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Abstract

In 2012, Blecher [‘Geometry for totally symmetric plane partitions (TSPPs) with self-conjugate main
diagonal’, Util. Math. 88 (2012), 223-235] introduced a special class of totally symmetric plane
partitions, called 1-shell totally symmetric plane partitions. Let f(n) denote the number of 1-shell totally
symmetric plane partitions of weight n. More recently, Hirschhorn and Sellers [‘Arithmetic properties
of 1-shell totally symmetric plane partitions’, Bull. Aust. Math. Soc. to appear. Published online 27
September 2013] discovered a number of arithmetic properties satisfied by f(n). In this paper, employing
some results due to Cui and Gu [‘Arithmetic properties of /-regular partitions’, Adv. Appl. Math. 51
(2013), 507-523], and Hirschhorn and Sellers, we prove several new infinite families of congruences
modulo 4 and 8 for 1-shell totally symmetric plane partitions. For example, we find that, for n > 0 and
a>1,
F(8 x 5% +39 x 52271y = 0 (mod 8).
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1. Introduction

The aim of this paper is to establish some new infinite families of congruences modulo
4 and 8 for 1-shell totally symmetric plane partitions by using some results due to Cui
and Gu [4] and Hirschhorn and Sellers [5].

Recall that a plane partition is a two-dimensional array of integers m; ; that are
weakly decreasing and that add up to a given number n. In other words, n; ; > 711 j,
mij 2 mije1 and ), m; ; = n. Plane partitions invariant under any permutations of the
three axes are called totally symmetric plane partitions (TSPPs). (For more details
about TSPPs, see, for example, Andrews et al. [1] and Stembridge [6]). Blecher [3]
gave a definition of a special class of TSPPs, called 1-shell TSPPs. As defined by
Blecher, a TSPP is called a 1-shell TSPP if this partition has a self-conjugate first
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row/column (as an ordinary partition) and all other entries are 1. For example, the
following is a 1-shell TSPP:

2 2

11

N~
— e N

2

Let f(n) denote the number of 1-shell TSPPs of weight n; this means that the parts
of the TSPP sum to n. Blecher [3] found the generating function of f(n). He proved

that
00 oo n-2
D g =1+ ¢ [+ "),
n=0 n=1 =0

Recently, Hirschhorn and Sellers [5] proved a number of arithmetic properties
satisfied by f(n) by employing elementary generating function manipulations and
some well-known results due to Ramanujan and Watson. They proved that, forn > 1,

f@Bn)=f(GBn-1)=0, (1.1)
Fn) = 1 (mod 2) if3 ¢ nandn = k* for some integer k,
"= 0 (mod 2) otherwise
and
f(10n —5) =0 (mod 5). (1.2)

At the end of their paper [5], Hirschhorn and Sellers said: ‘it appears that
f(n) satisfies congruences in arithmetic progression modulo 4 and 8 based on the
computational evidence available. It would be desirable to see proofs of these results’.
The objective of this paper is to prove some new congruences modulo 4 and 8 satisfied
by f(n) by employing some results given by Cui and Gu [4] and Hirschhorn and Sellers
[5]. Our main results can be stated as follows.

Tuaeorem 1.1. Foralln >0,
f(8n +3) =0 (mod 4). (1.3)

TueoreMm 1.2. For any prime p = -1 (mod 6), > 1,i=1,2,...,p—1andn >0,

F8p*n + (24i + 7p)p**™ 1) = 0 (mod 4), (1.4)

F8p*n + (24i + 5p)p**™ ) = 0 (mod 4) (1.5)
and

F8p*®n + (24i + 3p)p**~) = 0 (mod 8). (1.6)

ExampLE 1.3. Setting p =5 and i = 1 in (1.6), we find that, forn > 0 and @ > 1,

F(8 % 5% +39 x 5271 = 0 (mod 8).
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This paper is organised as follows. In Section 2 we recall some notation and
terminology on g-series and three dissection formulas due to Ramanujan [2] and Cui
and Gu [4]. In Section 3 we give a proof of Theorem 1.1 by using a 2-dissection
formula given by Ramanujan [2]. In Section 4, employing p-dissection formulas of
Ramanujan’s theta functions ¥(q) and f; established by Cui and Gu [4], we present a
proof of Theorem 1.2.

2. Preliminary results

To prove Theorems 1.1 and 1.2, we need three dissection formulas due to
Ramanujan [2] and Cui and Gu [4]. Let us begin with some notation and terminology
on g-series. In this paper, we adopt the common notation

00

(@ @) = | |1 —ag),

n=0
where |g| < 1. Recall that the Ramanujan theta function f(a, b) is defined by

(e8]

f(a, b) — Z an(n+l)/2bn(n—l)/2, (21)

n=—o00
where |ab| < 1. Two special cases of (2.1) are

et/

2.2
(¢ Do 22)

w(q) = f(q.q°) = Z g =
n=0

and

f=9) = f=g.=g) = D (~1)'¢"" D7 = (g ).

n=—oo

For any positive integer k, we use f; to denote f(—gX), that is,
fi=(g¢D =] Ja-g™.
n=1
The following relation is a consequence of dissection formulas of Ramanujan
collected in Entry 25 in Berndt’s book [2, page 40].
Tueorem 2.1. The following identity holds:
L fs . fifi
2= ma Y
fl f2 f16 f2 fS

Recently, Cui and Gu [4] established p-dissection formulas for ¥(g) and f;. They
proved the following two theorems.

(2.3)
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TueOREM 2.2. For any odd prime p,

(p=3)/2

2 2 2_ 2_ 2
w(g) = Z q(k +/<)/2f(q(17 +(2k+1)p)/2’ q(p (2k+1)p)/2) + q(p 1)/8¢,(qp ).
k=0

TueorEM 2.3. For any prime p > 5,

. (p—zliﬂ “ l)kq(3k2+k)/2 f(- q(3p2+(6k+l)p)/27_q(3p2—(6k+])p)/2)
o e
T (_1)(iP—1)/6q(p2—1)/24fP2’
where
tp—1 ;%1 if p=1(mod 6),
6 _p6_ L ip=—1modo6).

3. Proof of Theorem 1.1

In this section we give a proof of Theorem 1.1.
To prove (1.2), Hirschhorn and Sellers [5] proved that, for n > 1,

f(Bn =2) = hn), 3.1

where h(n) is defined by

S n-2

ih(n)q" = > q"[ Ja+g".
n=1 n=1 0

i=

Employing some well-known results of Ramanujan and Watson, they proved that

D oh@n+ g =] |+ - g, (3.2)

n=0 n=1

Using the notation f;, we can rewrite (3.2) as

f3
2. (3.3)

h2n+ 1q" ==
; n+ g 7

1

By Theorem 2.1 and (3.3), we are led to generating functions of h(8n + 1),
h(8n + 3), h(8n + 5) and h(8n + 7).
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Lemma 3.1. We have

) 5 £3
Zh(8n+ D" = Sy

ey R
h8n +3)q" =2————, (3.4
,lzl f13f2f8
o0 7 £2
Z h(sn + 5)g" =2 25f s (3.5)
n= fl f4
and
Zh(8n+7)q _4f2f4f8. (3.6)
i
Proor. Substituting (2.3) into (3.3),
5 2 5 2 2
Zh(2n+1)q f2( U f4f16) {82 +2qf42f16,
f2 fsz fz f](, fz f8
which yields
5
h(4n + 1)q" = (3.7
,Zj fzf2
and . .
D h(n+3)g" = zfii. (3.8)
n=0 fifa
Substituting (2.3) into (3.7) and (3.8),
5 2 2 S 3 7 2
Z hdn+ 1)q" = fi ( Js + 2qf45f16) = f;‘ fi + 2qf45f136 (3.9)
fs fzfm f2f8 fzfm fzfs
and
0 2 2 5 7 2
S htdn + 3" =228 ( s 4o ifis) R/ SYRLEL T ST
Ja f2f16 f2f8 f2f4 16 fz
Lemma 3.1 follows from (3.9) and (3.10). This completes the proof. O
We are now ready to prove Theorem 1.1.
Proor oF THEOREM 1.1. Thanks to (3.6), for n > 0,
h(8n+7) =0 (mod 4). (3.11)
Replacing n by 8z + 7 in (3.1) and using (3.11), for n > 0,
f(24n + 19) = 0 (mod 4). (3.12)
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From (1.1),
fQR4n+3)=f(24n+11)=0. (3.13)

Congruence (1.3) follows from (3.12) and (3.13). The proof is complete. O

4. Proof of Theorem 1.2

By the binomial theorem, it is easy to see that, for all positive integers k and m,

= f5 (mod 2). 4.1)
By (4.1),
] /3
=22 (mod 2). 4.2
s g med? (4-2)

In view of (3.4) and (4.2), for n > 0,
h(8n + 3) = 2bg(n) (mod 4), 4.3)

where bg(n) is the number of 8-regular partitions of n and the generating function of

bg(n) is
S /8
> bynyg" = 2.
2, g(n)q "

Cui and Gu [4] found some congruences modulo 2 for bg(n). They proved that, for any
prime p = —1 (mod 6), > 1 and n > 0,

Q4i +Tp)p* ' -7
24

bg(pzan+ )EO(modZ), i=1,2,...,p—-1. (44

Replacing n by p**n + ((24i + Tp)p**~' = 7)/24 (i=1,2,...,p - 1) in (4.3) and using
4.4),

Q4i+Tp)p*t+2
3

h(8p2“n+ )EO(mod4), i=1,2,...,p—1.  (45)

Replacing n by 8p%*n + ((24i + 7p)p**~ ' +2)/3(i=1,2,...,p—1)in (3.1) and using
(4.5), we see that, forn > 0and a > 1,

fQ4p™n+ (24i+Tp)p** ) =0(mod 4), i=1,2,...,p-1. (4.6)
By (1.1),
FBP*Bn+ 1)+ Q4i +Tp)p** ) = F8p**Bn +2) + 4i + Tp)p**H=0. (4.7

Congruence (1.4) follows from (4.6) and (4.7).

https://doi.org/10.1017/5S0004972713001160 Published online by Cambridge University Press


https://doi.org/10.1017/S0004972713001160

[7] Congruences for 1-shell TSPPs 43

Next, we prove (1.5). By (2.2) and (4.1), it is easy to check that
L

I = fiy(g*) (mod 2). (4.8)
Let a(n) be defined by
D amq" = figh. (4.9)
n=0

Combining (3.5), (4.8) and (4.9), we deduce that, for n > 0,
h(8n + 5) = 2a(n) (mod 4). (4.10)
For any prime p = —1 (mod 6), employing (4.9) and Theorems 2.2 and 2.3,

00 (p=1)/2

2 2_
Za(n)q" _ ( Z (- l)m B3m? +m)/2f(_q(3p +(6m+1)p)/2,_q(3p (6m+1)p)/2)

n=0 m=(1-p)/2,
m#(xp-1)/6

— 2_
+(=1)EP=D/6 4P 1)/24fp2)

(p=3)/2

2(k? 2(p?+(2k+1 2(p?—(2k+1 2-1)/2 4p?
x( D (0D 2070k | 0y ))'
k=0

Now we consider the congruence

3m* +m 13(p*> - 1)

24
where —(p—1)/2<m<(p—1)/2and 0 < k < (p — 1)/2. We can rewrite (4.11) as

+2(k* +k) =

(mod p), 4.11)

(6m + 1)* + 3(4k + 2)* = 0 (mod p). (4.12)
Since p = —1 (mod 6) and -3 is a quadratic nonresidue modulo p, (4.12) yields
6m+1=4k+2=0 (mod p).

Hence, m = (—p — 1)/6 and k = (p — 1)/2. The fact that (4.11) has only one solution
(m, k) =((—p — 1)/6,(p — 1)/2) implies that

= 13(p* -1 >
Za( (P )) pn+13(p2—1)/24 - (- 1)( p— 1)/6q1'5(p 1)/24f ¢(q4p) (4.13)
n=0

Dividing by ¢'3%*~1/24 on both sides of (4.13) and then replacing g” by ¢,

[e9)

Za( 13(”_1)) = (=D L™,

n=
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which implies that

(o8]

) afpin+ BZ DN = s g (4.14)
and, for n > 0,
a(p(pn+i)+$):o, i=1,2,....p—1. (4.15)
In view of (4.9) and (4.14),
a(pzn + %) = a(n) (mod 2). (4.16)

By (4.16) and mathematical induction, we see that, for n > 0 and @ > 0,

13(p** -1
a(p2an+ (P )

7 ) = a(n) (mod 2). 4.17)

Replacing n by p(pn + i) + 13(p> = 1)/24 (i = 1,2,..., p — 1) in (4.17) and employing
4.15),forn>0and @ > 1,

(24i + 13p)p*> 1 - 13
24

a(p2“n+ )EO(modZ), i=1,2,....p—1. (418

Replacing n by p**n + ((24i + 13p)p**~' = 13)/24 (i=1,2,...,p — 1) in (4.10) and
using (4.18), forn >0 and @ > 1,

(4i + 13p)p2! +2
3

h(szan+ )EO(mOd4), i=1,2,-~-,P_1- (419)

Replacing n by 8p**n + ((24i + 13p)p**~' +2)/3(i=1,2,...,p— 1)in(3.1) and using
4.19),forn>0and a > 1,

FQ4p* n+ (24i+ 13p)p**H=0(mod 4), i=1,2,...,p—1. (4.20)
Thanks to (1.1),
FQAp*n + (24i + 5p)p**Y) = F24p*n + (24i + 21 p)p** 1 = 0. 4.21)

Congruence (1.5) follows from (4.20) and (4.21).
To conclude this section, we give a proof of (1.6). By (2.2) and (4.1), it is easy to
check that

fofaff

e = fis¥(q) (mod 2). (4.22)
1
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Let c(n) be defined by

0

D emg" = fiew(q).

n=0
In view of (3.6), (4.22) and (4.23), for n > 0,

h(8n + 7) = 4c(n) (mod 8).
We consider the congruence

3mz+m+k2+k= 19(p> = 1)
2 2 24

16 x (mod p),

45

(4.23)

(4.24)

(4.25)

where —(p—1)/2<m<(p-1)/2 and 0 <k <(p-1)/2. For any prime p =
—1 (mod 6), (4.25) holds if and only if m = (—p — 1)/6 and k = (p — 1)/2. Using (4.23)

and Theorems 2.2 and 2.3,

ic( 19" ‘1)) = (=) ),

n=0
which yields
= 19(p~ - 1)
> e p—) = (=D fisu(g)
n=0
and, forn > 0,

19(p* - 1
c(p(pn+i)+ M):o, i=1,2,....p—1.
24
Combining (4.23) and (4.26),
19(p* - 1
C(pzn + %) = ¢(n) (mod 2).

By (4.28) and mathematical induction, for n > 0 and a > 0,

19(p? - 1
c(pzan + —(p )

- ) = ¢(n) (mod 2).

(4.26)

(4.27)

(4.28)

(4.29)

Replacing n by p(pn + i)+ 19(p?> = 1)/24 (i=1,2,...,p—1) in (4.29) and using

4.27),forn>0and a > 1,

24i + 19p)p?*! - 19
C(pza“( i 1214

24

)EO(modZ), i=1,2,....p—1.

(4.30)

Replacing n by p*®n + ((24i + 19p)p**~' = 19)/24 (i=1,2,...,p — 1) in (4.24) and

employing (4.30), forn > 0and a > 1,

Q4i + 19p)p** 1 +2
3

h(8 p*n +
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Replacing n by 8p%*n + ((24i + 19p)p**~' +2)/3(i=1,2,...,p—1)in(3.1) and using
(4.31),forn>0and a > 1,

FQ4p* n + (24i + 19p)p** =0 (mod 8), i=1,2,...,p—1. (4.32)
By (1.1),
FQ4p*n + (24i + 3p)p* @Y = F4p*n + 24i + 11p)p**~ 1 = 0. (4.33)
Congruence (1.6) follows from (4.32) and (4.33). This completes the proof. O
Acknowledgement

The author wishes to thank the referee for valuable suggestions.

References

[1] G.E. Andrews, P. Paule and C. Schneider, ‘Plane partitions VI: Stembridge’s TSPP theorem’, Adv.
Appl. Math. 34 (2005), 709-739.

[2] B.C. Berndt, Ramanujan’s Notebooks, Part III (Springer, New York, 1991).

[3] A. Blecher, ‘Geometry for totally symmetric plane partitions (TSPPs) with self-conjugate main
diagonal’, Util. Math. 88 (2012), 223-235.

[4] S.P.CuiandN.S.S. Gu, ‘Arithmetic properties of /-regular partitions’, Adv. Appl. Math. 51 (2013),
507-523.

[5] M. D. Hirschhorn and J. A. Sellers, ‘Arithmetic properties of 1-shell totally symmetric plane
partitions’, Bull. Aust. Math. Soc., to appear. Published online 27 September 2013.

[6] J.R. Stembridge, “The enumeration of totally symmetric plane partitions’, Adv. Math. 111 (1995),
227-243.

OLIVIA X. M. YAO, Department of Mathematics, Jiangsu University,
Zhenjiang, Jiangsu 212013, PR China
e-mail: yaoxiangmei@ 163.com

https://doi.org/10.1017/5S0004972713001160 Published online by Cambridge University Press


mailto:yaoxiangmei@163.com
https://doi.org/10.1017/S0004972713001160

	Introduction
	Preliminary results
	Proof of Theorem  1.1
	Proof of Theorem 1.2
	References

