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Abstract

In 2012, Blecher [‘Geometry for totally symmetric plane partitions (TSPPs) with self-conjugate main
diagonal’, Util. Math. 88 (2012), 223–235] introduced a special class of totally symmetric plane
partitions, called 1-shell totally symmetric plane partitions. Let f (n) denote the number of 1-shell totally
symmetric plane partitions of weight n. More recently, Hirschhorn and Sellers [‘Arithmetic properties
of 1-shell totally symmetric plane partitions’, Bull. Aust. Math. Soc. to appear. Published online 27
September 2013] discovered a number of arithmetic properties satisfied by f (n). In this paper, employing
some results due to Cui and Gu [‘Arithmetic properties of l-regular partitions’, Adv. Appl. Math. 51
(2013), 507–523], and Hirschhorn and Sellers, we prove several new infinite families of congruences
modulo 4 and 8 for 1-shell totally symmetric plane partitions. For example, we find that, for n ≥ 0 and
α ≥ 1,

f (8 × 52αn + 39 × 52α−1) ≡ 0 (mod 8).
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1. Introduction

The aim of this paper is to establish some new infinite families of congruences modulo
4 and 8 for 1-shell totally symmetric plane partitions by using some results due to Cui
and Gu [4] and Hirschhorn and Sellers [5].

Recall that a plane partition is a two-dimensional array of integers πi, j that are
weakly decreasing and that add up to a given number n. In other words, πi, j ≥ πi+1, j,
πi, j ≥ πi, j+1 and

∑
πi, j = n. Plane partitions invariant under any permutations of the

three axes are called totally symmetric plane partitions (TSPPs). (For more details
about TSPPs, see, for example, Andrews et al. [1] and Stembridge [6]). Blecher [3]
gave a definition of a special class of TSPPs, called 1-shell TSPPs. As defined by
Blecher, a TSPP is called a 1-shell TSPP if this partition has a self-conjugate first
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row/column (as an ordinary partition) and all other entries are 1. For example, the
following is a 1-shell TSPP:

4 4 2 2
4 1 1 1
2 1
2 1

Let f (n) denote the number of 1-shell TSPPs of weight n; this means that the parts
of the TSPP sum to n. Blecher [3] found the generating function of f (n). He proved
that

∞∑
n=0

f (n)qn = 1 +
∞∑

n=1

q3n−2
n−2∏
i=0

(1 + q6i+3).

Recently, Hirschhorn and Sellers [5] proved a number of arithmetic properties
satisfied by f (n) by employing elementary generating function manipulations and
some well-known results due to Ramanujan and Watson. They proved that, for n ≥ 1,

f (3n) = f (3n − 1) = 0, (1.1)

f (n) ≡

1 (mod 2) if 3 - n and n = k2 for some integer k,
0 (mod 2) otherwise

and
f (10n − 5) ≡ 0 (mod 5). (1.2)

At the end of their paper [5], Hirschhorn and Sellers said: ‘it appears that
f (n) satisfies congruences in arithmetic progression modulo 4 and 8 based on the
computational evidence available. It would be desirable to see proofs of these results’.
The objective of this paper is to prove some new congruences modulo 4 and 8 satisfied
by f (n) by employing some results given by Cui and Gu [4] and Hirschhorn and Sellers
[5]. Our main results can be stated as follows.

Theorem 1.1. For all n ≥ 0,

f (8n + 3) ≡ 0 (mod 4). (1.3)

Theorem 1.2. For any prime p ≡ −1 (mod 6), α ≥ 1, i = 1, 2, . . . , p − 1 and n ≥ 0,

f (8p2αn + (24i + 7p)p2α−1) ≡ 0 (mod 4), (1.4)
f (8p2αn + (24i + 5p)p2α−1) ≡ 0 (mod 4) (1.5)

and
f (8p2αn + (24i + 3p)p2α−1) ≡ 0 (mod 8). (1.6)

Example 1.3. Setting p = 5 and i = 1 in (1.6), we find that, for n ≥ 0 and α ≥ 1,

f (8 × 52αn + 39 × 52α−1) ≡ 0 (mod 8).
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This paper is organised as follows. In Section 2 we recall some notation and
terminology on q-series and three dissection formulas due to Ramanujan [2] and Cui
and Gu [4]. In Section 3 we give a proof of Theorem 1.1 by using a 2-dissection
formula given by Ramanujan [2]. In Section 4, employing p-dissection formulas of
Ramanujan’s theta functions ψ(q) and f1 established by Cui and Gu [4], we present a
proof of Theorem 1.2.

2. Preliminary results

To prove Theorems 1.1 and 1.2, we need three dissection formulas due to
Ramanujan [2] and Cui and Gu [4]. Let us begin with some notation and terminology
on q-series. In this paper, we adopt the common notation

(a; q)∞ =
∞∏

n=0

(1 − aqn),

where |q| < 1. Recall that the Ramanujan theta function f (a, b) is defined by

f (a, b) =
∞∑

n=−∞

an(n+1)/2bn(n−1)/2, (2.1)

where |ab| < 1. Two special cases of (2.1) are

ψ(q) := f (q, q3) =
∞∑

n=0

qn(n+1)/2 =
(q2; q2)2

∞

(q; q)∞
(2.2)

and

f (−q) = f (−q,−q2) =
∞∑

n=−∞

(−1)nqn(3n−1)/2 = (q; q)∞.

For any positive integer k, we use fk to denote f (−qk), that is,

fk = (qk; qk)∞ =
∞∏

n=1

(1 − qnk).

The following relation is a consequence of dissection formulas of Ramanujan
collected in Entry 25 in Berndt’s book [2, page 40].

Theorem 2.1. The following identity holds:

1
f 2
1

=
f 5
8

f 5
2 f 2

16

+ 2q
f 2
4 f 2

16

f 5
2 f8

. (2.3)

Recently, Cui and Gu [4] established p-dissection formulas for ψ(q) and f1. They
proved the following two theorems.
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Theorem 2.2. For any odd prime p,

ψ(q) =
(p−3)/2∑

k=0

q(k2+k)/2 f (q(p2+(2k+1)p)/2, q(p2−(2k+1)p)/2) + q(p2−1)/8ψ(qp2
).

Theorem 2.3. For any prime p ≥ 5,

f1 =
(p−1)/2∑

k=(1−p)/2,
k,(±p−1)/6

(−1)kq(3k2+k)/2 f (−q(3p2+(6k+1)p)/2,−q(3p2−(6k+1)p)/2)

+ (−1)(±p−1)/6q(p2−1)/24 fp2 ,

where

±p − 1
6

:=


p − 1

6
if p ≡ 1 (mod 6),

−p − 1
6

if p ≡ −1 (mod 6).

3. Proof of Theorem 1.1

In this section we give a proof of Theorem 1.1.
To prove (1.2), Hirschhorn and Sellers [5] proved that, for n ≥ 1,

f (3n − 2) = h(n), (3.1)

where h(n) is defined by

∞∑
n=1

h(n)qn =

∞∑
n=1

qn
n−2∏
i=0

(1 + q2i+1).

Employing some well-known results of Ramanujan and Watson, they proved that

∞∑
n=0

h(2n + 1)qn =

∞∏
n=1

(1 + qn)3(1 − qn). (3.2)

Using the notation fk, we can rewrite (3.2) as

∞∑
n=0

h(2n + 1)qn =
f 3
2

f 2
1

. (3.3)

By Theorem 2.1 and (3.3), we are led to generating functions of h(8n + 1),
h(8n + 3), h(8n + 5) and h(8n + 7).
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Lemma 3.1. We have
∞∑

n=0

h(8n + 1)qn =
f 5
2 f 3

4

f 5
1 f 2

8

,

∞∑
n=0

h(8n + 3)qn = 2
f 7
4

f 3
1 f2 f 2

8

, (3.4)

∞∑
n=0

h(8n + 5)qn = 2
f 7
2 f 2

8

f 5
1 f 3

4

(3.5)

and
∞∑

n=0

h(8n + 7)qn = 4
f2 f4 f 2

8

f 3
1

. (3.6)

Proof. Substituting (2.3) into (3.3),
∞∑

n=0

h(2n + 1)qn = f 3
2

( f 5
8

f 5
2 f 2

16

+ 2q
f 2
4 f 2

16

f 5
2 f8

)
=

f 5
8

f 2
2 f 2

16

+ 2q
f 2
4 f 2

16

f 2
2 f8

,

which yields
∞∑

n=0

h(4n + 1)qn =
f 5
4

f 2
1 f 2

8

(3.7)

and
∞∑

n=0

h(4n + 3)qn = 2
f 2
2 f 2

8

f 2
1 f4

. (3.8)

Substituting (2.3) into (3.7) and (3.8),
∞∑

n=0

h(4n + 1)qn =
f 5
4

f 2
8

( f 5
8

f 5
2 f 2

16

+ 2q
f 2
4 f 2

16

f 5
2 f8

)
=

f 5
4 f 3

8

f 5
2 f 2

16

+ 2q
f 7
4 f 2

16

f 5
2 f 3

8

(3.9)

and
∞∑

n=0

h(4n + 3)qn = 2
f 2
2 f 2

8

f4

( f 5
8

f 5
2 f 2

16

+ 2q
f 2
4 f 2

16

f 5
2 f8

)
= 2

f 7
8

f 3
2 f4 f 2

16

+ 4q
f4 f8 f 2

16

f 3
2

. (3.10)

Lemma 3.1 follows from (3.9) and (3.10). This completes the proof. �

We are now ready to prove Theorem 1.1.

Proof of Theorem 1.1. Thanks to (3.6), for n ≥ 0,

h(8n + 7) ≡ 0 (mod 4). (3.11)

Replacing n by 8n + 7 in (3.1) and using (3.11), for n ≥ 0,

f (24n + 19) ≡ 0 (mod 4). (3.12)
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From (1.1),
f (24n + 3) = f (24n + 11) = 0. (3.13)

Congruence (1.3) follows from (3.12) and (3.13). The proof is complete. �

4. Proof of Theorem 1.2

By the binomial theorem, it is easy to see that, for all positive integers k and m,

f 2k
m ≡ f k

2m (mod 2). (4.1)

By (4.1),
f 7
4

f 3
1 f2 f 2

8

≡
f8
f1

(mod 2). (4.2)

In view of (3.4) and (4.2), for n ≥ 0,

h(8n + 3) ≡ 2b8(n) (mod 4), (4.3)

where b8(n) is the number of 8-regular partitions of n and the generating function of
b8(n) is

∞∑
n=0

b8(n)qn =
f8
f1
.

Cui and Gu [4] found some congruences modulo 2 for b8(n). They proved that, for any
prime p ≡ −1 (mod 6), α ≥ 1 and n ≥ 0,

b8

(
p2αn +

(24i + 7p)p2α−1 − 7
24

)
≡ 0 (mod 2), i = 1, 2, . . . , p − 1. (4.4)

Replacing n by p2αn + ((24i + 7p)p2α−1 − 7)/24 (i = 1, 2, . . . , p − 1) in (4.3) and using
(4.4),

h
(
8p2αn +

(24i + 7p)p2α−1 + 2
3

)
≡ 0 (mod 4), i = 1, 2, . . . , p − 1. (4.5)

Replacing n by 8p2αn + ((24i + 7p)p2α−1 + 2)/3 (i = 1, 2, . . . , p − 1) in (3.1) and using
(4.5), we see that, for n ≥ 0 and α ≥ 1,

f (24p2αn + (24i + 7p)p2α−1) ≡ 0 (mod 4), i = 1, 2, . . . , p − 1. (4.6)

By (1.1),

f (8p2α(3n + 1) + (24i + 7p)p2α−1) = f (8p2α(3n + 2) + (24i + 7p)p2α−1) = 0. (4.7)

Congruence (1.4) follows from (4.6) and (4.7).
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Next, we prove (1.5). By (2.2) and (4.1), it is easy to check that

f 7
2 f 2

8

f 5
1 f 3

4

≡ f1ψ(q4) (mod 2). (4.8)

Let a(n) be defined by
∞∑

n=0

a(n)qn = f1ψ(q4). (4.9)

Combining (3.5), (4.8) and (4.9), we deduce that, for n ≥ 0,

h(8n + 5) ≡ 2a(n) (mod 4). (4.10)

For any prime p ≡ −1 (mod 6), employing (4.9) and Theorems 2.2 and 2.3,

∞∑
n=0

a(n)qn =

( (p−1)/2∑
m=(1−p)/2,
m,(±p−1)/6

(−1)mq(3m2+m)/2 f (−q(3p2+(6m+1)p)/2,−q(3p2−(6m+1)p)/2)

+ (−1)(±p−1)/6q(p2−1)/24 fp2

)
×

((p−3)/2∑
k=0

q2(k2+k) f (q2(p2+(2k+1)p), q2(p2−(2k+1)p)) + q(p2−1)/2ψ(q4p2
)
)
.

Now we consider the congruence

3m2 + m
2

+ 2(k2 + k) ≡
13(p2 − 1)

24
(mod p), (4.11)

where −(p − 1)/2 ≤ m ≤ (p − 1)/2 and 0 ≤ k ≤ (p − 1)/2. We can rewrite (4.11) as

(6m + 1)2 + 3(4k + 2)2 ≡ 0 (mod p). (4.12)

Since p ≡ −1 (mod 6) and −3 is a quadratic nonresidue modulo p, (4.12) yields

6m + 1 ≡ 4k + 2 ≡ 0 (mod p).

Hence, m = (−p − 1)/6 and k = (p − 1)/2. The fact that (4.11) has only one solution
(m, k) = ((−p − 1)/6, (p − 1)/2) implies that

∞∑
n=0

a
(
pn +

13(p2 − 1)
24

)
qpn+13(p2−1)/24 = (−1)(−p−1)/6q13(p2−1)/24 fp2ψ(q4p2

). (4.13)

Dividing by q13(p2−1)/24 on both sides of (4.13) and then replacing qp by q,

∞∑
n=0

a
(
pn +

13(p2 − 1)
24

)
qn = (−1)(−p−1)/6 fpψ(q4p),
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which implies that

∞∑
n=0

a
(
p2n +

13(p2 − 1)
24

)
qn = (−1)(−p−1)/6 f1ψ(q4) (4.14)

and, for n ≥ 0,

a
(
p(pn + i) +

13(p2 − 1)
24

)
= 0, i = 1, 2, . . . , p − 1. (4.15)

In view of (4.9) and (4.14),

a
(
p2n +

13(p2 − 1)
24

)
≡ a(n) (mod 2). (4.16)

By (4.16) and mathematical induction, we see that, for n ≥ 0 and α ≥ 0,

a
(
p2αn +

13(p2α − 1)
24

)
≡ a(n) (mod 2). (4.17)

Replacing n by p(pn + i) + 13(p2 − 1)/24 (i = 1, 2, . . . , p − 1) in (4.17) and employing
(4.15), for n ≥ 0 and α ≥ 1,

a
(
p2αn +

(24i + 13p)p2α−1 − 13
24

)
≡ 0 (mod 2), i = 1, 2, . . . , p − 1. (4.18)

Replacing n by p2αn + ((24i + 13p)p2α−1 − 13)/24 (i = 1, 2, . . . , p − 1) in (4.10) and
using (4.18), for n ≥ 0 and α ≥ 1,

h
(
8p2αn +

(24i + 13p)p2α−1 + 2
3

)
≡ 0 (mod 4), i = 1, 2, . . . , p − 1. (4.19)

Replacing n by 8p2αn + ((24i + 13p)p2α−1 + 2)/3 (i = 1,2, . . . , p − 1) in (3.1) and using
(4.19), for n ≥ 0 and α ≥ 1,

f (24p2αn + (24i + 13p)p2α−1) ≡ 0 (mod 4), i = 1, 2, . . . , p − 1. (4.20)

Thanks to (1.1),

f (24p2αn + (24i + 5p)p2α−1) = f (24p2αn + (24i + 21p)p2α−1) = 0. (4.21)

Congruence (1.5) follows from (4.20) and (4.21).
To conclude this section, we give a proof of (1.6). By (2.2) and (4.1), it is easy to

check that
f2 f4 f 2

8

f 3
1

≡ f16ψ(q) (mod 2). (4.22)
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Let c(n) be defined by
∞∑

n=0

c(n)qn = f16ψ(q). (4.23)

In view of (3.6), (4.22) and (4.23), for n ≥ 0,

h(8n + 7) ≡ 4c(n) (mod 8). (4.24)

We consider the congruence

16 ×
3m2 + m

2
+

k2 + k
2
≡

19(p2 − 1)
24

(mod p), (4.25)

where −(p − 1)/2 ≤ m ≤ (p − 1)/2 and 0 ≤ k ≤ (p − 1)/2. For any prime p ≡
−1 (mod 6), (4.25) holds if and only if m = (−p − 1)/6 and k = (p − 1)/2. Using (4.23)
and Theorems 2.2 and 2.3,

∞∑
n=0

c
(
pn +

19(p2 − 1)
24

)
qn = (−1)(−p−1)/6 f16pψ(qp),

which yields
∞∑

n=0

c
(
p2n +

19(p2 − 1)
24

)
qn = (−1)(−p−1)/6 f16ψ(q) (4.26)

and, for n ≥ 0,

c
(
p(pn + i) +

19(p2 − 1)
24

)
= 0, i = 1, 2, . . . , p − 1. (4.27)

Combining (4.23) and (4.26),

c
(
p2n +

19(p2 − 1)
24

)
≡ c(n) (mod 2). (4.28)

By (4.28) and mathematical induction, for n ≥ 0 and α ≥ 0,

c
(
p2αn +

19(p2α − 1)
24

)
≡ c(n) (mod 2). (4.29)

Replacing n by p(pn + i) + 19(p2 − 1)/24 (i = 1, 2, . . . , p − 1) in (4.29) and using
(4.27), for n ≥ 0 and α ≥ 1,

c
(
p2αn +

(24i + 19p)p2α−1 − 19
24

)
≡ 0 (mod 2), i = 1, 2, . . . , p − 1. (4.30)

Replacing n by p2αn + ((24i + 19p)p2α−1 − 19)/24 (i = 1, 2, . . . , p − 1) in (4.24) and
employing (4.30), for n ≥ 0 and α ≥ 1,

h
(
8p2αn +

(24i + 19p)p2α−1 + 2
3

)
≡ 0 (mod 8), i = 1, 2, . . . , p − 1. (4.31)
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Replacing n by 8p2αn + ((24i + 19p)p2α−1 + 2)/3 (i = 1,2, . . . , p − 1) in (3.1) and using
(4.31), for n ≥ 0 and α ≥ 1,

f (24p2αn + (24i + 19p)p2α−1) ≡ 0 (mod 8), i = 1, 2, . . . , p − 1. (4.32)

By (1.1),

f (24p2αn + (24i + 3p)p2α−1) = f (24p2αn + (24i + 11p)p2α−1) = 0. (4.33)

Congruence (1.6) follows from (4.32) and (4.33). This completes the proof. �
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