pea(Tor).

Let
Tro: Heth(ShK’(G/g(?))ﬁp,QZ)(d) = Qp for?7=r, 7T

be the f-adic trace map. Then we have
deg (1) Trr (ca(T7)) = Ter (1 ca(T7)) = p* O Trrs (ca(Tr4))-
It is well known that Tr;(ca(77)) = x(Shx/ (G 5(r ))F ) (see [SGA5, Exposé VII, Corollaire 4.9]),

where
2d

X(Shi(Gyr))p,) = 3 (1) dim Hey (Shue (G )5, - Q)

=0
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is the (¢-adic) Euler—Poincaré characteristic. Hence, one obtains
deg(r,) - X(Shi (Gl )g,) = " - X(Shicr (Gl )g,):

Since 7; is purely inseparable, we have X(ShK’(Gg(T))E,) = X(ShK’(G/g(T/))Fp)' By Lemma 7.15,
we have X(ShK/(G’é(T))) # 0 and hence deg(n;) = pvm,

(2) Note that p splits in E and fix a prime q of E dividing p. As before, we denote by 7 and
7~ the liftings of 7 and 77 in X /4, Tespectively.

We define first a link morphism (1, n*) : ShK/(G~( ))ko — ShK/(G’é(T))

degree p>(9="7) as follows. Let y = (B',tp/, A\p, Bx+) be an Fy-point of ShK/(Gfg(T,))ko, so that

k, of indentation

dimwyy = = 0 and dimwy,y 020 = 2. We define first a lattice M, of ﬁ%,yf/[l/p] for each
7' € ¥ oo as follows: we put

o DOB/ iz fOI'Z'Zl,...,nT_:g_nT’
Maif': p
DOB’UT fori=n,-+1,....,9

and M®,.. =M O;\f. One checks easily that M = @ M?,’@2 is stable under the action of
g°'T g°'T T

Frobenius and Verschiebung homomorphisms and hence a Dieudonné submodule of Dp:[1/p]. As
in the proof of Proposition 5.17, this gives rise to an abelian variety B” equipped with an action
by Op and an O p-equivariant quasi-isogeny ¢ : B’ — B” such that the induced morphism on the
Dieudonné module ¢~' : Dpn — Dp/[1/p] is identified with the inclusion M C Dp/[1/p]. Since
the lattice M C @B/[l /p] is self-dual by construction, the polarization Aps induces a prime-to-p
polarization Ag» on B” such that Ag: = ¢¥ o Agr o ¢. Finally, the K’P-level structure Sx/ on B’
induces naturally a K'P-level structure 3%, on B”. Moreover, an easy computation shows that
dim w%,,v/kof = 2 and dim wJOB”V/kO,%C =0, and dim w%"v/ko,%’ = dim wJOB’V/k:o,%’ at other 7. Thus,
(B”, L, )\B//,/B}/(,) is a point of ShK’(G/g(T))kO' Let

77113 ShK’(G/g(T—))ko — ShK’(G/g(T))ko

T'E€EXE oo

be the map sending y = (B, 15/, Apr, Brr) — (B”,1pr, Apr, B1) and let

Wt AG )k = A

0

be the p-quasi-isogeny whose base change to each y is ¢ : B’ — B” constructed above. Then it is
clear by construction that (1, 7%) is the link morphism of indentation degree 2(g — n,) associated
to the trivial link from S(77) to S(7).

Denote by 7.y : Shr/(GY)rg(rry — ShK,pIW;(G’é(T))kO the isomorphism given by

Theorem 5.8. Let © = (A, 14,4, ax) be an Fy-point of Shr(Gg)kg,{r,r—}- Then its image
(B, B, AB, Bk, Bp) under m, .~y is characterized as follows.

(a) There exists an OD equlvamant pquas1 isogeny ¢ : B — A such that ¢ induces an
isomorphism ¢,: D BT' = Do ey for 7/ different from o’7~ with ¢ = 1,...,n, and their
complex conjugates. In the exceptional cases, we have

O« (ﬁ%’ gi%*) = Im(FA,es: 250,4,7*—— - 25OA gif—*)
o 1 ) NO o
¢ (DB otF— C) = ];Im(Fzz‘l,eS: DA’%_ c DA ot L5 — C)'
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(b) We have )\B = ¢\/ o >\A ] ¢ and /BK/p = (;5 o QK.

(c) Let M2 C 25}’3’% /pD? 7 be the one-dimensional subspace given by the image of plsjw via
¢, ' Then MZ is stable under Fj,  and M := D, Fp o(M2)®? is a Dieudonné submodule
of Dgjq = EB?:_OI ﬁB7aif-/pﬁB7ai7-. Let Hy be the subgroup scheme of B[q] associated to M.
Then the Iwahoric level structure of B at p is given by 8, = Hq @ Hg, where Hy C Blq] is
the orthogonal complement of Hy under the natural duality between B[q] and Blg].

It is clear that the image of x under 7w, is (B,tp, A, Bkw) by forgetting the Iwahoric
level structure at p of W{T’T—}(I‘). This shows that, via the isomorphism 7. .-y, the map
7TT|ShK’(G’§)k I coincides with the projection pr; in (7.10.1).

0s177

To finish the proof of (2), it remains to show that the composition
Mmomr—o° 71'{771777} : ShK'PIw;(G/g(T))ko - ShK’(G,g(T))ko

is the second projection pry in (7.10.1). Let = (A, 14, A4, ags) be a point of ShK'(Gé)kO,{T,r}
with image 7¢. . (z) = (B,tB, B, Brp, Bp), together with the p-quasi-isogeny ¢: B — A
as described above. The image of (4,4, \a, ags) under 7 - is given by (B',ip, A\p/, Bi’) €
ShK/(G’é(T_))kO, which admits a quasi-isogeny v : B’ — A compatible with all structures such
that 1, : 25}’3, 2 =2 @j -, for all 7 except for those 7 lifting o'7 for any i = 1,...,9 — nr = n,-.
In the exceptional cases, we have
MO i NO NO MO 1 i MO MO
w* (DB/,Ui'f') = Im(FA,eS: DA,’F - DA,O'i%) and ¢* (DB’,Ui?C) = EIm(F/l'l,eS: DAﬂ:C - DA,Jii—C)'
Consider the composed isogeny ¢~ o1): B’ — B. Let MT? - 255’3’% be the inverse image of the
one-dimensional subspace M? C 25%’; / pﬁ%i given by the image of pﬁi‘f as in (c) above. Then
we have ‘ ~
F}B,GS(M;) fori=1,...,n.—- =g—n,,

(@7 09)u(Dyy yiz) =

7

1 . ~
—Fp (M2) fori=n.-+1,...,9;
p b

and (¢! 04), (DS, .-.) is the orthogonal complement of (¢~ 0 ¢).(D3, ,.).
Let (B”,vpn, Apr, Bf,) be the image of (B',vp, Apr, Br) € ShK/(Gé(T,))kO under 3. Then

-1 f ~
the composed p-quasi-isogeny B voh g 1, g identifies Dy, ;- with the lattice

1 . .
—Fpos(M7) €Dy i:[1/p] foralli=1,...,g.

Thus, one sees immediately that the map (B, tp, A, Brw, Bp) = (B”,ipr, Apr, Bf) is nothing
but the second projection in (7.10.1). This finishes the proof of (2). 0

Our last proposition explains the compatibility of the description of the GO-divisors as in
Theorem 5.8 with respect to the link morphism, especially to the link morphism appearing in
Theorem 7.16(1).

PROPOSITION 7.17. Assume that #XYo — #S00 = 2. Let 79 € Xoo — Soo and n: S — S’ be a link

such that all curves are straight lines except for (possibly) one curve turning to the right, linking
70 € Yoo — Seo With 7)) = 1(79) = ™)1y for some integer m(ro) > 0. Assume that the link
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morphism (1, n'*) : Shg (Gy)k, — Shr (G )k, of (some) indentation degree n € Z associated
to 1 exists. The setup automatically implies that 7'0+ = 7'(/)+ and 7, = 7'6_. Let 7 € ¥ oo — So-
Then the following statements hold.
(1) The link morphism né sends the GO-divisor Shg/(GY)k, - into the GO-divisor
ShK’(G/é/)koﬂ?(T)’
(2) Let n; :S(1) — S'(n(7)) denote the link given by removing from n the two curves attached

to 7 and 7~. Then there exists a link morphism (1, ,, o ) (of some indentation degree m)
from Sth(G’g(T))k0 to ShK/(G’g,(n(T)))kO, associated to the link n,, such that we have the

following commutative diagram of Shimura varieties:

Shy/ (G} kg r - Shy/ (G () ko
lné J«n;’ﬁ (7.17.1)
Tn(r)
Shic (G ) ko,n(r) - Shy (Glé’(n(f)))k0

and a similar commutative diagram of quasi-isogenies of universal abelian varieties.
Moreover, the indentation degree of the link morphism nlfti is given by

0 if p is inert in E/F,

n if p splits in E/F and T # 79,7 ,
n—m(ry) ifp splits in E/F and T = 19,
n+m(ry) ifp splits in E/F and 7 = 7y .

m=n+n; —n,;(S) =

(3) Suppose moreover that the link n and the link morphism (né,n’ﬁ) are those appearing
in Theorem 7.16(1) (so our S being S(7%), S’ being S(7), and 79 being 7~ therein,
respectively). If O (1) (respectively O, ,)(1)) denotes the tautological quotient line bundle
on Shg:(Gy)kyr (respectively on Shy(GY, )y n(r)) for the P!-fibration m, (respectively
(7)) then we have a canonical isomorphism

0,(1) if T # 1,
/% 1 g 0 ]. 2
My (On(T)( )) {OT(pm(m)) ifr = T(;F' (7 7 )

Moreover, the induced link morphism n/Tti is finite flat of degree p®""), i.e. it is an

isomorphism if T € {7y, 10}, and it is finite flat of degree p"™ () if T ¢ {79, 74 }.

The analogous results hold for link morphisms for the Shy (G),-

Proof. (1) Since Shy(Gg)ko,r is reduced, it suffices to prove thEt n; sends every F,-point of
ShK’(G/g)ko,r to ShK’(GIg/>k0,77(T)- Let x :~ (A, L,)\,OéK/p) be an IFp—pOint of ShK’(~G/§)k0,T an(~i
7’]&(:{}) = (A, N,d),p) be its image. Let 7 € X o be a place above 7 and put 7~ = o~ "7
and 7T = ¢"++ 7. By Lemma 4.5, the condition h,(A) = 0 is equivalent to FeZ,TA(ﬁZ,%—) =Wy 7,
where wjy = C DZ,? denotes the inverse image of wjv - C DZ,?' The latter condition is in turn
equivalent to FGZTZ o F;TA(Zajl ) = pf?jl -+ We set n(77) = o™7)7= where m(r7) is the
displacement of the curve in 7 connecting 7= and n(7~) (which equals 0 except when 7~ = 79);
similarly, we put n(7+) = o™ )7+, Since 5 : D4 [1/p] = D%[1/p] commutes with Frobenius

2216

https://doi.org/10.1112/50010437X16007326 Published online by Cambridge University Press


https://doi.org/10.1112/S0010437X16007326

ON GOREN—QORT STRATIFICATION FOR QUATERNIONIC SHIMURA VARIETIES

and Verschiebung homomorphisms, one sees easily from condition (3) in Definition 7.5 that

T ( ) T (s/) ~NO NO . .
FeS"A,Jr) o F;?A,) (DA'W(%—)) = P"Dly i+ for some integer u € Z. Here n,;)(S') is the

integer defined in Notation 4.3 associated to 7 for the set 8’. But FeS”X,ﬂ( ) OF;”X,)(S )(@OA, n(?*))

is a W (FF,)-sublattice of ’./52"77(#) with quotient of length 2 over W (F,,). Hence, the integer u has
to be 1. By the same reasoning using Lemma 4.5, this is equivalent to saying that h, ) (A’) =0
or equivalently 7(x) € Shy/ (G, )iy m(r)-

(2) Assume first that #3. — #Soc > 2. By Proposition 7.12(2), WT‘ShK’(Gé)kO,{T,T—} is an
isomorphism. We define

—1
Mgt = o) © 1 © (Trlshg (G1),, ooy
and 77;? as the pullback via (7TT|ShK/(GI~)k (- })—1 of the quasi-isogeny
S/RQAT T
o7t AN " (nt)

! ! / !
T A ke~ Agkglsh (@) = 1 (Ag olsn i (@) i) = 1) Ak

of abelian schemes on Sth(G’é)kOJ. Here the first and the third quasi-isogenies are given by
Theorem 5.8(2). It is clear that the diagram (7.17.1) is commutative. It remains to show that
(7545 7?) defines a link morphism. Conditions (1) and (2) of Definition 7.5 being clear, condition
(3) can be verified by a tedious but straightforward computation. To see condition (4) on the
indentation degree, we need only to discuss the case when p splits in E/F. In this case, ¢, [q™]
has degree p?™7, 1[q™] has degree p**, and ¢y()[0°°] has degree p~ 20 ) So, the total degree
of the quasi-isogeny of n/Tﬁ is p?™ = p2”+2”7_2”"<f>(s/). A case-by-case discussion proves condition
(4) of Definition 7.5 on indentation degrees.

Assume now that #Yo — #Soo = 2, 50 that Yoo — See = {70, 7" = 75 }. This implies that
p splits as qq in F. Since the Shimura variety ShK/(G’é(T))kO is zero dimensional, we just need

to define the desired link morphism (n’ﬂﬂ, nﬁi ) on Fy-points. For each 7' € X o with restriction
7" € {10,7 }, let tz € Z denote the integer as in Definition 7.5(3) attached to 7’ for the link
morphism (né, n"*). Let y = (B, 1B, A\p, Brr) be an Fy-point of ShK'(Gg(T))kO- We now distinguish
two cases.

(a) Consider first the case 7 = 79. Let 7, be the lift of 79 in X o, /4. We define M% =ptho 25;’37%0
and M°.~_ =p 0 Fi(MO ) for each integer i with 1 < ¢ < g—1, where §; denotes the number
of 1ntegers j with 1 < j < i such that 077, € §'(n(7))oo. Put Mg = Docicy 1 °.~, and

let M7 C D%yq[l/p] be the dual lattice of My with respect to the pairing induced by AB.

Then M° := Mg @ Mg is a Dieudonné submodule of D%[1/p]. By the same argument as
in the proof of Proposition 5.17, there exists a unique abelian variety B’ equipped with
an Op-action tp together with a p-quasi-isogeny ¢ : B — B’ such that the induced map
o571 : D%, — D%[1/p] is identified with the natural inclusion M° — D%[1/p]. As usual, since
M is a self-dual lattice, A induces a prime-to-p polarization A\ps such that ¢V olg o = Ap.
We equip B’ with the K'P-level structure 5}, = ¢o Bx». By the construction, one also sees
easily that B’ satisfies the necessary signature condition, so that ' = (B, vp/, Apr, Brp) is
a point of ShK’(G/g/(n(T)))ko- We define

ns: Shir (G )k, = Shycr (G

/
5 (n(r)) — Ag

ko and 1ff: Ag & (n()) ko

S(7),ko
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by n’ﬂﬁ(y) =y and 77/7% = ¢. It is evident that (n’m,nﬁj) is a link morphism. It remains to
check the commutativity of the diagram (7.17.1). Let x = (A, 14, A, axw) € ShK/(Gé);m,T
be a point above y and o’ = (A’, 141, Aar, &) € Shier (G/g/)ko,n(T) be the image of z under né.
We need to prove that .y (2") = y'. Let 3" = (B",1pn, Apr, Brn) € ShK/(G'g,(n(T)))kom(T)
denote temporarily the point 7, ,y(z’). Denote by ¢: A — B and ¢': A" — B" the quasi-

__ o ! (Tyo __ 7o
= D5, and (D5, ) =D

[¢]
AFy ) 7, ' B" 7y

isogenies given by Theorem 5.8. Then we have w*(f?

t _ ~
=pToD° by Definition 7.5(3) as 7 is a straight line at 7 .

1 ~No
by §5.15, and ny (DAfo_) i
Consider the quasi-isogeny ¥’ o ntoyplog!: B — B” It induces an isomorphism
D, - 5 D2, .. But the other components of the Dieudonné modules are determined by
o s o
that at 7, as 8’ (17(7)) oo = Zoc- It follows that 1’ on/forp~tog~1 : B’ — B” is an isomorphism
compatible with all structures, i.e. ¥y’ = /. The computation of the indentation degree is

the same as that in the case when #X., — #Ss > 2.

(b) In the case T = 7 = 7, the construction is similar. Let 7 be the lift of 7y in Y E00/q

~ N\ ~ o e o—t7 Mo o e =0 T o
and 7(7y) = o™ 7). Put Mpey :=p OFm(TO)(DBm(%O)) and M, - = p FZ(Mn(‘Fo))
for each integer ¢ with 1 <@ < g — 1, where J; is the number of integers j with 1 < j <1
such that o7n(7y) € S'(n(7))0o- Let Mg = @0<i<g—1 M;in(%o) and Mg C D%,ﬁ[l/pl be the
dual lattice. As in case (a) above, such a lattice M° := Mg & Mg gives rise to an [Fp-point
Y = (B',tp, \pr, By ) together with a p-isogeny ¢ : B — B’ compatible with all structures.
We define the desired link morphism (77;-,11,77?1) such that 1/ ,(y) = ¢’ and n;fi’y = ¢. The
commutativity of (7.17.1) is proved by the same arguments as in (a). We leave the details

to the reader.

(3) We note that, if 7~ is the lifting of 7~ not contained in S(7)s0, then we have a canonical
isomorphism O, (1) = Lie(Aé,kO);, by the construction of 7,. Similarly, one has O, (1) =
Lie(A’éa ko);(?‘)' Now the isomorphism (7.17.2) follows immediately from Theorem 7.16(1)(b). We
prove now the second part of (3). By the construction of 7/, it follows from Theorem 7.16(1)(b)
that n’Tﬁ: Alé(T),k:Q — n;fﬂ(Aé(n(r)),ko) induces, for any 7' € Y o lifting an element X, — S(n(7)),

an isomorphism

: o,(pm(T0)) . oy 1.
. (Lie( A )2,) & Lie(Ag () o) g-mirgrzs 1 7' 1ifts 1(70),
g S(n(1)),ko/ T/ — ) , . '
Lle(Ag(T) ko)?’ otherwise.

If 7 € {m, 7'0Jr } or equivalently 79 € S(7), then the first case above never happens. Therefore, by
Proposition 4.7, we see that n’Tﬁ induces an isomorphism of tangent spaces between Sh (G%(T)) ko

and ShK’(G,g(n(T))
morphism, 7, , is actually an isomorphism. If 7 ¢ {0, 7} or equivalently 7 ¢ S(7), we conclude
by the same arguments as in the proof of Theorem 7.16(1)(d). O

ko Since 77/7,31 is bijective on the closed points by the definition of link
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