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For linear stochastic differential equations with bounded coefficients, we establish
the robustness of nonuniform mean-square exponential dichotomy (NMS-ED) on
[t0, +∞), (−∞, t0] and the whole R separately, in the sense that such an NMS-ED
persists under a sufficiently small linear perturbation. The result for the nonuniform
mean-square exponential contraction is also discussed. Moreover, in the process of
proving the existence of NMS-ED, we use the observation that the projections of the
‘exponential growing solutions’ and the ‘exponential decaying solutions’ on
[t0, +∞), (−∞, t0] and R are different but related. Thus, the relations of three
types of projections on [t0, +∞), (−∞, t0] and R are discussed.
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1. Introduction

The well-established notion of exponential dichotomy used in the analysis of nonau-
tonomous systems essentially originated from the work of Perron [41]. The theory
of exponential dichotomy is a powerful tool to describe hyperbolicity of dynamical
systems generated by differential equations, especially for the stable and unsta-
ble invariant manifolds of time-dependent systems. As mentioned in Coppel [12],
‘that dichotomies, rather than Lyapunov’s characteristic exponents, are the key to
questions of asymptotic behaviour for nonautonomous differential equations’.

Over the years, the classical exponential dichotomy and its properties have been
established for evolution equations [24, 30, 40, 47–49], functional differential equa-
tions [11, 31, 42], skew-product flows [9, 10, 29, 50] and random systems or
stochastic equations [14, 53, 54, 58, 59]. We also refer to the books [8, 12, 36] for
details and further references related to exponential dichotomies.

However, dynamical systems exhibit various different kinds of dichotomic
behaviour and the classical notion of exponential dichotomy substantially restricts
some dynamics. In order to investigate more general hyperbolicity, many attempts
(see e.g. [37, 38, 46]) have been made to extend the concept of classical dichotomies.
Inspired by the work of Barreira and Pesin on the notion of nonuniformly hyperbolic
trajectory [1, 2], Barreira and Valls extended the concept of exponential dichotomy

c○ The Author(s), 2023. Published by Cambridge University Press on behalf

of The Royal Society of Edinburgh

525

https://doi.org/10.1017/prm.2023.23 Published online by Cambridge University Press

https://orcid.org/0000-0002-6228-2571
mailto:hai-long-zhu@163.com
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/prm.2023.23&domain=pdf
https://doi.org/10.1017/prm.2023.23


526 H. Zhu

to the nonuniform ones and investigated some related problems, see for examples,
the works [3–7] and the references therein.

On the other hand, from the point of view of Itô stochastic differential equations
(SDE), such properties of mean-square are natural since the Itô stochastic calculus is
essentially deterministic in the mean-square setting, and there exist stationary coor-
dinate changes under which flows of nonautonomous random differential equation
can be viewed as those of SDE [25]. Some related works on mean-square setting
of random systems or stochastic equations can be found in [17, 21–23, 27, 33,
57]. To the best of our knowledge, mean-square exponential dichotomy (MS-ED)
was first introduced by Stanzhyts’kyi [51], in which a sufficient condition has been
proved to ensure that a linear SDE satisfies an MS-ED. Based on the definition of
MS-ED, Stanzhyts’kyi and Krenevych [52] proved the existence of a quadratic form
of linear SDE. In [58] the robustness of MS-ED for a linear SDE was established.
Stoica [53] studied stochastic cocycles in Hilbert spaces. Recently, Doan et al. [14]
considered the MS-ED spectrum for random dynamical system.

Now we recall the definition of MS-ED. Consider the following linear n-
dimensional Itô stochastic system

dx(t) = A(t)x(t)dt + G(t)x(t)dω(t), t ∈ I, (1.1)

where I is either the half line [t0, +∞), (−∞, t0] or the whole R, and
A(t) = (Aij(t))n×n, G(t) = (Gij(t))n×n are continuous functions with real entries.
Equation (1.1) is said to possess an MS-ED if there exists a linear projection
P (t) : L2(Ω, R

n) → L2(Ω, R
n) such that

Φ(t)Φ−1(s)P (s) = P (t)Φ(t)Φ−1(s), ∀ t, s ∈ I, (1.2)

and positive constants K, α such that

E‖Φ(t)Φ−1(s)P (s)‖2 � Ke−α(t−s), ∀ (t, s) ∈ I2
�,

E‖Φ(t)Φ−1(s)Q(s)‖2 � Ke−α(s−t), ∀ (t, s) ∈ I2
�,

where Φ(t) is a fundamental matrix solution of (1.1), and Q(t) = Id − P (t) is the
complementary projection of P (t) for each t ∈ I. I2

� := {(t, s) ∈ I2 : t � s} and
I2
� := {(t, s) ∈ I2 : t � s} denotes the relations of s and t on I.
Inspired by the above, this paper is to study the robustness of NMS-ED. (1.1) is

said to possess an NMS-ED if there exists a linear projection P (t) : L2(Ω, R
n) →

L2(Ω, R
n) such that (1.2) holds, and some constants M, α > 0, ε � 0 such that

E‖Φ(t)Φ−1(s)P (s)‖2 � Me−α(t−s)+ε|s|, ∀ (t, s) ∈ I2
�, (1.3)

E‖Φ(t)Φ−1(s)Q(s)‖2 � Me−α(s−t)+ε|s|, ∀ (t, s) ∈ I2
�, (1.4)

where Φ(t) is a fundamental matrix solution of (1.1), Q(t) = Id − P (t) is the
complementary projection of P (t) for each t ∈ I. I2

� := {(t, s) ∈ I2 : t � s} and
I2
� := {(t, s) ∈ I2 : t � s} denotes the relations of s and t on I. For convenience,

the constants α and K in (1.3)–(1.4) are called the exponent and the bound of the
NMS-ED, respectively, as in the case of deterministic systems [20]. ε is called the
nonuniform degree of the NMS-ED. In particular, while ε = 0, we obtain the notion
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of (uniform) MS-ED. We refer to [51–53, 57–59] for related results and techniques
about this topic.

It is clear that the notion of NMS-ED is a weaker requirement in comparison to
the notion of MS-ED. Actually, there exists a linear SDE which has an NMS-ED
with nonuniform degree ε cannot be removed. For example, let a > b > 0 be real
parameters,{

du = (−a − bt sin t)u(t)dt +
√

2b cos t exp(−at + bt cos t)dω(t),
dv = (a + bt sin t)v(t)dt −

√
2b cos t exp(at − bt cos t)dω(t)

admits an NMS-ED which is not uniform. See example 6.1 in § 6 for details.
Robustness (also known as roughness , see e.g. [12]) here means that an NMS-

ED persists under a sufficiently small linear perturbation. More precisely, for small
perturbations B, H, the following linear SDE

dy(t) = (A(t) + B(t))y(t)dt + (G(t) + H(t))y(t)dω(t) (1.5)

also admits an NMS-ED. As indicated by Coppel [12, p. 28], the robustness of
exponential dichotomies was first proved by Massera and Schäffer [36], which states
that all ‘neighbouring’ linear systems also have the same dichotomy with a similar
projection if the same happens for the original system. Robustness is one of the
most basic concepts appearing in the theoretical studies of dynamical systems.
This topic plays a key role in the stability theory for dynamical systems. Some early
papers about robustness (with the exception of [12] and [36] mentioned above) are
Dalec’kĭı and Krĕın [13] and Palmer [39] for ordinary differential equations, Henry
[20] and Lin [32] for parabolic partial differential equations, Hale and Lin [19] and
Lizana [34] for functional differential equations, Pliss and Sell [43] and Chow and
Leiva [10] for skew-product semiflow. For more recent works refer to papers [5,
7, 26, 44, 45, 55, 56]. It is worth mentioning that on half line R

+, R
− as well

as the whole R, Ju and Wiggins [26] and Popescu [44, 45] considered the case of
roughness for exponential dichotomy and analyse their dynamical behaviour; Zhou
et al. [55] discussed the relationship between nonuniform exponential dichotomy
and admissibility.

In this study, we extend the results and improve the method of [58]. The main
differences of our results and those of [58] are as follows:

• In contrast to [58], we extend the case of robustness of MS-ED to the general
nonuniform setting. For this purpose, we need to pass from small bounded
perturbations of the coefficient matrix to exponentially decaying perturbations.

• In [58], we only consider the case of robustness on the whole line R. In the
present paper, we prove the robustness of (1.5) on half line [t0, +∞), (−∞, t0]
and the whole R. The proof is much more delicate than that of MS-ED [58]. This
is because in different intervals, the different but related explicit expressions
of the projections of the ‘exponential growing solutions’ and the ‘exponential
decaying solutions’ for the perturbed equation (1.5) need to be determined first.

• Furthermore, in contrast to paper [58], we analyse and compare the results
obtained from operators that make up the projections of (1.1) and (1.5) on
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different intervals (see theorem 3.10 and remark 5.9), and estimate the dis-
tance between the solution of (1.1) and the perturbed solution of (1.5) (see
theorem 3.11 and remark 3.12).

The remaining part of this paper is organized as follows. The robustness of nonuni-
form mean-square exponential contraction (NMS-EC) is established in § 2. Section
3 proves the robustness of NMS-ED on half line [t0, +∞) and analyses that the
solution of (1.1) and the perturbed solution of (1.5) are forward asymptotic in
the mean-square sense. The robustness under the nonuniform setting on half line
(−∞, t0] is presented in § 4. Section 5 combines the advantages of the projections
on half line [t0, +∞) and (−∞, t0], and proves the robustness of NMS-ED on the
whole R. In addition, the relationship of the projections on [t0, +∞), (−∞, t0] and
R is also discussed in § 5. Finally, an example is given in § 6, which indicates that
there exists a linear SDE which admits an NMS-ED but not uniform.

2. Robustness of NMS-EC

In this section we will answer the following question: Does (1.5) admit an NMS-EC
if (1.1) admits an NMS-EC while B, H is small? That is to say, we consider the
robustness of NMS-EC. The following statement is a particular case of NMS-ED
with projection P (t) = Id for every t ∈ I. (1.1) is said to admit an NMS-EC if for
some constants M, α > 0 and ε � 0 such that

E‖Φ(t)Φ−1(s)‖2 � Me−α(t−s)+ε|s|, ∀ (t, s) ∈ I2
�. (2.1)

In particular, when ε = 0 in (2.1), we obtain the notion of uniform mean-square
exponential contraction.

Throughout this paper, we assume that (Ω, F , P) is a probability space, ω(t) =
(ω1(t), . . . ωn(t))T is an n-dimensional Brownian motion defined on the space
(Ω, F , P). ‖ · ‖ is used to denote both the Euclidean vector norm or the matrix
norm as appropriate, and L2(Ω, R

n) stands for the space of all R
n-valued random

variables x : Ω → R
n such that

E‖x‖2 =
∫

Ω

‖x‖2dP < ∞.

In order to describe the robustness in an explicit form, we present the following
theorem, which shows that the NMS-EC is robust under sufficiently small linear
perturbations. Here we mention that the NMS-EC considered in this section is in
an arbitrary interval I ⊂ R.

Theorem 2.1. Let A(·), B(·), G(·), H(·) be n × n-matrix continuous functions with
real entries such that (1.1) admits an NMS-EC (2.1) with coefficient matrix bounded
and perturbation exponential decaying in I, i.e. there exist constants a, b, g, h > 0
such that

‖A(t)‖ � a, ‖G(t)‖ � g, ‖B(t)‖ � be−
ε|t|
2 , ‖H(t)‖ � he−

ε|t|
2 , t ∈ I.

Let b, h be small enough such that

M̃ := 8b2 + 8g2h2 + αh2 <
α2

6M
. (2.2)
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Then (1.5) also admits an NMS-EC in I with the bound M replaced by 3M , and
exponent α replaced by −α

2 + 3MM̃
α , i.e.

E‖Φ̂(t)Φ̂−1(s)‖2 � 3Me(−α
2 + 3MM̃

α )(t−s)+ε|s|, ∀ (t, s) ∈ I2
�, (2.3)

where Φ̂(t) is a fundamental matrix solution of (1.5).

Proof. Write

Φ̂(t, s) = Φ̂(t)Φ̂−1(s).

One can easily verify that Φ̂(t, s) is a fundamental matrix solution of (1.5) with
Φ̂(s, s) = Id. L2(Ω, R

n) is a Banach space with the norm (E‖x‖2)
1
2 . The Banach

algebra of bounded linear operators on L2(Ω, R
n) is denoted by B(L2(Ω, R

n)).
Now we introduce the space

Lc := {Φ̂ : I2
� → B(L2(Ω, Rn)) : Φ̂ is continuous and ‖Φ̂‖c < ∞} (2.4)

with the norm

‖Φ̂‖c = sup
{

(E‖Φ̂(t, s)‖2)
1
2 e−

ε
2 |s| : (t, s) ∈ I2

�
}

. (2.5)

Clearly, (Lc, ‖ · ‖c) is a Banach space. In order to state our result, we need the
following existence and uniqueness lemma.

Lemma 2.2. For any given initial value ξ0 ∈ R
n, (1.5) has a unique solution

Φ̂(t, s)ξ0 with Φ̂ ∈ (Lc, ‖ · ‖c) such that

Φ̂(t, s) = Φ(t)Φ−1(s) +
∫ t

s

Φ(t)Φ−1(τ)H(τ)Φ̂(τ, s)dω(τ)

+
∫ t

s

Φ(t)Φ−1(τ)
(
B(τ) − G(τ)H(τ)

)
Φ̂(τ, s)dτ (2.6)

with Φ̂(s, s)ξ0 = Φ(s)Φ−1(s)ξ0 = ξ0.

Proof. In what follows (in order to simplify the presentation), write B̃(t) = B(t) −
G(t)H(t). We first prove that the function Φ̂(t, s)ξ0 is a solution of (1.5). Set

ξ(t) = Φ−1(s)ξ0 +
∫ t

s

Φ−1(τ)H(τ)Φ̂(τ, s)ξ0dω(τ)

+
∫ t

s

Φ−1(τ)B̃(τ)Φ̂(τ, s)ξ0dτ.

Let y(t) = Φ(t)ξ(t). Clearly,

Φ̂(t, s)ξ0 = Φ(t)ξ(t) = y(t).

One can easily verify that ξ(t) satisfies the differential

dξ(t) = Φ−1(t)
(
B(t) − G(t)H(t)

)
y(t)dt + Φ−1(t)H(t)y(t)dω(t).
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Since Φ(t) is a fundamental matrix solution of (1.1), it follows from Itô product
rule that

dy(t) = dΦ(t)ξ(t) + Φ(t)dξ(t) + G(t)Φ(t)Φ−1(t)H(t)y(t)dt

= A(t)y(t)dt + G(t)y(t)dω(t) +
(
B(t) − G(t)H(t)

)
y(t)dt

+ H(t)y(t)dω(t) + G(t)H(t)y(t)dt

= (A(t) + B(t))y(t)dt + (G(t) + H(t))y(t)dω(t),

which means that y(t) = Φ̂(t, s)ξ0 is a solution of (1.5). This conclusion is consistent
with that in [35, theorem 3.3.1] (see also [28, section 2.4.2]).

Now we prove that Φ̂ is unique in (Lc, ‖ · ‖c). Let

(ΓΦ̂)(t, s) = Φ(t)Φ−1(s) +
∫ t

s

Φ(t)Φ−1(τ)H(τ)Φ̂(τ, s)dω(τ)

+
∫ t

s

Φ(t)Φ−1(τ)B̃(τ)Φ̂(τ, s)dτ.

It follows from (2.1), E‖x‖ �
√

E‖x‖2, Cauchy–Schwarz inequality, Itô isometry
property of stochastic integrals and the elementary inequality∥∥∥∥∥

m∑
k=1

ak

∥∥∥∥∥
2

� m

m∑
k=1

‖ak‖2 (2.7)

that

E‖(ΓΦ̂)(t, s)‖2 � 3E‖Φ(t)Φ−1(s)‖2 + 3E

∥∥∥∥
∫ t

s

Φ(t)Φ−1(τ)H(τ)Φ̂(τ, s)dω(τ)
∥∥∥∥

2

+ 3E

∥∥∥∥
∫ t

s

Φ(t)Φ−1(τ)B̃(τ)Φ̂(τ, s)dτ

∥∥∥∥
2

� 3Me−a(t−s)+ε|s| + 3
∫ t

s

E‖Φ(t)Φ−1(τ)‖2
E‖H(τ)‖2

E‖Φ̂(τ, s)‖2dτ

+ 3
(∫ t

s

E‖Φ(t)Φ−1(τ)‖E‖B̃(τ)‖dτ

)

×
(∫ t

s

E‖Φ(t)Φ−1(τ)‖E‖B̃(τ)‖E‖Φ̂(τ, s)‖2dτ

)

� 3Me−α(t−s)+ε|s| + 3Meε|s| sup
(τ,s)∈I2

�

(
E‖Φ̂(τ, s)‖2e−ε|s|

)

×
(

h2

∫ t

s

e−α(t−τ)dτ + 2(b2 + g2h2)
(∫ t

s

e−
α
2 (t−τ)dτ

)2
)

� 3Meε|s| + 3Meε|s|
(

αh2 + 8b2 + 8g2h2

α2

)
sup

(τ,s)∈I2
�

(
E‖Φ̂(τ, s)‖2e−ε|s|

)
,
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and this implies that

E‖(ΓΦ̂)(t, s)‖2e−εs � 3M +
3M̃M

α2
sup

(τ,s)∈I2
�

(
E‖Φ̂(τ, s)‖2e−ε|s|

)
< ∞

with M̃ = 8b2 + 8g2h2 + αh2. Following the same procedure above, for any
Φ̂1, Φ̂2 ∈ Lc, we have

‖ΓΦ̂1 − ΓΦ̂2‖2
c � 3M̃M

α2
sup

(τ,s)∈I2
�

(
E‖Φ̂1(τ, s) − Φ̂1(τ, s)‖2e−ε|s|

)
. (2.8)

Note that

sup
(t,s)∈I2

�

(
E‖Φ̂1(t, s) − Φ̂1(t, s)‖2e−ε|s|

)

= sup
(t,s)∈I2

�

(
(E‖Φ̂1(t, s) − Φ̂1(t, s)‖2)

1
2 e−

ε|s|
2

)2

�
(

sup
(t,s)∈I2

�

(E‖Φ̂1(t, s) − Φ̂1(t, s)‖2)
1
2 e−

ε|s|
2

)2

= ‖Φ̂1 − Φ̂2‖2
c ,

which together with (2.8) implies

‖ΓΦ̂1 − ΓΦ̂2‖c �

√
3M̃M

α2
‖Φ̂1 − Φ̂2‖c.

Since M̃ < α2

3M , Γ is a contraction operator. Hence, there exists a unique Φ̂ ∈ Lc

such that ΓΦ̂ = Φ̂, which satisfies the identity (2.6). This completes the proof of
the lemma. �

We proceed with the proof of the theorem. Squaring both sides of (2.6), and
taking expectations, it follows from (2.7) that

E‖Φ̂(t, s)‖2 � 3E‖Φ(t)Φ−1(s)‖2 + 3E

∥∥∥∥
∫ t

s

Φ(t)Φ−1(τ)H(τ)Φ̂(τ, s)dω(τ)
∥∥∥∥

2

+ 3E

∥∥∥∥
∫ t

s

Φ(t)Φ−1(τ)B̃(τ)Φ̂(τ, s)dτ

∥∥∥∥
2

. (2.9)
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By using Itô isometry property and inequalities (2.1), the second term of the right-
hand side in (2.9) can be deduced as follows:

E

∥∥∥∥
∫ t

s

Φ(t)Φ−1(τ)H(τ)Φ̂(τ, s)dω(τ)
∥∥∥∥

2

=
∫ t

s

E‖Φ(t)Φ−1(τ)‖2
E‖H(τ)‖2

E‖Φ̂(τ, s)‖2dτ

� Mh2

∫ t

s

e−α(t−τ)
E‖Φ̂(τ, s)‖2dτ.

As to the third term in (2.9), it follows from E‖x‖ �
√

E‖x‖2, Cauchy–Schwarz
inequality and the inequalities (2.1) that

E

∥∥∥∥
∫ t

s

Φ(t)Φ−1(τ)B̃(τ)Φ̂(τ, s)dτ

∥∥∥∥
2

∥∥∥∥
∫ t

s

(
Φ(t)Φ−1(τ)B̃(τ)

) 1
2
((

Φ(t)Φ−1(τ)B̃(τ)
) 1

2
Φ̂(τ, s)

)
dτ

∥∥∥∥
2

�
(∫ t

s

E

∥∥∥Φ(t)Φ−1(τ)B̃(τ)
∥∥∥ dτ

)

×
(∫ t

s

E

∥∥∥Φ(t)Φ−1(τ)B̃(τ)
∥∥∥E

∥∥∥Φ̂(τ, s)
∥∥∥2

dτ

)

� 2M(b2 + g2h2)
(∫ t

s

e−
α
2 (t−τ)dτ

)(∫ t

s

e−
α
2 (t−τ)

E

∥∥∥Φ̂(τ, s)
∥∥∥2

dτ

)

� 4M(b2 + g2h2)
α

∫ t

s

e−
α
2 (t−τ)

E

∥∥∥Φ̂(τ, s)
∥∥∥2

dτ.

Since α > 0, we can rewrite inequality (2.9) as

‖Φ̂(t, s)‖2 � 3Me−α(t−s)+ε|s| + 3Mh2

∫ t

s

e−α(t−τ)
E

∥∥∥Φ̂(τ, s)
∥∥∥2

dτ

+
12M(b2 + g2h2)

α

∫ t

s

e−
α
2 (t−τ)

E

∥∥∥Φ̂(τ, s)
∥∥∥2

dτ

� 3Me−
α
2 (t−s)+ε|s| + 3M

(
αh2 + 8b2 + 8g2h2

α

)∫ t

s

e−
α
2 (t−τ)

E

∥∥∥Φ̂(τ, s)
∥∥∥2

dτ.

(2.10)

Let

x(t) = E‖Φ̂(t, s)‖2, X(t) = 3Me−
α
2 (t−s)+ε|s| +

3MM̃

α

∫ t

s

e−
α
2 (t−τ)x(τ)dτ

(2.11)
for any fixed s ∈ I with M̃ = αh2 + 8b2 + 8g2h2. Clearly, inequality (2.10) can be
rewritten as

x(t) � X(t), for all (t, s) ∈ I2
�.
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On the contrary,

d
dt

X(t) = −α

2
X(t) +

3MM̃

α
x(t),

and therefore,

d
dt

X(t) �
(

3MM̃

α
− α

2

)
X(t).

Integrating the above inequality from s to t and note that X(s) = 3Meε|s|, we
obtain

x(t) � X(t) � 3Meε|s|e(−α
2 + 3MM̃

α )(t−s), for all (t, s) ∈ I2
�. (2.12)

By (2.12), using (2.11), we obtain the desired inequality (2.3), and this completes
the proof of the theorem. �

Remark 2.3. Since the nonuniform degree ε > 0 exists for (t, s) ∈ I2
�, the per-

turbations B and H should be chosen with exponential decaying to eliminate the
effect caused by the nonuniform degree. For the uniform case, it suffices to con-
sider the bounded condition instead of exponential decaying. See [58] for details
about the case of ε = 0, which generalizes (and imitates) the notion of robustness
of exponential dichotomy for ODE (see e.g. [12, 36]).

As a special case of (1.5), if we consider the system

dy(t) = (A(t) + B(t))y(t)dt + G(t)y(t)dω(t), (2.13)

in which the linear perturbed term only appears in the ‘drift’. Of course, theorem 2.1
can also be applied to (2.13) but merely with the development of slightly better
estimation (with the bound and the exponent replaced by smaller constants) than
the one in theorem 2.1, since there is no perturbation in the ‘volatility’. Actually,
for any given initial value ξ0 ∈ R

n, (2.13) has a unique solution Φ̂(t, s)ξ0 with
Φ̂ ∈ (Lc, ‖ · ‖c) such that

Φ̂(t, s) = Φ(t)Φ−1(s) +
∫ t

s

Φ(t)Φ−1(τ)B(τ)Φ̂(τ, s)dτ

instead of (2.6), which is more similar to solutions of the classical ordinary
differential equations (see e.g. [18]).

Theorem 2.4. Let A(·), B(·), G(·) be n × n-matrix continuous functions with real
entries such that (1.1) admits an NMS-EC (2.1) with coefficient matrix bounded
and perturbation exponential decaying in I, i.e. there exist constants a, b, g > 0
such that

‖A(t)‖ � a, ‖G(t)‖ � g, ‖B(t)‖ � be−
ε|t|
2 , t ∈ I.

If b < α/(2
√

2M), then (2.13) also admits an NMS-EC in I with the bound M

replaced by 2M , and exponent α replaced by −α
2 + 4Mb2

α , i.e.

‖Φ̂(t)Φ̂−1(s)‖2 � 2Me(−α
2 + 4Mb2

α )(t−s)+ε|s|, ∀ (t, s) ∈ I2
�.
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3. Robustness of NMS-ED on the half line [t0, +∞)

In this section, we state and prove our main result on the robustness of NMS-ED
on I = [t0, +∞). The case of the interval I = (−∞, t0] and the whole R will be
discussed in § 4 and § 5, respectively.

The following theorem is on the robustness of NMS-ED of (1.1) on [t0, +∞), and
its proof is more general and complicated than that of theorem 2.1, because we
need to find out the explicit expressions of the ‘exponential growing solutions’ and
the ‘exponential decaying solutions’ for the perturbed equation (1.5) along with
the stable and unstable directions, respectively. To do this, we rewrite the unique
solution of (1.5) along the stable direction under a natural condition: boundedness.
It is also worth mentioning that the following theorem is also valid for NMS-EC.
Indeed, a contraction is a dichotomy with P (t) = Id for every t ∈ I.

Theorem 3.1. Let A(·), B(·), G(·), H(·) be n × n-matrix continuous functions with
real entries such that (1.1) admits an NMS-ED (1.3)–(1.4) with ε < α, and assume
that coefficient matrices of (1.5) satisfy

‖A(t)‖ � a, ‖G(t)‖ � g, ‖B(t)‖ � be−ε|t|, ‖H(t)‖ � he−ε|t|, t ∈ I (3.1)

with constants a, b, g, h > 0. Let b, h be small enough such that

M̃ := 8b2 + 8g2h2 + αh2 <
α2

20M
.

Then (1.5) admits an NMS-ED in I with linear projections P̂ (t) : L2(Ω, R
n) →

L2(Ω, R
n) such that

Φ̂(t)Φ̂−1(s)P̂ (s) = P̂ (t)Φ̂(t)Φ̂−1(s), ∀ t, s ∈ I, (3.2)

and

E‖Φ̂(t)Φ̂−1(s)P̂ (t)‖2 � M̂e−α̂(t−s)+ε̂|s|, ∀ (t, s) ∈ I2
�, (3.3)

E‖Φ̂(t)Φ̂−1(s)Q̂(t)‖2 � M̂e−α̂(s−t)+ε̂|s|, ∀ (t, s) ∈ I2
�, (3.4)

where bound M̂ := 40M , exponent α̂ := α
2 − 10MM̃

α and nonuniform degree ε̂ := 2ε.

Proof of theorem 3.1. We first prove several lemmas which are essential in proving
the theorem. The first one is the existence and uniqueness lemma, which is slightly
different from lemma 2.2 since U(s, s)ξ0 is not necessarily equal to ξ0 in (3.5).
We will explain the reason after lemma 3.7 under which condition there exists an
equivalence between (2.6) and (3.5) below.
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Lemma 3.2. For any given initial value ξ0 ∈ R
n, (1.5) has a unique solution

U(t, s)ξ0 with U ∈ (Lc, ‖ · ‖c) such that

U(t, s) = Φ(t)Φ−1(s)P (s) +
∫ t

s

Φ(t)Φ−1(τ)P (τ)H(τ)U(τ, s)dω(τ)

+
∫ t

s

Φ(t)Φ−1(τ)P (τ)B̃(τ)U(τ, s)dτ

−
∫ ∞

t

Φ(t)Φ−1(τ)Q(τ)H(τ)U(τ, s)dω(τ)

−
∫ ∞

t

Φ(t)Φ−1(τ)Q(τ)B̃(τ)U(τ, s)dτ. (3.5)

Proof. We first prove that the function U(t, s)ξ0 is a solution of (1.5). Set

ξ(t) = Φ−1(s)P (s)ξ0 +
∫ t

s

Φ−1(τ)P (τ)H(τ)U(τ, s)ξ0dω(τ)

+
∫ t

s

Φ−1(τ)P (τ)B̃(τ)U(τ, s)ξ0dτ −
∫ ∞

t

Φ−1(τ)Q(τ)H(τ)U(τ, s)ξ0dω(τ)

−
∫ ∞

t

Φ−1(τ)Q(τ)B̃(τ)U(τ, s)ξ0dτ.

Let y(t) = Φ(t)ξ(t). Clearly,

U(t, s)ξ0 = Φ(t)ξ(t) = y(t),

and then ξ(t) satisfies the differential

dξ(t) = Φ−1(t)
(
B(t) − G(t)H(t)

)
y(t)dt + Φ−1(t)H(t)y(t)dω(t).

Since Φ(t) is a fundamental matrix solution of (1.1). it follows from Itô product
rule that

dy(t) = dΦ(t)ξ(t) + Φ(t)dξ(t) + G(t)Φ(t)Φ−1(t)H(t)y(t)dt

= A(t)y(t)dt + G(t)y(t)dω(t) +
(
B(t) − G(t)H(t)

)
y(t)dt

+ H(t)y(t)dω(t) + G(t)H(t)y(t)dt

= (A(t) + B(t))y(t)dt + (G(t) + H(t))y(t)dω(t),

which means that y(t) = U(t, s)ξ0 is a solution of (1.5).
Now we prove that U is unique in (Lc, ‖ · ‖c). Let

(ΓU)(t, s) = Φ(t)Φ−1(s)P (s) +
∫ t

s

Φ(t)Φ−1(τ)P (τ)H(τ)U(τ, s)dω(τ)

+
∫ t

s

Φ(t)Φ−1(τ)P (τ)B̃(τ)U(τ, s)dτ
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−
∫ ∞

t

Φ(t)Φ−1(τ)Q(τ)H(τ)U(τ, s)dω(τ)

−
∫ ∞

t

Φ(t)Φ−1(τ)Q(τ)B̃(τ)U(τ, s)dτ.

The same idea as in lemma 2.2 can be applied to prove the uniqueness of the
solution to (3.5). Squaring both sides of (3.5), and taking expectations, we have

E‖(ΓU)(t, s)‖2

� 5E‖Φ(t)Φ−1(s)P (s)‖2 + 5E

∥∥∥∥
∫ t

s

Φ(t)Φ−1(τ)P (τ)H(τ)U(τ, s)dω(τ)
∥∥∥∥

2

+ 5E

∥∥∥∥
∫ t

s

Φ(t)Φ−1(τ)Q(τ)B̃(τ)U(τ, s)dτ

∥∥∥∥
2

+ 5E

∥∥∥∥
∫ ∞

t

Φ(t)Φ−1(τ)Q(τ)H(τ)U(τ, s)dω(τ)
∥∥∥∥

2

+ 5E

∥∥∥∥
∫ ∞

t

Φ(t)Φ−1(τ)Q(τ)B̃(τ)U(τ, s)dτ

∥∥∥∥
2

� 5Meε|s| + 10Meε|s|(
αh2 + 8b2 + 8g2h2

α2
) sup

(τ,s)∈I2
�

(
E‖U(τ, s)‖2e−ε|s|

)
,

and this implies that

E‖(ΓU)(t, s)‖2e−εs � 5M +
10MM̃

α2
sup

(τ,s)∈I2
�

(
E‖Φ̂(τ, s)‖2e−ε|s|

)
< ∞

with M̃ = 8b2 + 8g2h2 + αh2. Following the same procedure as above, for any
U1, U2 ∈ Lc, we have

‖ΓU1 − ΓU2‖2
c � 10MM̃

α2
sup

(τ,s)∈I2
�

(
E‖U1(τ, s) − U2(τ, s)‖2e−ε|s|

)
. (3.6)

Note that

sup
(t,s)∈I2

�

(
E‖U1(t, s) − U2(t, s)‖2e−εs

)
� sup

(t,s)∈I2
�

(
(E‖U1(t, s) − U2(t, s)‖2)

1
2 e−

ε|s|
2

)2

�
(

sup
(t,s)∈I2

�

(E‖U1(t, s) − U2(t, s)‖2)
1
2 e−

ε|s|
2

)2

= ‖U1 − U2‖2
c ,

which together with (3.6) implies

‖ΓU1 − ΓU2‖c �

√
10MM̃

α2
‖U1 − U2‖c.
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Since M̃ < α2

10M , Γ is a contraction operator. Hence, there exists a unique U ∈ Lc

such that ΓU = U , which satisfies identity (3.5). This completes the proof of the
lemma.

Lemma 3.3. For any u ∈ (s, t) in I, we have

U(t, s) = U(t, u)U(u, s)

in the sense of (Lc, ‖ · ‖c).

Proof. By (1.2) and (3.5) with any t � u � s in I, we have

U(t, u)U(u, s) = Φ(t)Φ−1(s)P (s) +
∫ u

s

Φ(t)Φ−1(τ)P (τ)H(τ)U(τ, s)dω(τ)

+
∫ u

s

Φ(t)Φ−1(τ)P (τ)B̃(τ)U(τ, s)dτ

+
(∫ t

u

Φ(t)Φ−1(τ)P (τ)H(τ)U(τ, u)dω(τ)

+
∫ t

u

Φ(t)Φ−1(τ)P (τ)B̃(τ)U(τ, u)dτ

−
∫ ∞

t

Φ(t)Φ−1(τ)Q(τ)H(τ)U(τ, u)dω(τ)

−
∫ ∞

t

Φ(t)Φ−1(τ)Q(τ)B̃(τ)U(τ, u)dτ

)
U(u, s). (3.7)

Subtracting (3.5) from (3.7) we obtain

U(t, s) − U(t, u)U(u, s)

=
∫ t

u

Φ(t)Φ−1(τ)P (τ)H(τ) (U(τ, s) − U(τ, u)U(u, s)) dω(τ)

+
∫ t

u

Φ(t)Φ−1(τ)P (τ)B̃(τ) (U(τ, s) − U(τ, u)U(u, s)) dτ

−
∫ ∞

t

Φ(t)Φ−1(τ)Q(τ)H(τ) (U(τ, s) − U(τ, u)U(u, s)) dω(τ)

−
∫ ∞

t

Φ(t)Φ−1(τ)Q(τ)B̃(τ) (U(τ, s) − U(τ, u)U(u, s)) dτ.

Write Ũ(t, s) = U(t, s) − U(t, u)U(u, s). Now we prove Ũ is unique in (Lc, ‖ · ‖c).
Let

(T Ũ)(t, s) =
∫ t

u

Φ(t)Φ−1(τ)P (τ)H(τ)Ũ(τ, s)dω(τ)

+
∫ t

u

Φ(t)Φ−1(τ)P (τ)B̃(τ)Ũ(τ, s)dτ
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−
∫ ∞

t

Φ(t)Φ−1(τ)Q(τ)H(τ)Ũ(τ, s)dω(τ)

−
∫ ∞

t

Φ(t)Φ−1(τ)Q(τ)B̃(τ)Ũ(τ, s). (3.8)

Squaring both sides of (3.8), and taking expectations, it follows from (2.7) that

E‖(T Ũ)(t, s)‖2 � 4E

∥∥∥∥
∫ t

u

Φ(t)Φ−1(τ)P (τ)H(τ)Ũ(τ, s)dω(τ)
∥∥∥∥

2

+ 4E

∥∥∥∥
∫ t

u

Φ(t)Φ−1(τ)P (τ)B̃(τ)Ũ(τ, s)dτ

∥∥∥∥
2

+ 4E

∥∥∥∥
∫ ∞

t

Φ(t)Φ−1(τ)Q(τ)H(τ)Ũ(τ, s)dω(τ)
∥∥∥∥

2

+ 4E

∥∥∥∥
∫ ∞

t

Φ(t)Φ−1(τ)Q(τ)B̃(τ)Ũ(τ, s)dτ

∥∥∥∥
2

. (3.9)

By using the Itô isometry property and inequalities (1.3), the first term on the
right-hand side in (3.9) can be deduced as follows:

E

∥∥∥∥
∫ t

s

Φ(t)Φ−1(τ)P (τ)H(τ)Ũ(τ, s)dω(τ)
∥∥∥∥

2

=
∫ t

s

E‖Φ(t)Φ−1(τ)P (τ)‖2
E‖H(τ)‖2

E‖Ũ(τ, s)‖2dτ

� Mh2

∫ t

s

e−α(t−τ)
E‖Ũ(τ, s)‖2dτ

� Mh2

α
eε|s| sup

(τ,s)∈I2
�

(
E‖Ũ(τ, s)‖2e−ε|s|

)
.

As for the second term in (3.9), it follows from E‖x‖ �
√

E‖x‖2, Cauchy–Schwarz
inequality, Itô isometry property of stochastic integrals and (1.3) that

E

∥∥∥∥
∫ t

u

Φ(t)Φ−1(τ)P (τ)B̃(τ)Ũ(τ, s)dτ

∥∥∥∥
2

�
(∫ t

u

E

∥∥∥Φ(t)Φ−1(τ)P (τ)B̃(τ)
∥∥∥ dτ

)

×
(∫ t

u

E

∥∥∥Φ(t)Φ−1(τ)P (τ)B̃(τ)
∥∥∥E

∥∥∥Ũ(τ, s)
∥∥∥2

dτ

)

� 2M(b2 + g2h2)
(∫ t

u

e−
α
2 (t−τ)dτ

)(∫ t

u

e−
α
2 (t−τ)

E

∥∥∥Ũ(τ, s)
∥∥∥2

dτ

)

� 8M(b2 + g2h2)
α2

eε|s| sup
(τ,s)∈I2

�

(
E‖Ũ(τ, s)‖2e−ε|s|

)
.
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Clearly, the proof above is also valid for proving the other terms on the right-hand
side in (3.9). Thus, we can rewrite inequality (3.9) as

E‖(T Ũ)(t, s)‖2 � 8MM̃

α2
eε|s| sup

(τ,s)∈I2
�

(
E‖Ũ(τ, s)‖2e−ε|s|

)
,

and

‖T Ũ‖c �

√
8MM̃

α2
‖Ũ‖c

with M̃ = 8b2 + 8g2h2 + αh2. Following the same procedure as above, for any
Ũ1, Ũ2 ∈ Lc, we have

‖T Ũ1 − T Ũ2‖c �

√
8MM̃

α2
‖Ũ1 − Ũ2‖c.

Since M̃ < α2

8M , this implies T is a contraction. Hence, there is a unique
Ũ ∈ (Lc, ‖ · ‖c). Besides, 0 ∈ (Lc, ‖ · ‖c) also satisfies (3.8). Hence, we must have

U(t, s) − U(t, u)U(u, s) = 0

in Lc. Therefore, U(t, s) = U(t, u)U(u, s) with U ∈ (Lc, ‖ · ‖c). This completes
the proof of the lemma.

Lemma 3.4. Given s ∈ I, if y(t) := Λ(t, s)ξ : [s, +∞) → L2(Ω, R
n) is a solution of

(1.5) with y(s) = Λ(s, s)ξ = ξ such that Λ is bounded in (Lc, ‖ · ‖c), then

y(t) = Φ(t)Φ−1(s)P (s)ξ +
∫ t

s

Φ(t)Φ−1(τ)P (τ)H(τ)y(τ)dω(τ)

+
∫ t

s

Φ(t)Φ−1(τ)P (τ)B̃(τ)y(τ)dτ −
∫ ∞

t

Φ(t)Φ−1(τ)Q(τ)H(τ)y(τ)dω(τ)

−
∫ ∞

t

Φ(t)Φ−1(τ)Q(τ)B̃(τ)y(τ)dτ. (3.10)

Proof. It is easy to see from (2.6) that

P (t)y(t) = Φ(t)Φ−1(s)P (s)ξ +
∫ t

s

Φ(t)Φ−1(τ)P (τ)H(τ)y(τ)dω(τ)

+
∫ t

s

Φ(t)Φ−1(τ)P (τ)B̃(τ)y(τ)dτ, (3.11)

and

Q(t)y(t) = Φ(t)Φ−1(s)Q(s)ξ +
∫ t

s

Φ(t)Φ−1(τ)Q(τ)H(τ)y(τ)dω(τ)

+
∫ t

s

Φ(t)Φ−1(τ)Q(τ)B̃(τ)y(τ)dτ (3.12)
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for each (t, s) ∈ I2
�. Equality (3.12) can be rewritten in the equivalent form

Q(s)ξ = Φ(s)Φ−1(t)Q(t)y(t) −
∫ t

s

Φ(s)Φ−1(τ)Q(τ)H(τ)y(τ)dω(τ)

−
∫ t

s

Φ(s)Φ−1(τ)Q(τ)B̃(τ)y(τ)dτ. (3.13)

For convenience we can assume that D = ‖Λ‖c < ∞, since Λ is bounded in
(Lc, ‖ · ‖c). Then it follows from (2.5) and (1.4) that

E‖Φ(s)Φ−1(t)Q(t)y(t)‖2 � MD2‖ξ‖2e−α(t−s)+ε(|t|+|s|).

Since α > ε, the right-hand side of this inequality goes to zero as t → +∞.
Furthermore, we have

E

∥∥∥∥
∫ ∞

s

Φ(s)Φ−1(τ)Q(τ)H(τ)y(τ)dω(τ)
∥∥∥∥

2

=
∫ ∞

s

E
∥∥Φ(s)Φ−1(τ)Q(τ)

∥∥2
E ‖H(τ)‖2

E ‖y(τ)‖2 dτ

� h2D2M

α
eε|s|,

and

E

∥∥∥∥
∫ ∞

s

Φ(s)Φ−1(τ)Q(τ)B̃(τ)y(τ)dτ

∥∥∥∥
2

�
(∫ ∞

s

E

∥∥∥Φ(s)Φ−1(τ)Q(τ)B̃(τ)
∥∥∥ dτ

)

×
(∫ ∞

s

E

∥∥∥Φ(s)Φ−1(τ)Q(τ)B̃(τ)
∥∥∥E ‖y(τ)‖2 dτ

)

� 2M(b2 + g2h2)
(∫ ∞

s

e−
α
2 (τ−s)dτ

)(∫ ∞

s

e−
α
2 (τ−s)

E ‖y(τ)‖2 dτ

)

� 8MD2(b2 + g2h2)
α2

eε|s|.

Taking limits as t → +∞ in (3.13), we obtain

Q(s)ξ = −
∫ ∞

s

Φ(s)Φ−1(τ)Q(τ)H(τ)y(τ)dω(τ)

−
∫ ∞

s

Φ(s)Φ−1(τ)Q(τ)B̃(τ)y(τ)dτ,

and substituting it into (3.12) yields

Q(t)y(t) = −
∫ ∞

s

Φ(t)Φ−1(τ)Q(τ)H(τ)y(τ)dω(τ)

+
∫ t

s

Φ(t)Φ−1(τ)Q(τ)H(τ)y(τ)dω(τ)
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−
∫ ∞

s

Φ(t)Φ−1(τ)Q(τ)B̃(τ)y(τ)dτ

+
∫ t

s

Φ(t)Φ−1(τ)Q(τ)B̃(τ)y(τ)dτ

= −
∫ ∞

t

Φ(t)Φ−1(τ)Q(τ)H(τ)y(τ)dω(τ)

−
∫ ∞

t

Φ(t)Φ−1(τ)Q(τ)B̃(τ)y(τ)dτ.

Since ξ is an arbitrary one in R
n, then by adding this identity to (3.11) yields the

desired equation (3.10).

Recall that Φ̂(t, s) = Φ̂(t)Φ̂−1(s) denotes the fundamental matrix solution of
(1.5) with Φ̂(s, s) = Id. For each t ∈ I, define linear operators as

P̂ (t) = Φ̂(t, t0)U(t0, t0)Φ̂(t0, t) and Q̂(t) = Id − P̂ (t), (3.14)

where t0 is the left boundary point of the interval I. After presenting that P̂ (t)
are projections, we prove relationship (3.2), show the explicit expressions of the
fundamental matrix solution Φ̂(t, s) under the projections P̂ (t), Q̂(t), and then
deduce inequalities (3.3) and (3.4).

Lemma 3.5. The operator P̂ (t) is a linear projection for t ∈ I, and (3.2) holds.

Proof. By lemma 3.3, we have U(t0, t0)U(t0, t0) = U(t0, t0). Thus,

P̂ (t)P̂ (t) = Φ̂(t, t0)U(t0, t0)Φ̂(t0, t)Φ̂(t, t0)U(t0, t0)Φ̂(t0, t) = P̂ (t).

Furthermore, for any t, s ∈ I, we obtain

P̂ (t)Φ̂(t, s) = Φ̂(t, t0)U(t0, t0)Φ̂(t0, t)Φ̂(t, s)

= Φ̂(t, s)Φ̂(s, t0)U(t0, t0)Φ̂(t0, s) = Φ̂(t, s)P̂ (s),

and this completes the proof of the lemma.

Lemma 3.6. For any given initial value ξ0 ∈ R
n, the function P̂ (t)Φ̂(t, s)ξ0 is a

solution of (1.5) with P̂ (t)Φ̂(t, s) bounded in (Lc, ‖ · ‖c).

Proof. By lemma 3.2, the function U(t, t0)ξ0 is a solution of (1.5) with initial value
U(t0, t0)ξ0 at time t0. Clearly, U(t, t0) = Φ̂(t, t0)U(t0, t0). Thus, it is easy to see
that

P̂ (t)Φ̂(t, s) = Φ̂(t, t0)U(t0, t0)Φ̂(t0, t)Φ̂(t, s) = U(t, t0)Φ̂(t0, s).

Therefore, it follows again from lemma 3.2 that P̂ (t)Φ̂(t, s)ξ0 = U(t, t0)Φ̂(t0, s)ξ0 is
a solution of (1.5) with initial value Φ̂(t0, s)ξ0∈R

n. Moreover, from U ∈(Lc, ‖ · ‖c)
and definition (2.4)–(2.5) of the space (Lc, ‖ · ‖c), we can see that P̂ (t)Φ̂(t, s) is
bounded in (Lc, ‖ · ‖c).
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Lemma 3.7. For any given initial value ξ0 ∈ R
n, the function P̂ (t)Φ̂(t, s)ξ0 is a

solution of (1.5) with (t, s) ∈ I2
� such that

Φ̂(t, s)P̂ (s) = Φ(t)Φ−1(s)P (s)P̂ (s) +
∫ t

s

Φ(t)Φ−1(τ)P (τ)H(τ)Φ̂(τ, s)P̂ (s)dω(τ)

+
∫ t

s

Φ(t)Φ−1(τ)P (τ)B̃(τ)Φ̂(τ, s)P̂ (s)dτ

−
∫ ∞

t

Φ(t)Φ−1(τ)Q(τ)H(τ)Φ̂(τ, s)P̂ (s)dω(τ)

−
∫ ∞

t

Φ(t)Φ−1(τ)Q(τ)B̃(τ)Φ̂(τ, s)P̂ (s)dτ. (3.15)

Proof. Let y(t) = P̂ (t)Φ̂(t, s)ξ0 with given s ∈ I, and denote ξ = P̂ (s)ξ0 the ini-
tial condition at time s. Clearly, y(t) is a solution of (1.5) with y(s) = P̂ (s)ξ0 =
P̂ (s)P̂ (s)ξ0 = ξ. By lemma 3.6, P̂ (t)Φ̂(t, s) is bounded in (Lc, ‖ · ‖c). Since ξ0 is
arbitrary in R

n, identity (3.15) follows now readily from lemma 3.4.

Remark 3.8. From lemma 3.7, we know that the explicit expressions (2.6) and (3.5)
are the same under the condition of NMS-EC. In fact, as a special case of lemma
3.7, Φ̂(t, s) is always bounded in (Lc, ‖ · ‖c) with I = [t0, +∞) since projections
are the identity.

In the following lemma, we present the explicit expression of Φ̂(t, s)Q̂(s) with
(t, s) ∈ I2

�.

Lemma 3.9. For any given initial value ξ0 ∈ R
n, the function Q̂(t)Φ̂(t, s)ξ0 is a

solution of (1.5) with (t, s) ∈ I2
� such that

Φ̂(t, s)Q̂(s) = Φ(t)Φ−1(s)Q(s)Q̂(s) +
∫ t

t0

Φ(t)Φ−1(τ)P (τ)H(τ)Φ̂(τ, s)Q̂(s)dω(τ)

+
∫ t

t0

Φ(t)Φ−1(τ)P (τ)B̃(τ)Φ̂(τ, s)Q̂(s)dτ

−
∫ s

t

Φ(t)Φ−1(τ)Q(τ)H(τ)Φ̂(τ, s)Q̂(s)dω(τ)

−
∫ s

t

Φ(t)Φ−1(τ)Q(τ)B̃(τ)Φ̂(τ, s)Q̂(s)dτ. (3.16)

Proof. Following the same lines as given in the proof of lemma 2.2, one can prove
that

Φ̂(t, s) = Φ(t)Φ−1(s) +
∫ t

s

Φ(t)Φ−1(τ)H(τ)Φ̂(τ, s)dω(τ)

+
∫ t

s

Φ(t)Φ−1(τ)B̃(τ)Φ̂(τ, s)dτ
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for any (t, s) ∈ I2
�. Write K(t) = Φ̂(t, t0)Q̂(t0). Therefore,

K(t) = Φ(t)Φ−1(t0)Q̂(t0) +
∫ t

t0

Φ(t)Φ−1(τ)H(τ)K(τ)dω(τ)

+
∫ t

t0

Φ(t)Φ−1(τ)B̃(τ)K(τ)dτ. (3.17)

On the other hand, it follows from P̂ (t) = Φ̂(t, t0)U(t0, t0)Φ̂(t0, t) and (3.5) with
t = s = t0 that

P̂ (t0) = U(t0, t0) = P (t0) −
∫ ∞

t0

Φ(t0)Φ−1(τ)Q(τ)H(τ)U(τ, t0)dω(τ)

−
∫ ∞

t0

Φ(t0)Φ−1(τ)Q(τ)B̃(τ)U(τ, t0)dτ. (3.18)

Since P (t0) and Q(t0) are complementary projections, multiplying (3.18) on the
left with P (t0) gives

P (t0)P̂ (t0) = P (t0). (3.19)

In addition,

Q(t0)Q̂(t0) =
(
Id − P (t0)

)(
Id − P̂ (t0)

)
= Id − P̂ (t0) = Q̂(t0). (3.20)

By (3.17), using (3.20), we have

Φ(t)Φ−1(s)Q(s)K(s) = Φ(t)Φ−1(t0)Q̂(t0) +
∫ s

t0

Φ(t)Φ−1(τ)Q(τ)H(τ)K(τ)dω(τ)

+
∫ s

t0

Φ(t)Φ−1(τ)Q(τ)B̃(τ)K(τ)dτ,

which can be rewritten as

Φ(t)Φ−1(t0)Q̂(t0) = Φ(t)Φ−1(s)Q(s)K(s) −
∫ s

t0

Φ(t)Φ−1(τ)Q(τ)H(τ)K(τ)dω(τ)

−
∫ s

t0

Φ(t)Φ−1(τ)Q(τ)B̃(τ)K(τ)dτ. (3.21)

Substituting (3.21) into (3.17) leads to

K(t) = Φ(t)Φ−1(s)Q(s)K(s) −
∫ s

t0

Φ(t)Φ−1(τ)Q(τ)H(τ)K(τ)dω(τ)

−
∫ s

t0

Φ(t)Φ−1(τ)Q(τ)B̃(τ)K(τ)dτ +
∫ t

t0

Φ(t)Φ−1(τ)H(τ)K(τ)dω(τ)
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+
∫ t

t0

Φ(t)Φ−1(τ)B̃(τ)K(τ)dτ

= Φ(t)Φ−1(s)Q(s)K(s) −
∫ s

t

Φ(t)Φ−1(τ)Q(τ)H(τ)K(τ)dω(τ)

−
∫ s

t

Φ(t)Φ−1(τ)Q(τ)B̃(τ)K(τ)dτ +
∫ t

t0

Φ(t)Φ−1(τ)P (τ)H(τ)K(τ)dω(τ)

+
∫ t

t0

Φ(t)Φ−1(τ)P (τ)B̃(τ)K(τ)dτ. (3.22)

Since (3.2) we have K(t) = Φ̂(t, t0)Q̂(t0) = Q̂(t)Φ̂(t, t0). Therefore, K(t)Φ̂(t0, s) =
Q̂(t)Φ̂(t, s) for every (t, s) ∈ I2

�. Thus, multiplying (3.22) on the right with Φ̂(t0, s)
yields the desired identity (3.16).

We proceed with the proof of theorem 3.1. Squaring both sides of (3.15), and
taking expectations. Setting z(t, s) = E‖Φ̂(t, s)P̂ (s)‖2 with (t, s) ∈ I2

�. It follows
from (2.7) that

z(t, s) � 5E‖Φ(t)Φ−1(s)P (s)P̂ (s)‖2

+ 5E

∥∥∥∥
∫ t

s

Φ(t)Φ−1(τ)P (τ)H(τ)Φ̂(τ, s)P̂ (s)dω(τ)
∥∥∥∥

2

+ 5E

∥∥∥∥
∫ t

s

Φ(t)Φ−1(τ)P (τ)B̃(τ)Φ̂(τ, s)P̂ (s)dτ

∥∥∥∥
2

+ 5E

∥∥∥∥
∫ ∞

t

Φ(t)Φ−1(τ)Q(τ)H(τ)Φ̂(τ, s)P̂ (s)dω(τ)
∥∥∥∥

2

+ 5E

∥∥∥∥
∫ ∞

t

Φ(t)Φ−1(τ)Q(τ)B̃(τ)Φ̂(τ, s)P̂ (s)dτ

∥∥∥∥
2

. (3.23)

By using the Itô isometry property and inequalities (1.3), the second term on the
right-hand side of (3.23) can be deduced as follows:

E

∥∥∥∥
∫ t

s

Φ(t)Φ−1(τ)P (τ)H(τ)Φ̂(τ, s)P̂ (s)dω(τ)
∥∥∥∥

2

=
∫ t

s

E‖Φ(t)Φ−1(τ)P (τ)‖2
E‖H(τ)‖2

E‖Φ̂(τ, s)P̂ (s)‖2dτ

� Mh2

∫ t

s

e−α(t−τ)
E‖Φ̂(τ, s)P̂ (s)‖2dτ.
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As to the third term in (3.23), it follows from E‖x‖ �
√

E‖x‖2, Cauchy–Schwarz
inequality and inequalities (1.3) that

E

∥∥∥∥
∫ t

s

Φ(t)Φ−1(τ)P (τ)B̃(τ)Φ̂(τ, s)P̂ (s)dτ

∥∥∥∥
2

= E

∥∥∥∥
∫ t

s

(
Φ(t)Φ−1(τ)P (τ)B̃(τ)

) 1
2
((

Φ(t)Φ−1(τ)P (τ)B̃(τ)
) 1

2
Φ̂(τ, s)P̂ (s)

)
dτ

∥∥∥∥
2

�
(∫ t

s

E

∥∥∥Φ(t)Φ−1(τ)P (τ)B̃(τ)
∥∥∥dτ

)

×
(∫ t

s

E

∥∥∥Φ(t)Φ−1(τ)P (τ)B̃(τ)
∥∥∥E

∥∥∥Φ̂(τ, s)P̂ (s)
∥∥∥2

dτ

)

� 2M(b2 + g2h2)
(∫ t

s

e−
α
2 (t−τ)dτ

)(∫ t

s

e−
α
2 (t−τ)

E

∥∥∥Φ̂(τ, s)P̂ (s)
∥∥∥2

dτ

)

� 4M(b2 + g2h2)
α

∫ t

s

e−
α
2 (t−τ)

E

∥∥∥Φ̂(τ, s)P̂ (s)
∥∥∥2

dτ.

Clearly, the proof above is also valid for proving the other terms on the right-hand
side in (3.23). Thus, we can rewrite inequality (3.23) as

z(t, s) � 5Me−α(t−s)+ε|s|z(s, s)

+ 5Mh2

(∫ t

s

e−α(t−τ)z(τ, s)dτ +
∫ ∞

t

e−α(τ−t)z(τ, s)dτ

)

+
20M(b2 + g2h2)

α

(∫ t

s

e−
α
2 (t−τ)z(τ, s)dτ +

∫ ∞

t

e−
α
2 (τ−t)z(τ, s)dτ

)

� 5Me−
α
2 (t−s)+ε|s|z(s, s)

+
5MM̃

α

(∫ t

s

e−
α
2 (t−τ)z(τ, s)dτ +

∫ ∞

t

e−
α
2 (τ−t)z(τ, s)dτ

)
(3.24)

with M̃ = 8b2 + 8g2h2 + αh2. Let

Z(t, s) = 5Me−
α
2 (t−s)+ε|s|z(s, s)

+
5MM̃

α

(∫ t

s

e−
α
2 (t−τ)z(τ, s)dτ +

∫ ∞

t

e−
α
2 (τ−t)z(τ, s)dτ

)
.

Clearly, inequality (3.24) can be rewritten as

z(t, s) � Z(t, s).

On the contrary,

d

dt
Z(t, s) = −α

2
Z(t, s) +

10MM̃

α
z(t, s),
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and therefore,

d

dt
Z(t, s) �

(
10MM̃

α
− α

2

)
Z(t, s).

Integrating the above inequality from s to t and note that Z(s, s) = 5Meε|s|z(s, s),
we obtain

z(t, s) � Z(t, s) � 5Meε|s|e(−α
2 + 10MM̃

α )(t−s)z(s, s), ∀ (t, s) ∈ I2
�.

By z(t, s) = E‖Φ̂(t, s)P̂ (s)‖2, we have

E‖Φ̂(t, s)P̂ (s)‖2 � 5Me(−α
2 + 10MM̃

α )(t−s)+ε|s|
E‖P̂ (s)‖2, ∀ (t, s) ∈ I2

�. (3.25)

Similarly, squaring both sides of (3.16), and taking expectations. Using the same
way as above, we obtain

E‖Φ̂(t, s)Q̂(s)‖2 � 5Me(−α
2 + 10MM̃

α )(s−t)+ε|s|
E‖Q̂(s)‖2, ∀ (t, s) ∈ I2

�. (3.26)

Now we try to find out the bounds in mean-square setting for the projections
P̂ (t), Q̂(t). Multiplying (3.15) with Q(t) on the left side, and let t = s, we have

Q(t)P̂ (t) = −
∫ ∞

t

Φ(t)Φ−1(τ)Q(τ)H(τ)Φ̂(τ, t)P̂ (t)dω(τ)

−
∫ ∞

t

Φ(t)Φ−1(τ)Q(τ)B̃(τ)Φ̂(τ, t)P̂ (t)dτ. (3.27)

By (3.27), using (1.4), (3.1) and (3.25), we have

E‖Q(t)P̂ (t)‖2 � 2E

∥∥∥∥
∫ ∞

t

Φ(t)Φ−1(τ)Q(τ)H(τ)Φ̂(τ, t)P̂ (t)dω(τ)
∥∥∥∥

2

+ 2E

∥∥∥∥
∫ ∞

t

Φ(t)Φ−1(τ)Q(τ)B̃(τ)Φ̂(τ, t)P̂ (t)dτ

∥∥∥∥
2

� 2
∫ ∞

t

E‖Φ(t)Φ−1(τ)Q(τ)‖2
E‖H(τ)‖2

E‖Φ̂(τ, t)P̂ (t)‖2dτ

+ 2
(∫ ∞

t

E‖Φ(t)Φ−1(τ)Q(τ)‖E‖B̃(τ)‖ 1
2 dτ

)

×
(∫ ∞

t

E‖Φ(t)Φ−1(τ)Q(τ)‖E‖B̃(τ)‖ 3
2 E‖Φ̂(τ, t)P̂ (t)‖2dτ

)

� 10M2M̃

α
E‖P̂ (t)‖2

∫ ∞

t

e−(α+α̃−ε)(τ−t)dτ

� 10M2M̃

α(α + α̃ − ε)
E‖P̂ (t)‖2, (3.28)
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since α > ε and α̃ = α
2 − 10MM̃/α > 0. In addition, it follows from (3.16) with

t = s that

P (t)Q̂(t) =
∫ t

t0

Φ(t)Φ−1(τ)P (τ)H(τ)Φ̂(τ, t)Q̂(t)dω(τ)

+
∫ t

t0

Φ(t)Φ−1(τ)P (τ)B̃(τ)Φ̂(τ, t)Q̂(t)dτ. (3.29)

Similarly, by (3.29), using (1.3), (3.1) and (3.26), we obtain

E‖P (t)Q̂(t)‖2 � 10M2M̃

α(α + α̃ − ε)
E‖Q̂(t)‖2. (3.30)

Meanwhile, notice that

P̂ (t) − P (t) = P̂ (t) − P (t)P̂ (t) − P (t) + P (t)P̂ (t)

= (Id − P (t))P̂ (t) − (Id − P̂ (t))P (t)

= Q(t)P̂ (t) − P (t)Q̂(t).

Thus it follows from (3.28) and (3.30) that

E‖P̂ (t) − P (t)‖2 � 20M2M̃

α(α + α̃ − ε)
(E‖P̂ (t)‖2 + E‖Q̂(t)‖2). (3.31)

Furthermore, it follows from (1.3)–(1.4) with t = s that

E‖P (t)‖2 � Meε|t|, and E‖Q(t)‖2 � Meε|t|.

Therefore,

E‖P̂ (t)‖2 � 2E‖P̂ (t) − P (t)‖2 + 2E‖P (t)‖2

� 40M2M̃

α(α + α̃ − ε)
(E‖P̂ (t)‖2 + E‖Q̂(t)‖2) + 2Meε|t|.

Since Q̂(t) − Q(t) = (Id − P̂ (t)) − (Id − P (t)) = P (t) − P̂ (t), we also have

E‖Q̂(t)‖2 � 2E‖P̂ (t) − P (t)‖2 + 2E‖Q(t)‖2

� 40M2M̃

α(α + α̃ − ε)
(E‖P̂ (t)‖2 + E‖Q̂(t)‖2) + 2Meε|t|.

Then we know

(E‖P̂ (t)‖2 + E‖Q̂(t)‖2) � 80M2M̃

α(α + α̃ − ε)
(E‖P̂ (t)‖2 + E‖Q̂(t)‖2) + 4Meε|t|,

and hence, (
1 − 80M2M̃

α(α + α̃ − ε)

)
(E‖P̂ (t)‖2 + E‖Q̂(t)‖2) � 4Meε|t|.
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Since M̃ := 8b2 + 8g2h2 + αh2, we can obtain

80M2M̃

α(α + α̃ − ε)
� 1

2

by letting b and h sufficiently small. This yields

E‖P̂ (t)‖2 � 8Meε|t| and E‖Q̂(t)‖2 � 8Meε|t|. (3.32)

By (3.25), (3.26), using (3.32) we obtain

E‖Φ̂(t, s)P̂ (s)‖2 � 40M2e(−α
2 + 10MM̃

α )(t−s)+2ε|s|, ∀ (t, s) ∈ I2
�,

and

E‖Φ̂(t, s)Q̂(s)‖2 � 40Me(−α
2 + 10MM̃

α )(s−t)+2ε|s|, ∀ (t, s) ∈ I2
�.

This completes the proof of the theorem.
Under the hypotheses of theorem 3.1, the following theorem tries to discuss the

differences of projections P (t) and P̂ (t) in the mean-square sense. To illustrate it
clearly, write

Φ(t, s) = Φ(t)Φ−1(s).

Obviously, Φ(t, s) is a fundamental matrix solution of (1.1) with Φ(s, s) = Id.

Theorem 3.10. Under the hypotheses of theorem 3.1, for any t ∈ I, we have

P (t) = Φ(t0, t)P (t0)Φ(t, t0), and P̂ (t) = Φ̂(t0, t)P̂ (t0)Φ̂(t, t0), (3.33)

and

E‖P (t) − P̂ (t)‖2 � 320M3M̃

α(α + α̃ − ε)
eε|t|. (3.34)

In particular, for each fixed t ∈ I, we have E‖P (t) − P̂ (t)‖2 → 0 as b, h → 0.

Proof. The second equality of (3.33) is obvious from definition (3.14) of linear
operators P̂ (t). For the first term in (3.33), it follows from (1.2) that

P (t)Φ(t, t0)Φ(t0, s) = Φ(t, t0)Φ(t0, s)P (s), ∀ t, s ∈ I,

and then

Φ(t0, t)P (t)Φ(t, t0) = Φ(t0, s)P (s)Φ(s, t0), ∀ t, s ∈ I. (3.35)

Taking s = t0 in (3.35), we obtain

Φ(t0, t)P (t)Φ(t, t0) = P (t0).

Thus,

P (t) = Φ(t0, t)P (t0)Φ(t, t0).

In addition, (3.34) follows immediately from (3.31) and (3.32).
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Theorem 3.11. Under the hypotheses of theorem 3.1, we have

E‖Φ̂(t, s)P̂ (s) − Φ(t, s)P (s)‖2 � 720MM̃

α − α̂
e−α̂(t−s)+ε̂|s|, ∀ (t, s) ∈ I2

�,

and

E‖Φ̂(t, s)Q̂(s) − Φ(t, s)Q(s)‖2 � 720MM̃

α − α̂
e−α̂(s−t)+ε̂|s|, ∀ (t, s) ∈ I2

�.

Proof. By P̂ (s)P̂ (s) = P̂ (s), it follows from (3.15) that

E

∥∥∥Φ̂(t, s)P̂ (s)P̂ (s) − Φ(t, s)P (s)P̂ (s)
∥∥∥2

� 4E

∥∥∥∥
∫ t

s

Φ(t, τ)P (τ)H(τ)Φ̂(τ, s)P̂ (s)dω(τ)
∥∥∥∥

2

+ 4E

∥∥∥∥
∫ t

s

Φ(t, τ)P (τ)B̃(τ)Φ̂(τ, s)P̂ (s)dτ

∥∥∥∥
2

+ 4E

∥∥∥∥
∫ ∞

t

Φ(t, τ)Q(τ)H(τ)Φ̂(τ, s)P̂ (s)dω(τ)
∥∥∥∥

2

+ 4E

∥∥∥∥
∫ ∞

t

Φ(t, τ)Q(τ)B̃(τ)Φ̂(τ, s)P̂ (s)dτ

∥∥∥∥
2

. (3.36)

By (1.3) and (3.3), using α − α̂ = α
2 + 10MM̃

α > 0, the first term on the right-hand
side in (3.36) can be deduced as follows:

E

∥∥∥∥
∫ t

s

Φ(t)Φ−1(τ)P (τ)H(τ)Φ̂(τ, s)P̂ (s)dω(τ)
∥∥∥∥

2

=
∫ t

s

E‖Φ(t)Φ−1(τ)P (τ)‖2
E‖H(τ)‖2

E‖Φ̂(τ, s)P̂ (s)‖2dτ

� MM̂h2

∫ t

s

e−α(t−τ)e−α̂(τ−s)+ε̂|s|dτ

= MM̂h2e−α(t−s)+ε̂|s|
∫ t

s

e(α−α̂)(τ−s)dτ

� MM̂h2

α − α̂
e−α̂(t−s)+ε̂|s|.

As to the second term in (3.36), by α
2 − α̂ = 10MM̃

α > 0, we have 2α2 − αα̂ > 0. It
follows from E‖x‖ �

√
E‖x‖2, Cauchy–Schwarz inequality and inequalities (1.3),

(3.3) that

E

∥∥∥∥
∫ t

s

Φ(t, τ)P (τ)B̃(τ)Φ̂(τ, s)P̂ (s)dτ

∥∥∥∥
2

= E

∥∥∥∥
∫ t

s

(
Φ(t, τ)P (τ)B̃(τ)

) 1
2
((

Φ(t, τ)P (τ)B̃(τ)
) 1

2
Φ̂(τ, s)P̂ (s)

)
dτ

∥∥∥∥
2
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�
(∫ t

s

E

∥∥∥Φ(t, τ)P (τ)B̃(τ)
∥∥∥ dτ

)

×
(∫ t

s

E

∥∥∥Φ(t, τ)P (τ)B̃(τ)
∥∥∥E

∥∥∥Φ̂(τ, s)P̂ (s)
∥∥∥2

dτ

)

� 2MM̂(b2 + g2h2)
(∫ t

s

e−
α
2 (t−τ)dτ

)(∫ t

s

e−
α
2 (t−τ)e−α̂(τ−s)+ε̂|s|dτ

)

� 8MM̂(b2 + g2h2)
2α2 − αα̂

e−α̂(t−s)+ε̂|s|.

Clearly, the proof above is also valid for proving the other terms on the right-hand
side in (3.36). Thus, we can rewrite inequality (3.36) as

E

∥∥∥Φ̂(t, s)P̂ (s)P̂ (s) − Φ(t, s)P (s)P̂ (s)
∥∥∥2

�
(

8MM̂h2

α − α̂
+

64MM̂(b2 + g2h2)
2α2 − αα̂

)
e−α̂(t−s)+ε̂|s|

=
320MM̃

α − α̂
e−α̂(t−s)+ε̂|s|. (3.37)

Additionally, as P̂ (s) and Q̂(s) are complementary projections for each s ∈ I, it
follows from(1.3), (3.4) and (3.29) that

E

∥∥∥Φ̂(t, s)P̂ (s)Q̂(s) − Φ(t, s)P (s)Q̂(s)
∥∥∥2

= E

∥∥∥Φ(t, s)P (s)Q̂(s)
∥∥∥2

� 2E

∥∥∥∥
∫ s

t0

Φ(t)Φ−1(τ)P (τ)H(τ)Φ̂(τ, t)Q̂(t)dω(τ)
∥∥∥∥

2

+ 2E

∥∥∥∥
∫ t

t0

Φ(t)Φ−1(τ)P (τ)B̃(τ)Φ̂(τ, t)Q̂(t)dτ

∥∥∥∥
2

� 40MM̃

α − α̂
e−α̂(t−s)+ε̂|s|. (3.38)

Combining (3.37) and (3.38) yields

E‖Φ̂(t, s)P̂ (s) − Φ(t, s)P (s)‖2

= E‖Φ̂(t, s)P̂ (s)(P̂ (s) + Q̂(s)) − Φ(t, s)P (s)(P̂ (s) + Q̂(s))‖2

� 720MM̃

α − α̂
e−α̂(t−s)+ε̂|s|.

Similarly, by (3.16) we obtain

E

∥∥∥Φ̂(t, s)Q̂(s)Q̂(s) − Φ(t, s)Q(s)Q̂(s)
∥∥∥2

� 320MM̃

α − α̂
e−α̂(s−t)+ε̂|s|. (3.39)
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Also, as P̂ (s) and Q̂(s) are complementary projections for each s ∈ I, by (3.28) we
obtain

E

∥∥∥Φ̂(t, s)Q̂(s)P̂ (s) − Φ(t, s)Q(s)P̂ (s)
∥∥∥2

� 40MM̃

α − α̂
e−α̂(s−t)+ε̂|s|. (3.40)

Combining (3.39) and (3.40) yields

E‖Φ̂(t, s)Q̂(s) − Φ(t, s)Q(s)‖2

= E‖Φ̂(t, s)Q̂(s)(P̂ (s) + Q̂(s)) − Φ(t, s)Q(s)(P̂ (s) + Q̂(s))‖2

� 720MM̃

α − α̂
e−α̂(s−t)+ε̂|s|.

This completes the proof of the theorem.

Remark 3.12. Since I = [t0, +∞), the second-moment Lyapunov exponent is
bounded by −α̂ for any fixed b, h > 0, i.e.

lim
t→+∞

1
t

log E‖Φ̂(t, s)P̂ (s) − Φ(t, s)P (s)‖2 = −α̂ < 0.

This shows that in the stable direction, any two solutions Φ̂(t, s)P̂ (s)ξ and
Φ(t, s)P (s)ξ with the same initial condition are forward asymptotic in the mean-
square sense. Furthermore, since M = 8b2 + 8g2h2 + αh2, for each fixed T1 ∈
(s, +∞) and T2 ∈ (t0, s), we have

lim
b,h→0

sup
t∈[s,T1]

E‖Φ̂(t, s)P̂ (s) − Φ(t, s)P (s)‖2 = 0,

and

lim
b,h→0

sup
t∈[T2,s]

E‖Φ̂(t, s)Q̂(s) − Φ(t, s)Q(s)‖2 = 0.

This means that the solution Φ̂(t, s)P̂ (s) (or Φ̂(t, s)Q̂(s)) of the perturbed system
(1.5) approaches uniformly the solution Φ(t, s)P (s) (or Φ(t, s)Q(s)) of system (1.1)
in the mean-square sense on any compact interval.

4. Robustness of NMS-ED on the half line (−∞, t0]

In this section, we deal with the robustness of NMS-ED on I = (−∞, t0], which is
analogous to the case [t0, +∞). So in what follows, we highlight the main steps of
the proof which only indicate the major differences.

Theorem 4.1. The assertion in theorem 3.1 remains true for I = (−∞, t0].
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Proof of theorem 4.1. Consider the Banach space

Ld := {Φ̂ : I2
� → B(L2(Ω, Rn)) : Φ̂ is continuous and ‖Φ̂‖d < ∞} (4.1)

with the norm

‖Φ̂‖d = sup
{

(E‖Φ̂(t, s)‖2)
1
2 e−

ε
2 |s| : (t, s) ∈ I2

�
}

. (4.2)

Following the same steps as in the proof of theorem 1, we establish the following
statements.

Lemma 4.2. For any given initial value ξ0 ∈ R
n, (1.5) has a unique solution

V (t, s)ξ0 with V ∈ (Ld, ‖ · ‖d) such that

V (t, s) = Φ(t)Φ−1(s)Q(s) −
∫ s

t

Φ(t)Φ−1(τ)Q(τ)H(τ)V (τ, s)dω(τ)

−
∫ s

t

Φ(t)Φ−1(τ)Q(τ)B̃(τ)V (τ, s)dτ

+
∫ t

−∞
Φ(t)Φ−1(τ)P (τ)H(τ)V (τ, s)dω(τ)

+
∫ t

−∞
Φ(t)Φ−1(τ)P (τ)B̃(τ)V (τ, s)dτ. (4.3)

Lemma 4.3. For any u ∈ (t, s) in I, we have

V (s, t) = V (s, u)V (u, t)

in the sense of (Ld, ‖ · ‖d).

Lemma 4.4. Given s ∈ I, if y(t) := Λ̃(t, s)ξ : (−∞, s] → L2(Ω, R
n) is a solution of

(1.5) with y(s) = Λ̃(s, s)ξ = ξ such that Λ̃ is bounded in (Ld, ‖ · ‖d). Then

y(t) = Φ(t)Φ−1(s)Q(s)ξ −
∫ s

t

Φ(t)Φ−1(τ)Q(τ)H(τ)y(τ)dω(τ)

−
∫ s

t

Φ(t)Φ−1(τ)Q(τ)B̃(τ)y(τ)dτ +
∫ t

−∞
Φ(t)Φ−1(τ)P (τ)H(τ)y(τ)dω(τ)

+
∫ t

−∞
Φ(t)Φ−1(τ)P (τ)B̃(τ)y(τ)dτ.

For each t ∈ I, define linear operators as

Q̂(t) = Φ̂(t, t0)V (t0, t0)Φ̂(t0, t) and P̂ (t) = Id − Q̂(t), (4.4)

where t0 is the right boundary point of the interval I.

Lemma 4.5. The operator P̂ (t) is a linear projection for t ∈ I, and (3.2) holds.
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Lemma 4.6. For any given initial value ξ0 ∈ R
n, the function Q̂(t)Φ̂(t, s)ξ0 is a

solution of (1.5) with Q̂(t)Φ̂(t, s) bounded in (Ld, ‖ · ‖d).

Lemma 4.7. For any given initial value ξ0 ∈ R
n, the function Q̂(t)Φ̂(t, s)ξ0 is a

solution of (1.5) with (t, s) ∈ I2
� such that

Φ̂(t, s)Q̂(s) = Φ(t)Φ−1(s)Q(s)Q̂(s) −
∫ s

t

Φ(t)Φ−1(τ)Q(τ)H(τ)Φ̂(τ, s)Q̂(s)dω(τ)

−
∫ s

t

Φ(t)Φ−1(τ)Q(τ)B̃(τ)Φ̂(τ, s)Q̂(s)dτ

+
∫ t

−∞
Φ(t)Φ−1(τ)P (τ)H(τ)Φ̂(τ, s)Q̂(s)dω(τ)

+
∫ t

−∞
Φ(t)Φ−1(τ)P (τ)B̃(τ)Φ̂(τ, s)Q̂(s)dτ. (4.5)

Lemma 4.8. For any given initial value ξ0 ∈ R
n, the function P̂ (t)Φ̂(t, s)ξ0 is a

solution of (1.5) with (t, s) ∈ I2
� such that

Φ̂(t, s)P̂ (s) = Φ(t)Φ−1(s)P (s)P̂ (s) −
∫ t0

t

Φ(t)Φ−1(τ)Q(τ)H(τ)Φ̂(τ, s)Q̂(s)dω(τ)

−
∫ t0

t

Φ(t)Φ−1(τ)Q(τ)B̃(τ)Φ̂(τ, s)Q̂(s)dτ

+
∫ t

s

Φ(t)Φ−1(τ)P (τ)H(τ)Φ̂(τ, s)P̂ (s)dω(τ)

+
∫ t

s

Φ(t)Φ−1(τ)P (τ)B̃(τ)Φ̂(τ, s)P̂ (s)dτ. (4.6)

Proceeding as in the proof of theorem 3.1. Squaring both sides of (4.5), and taking
expectations, we obtain

E‖Φ̂(t, s)Q̂(s)‖2 � 5Me(−α
2 + 10MM̃

α )(s−t)+ε|s|
E‖Q̂(s)‖2, ∀ (t, s) ∈ I2

�. (4.7)

Similarly, squaring both sides of (4.6), and taking expectations, we obtain

E‖Φ̂(t, s)P̂ (s)‖2 � 5Me(−α
2 + 10MM̃

α )(t−s)+ε|s|
E‖P̂ (s)‖2, ∀ (t, s) ∈ I2

�. (4.8)

Meanwhile, multiplying (4.5) with P (t) and (4.6) with Q(t) on the left side,
respectively, and let t = s, we obtain

E‖P (t)Q̂(t)‖2 � 10M2M̃

α(α + α̃ − ε)
E‖Q̂(t)‖2,

and

E‖Q(t)P̂ (t)‖2 � 10M2M̃

α(α + α̃ − ε)
E‖P̂ (t)‖2.
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Since

E‖P (t)‖2 � Meε|t|, E‖Q(t)‖2 � Meε|t|,

and P̂ (t) − P (t) = Q(t)P̂ (t) − P (t)Q̂(t), for sufficiently small b and h, we obtain
the bounds for the projections P̂ (t) and Q̂(t) as follows:

E‖P̂ (t)‖2 � 8Meε|t| and E‖Q̂(t)‖2 � 8Meε|t|. (4.9)

By (4.7), (4.8), using (4.9) we obtain

E‖Φ̂(t, s)P̂ (s)‖2 � 40M2e(−α
2 + 10MM̃

α )(t−s)+2ε|s|, ∀ (t, s) ∈ I2
�,

and

E‖Φ̂(t, s)Q̂(s)‖2 � 40Me(−α
2 + 10MM̃

α )(s−t)+2ε|s|, ∀ (t, s) ∈ I2
�.

This completes the proof of the theorem.

5. Robustness of NMS-ED on the whole R

In this section, we consider the robustness of NMS-ED on the whole I = R. From
the last two sections we know that if (3.1) holds, the perturbed equation (1.5)
remains NMS-ED on [t0, +∞) with the operators:

P̂+(t) = Φ̂(t, t0)U(t0, t0)Φ̂(t0, t), Q̂+(t) = Id − P̂+(t),

and on (−∞, t0] with the operators:

Q̂−(t) = Φ̂(t, t0)V (t0, t0)Φ̂(t0, t), P̂−(t) = Id − Q̂−(t).

The most important part in this section is to show that (1.5) has an NMS-ED on
both half lines with the same projections. For this purpose, we introduce modified
projections, which combine the advantages of projections P̂+(t) and Q̂−(t). Actu-
ally, this technique has been used in several papers to deal with this problem, see
e.g. [5, 7, 39, 40, 44, 45] for details.

In the following, for convenience and brevity, let us denote by G(t, s) the Green
function of (1.1):

G(t, s) :=
{

P (t)Φ(t, s), ∀ (t, s) ∈ R
2
�,

−Q(t)Φ(t, s), ∀ (t, s) ∈ R
2
�.

Green function is a classical concept in the study of exponential dichotomy as for
example [8, 15]. Now we deal with the robustness of NMS-ED for (1.1) on the
whole R.

Theorem 5.1. The assertion in theorem 3.1 remains true for I = R.
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Proof of theorem 5.1. Consider the Banach spaces

Lc = {Φ̂ : R
2
� → B(L2(Ω, Rn)) : Φ̂ is continuous and ‖Φ̂‖c < ∞},

and

Ld = {Φ̂ : R
2
� → B(L2(Ω, Rn)) : Φ̂ is continuous and ‖Φ̂‖d < ∞}

with the norm

‖Φ̂‖c = sup
(t,s)∈R

2
�

{
(E‖Φ̂(t, s)‖2)

1
2 e−

ε
2 |s|
}

,

and

‖Φ̂‖d = sup
(t,s)∈R

2
�

{
(E‖Φ̂(t, s)‖2)

1
2 e−

ε
2 |s|
}

respectively. Define operator Γ1 : Lc → Lc by

(Γ1U)(t, s) = Φ(t)Φ−1(s)P (s) +
∫ ∞

s

G(t, τ)H(τ)U(τ, s)dω(τ)

+
∫ ∞

s

G(t, τ)B̃(τ)U(τ, s)dτ,

and operator Γ2 : Ld → Ld,

(Γ2V )(t, s) = Φ(t)Φ−1(s)Q(s) +
∫ s

−∞
G(t, τ)H(τ)V (τ, s)dω(τ)

+
∫ s

−∞
G(t, τ)B̃(τ)V (τ, s)dτ.

Similar arguments to those in the proofs of lemma 3.2 and lemma 4.2 can be used
to deduce that

‖Γ1U1 − Γ1U2‖c � θ‖U1 − U2‖c,

‖Γ2V1 − Γ2V2‖d � θ‖V1 − V2‖d.

with θ =
√

10MM̃
α2 < 1. Thus, we have the following lemma.

Lemma 5.2. Operators Γ1, Γ2 have unique fixed points U ∈ (Lc, ‖ · ‖c), respectively
V ∈ (Ld, ‖ · ‖d) such that

U(t, s) = Φ(t)Φ−1(s)P (s) +
∫ ∞

s

G(t, τ)H(τ)U(τ, s)dω(τ)

+
∫ ∞

s

G(t, τ)B̃(τ)U(τ, s)dτ,
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and

V (t, s) = Φ(t)Φ−1(s)Q(s) +
∫ s

−∞
G(t, τ)H(τ)V (τ, s)dω(τ)

+
∫ s

−∞
G(t, τ)B̃(τ)V (τ, s)dτ.

Repeating arguments in the proofs of theorems 3.1 and 4.1, we obtain the
following statements.

Lemma 5.3. For any u ∈ (s, t) in I, we have

U(t, s) = U(t, u)U(u, s)

in the sense of (Lc, ‖ · ‖c), respectively,

V (t, s) = V (t, u)V (u, s)

in the sense of (Ld, ‖ · ‖d).

Lemma 5.4. Given s ∈ I, if x(t) = Λ(t, s)ξ : [s, +∞) → L2(Ω, R
n) (respectively,

y(t) := Λ̃(t, s)ξ : (−∞, s] → L2(Ω, R
n) ) is a solution of (1.5) with x(s) =

Λ(s, s)ξ = ξ (respectively, y(s) = Λ̃(s, s)ξ = ξ) such that Λ (respectively, Λ̃) is
bounded in (Lc, ‖ · ‖c) (respectively, (Ld, ‖ · ‖d)), then

x(t) = Φ(t)Φ−1(s)P (s)ξ +
∫ ∞

s

G(t, τ)H(τ)x(τ)dω(τ)

+
∫ ∞

s

G(t, τ)B̃(τ)x(τ)dτ, (5.1)

and

y(t) = Φ(t)Φ−1(s)Q(s)ξ +
∫ s

−∞
G(t, τ)H(τ)y(τ)dω(τ)

+
∫ s

−∞
G(t, τ)B̃(τ)y(τ)dτ. (5.2)

Now we present that projection S = P̂+(t0) + Q̂−(t0) is invertible for some t0 ∈ R

with b and h sufficiently small. Using this result, we are able to define modified
operators.

Lemma 5.5. If b and h are sufficiently small, then the operator S = P̂+(t0) +
Q̂−(t0) is invertible.
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Proof. We first derive P̂+(t0)P (t0) = P̂+(t0). In fact, following the same procedure
as we did for lemma 3.3, we find that

U(t, s) = U(t, s)P (s). (5.3)

Since P̂+(t0) = U(t0, t0), by (5.3) with t = s = t0 we have

P̂+(t0)P (t0) = P̂+(t0). (5.4)

In addition, we have (see (3.19))

P (t0)P̂+(t0) = P (t0). (5.5)

Since Q̂−(t0) = V (t0, t0), a similar argument using lemma 4.3 with t = s = t0 yields

Q̂−(t0)Q(t0) = Q̂−(t0). (5.6)

Furthermore, it follows from Q̂−(t) = Φ̂(t, t0)V (t0, t0)Φ̂(t0, t) and (4.3) with
t = s = t0 that

Q̂−(t0) = V (t0, t0) = Q(t0) +
∫ t0

−∞
Φ(t0)Φ−1(τ)P (τ)H(τ)V (τ, t0)dω(τ)

+
∫ t0

−∞
Φ(t0)Φ−1(τ)P (τ)B̃(τ)V (τ, t0)dτ. (5.7)

Since P (t0) and Q(t0) are complementary projections, multiplying (5.7) on the left
with Q(t0) gives

Q(t0)Q̂−(t0) = Q(t0). (5.8)

We now consider the linear operators

S1 := Id − P (t0) + P̂+(t0) and T1 := Id + P (t0) − P̂+(t0). (5.9)

It follows easily from (5.4) and (5.5) that S1T1 = T1S1 = Id. Therefore, S1 is
invertible and S−1

1 = T1. In addition, using again (5.5) we obtain

S1 − Id = P̂+(t0) − P (t0)

= P̂+(t0) − P (t0)P̂+(t0)

= Q(t0)P̂+(t0). (5.10)

By (3.18), we have

Q(t0)P̂+(t0) = −
∫ ∞

t0

Φ(t0)Φ−1(τ)Q(τ)H(τ)U(τ, t0)dω(τ)

−
∫ ∞

t0

Φ(t0)Φ−1(τ)Q(τ)B̃(τ)U(τ, t0)dτ. (5.11)

To estimate the bounds of the integral in the mean-square sense, we need to find out
the bounds for U(t, t0) with t � t0. Squaring both sides of (3.5), taking expectations
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and proceeding as in the proof of theorem 3.1, for any t � t0, we have

E‖U(t, t0)‖2

� 5E‖Φ(t)Φ−1(t0)P (t0)‖2

+ 5E

∥∥∥∥
∫ t

t0

Φ(t)Φ−1(τ)P (τ)H(τ)U(τ, t0)dω(τ)
∥∥∥∥

2

+ 5E

∥∥∥∥
∫ t

t0

Φ(t)Φ−1(τ)P (τ)B̃(τ)U(τ, t0)dτ

∥∥∥∥
2

+ 5E

∥∥∥∥
∫ ∞

t

Φ(t)Φ−1(τ)Q(τ)H(τ)U(τ, t0)dω(τ)
∥∥∥∥

2

+ 5E

∥∥∥∥
∫ ∞

t

Φ(t)Φ−1(τ)Q(τ)B̃(τ)U(τ, t0)dτ

∥∥∥∥
2

� 5Me−
α
2 (t−t0)+ε|t0|

+
5MM̃

α

(∫ t

t0

e−
α
2 (t−τ)

E‖U(τ, t0)‖2dτ +
∫ ∞

t

e−
α
2 (τ−t)

E‖U(τ, t0)‖2dτ

)

� 5Me−α̂(t−t0)+ε|t0|. (5.12)

By (5.10), using (5.11) and (5.12), we obtain

E‖S1 − Id‖2 = E‖Q(t0)P̂+(t0)‖2

� 2E

∥∥∥∥
∫ ∞

t0

Φ(t0)Φ−1(τ)Q(τ)H(τ)U(τ, t0)dω(τ)
∥∥∥∥

2

+ 2E

∥∥∥∥
∫ ∞

t0

Φ(t0)Φ−1(τ)Q(τ)B̃(τ)U(τ, t0)dτ

∥∥∥∥
2

� 2
∫ ∞

t

E‖Φ(t)Φ−1(τ)Q(τ)‖2
E‖H(τ)‖2

E‖U(τ, t0)‖2dτ

+ 2
(∫ ∞

t0

E‖Φ(t0)Φ−1(τ)Q(τ)‖E‖B̃(τ)‖ 1
2 dτ

)

×
(∫ ∞

t0

E‖Φ(t0)Φ−1(τ)Q(τ)‖E‖B̃(τ)‖ 3
2 E‖U(τ, t0)‖2dτ

)

� 10M2M̃

α

∫ ∞

t0

e−(α+α̃−ε)(τ−t0)dτ

� 10M2M̃

α(α + α̃ − ε)
. (5.13)

Meanwhile, we consider the linear operators

S2 := Id − Q(t0) + Q̂−(t0) and T2 := Id + Q(t0) − Q̂−(t0). (5.14)
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It follows easily from (5.6) and (5.8) that S2T2 = T2S2 = Id. Therefore, S2 is
invertible and S−1

2 = T2. In addition, using again (5.8) we obtain

S2 − Id = Q̂−(t0) − Q(t0)

= Q̂−(t0) − Q(t0)Q̂−(t0)

= P (t0)Q̂−(t0). (5.15)

By (5.7),

P (t0)Q̂−(t0) =
∫ t0

−∞
Φ(t0)Φ−1(τ)P (τ)H(τ)V (τ, t0)dω(τ)

+
∫ t0

−∞
Φ(t0)Φ−1(τ)P (τ)B̃(τ)V (τ, t0)dτ. (5.16)

Similarly, for any t � t0, one can deduce from (4.3) that

E‖V (t, t0)‖2

� 5E‖Φ(t)Φ−1(t0)Q(t0)‖2

+ 5E

∥∥∥∥
∫ t0

t

Φ(t)Φ−1(τ)Q(τ)H(τ)V (τ, s)dω(τ)
∥∥∥∥

2

+ 5E

∥∥∥∥
∫ t0

t

Φ(t)Φ−1(τ)Q(τ)B̃(τ)U(τ, s)dτ

∥∥∥∥
2

+ 5E

∥∥∥∥
∫ t

−∞
Φ(t)Φ−1(τ)P (τ)H(τ)V (τ, t0)dω(τ)

∥∥∥∥
2

+ 5E

∥∥∥∥
∫ t

−∞
Φ(t)Φ−1(τ)P (τ)B̃(τ)V (τ, t0)dτ

∥∥∥∥
2

� 5Me−
α
2 (t0−t)+ε|t0|

+
5MM̃

α

(∫ t0

t

e−
α
2 (τ−t)

E‖V (τ, t0)‖2dτ +
∫ t

−∞
e−

α
2 (t−τ)

E‖V (τ, t0)‖2dτ

)

� 5Me−α̂(t0−t)+ε|t0|. (5.17)

Therefore, by (5.15), using (5.16) and (5.17) we obtain

E‖S2 − Id‖2 = E‖P (t0)Q̂−(t0)‖2 � 10M2M̃

α(α + α̃ − ε)
. (5.18)

Besides, it follows easily from (5.8) that P (t0)P̂−(t0) = P̂−(t0). Using also (5.5)
yields

P̂+(t0) + Q̂−(t0) − Id = P̂+(t0) − P (t0) + P (t0) − P̂−(t0)

= P̂+(t0) − P (t0)P̂+(t0) + P (t0) − P (t0)P̂−(t0)

= Q(t0)P̂+(t0) + P (t0)Q̂−(t0).
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By (5.13) and (5.18) we obtain

E‖P̂+(t0) + Q̂−(t0) − Id‖2 = E‖Q(t0)P̂+(t0) + P (t0)Q̂−(t0)‖2

� 2E‖Q(t0)P̂+(t0)‖2 + 2E‖P (t0)Q̂−(t0)‖2

� 20M2M̃

α(α + α̃ − ε)
. (5.19)

Moreover,

S = P̂+(t0) + Q̂−(t0)

= (P̂+(t0) + Q(t0)) + (P (t0) + Q̂−(t0)) − Id

= S1 + S2 − Id. (5.20)

Since M̃ := 8b2 + 8g2h2 + αh2, by (5.13), respectively, (5.18), we can make invert-
ible operators S1 and S2 such that E‖S1 − Id‖2 and E‖S2 − Id‖2 as small as desired
with b and h sufficiently small. So if taking b and h sufficiently small, it follows from
(5.19) and (5.20) that S = P̂+(t0) + Q̂−(t0) is invertible.

For each t ∈ I, define linear operators as

P̃ (t) = Φ̂(t, t0)SP (t0)S−1Φ̂(t0, t) and Q̃(t) = Id − P̃ (t). (5.21)

Lemma 5.6. The operator P̃ (t) is a linear projection for t ∈ I, and (3.2) holds for
any t, s ∈ R.

Proof. Obviously,

P̃ (t)P̃ (t) = Φ̂(t, t0)SP 2(t0)S−1Φ̂(t0, t) = P̃ (t).

Moreover, for any t, s ∈ R, we obtain

P̃ (t)Φ̂(t, s) = Φ̂(t, t0)SP (t0)S−1Φ̂(t0, t)Φ̂(t, s)

= Φ̂(t, s)Φ̂(s, t0)SP (t0)S−1Φ̂(t0, s)

= Φ̂(t, s)P̃ (s),

and this completes the proof of the lemma.

Lemma 5.7. For any given initial value ξ0 ∈ R
n, the function P̃ (t)Φ̂(t, s)ξ0 is a

solution of (1.5) with P̃ (t)Φ̂(t, s) bounded in (Lc, ‖ · ‖c), respectively, the function
Q̃(t)Φ̂(t, s)ξ0 is a solution of (1.5) with Q̃(t)Φ̂(t, s) bounded in (Ld, ‖ · ‖d).
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Proof. In view of (5.4) and (5.6), we have

SP (t0) = P̂+(t0)P (t0) + Q̂−(t0)P (t0) = P̂+(t0),

SQ(t0) = P̂+(t0)Q(t0) + Q̂−(t0)Q(t0) = Q̂−(t0).

Thus,

P̃ (t)Φ̂(t, s) = Φ̂(t, t0)SP (t0)S−1Φ̂(t0, t)Φ̂(t, s) = Φ̂(t, t0)P̂+(t0)S−1Φ̂(t0, s),

Q̃(t)Φ̂(t, s) = Φ̂(t, t0)SQ(t0)S−1Φ̂(t0, t)Φ̂(t, s) = Φ̂(t, t0)Q̂−(t0)S−1Φ̂(t0, s).

Therefore, it follows from lemma 3.6 that P̃ (t)Φ̂(t, s)ξ0 = Φ̂(t, t0)P̂+(t0)S−1Φ̂
(t0, s)ξ0 is a solution of (1.5) with initial value S−1Φ̂(t0, s)ξ0 ∈ R

n with P̃ (t)Φ̂(t, s)
bounded in (Lc, ‖ · ‖c). Similarly, by lemma 4.6, we have Q̃(t)Φ̂(t, s)ξ0 as a solu-
tion of (1.5) with initial value S−1Φ̂(t0, s)ξ0 ∈ R

n with Q̃(t)Φ̂(t, s) bounded in
(Ld, ‖ · ‖d).

Lemma 5.8. For any given initial value ξ0 ∈ R
n, the function P̃ (t)Φ̂(t, s)ξ0 is a

solution of (1.5) with (t, s) ∈ R
2
� such that

Φ̂(t, s)P̃ (s) = Φ(t)Φ−1(s)P (s)P̃ (s) +
∫ ∞

s

G(t, τ)H(τ)Φ̂(τ, s)P̃ (s)dω(τ)

+
∫ ∞

s

G(t, τ)B̃(τ)Φ̂(τ, s)P̃ (s)dτ, (5.22)

and the function Q̃(t)Φ̂(t, s)ξ0 is a solution of (1.5) with (t, s) ∈ R
2
� such that

Φ̂(t, s)Q̃(s) = Φ(t)Φ−1(s)Q(s)Q̃(s) +
∫ s

−∞
G(t, τ)H(τ)Φ̂(τ, s)Q̃(s)dω(τ)

+
∫ s

−∞
G(t, τ)B̃(τ)Φ̂(τ, s)Q̃(s)dτ. (5.23)

Proof. Let x(t) = P̃ (t)Φ̂(t, s)ξ0 (respectively, y(t) = Q̃(t)Φ̂(t, s)ξ0) with given s ∈
R, and denote ξ = P̃ (s)ξ0 the initial condition at time s. Clearly, x(t) (respectively,
y(t)) is a solution of (1.5) with x(s) = P̃ (s)ξ = P̃ (s)P̃ (s)ξ0 = ξ (respectively, y(s) =
Q̃(s)ξ = Q̃(s)Q̃(s)ξ0 = ξ). By lemma 5.7, P̃ (t)Φ̂(t, s) (respectively, Q̃(t)Φ̂(t, s)) is
bounded in (Lc, ‖ · ‖c) (respectively, (Ld, ‖ · ‖d)). Since ξ0 is arbitrary in R

n,
identity (5.22) (respectively, (5.23)) follows now readily from (5.1) (respectively,
(5.2)).

Proceed as in the proof of theorem 3.1. Squaring both sides of (5.22), and taking
expectations, we obtain

E‖Φ̂(t, s)P̃ (s)‖2 � 5Me(−α
2 + 10MM̃

α )(s−t)+ε|s|
E‖P̃ (s)‖2, ∀ (t, s) ∈ R

2
�. (5.24)

Similarly, squaring both sides of (5.23), and taking expectations, we obtain

E‖Φ̂(t, s)Q̃(s)‖2 � 5Me(−α
2 + 10MM̃

α )(t−s)+ε|s|
E‖Q̃(s)‖2, ∀ (t, s) ∈ R

2
�. (5.25)
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Meanwhile, multiplying (5.22) with Q(t) and (5.23) with P (t) on the left side,
respectively, and let t = s, we obtain

E‖Q(t)P̃ (t)‖2 � 10M2M̃

α(α + α̃ − ε)
E‖P̃ (t)‖2,

and

E‖P (t)Q̃(t)‖2 � 10M2M̃

α(α + α̃ − ε)
E‖Q̃(t)‖2.

Since

E‖P (t)‖2 � Meε|t|, E‖Q(t)‖2 � Meε|t|,

and P̃ (t) − P (t) = Q(t)P̃ (t) − P (t)Q̃(t), for sufficiently small b and h, we obtain
the bounds for the projections P̃ (t) and Q̃(t) as follows:

E‖P̃ (t)‖2 � 8Meε|t| and E‖Q̃(t)‖2 � 8Meε|t|. (5.26)

By (5.24), (5.25), using (5.26) we obtain

E‖Φ̂(t, s)P̃ (s)‖2 � 40M2e(−α
2 + 10MM̃

α )(t−s)+2ε|s|, ∀ (t, s) ∈ R
2
�,

and

E‖Φ̂(t, s)Q̃(s)‖2 � 40Me(−α
2 + 10MM̃

α )(s−t)+2ε|s|, ∀ (t, s) ∈ R
2
�.

This completes the proof of the theorem.

Remark 5.9. By (5.9), using (5.4) and (5.5), we obtain

S1P (t0)S−1
1 = (Id − P (t0) + P̂+(t0))P (t0)(Id + P (t0) − P̂+(t0))

= P̂+(t0) = U(t0, t0).

Thus, it follows from (3.14) that

P̂+(t) = Φ̂(t, t0)U(t0, t0)Φ̂(t0, t) = Φ̂(t, t0)S1P (t0)S−1
1 Φ̂(t0, t). (5.27)

Meanwhile, by (5.14), using (5.6) and (5.8), we obtain

S2Q(t0)S−1
2 = (Id − Q(t0) + Q̂−(t0))Q(t0)(Id + Q(t0) − Q̂−(t0))

= Q̂−(t0) = V (t0, t0).

Thus it follows from (4.4) that

Q̂−(t) = Φ̂(t, t0)V (t0, t0)Φ̂(t0, t) = Φ̂(t, t0)S2Q(t0)S−1
2 Φ̂(t0, t),

and consequently,

P̂−(t) = Φ̂(t, t0)V (t0, t0)Φ̂(t0, t) = Φ̂(t, t0)S2P (t0)S−1
2 Φ̂(t0, t). (5.28)

By (5.21), (5.27) and (5.28), we know that linear operators P̂+(t), P̂−(t) and P̃ (t),
defined on [t0, +∞), (−∞, t0] and R respectively, are actually obtained under the
same rules.
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Remark 5.10. Throughout this paper, we choose any fixed t0 ∈ R instead of 0 ∈ R,
which is a little different from the one given in uniform exponential dichotomy
(see e.g. [44]), where the initial point 0 is used for simplicity, and there is no
substantial difference in inequalities thus obtained. However, here we have to choose
general term t0 instead of 0 since the nonuniform item will vanish at time 0, and
hence there is a significant difference in some calculations.

6. Example

In what follows we use an example to demonstrate our results. The following
example shows that there exists a linear SDE which admits an NMS-ED but not
uniform.

Example 6.1. Let a > b > 0 be real parameters. Then the following linear SDE:
{

du = (−a − bt sin t)u(t)dt +
√

2b cos t exp(−at + bt cos t)dω(t)
dv = (a + bt sin t)v(t)dt −

√
2b cos t exp(at − bt cos t)dω(t)

(6.1)

with the initial condition u(0) = v(0) = 1 admits an NMS-ED that is not a uniform
MS-ED.

Proof. Let

Φ(t) =
(

U(t) 0
0 V (t)

)

be a fundamental matrix solution of (6.1). Thus we have u(t) = U(t)U−1(s)u(s)
and v(t) = V (t)V −1(s)v(s). In addition, it is easy to verify that(

exp (−at + bt cos t − b sin t) 0
0 exp (at − bt cos t + b sin t)

)

is a fundamental matrix solution of{
du = (−a − bt sin t)u(t)dt,
dv = (a + bt sin t)v(t)dt.

Hence, by [16, p. 97], the solution of (6.1) is given by⎧⎨
⎩

u(t) = exp (−at + bt cos t − b sin t)
(
1 +

√
2b
∫ t

0
eb sin s

√
cos sdω(s)

)
,

v(t) = exp (at − bt cos t + b sin t)
(
1 −

√
2b
∫ t

0
e−b sin s

√
cos sdω(s)

)
,

since u(0) = v(0) = 1. Therefore,

E‖u(t)‖2 = exp (−2at + 2bt cos t − 2b sin t)
(

1 + 2b

∫ t

0

e2b sin s cos sds

)

= exp (−2at + 2bt cos t) .
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Thus, one can obtain

E‖U(t)U−1(s)‖2 =
E‖u(t)‖2

E‖u(s)‖2
= e−2a(t−s)+2b(t cos t−s cos s)

since E‖u(s)‖2 > 0. It is easy to see that

E‖U(t)U−1(s)‖2 = e(−2a+2b)(t−s)+2bt(cos t−1)−2bs(cos s−1),

and thus

E‖U(t)U−1(s)‖2 � e(−2a+2b)(t−s)+2bs, ∀ (t, s) ∈ I2
�. (6.2)

Furthermore, if t = 4kπ and s = 3kπ with k ∈ N, then

E‖U(t)U−1(s)‖2 = e(−2a+2b)(t−s)+2bs, ∀ (t, s) ∈ I2
�. (6.3)

Similarly, one can prove that

E‖V (t)V −1(s)‖2 � e(−2a+2b)(s−t)+2bs, ∀ (t, s) ∈ I2
�, (6.4)

and

E‖V (t)V −1(s)‖2 = e(−2a+2b)(s−t)+2bs, ∀ (t, s) ∈ I2
� (6.5)

if t = 4kπ and s = 3kπ with k ∈ N. Thus, (6.1) admits an NMS-ED. By (6.3) and/or
(6.5), the exponential e2bs in (6.2) and/or (6.4) cannot be removed. This shows that
the NMS-ED is not uniform.

Remark 6.2. The SDE (6.1) in example 6.1 admitting an NMS-ED is linear in
the narrow sense. Following the same idea and method in [60], one can establish a
general linear SDE, which admits an NMS-ED. For example, let a > b > 0 be real
parameters, one can prove the following linear SDE{

du = (−a − bt sin t)u(t)dt + u(t)dω(t)
dv = (a + bt sin t)v(t)dt + v(t)dω(t)

with the initial condition u(0) = v(0) = 1 admitting an NMS-ED that is not a
uniform MS-ED.
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