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Abstract. Bedford and Smillie [A symbolic characterization of the horseshoe locus in the
Hénon family. Ergod. Th. & Dynam. Sys. 37(5) (2017), 1389–1412] classified the dynamics
of the Hénon map fa,b : (x, y) �→ (x2 − a − by, x) defined on R

2 in terms of a symbolic
dynamics when (a, b) is close to the boundary of the horseshoe locus. The purpose of the
current article is to generalize their results for all b �= 0 (including the case b < 0 as well).
The method of the proof is first to regard fa,b as a complex dynamical system in C

2 and
second to introduce the new Markov-like partition in R

2 constructed by us [On parameter
loci of the Hénon family. Comm. Math. Phys. 361(2) (2018), 343–414].
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Symbolic dynamics for Hénon maps 141

1. Introduction and the main results
Consider the Hénon family

fa,b : (x, y) �−→ (x2 − a − by, x)

defined on R
2, where (a, b) ∈ R × R

×. Let �(fa,b) be the non-wandering set of fa,b. We
say that fa,b is a hyperbolic horseshoe on R

2 if fa,b : �(fa,b) → �(fa,b) is topologically
conjugate to the full shift with two symbols and �(fa,b) is a hyperbolic set for fa,b.
Denote by htop(fa,b) the topological entropy of fa,b : �(fa,b) → �(fa,b). We know that
0 ≤ htop(fa,b) ≤ log 2 for any (a, b) ∈ R × R

×. Note also that if fa,b is a hyperbolic
horseshoe, then fa,b attains the maximal entropy on R

2, that is, htop(fa,b) = log 2.
In [AI], we have defined the hyperbolic horseshoe locus as

HR ≡ {(a, b) ∈ R × R
× : fa,b is a hyperbolic horseshoe on R

2}

and the maximal entropy locus as

MR ≡ {(a, b) ∈ R × R
× : fa,b attains the maximal entropy on R

2}.

Let us set H±
R

≡ HR ∩ {±b > 0}. Based on previous work [BSRRR2], it has been shown in
[AI] that there exists a real analytic function atgc : R× → R from the b-axis to the a-axis of
the parameter space R × R

× for the Hénon family fa,b with limb→0 atgc(b) = 2 so that:
• (a, b) ∈ HR if and only if a > atgc(b);
• (a, b) ∈ MR if and only if a ≥ atgc(b).
Moreover, it has been shown that:
• when (a, b) ∈ ∂H+

R
holds (that is, a = atgc(b) and b > 0), fa,b has exactly one orbit

of homoclinic tangencies of Ws(p1) and Wu(p1);
• when (a, b) ∈ ∂H−

R
holds (that is, a = atgc(b) and b < 0), fa,b has exactly one orbit

of heteroclinic tangencies of Ws(p1) and Wu(p3),
where p1 (respectively p3) is the unique saddle fixed point in the first (respectively third)
quadrant. These results extend the previous assertions in [BSRRR2] for the case |b| < 0.05
to all b �= 0. We note that their proofs (and the ones in [AI] as well) rely on the profound
theory of quasi-hyperbolicity [BSCCC8] combined with a detailed analysis of Hénon maps
with maximal entropy [BSRRR1].

In their subsequent paper [BSRRR3], Bedford and Smillie classified the dynamics of fa,b

in terms of a symbolic dynamics when (a, b) is close to the boundary ∂H+
R

. However,
their result holds only for 0 < b < 0.4 approximately because their construction is based
on Yoccoz puzzle pieces for the complex one-dimensional map p(z) = z2 − 1 (see the last
paragraph of [AI, Appendix B]).

The purpose of the current article is to generalize the results in [BSRRR3] for all b �= 0
(including the case b < 0 as well) by applying the new Markov-like partition constructed
in [AI]. To present our results, let us first recall that we have defined in [AI] a neighborhood
F±
R

of ∂H±
R

so that fa,b satisfies the crossed mapping condition with respect to a certain
family of projective polydisks {B±

i }i∈�± for (a, b) ∈ F±
R

(see [AI, Theorem 2.12(iii)]).
Moreover, their real sections B±

i ∩ R
2 cover the set KR of points in R

2 whose both forward
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142 Y. Hironaka and Y. Ishii

FIGURE 1. {L, R}-partition for (a, b) ∈ E+
R

.

FIGURE 2. {L, R}-partition for (a, b) ∈ E−
R

.

and the backward orbits by fa,b are bounded. Let a±
aprx be the piecewise linear function

approximating ∂H±
R

as in [AI] and set

E±
R

≡ {(a, b) ∈ R × {±b > 0} : |a − a±
aprx(b)| ≤ 0.05}.

One can easily see that E±
R

⊂ F±
R

. Moreover, in Appendix A, we show that E±
R

forms a
neighborhood of ∂H±

R
(see Proposition A.1).

Let pi ∈ R
2 be the unique saddle fixed point for i = 1, 3 and the unique saddle

periodic point of period two for i = 2, 4 in the ith quadrant. In Theorem 4.3 (respectively
Theorem 4.6), we obtain a partition of KR \ (Ws(p2) ∪ Ws(p4)) (respectively KR \
Ws(p3)) into two parts, say, the left part and the right part for (a, b) ∈ E+

R
(respectively

for (a, b) ∈ E−
R

). Figures 1 and 2 describe the shape of the partition pieces. This partition
defines a coding with the alphabet {L, R} by assigning L to the left part and R to the right
part. (Our coding is different from that in [BSRRR3] when b > 0 is close to 0.) As pointed
out in [BSRRR3], this coding has both advantages and disadvantages; an advantage is that
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Symbolic dynamics for Hénon maps 143

it applies to Hénon maps degenerated from the horseshoe and a disadvantage is that the
associated coding map is no more one-to-one.

Given a word w over an alphabet, w denotes either the left-infinite repetition · · · www

or the right-infinite repetition www · · · (depending on the context). Let · be the ‘decimal
point’ of a bi-infinite symbol sequence · · · ε−1 · ε0ε1 · · · . Our first main result concerns
[BSRRR3, Theorem 1].

THEOREM 1.1. We have the following.
(1) When (a, b) ∈ E+

R
, there are at most two points in KR \ (Ws(p2) ∪ Ws(p4)) with

{L, R}-coding RL · LR ∈ {L, R}Z counted without multiplicity. Moreover:
(a) fa,b is a hyperbolic horseshoe on R

2 if and only if there are two such points;
(b) fa,b has a quadratic tangency but htop(fa,b) = log 2 if and only if there is one

such point;
(c) htop(fa,b) < log 2 if and only if there are no such points.

(2) When (a, b) ∈ E−
R

, there are at most four points in KR \ Ws(p3) with {L, R}-coding
LRR · LR ∈ {L, R}Z counted without multiplicity. Moreover:
(a) fa,b is a hyperbolic horseshoe on R

2 if and only if there are four such points;
(b) fa,b has a quadratic tangency but htop(fa,b) = log 2 if and only if there are

three such points;
(c) htop(fa,b) < log 2 if and only if there are at most two such points.

Obviously the map in either case (a) or (b) of Theorem 1.1 cannot be topologically
conjugate to the map in case (c) because they have different values of topological entropy.
M. Asaoka (private communication) pointed out that the map in case (b) is not expansive
on its non-wandering set. Hence, the map in case (a) is not topologically conjugate to the
map in case (b), that is, the map fa,b with (a, b) ∈ H±

R
cannot be topologically conjugate

to the map fa,b with (a, b) ∈ ∂H±
R

.
We found that the paper [BSRRR3] does not contain a proof of its theorem 1 (which corre-

sponds to our Theorem 1.1). Since our Theorem 1.1 originates from [BSRRR3, Theorem 1], we
describe the proof of Theorem 1.1 in detail in §4.2. We also remark that the paper [BSRRR3]
did not treat the case b < 0 since their partition cannot directly apply to this case. Indeed,
it can be shown that the number of points in Ws(p1) ∩ Wu(p3) having an appropriate
{L, R}-coding with respect to the partition in [BSRRR3] is infinite and cannot provide a
classification like [BSRRR3 Theorem 1] (see Remark 4.10).

Next we analyze case (b) of Theorem 1.1 in detail. Denote by σ : {α, β}Z → {α, β}Z
the shift map on the space of bi-infinite sequences with two symbols. Our second main
result concerns [BSRRR3, Theorem 2].

THEOREM 1.2 We have the following.
(1) If (a, b) ∈ ∂H+

R
, then fa,b : �(fa,b) → �(fa,b) is topologically conjugate to the

factor map σ/∼ : {α, β}Z/∼ → {α, β}Z/∼, where we define ∼ as

σn(αβ · ββα) ∼ σn(αβ · αβα)

for all n ∈ Z.
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144 Y. Hironaka and Y. Ishii

(2) If (a, b) ∈ ∂H−
R

, then fa,b : �(fa,b) → �(fa,b) is topologically conjugate to the
factor map σ/∼ : {α, β}Z/∼ → {α, β}Z/∼, where we define ∼ as

σn(βα · ββα) ∼ σn(βα · αβα)

for all n ∈ Z.

Note that, in [BSRRR3], the alphabet {a, b} is used instead of {α, β}.
It would be interesting to generalize our results to:

(1) a real Hénon map on R
2, where (a, b) is taken near the boundary of a hyperbolic

component (see [A1] for hyperbolic components in the real parameter space);
(2) a complex Hénon map on C

2, where (a, b) is taken near the boundary of the complex
horseshoe locus (compare [BD, Theorem 3.6] for a related result which claims that
a topological horseshoe is a hyperbolic horseshoe in C

2).
The structure of this paper is as follows. In §2, we discuss some properties of

symbolic dynamics associated with a family of boxes as well as its refinement. In §3,
we characterize local stable/unstable manifolds in terms of the symbolic dynamics above.
In §4, we construct the {L, R}-partition and prove Theorem 1.1. In §5, we construct the
{α, β}-partition and prove Theorem 1.2. Some statements in this article are proved by Arai
[A2] with the help of computer assistance (see Appendix A for details).

2. Symbolic codings and refinements
In [AI, §2.1], we constructed a complex neighborhood F± of the boundary ∂H±

R
. When

(a, b) ∈ F± ∩ {b �= 0}, we can regard fa,b as a complex dynamical system defined on C
2.

Denote by Ka,b the set of points in C
2 whose both forward and backward orbits by fa,b are

bounded in C
2.

Let us write F±
R

≡ F± ∩ R
2. When (a, b) ∈ F±

R
is a real parameter, the restriction

fa,b|R2 : R2 → R
2 is well defined. We denote it by fR when we insist it has real dynamics

and write KR ≡ Ka,b ∩ R
2.

2.1. Symbolic codings. Given a finite set called an alphabet � and a subset T ⊂ � × �

called the set of allowed transitions, we define

Sfwd(T) ≡ {(in)n≥0 ∈ �N : (in, in+1) ∈ T for all n ≥ 0}
and call its element a forward admissible sequence with respect to T. Also we define

Sbwd(T) ≡ {(in)n≤0 ∈ �−N : (in−1, in) ∈ T for all n ≤ 0}
and call its element a backward admissible sequence with respect to T. Finally, we set

S(T) ≡ {(in)n∈Z ∈ �Z : (in, in+1) ∈ T for all n ∈ Z}
and call its element a bi-infinite admissible sequence with respect to T.

Below, we set �+ ≡ {0, 1, 2, 3} and �− ≡ {0, 1, 2, 3, 4}. Choose a subset of
�+ × �+ as

T+ ≡ {(0, 0), (0, 2), (0, 3), (1, 0), (2, 2), (2, 3), (3, 1)}
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Symbolic dynamics for Hénon maps 145

FIGURE 3. Transition diagram for (a, b) ∈ F+
R

∩ {b > 0}.

FIGURE 4. Transition diagram for (a, b) ∈ F−
R

∩ {b < 0}.

and a subset of �− × �− as

T− ≡ {(0, 0), (0, 2), (1, 0), (1, 2), (2, 4), (3, 4), (4, 1), (4, 3)}.
We then write S±

fwd ≡ Sfwd(T
±), S±

bwd ≡ Sbwd(T
±) and S± ≡ S(T±).

The transition diagram for S+ (respectively S−) is a directed graph whose vertex set
is �+ (respectively �−) and the arrow set is T+ (respectively T−). See Figures 3 and 4.

Let Du and Dv be two topological disks in C. A projective polydisk (or a projective box,
or simply a box) B = Du ×pr Dv is the product sets of Du and Dv with respect to certain
projective coordinates in C

2 (see [I, §4.3] as well as [AI, §2.2] for more detail).

Definition 2.1. Let B = Du ×pr Dv (respectively B′ = D′
u ×pr D′

v) be a projective
polydisk, and let πu : B → Du and πv : B → Dv (respectively π ′

u : B′ → D′
u and

π ′
v : B′ → D′

v) be the projections. We say that f : B ∩ f −1(B′) → B′ satisfies the crossed
mapping condition (CMC) of degree d if it satisfies conditions (1) and (2) below, where
ι : B ∩ f −1(B′) → B denotes the inclusion map.
(1) The map (π ′

u ◦ f , πv ◦ ι) : B ∩ f −1(B′) → D′
u × Dv is proper and degree d.

(2) The sets πu(B ∩ f −1(B′)) and π ′
v(B′ ∩ f (B)) are relatively compact in Du and D′

v ,
respectively.

See [AI, Definition 2.11] as well as [IS, Definition 5.1] for the original definition.

Definition 2.2. A triple (fa,b, {B±
i }i∈�± , T±) is said to satisfy the crossed mapping

condition if fa,b : B±
i ∩ f −1

a,b (B±
j ) → B±

j satisfies the crossed mapping condition for all
(i, j) ∈ T±.

The next proposition is identical to [AI, Theorem 2.12(iii)].

https://doi.org/10.1017/etds.2024.34 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2024.34


146 Y. Hironaka and Y. Ishii

THEOREM 2.3. For (a, b) ∈ F± ∩ {b �= 0}, there is a family of projective polydisks
{B±

i }i∈�± in C
2 so that the triple (fa,b, {B±

i }i∈�± , T±) satisfies the crossed mapping
condition.

The next fact is proved in [AI] and will be used later.

LEMMA 2.4. We have:
(1) B+

0 ∩B+
1 ∩Ka,b =B+

0 ∩B+
2 ∩Ka,b =B+

1 ∩B+
3 ∩Ka,b = ∅ for (a, b) ∈F+ ∩ {b > 0};

(2) B−
0 ∩ B−

1 ∩ Ka,b = B−
0 ∩ B−

3 ∩ Ka,b = B−
0 ∩ B−

4 ∩ Ka,b = B−
1 ∩ B−

2 ∩
Ka,b = B−

1 ∩ B−
4 ∩ Ka,b = B−

2 ∩ B−
3 ∩ Ka,b = ∅ for (a, b) ∈ F− ∩ {b < 0}.

Proof. For claim (1), see the proof of [AI, Lemma 3.4(i)]. For claim (2), see the proof of
[AI, Lemma 3.7(i)].

For (a, b) ∈ F± ∩ {b �= 0}, define the orbit space of fa,b as

�± ≡ {((in)n∈Z, (zn)n∈Z) : (in)n∈Z ∈ S±, zn ∈ B±
in

, f (zn) = zn+1}.
By [AI, Proposition 3.1], we see that⋂

n∈Z
f n

( ⋃
i∈�±

B±
i

)
= Ka,b.

Therefore, the projection

� : �± � ((in)n∈Z, (zn)n∈Z) �−→ z0 ∈ Ka,b

can be defined.

Definition 2.5. A bi-infinite sequence (in)n∈Z ∈ S± is called a �±-coding of z0 ∈ Ka,b

if it satisfies �((in)n∈Z, (f n(z0))n∈Z) = z0.

The next proposition is a restatement of [AI, Propositions 3.3 and 3.6].

PROPOSITION 2.6. Let (a, b) ∈ F± ∩ {b �= 0}. Then, � : �± → Ka,b is surjective.

In particular, every point in Ka,b has at least one �±-coding thanks to Proposition 2.6.
One can also show that the map � is almost injective. To do this, below we write

B±
i = D±

u,i ×pr D±
v,i .

LEMMA 2.7. (Numerical Check 1) Let (a, b) ∈ E+
R

. Then, there exist projective polydisks
P+

0,3, P+
1,2, and P+

2,3 so that:

(1) P+
0,3 ⊃ B+

0 ∩ B+
3 , P+

1,2 ⊃ B+
1 ∩ B+

2 , and P+
2,3 ⊃ B+

2 ∩ B+
3 hold;

(2) f : P+
0,3 ∩ f −1(P+

1,2) → P+
1,2, f : P+

1,2 ∩ f −1(P+
0,3) → P+

0,3, and f : P+
2,3 ∩

f −1(P+
1,2) → P+

1,2 are crossed mappings of degree one.

Proof. See Appendix A.
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FIGURE 5. Pairwise transition diagram for (a, b) ∈ E+
R

.

FIGURE 6. Pairwise transition diagram for (a, b) ∈ E−
R

.

LEMMA 2.8. (Numerical Check 2) Let (a, b) ∈ E−
R

. Then, there exist projective polydisks
P−

0,2, P−
1,3, P−

2,4, and P−
3,4 so that:

(1) P−
0,2 ⊃ B−

0 ∩ B−
2 , P−

1,3 ⊃ B−
1 ∩ B−

3 , P−
2,4 ⊃ B−

2 ∩ B−
4 , and P−

3,4 ⊃ B−
3 ∩ B−

4 hold;
(2) f : P−

0,2 ∩ f −1(P−
2,4) → P−

2,4, f : P−
1,3 ∩ f −1(P−

2,4) → P−
2,4, f : P−

2,4 ∩
f −1(P−

3,4) → P−
3,4, and f : P−

3,4 ∩ f −1(P−
3,4) → P−

3,4 are crossed mappings of
degree one.

Proof. See Appendix A.

PROPOSITION 2.9. We have the following.
(1) Let (a, b) ∈ E+

R
. Then, 1 ≤ card(�−1(z)) ≤ 2 for any z ∈ Ka,b and moreover

card(�−1(z)) = 1 if and only if z ∈ Ka,b \ (V s(p2) ∪ V s(p4)).
(2) Let (a, b) ∈ E−

R
. Then, 1 ≤ card(�−1(z)) ≤ 2 for any z ∈ Ka,b and moreover

card(�−1(z)) = 1 if and only f z ∈ Ka,b \ V s(p3).

Probably Proposition 2.9 would hold for any (a, b) ∈ F± ∩ {b �= 0}, but we restrict
ourselves to (a, b) ∈ E±

R
which is sufficient for our purpose. The same would hold for

Lemmas 2.10, 2.11, 3.1, and 3.2 below.
To prove this proposition, we need to introduce a finite directed graph called the

pairwise transition diagram for T± as follows. A vertex is an unordered pair {i, j} ⊂ �±
so that B±

i ∩ B±
j ∩ Ka,b �= ∅ (see Lemma 2.4), and there is an arrow from {i, j} to {i′, j ′}

if and only if both f : B±
i ∩ f −1(B±

i′ ) → B±
i′ and f : B±

j ∩ f −1(B±
j ′) → B±

j ′ are crossed
mappings (by exchanging i′ and j ′, if necessary). See Figures 5 and 6.
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Proof. We first prove case (1). Given a point z ∈ Ka,b, let us consider the following
condition (∗):

there exists N ∈ Z so that f N(z) ∈ B+
iN

∩ B+
jN

holds for some {iN , jN } ⊂ �+ with
iN �= jN .

Suppose first the case that z ∈ Ka,b does not satisfy condition (∗). Since
Ka,b ⊂ ⋃

i∈�+ B+
i , this means that for any n ∈ Z, there exists a unique in ∈ �+ so

that f n(z) ∈ B+
in

. This obviously implies that card(�−1(z)) = 1.
Suppose second the case that z ∈ Ka,b satisfies condition (∗). Since for every z ∈ Ka,b,

there exist at most two i ∈ �+ so that z ∈ B+
i (see item (1) of Lemma 2.4), such a pair

{iN , jN } is uniquely determined for a given N. We next observe that in the pairwise
transition diagram, there exists exactly one out-going arrow from every vertex of the
form {i, j} with i �= j (focus on bold arrows in Figure 5) and there are no arrows from
such a vertex to a vertex of the form {k, k}. This implies that there exists a unique path
{iN , jN } → {iN+1, jN+1} → · · · in the diagram starting from the vertex {iN , jN }. Since
this holds for every N appearing in condition (∗), we conclude that card(�−1(z)) = 2.
This together with the conclusion in the previous paragraph yields that z ∈ Ka,b satisfies
condition (∗) if and only if card(�−1(z)) = 2.

Under condition (∗), we also observe that the path {iN , jN } → {iN+1, jN+1} → · · ·
eventually falls into the cycle {0, 3} → {1, 2} → {0, 3} → · · · of period 2. Now we apply
Lemma 2.7. Since P+

0,3 ⊃ B+
0 ∩ B+

3 and P+
1,2 ⊃ B+

1 ∩ B+
2 hold by item (1) of Lemma 2.7,

this implies that f n(z) eventually drops into either P+
0,3 or P+

1,2 and stays there. By item
(2) of Lemma 2.7, we see that f n(z) eventually belongs to either the local stable manifold
of p2 in P+

0,3 or the local stable manifold of p4 in P+
1,2. Therefore, we may conclude that

z ∈ V s(p2) ∪ V s(p4). Conversely, suppose that z ∈ V s(p2) ∪ V s(p4). Since p2 ∈ B+
0 ∩

B+
3 and p4 ∈ B+

1 ∩ B+
2 , there exists N ∈ Z so that either f N(z) ∈ B+

0 ∩ B+
3 or f N(z) ∈

B+
1 ∩ B+

2 holds. In particular, condition (∗) is satisfied. Therefore, we conclude that
z ∈ Ka,b satisfies condition (∗) if and only if z ∈ V s(p2) ∪ V s(p4).

The argument above obviously shows 1 ≤ card(�−1(z)) ≤ 2 for all z ∈ Ka,b. By
combining the conclusions in the previous two paragraphs, we obtain card(�−1(z)) = 2 if
and only if z ∈ V s(p2) ∪ V s(p4), which proves case (1). The proof for case (2) is similarly
obtained by using Lemma 2.8.

2.2. Refined codings. In what follows, it is essential to refine the boxes B+
2 , B−

2 and B−
3 .

LEMMA 2.10. (Numerical Check 3) When (a, b) ∈ E+
R

, the crossed mapping

f 4 : B+
2 ∩ f −1(B+

3 ∩ f −1(B+
1 ∩ f −1(B+

0 ∩ f −1(B+
2 )))) −→ B+

2

of degree two satisfies the off-criticality condition.

Proof. See Appendix A.

It then follows from [I, Theorem 2.14] that the domain

B+
2 ∩ f −1(B+

3 ∩ f −1(B+
1 ∩ f −1(B+

0 ∩ f −1(B+
2 ))))
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consists of two connected components denoted as B+
2′ and B+

2′′ with p4 ∈ B+
2′ . Moreover,

both B+
2′ and B+

2′′ are biholomorphic to polydisks, and f 4 : B+
2′ → B+

2 and f 4 : B+
2′′ → B+

2
are crossed mappings of degree one (see Step 5 of the proof of [I, Theorem 2.14]).

LEMMA 2.11. (Numerical Check 4) When (a, b) ∈ E−
R

, the crossed mapping

f 2 : B−
i ∩ f −1(B−

4 ∩ f −1(B−
3 )) −→ B−

3

of degree two satisfies the off-criticality condition for i = 2, 3.

Proof. See Appendix A.

Again, it then follows from [I, Theorem 2.14] that the domain

B−
i ∩ f −1(B−

4 ∩ f −1(B−
3 ))

consists of two connected components denoted as B−
i′ and B−

i′′ for i = 2, 3 with p3 ∈ B−
3′ .

Moreover, both B−
i′ and B−

i′′ are biholomorphic to polydisks, and f 2 : B−
i′ → B−

3 and
f 2 : B−

i′′ → B−
3 are crossed mappings of degree one. Note that, a priori, we are not able

to distinguish the components B−
i′ and B−

i′′ (modulo the condition p3 ∈ B−
3′ ) until items (3)

and (4) of Corollary 3.6, where we determine B−
i′ and B−

i′′ so that B−
i′,R contains a curve

γi,left on the ‘left’ and B−
i′′,R contains a curve γi,right on the ‘right’.

It is useful to consider the corresponding refined symbolic dynamics as follows. We set
�̃+ ≡ {0, 1, 2′, 2′′, 3} and �̃− ≡ {0, 1, 2′, 2′′, 3′, 3′′, 4}. Choose a subset of �̃+ × �̃+ as

T̃+ ≡ {(0, 0), (0, 2′), (0, 2′′), (0, 3), (1, 0), (2′, 3), (2′′, 3), (3, 1)}
and a subset of �̃− × �̃− as

T̃− ≡ {(0, 0), (0, 2′),(0, 2′′), (1, 0), (1, 2′), (1, 2′′),
(2′, 4), (2′′, 4), (3′, 4), (3′′, 4), (4, 1), (4, 3′), (4, 3′′)}.

We then write S̃±
fwd ≡ Sfwd(T̃

±), S̃±
bwd ≡ Sbwd(T̃

±), and S̃± ≡ S(T̃±).
For (a, b) ∈ F±

R
∩ {b �= 0}, define the refined orbit space of fa,b as

�̃± ≡ {((in)n∈Z, (zn)n∈Z) : (in)n∈Z ∈ S̃±, zn ∈ B±
in

, f (zn) = zn+1}.
Since B+

2′ ∪ B+
2′′ ⊂ B+

2 and B−
i′ ∪ B−

i′′ ⊂ B−
i (i = 2, 3) hold, we see that⋂

n∈Z
f n

( ⋃
i∈�̃±

B±
i

)
⊂ Ka,b.

Therefore, the projection

�̃ : �̃± � ((in)n∈Z, (zn)n∈Z) �−→ z0 ∈ Ka,b

can be defined.

Definition 2.12. A bi-infinite sequence (in)n∈Z ∈ S̃± is called a �̃±-coding of z0 ∈ Ka,b

if it satisfies �̃((in)n∈Z, (f n(z0))n∈Z) = z0.
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3. Local stable/unstable manifolds
3.1. Dynamics in C

2. For a real parameter (a, b) ∈ F±
R

∩ {b �= 0}, we let pi ∈ R
2

be either the unique saddle fixed point (for i = 1, 3) or the unique saddle periodic
point of period two (for i = 2, 4) of fR in the ith quadrant. For a complex parameter
(a, b) ∈ F± ∩ {b �= 0}, denote again by pi ∈ C

2 its complex continuation. Let V s/u(pi)

be the complex stable/unstable manifold at pi . Denote by V
s/u

loc (pi)j the connected
component of V u/s(pi) ∩ B±

j containing pi .
Recall that a bi-infinite T±-admissible sequence I = (in)n∈Z ∈ S± is a �±-coding of

z ∈ Ka,b if and only if z ∈ ⋂
n∈Z f −n(B±

in
). Based on this observation, we define

Ks
I ≡

⋂
n≥0

f −n(B±
in

)

for a forward T̃±-admissible sequence I = (in)n≥0 ∈ S̃±
fwd. We also define

Ku
J ≡

⋂
n≤0

f −n(B±
jn

)

for a backward T̃±-admissible sequence J = (jn)n≤0 ∈ S̃±
bwd. Given a point z ∈ Ka,b, a

forward T̃±-admissible sequence I = (in)n≥0 ∈ S̃±
fwd is called a forward �̃±-coding of z

if z belongs to Ks
I .

We first characterize local stable manifolds in terms of forward �̃±-coding.

LEMMA 3.1. Let (a, b) ∈ E+
R

. Then, we have the following.
(1) V s

loc(p1)0 is a vertical disk of degree one in B+
0 and V s

loc(p1)0 = Ks

0
.

(2) V s
loc(p4)2 is a vertical disk of degree one in B+

2 and V s
loc(p4)2 = Ks

2′310
.

(3) V s
loc(p2)0 is a vertical disk of degree one in B+

0 and V s
loc(p2)0 = Ks

02′31
.

(4) V s
loc(p4)1 is a vertical disk of degree one in B+

1 and V s
loc(p4)1 = Ks

102′3 .

(5) V s
loc(p2)3 is a vertical disk of degree one in B+

3 and V s
loc(p2)3 = Ks

3102′ .

(6) f −1(V s
loc(p4)2) ∩ B+

2 is a vertical disk of degree one in B+
2 . Moreover,

f −1(V s
loc(p4)2) ∩ B+

2 = Ks

2′′2′310
.

Proof. Claim (1) follows from the fact that f : B+
0 ∩ f −1(B+

0 ) → B+
0 is a crossed

mapping of degree one.
It follows from the definition of B+

2′ that
⋂

n≥0 f −4n(B+
2′ )=Ks

2′310
. Since f 4 : B+

2′ →B+
2

is a crossed mapping of degree one,
⋂

n≥0 f −4n(B+
2′ ) is a vertical disk of degree one in

B+
2 containing the fixed point p4 and hence is equal to V s

loc(p4)2. This proves claim (2).
Claim (3) follows from claim (2) and the fact that f : B+

0 ∩ f −1(B+
2 ) → B+

2 is a
crossed mapping of degree one, claim (4) follows from claim (3) and the fact that
f : B+

1 ∩ f −1(B+
0 ) → B+

0 is a crossed mapping of degree one, claim (5) follows from
claim (4) and the fact that f : B+

3 ∩ f −1(B+
1 ) → B+

1 is a crossed mapping of degree one,
and claim (6) follows from claim (2) and the fact that f : B+

2′′ ∩ f −1(B+
2 ) → B+

2 is a
crossed mapping of degree one.

Similarly, we have the following lemma.
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LEMMA 3.2. Let (a, b) ∈ E−
R

. Then, we have the following.
(1) V s

loc(p1)0 is a vertical disk of degree one in B−
0 and V s

loc(p1)0 = Ks

0
.

(2) V s
loc(p3)3 is a vertical disk of degree one in B−

3 and V s
loc(p3)3 = Ks

3′4.

(3) V s
loc(p3)4 is a vertical disk of degree one in B−

4 and V s
loc(p3)4 = Ks

43′ .

(4) f −1(V s
loc(p3)4) ∩ B−

2 consists of two mutually disjoint vertical disks of degree one in
B−

2 denoted by V2′ ⊂ B−
2′ and V2′′ ⊂ B−

2′′ . Moreover, V2′ = Ks

2′43′ and V2′′ = Ks

2′′43′ .

(5) f −1(V s
loc(p3)4) ∩ B−

3 consists of two mutually disjoint vertical disks of degree one in
B−

3 denoted by V3′ ⊂ B−
3′ and V3′′ ⊂ B−

3′′ . Moreover, V3′ = Ks

3′43′ and V3′′ = Ks

3′′43′ .

(6) f −1(V2′) ∩ B−
1 is a vertical disk of degree one in B−

1 . Moreover, f −1(V2′) ∩ B−
1 =

Ks

12′43′ .

(7) f −1(V2′) ∩ B−
0 is a vertical disk of degree one in B−

0 . Moreover, f −1(V2′) ∩ B−
0 =

Ks

02′43′ .

Proof. Claim (1) follows from the fact that f : B−
0 ∩ f −1(B−

0 ) → B−
0 is a crossed

mapping of degree one.
It follows from the definition of B−

3′ that
⋂

n≥0 f −2n(B−
3′ ) = Ks

3′4. Since f 2 : B−
3′ → B−

3

is a crossed mapping of degree one,
⋂

n≥0 f −2n(B−
3′ ) is a vertical disk of degree one in

B−
3 containing the fixed point p3 and hence is equal to V s

loc(p3)3. This proves claim (2).
Claim (3) follows from claim (2) and the fact that f : B−

4 ∩ f −1(B−
3 ) → B−

3 is a
crossed mapping of degree one. Claims (6) and (7) follow from the fact in claim (3)
that V2′ is a vertical disk of degree one in B−

2 and that f : B−
1 ∩ f −1(B−

2 ) → B−
2 and

f : B−
0 ∩ f −1(B−

2 ) → B−
2 are crossed mappings of degree one.

By Lemma 2.11 and claim (2), we see that f −2(V s
loc(p3)3) ∩ B−

i consists of two
mutually disjoint vertical disks of degree one in B−

i for i = 2, 3. Since we have
f −1(V s

loc(p3)4) ∩ B−
i = f −2(V s

loc(p3)3) ∩ B−
i , the first half of claims (4) and (5) follow.

The second half of claims (4) and (5) easily follows from claim (3).

For (a, b) ∈ F+ ∩ {b �= 0}, we know that f : B+
0 ∩ f −1(B+

0 ) → B+
0 is a crossed

mapping of degree one. Hence, V s
loc(p1)0 is a vertical disk of degree one in B+

0 and
V u

loc(p1)0 is a horizontal disk of degree one in B+
0 . For (a, b) ∈ F− ∩ {b �= 0}, we know

that f : B−
0 ∩ f −1(B−

0 ) → B−
0 is a crossed mapping of degree one. Hence, V s

loc(p1)0 is a
vertical disk of degree one in B−

0 . The next fact is stated in [AI, Proposition 3.10].

PROPOSITION 3.3. When (a, b) ∈ F− ∩ {b �= 0}, V u
loc(p3)3 is a horizontal disk of degree

one in B−
3 .

Let (a, b) ∈ F+ ∩ {b �= 0}. For a forward admissible sequence of the form
I = i0i1 · · · in0 ∈ S+

fwd, we define

V s
I (a, b)+ ≡ B+

i0
∩ f −1(B+

i1
∩ · · · ∩ f −1(B+

in
∩ f −1(V s

loc(p1)0)) · · · ),

and for a backward admissible sequence of the form J = 0j−n · · · j−1j0 ∈ S+
bwd, we

define

V u
J (a, b)+ ≡ B+

j0
∩ f (B+

j−1
∩ · · · ∩ f (B+

j−n
∩ f (V u

loc(p1)0)) · · · ).
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Let (a, b) ∈ F− ∩ {b �= 0}. For a forward admissible sequence of the form
I = i0i1 · · · in0 ∈ S−

fwd, we define

V s
I (a, b)− ≡ B−

i0
∩ f −1(B−

i1
∩ · · · ∩ f −1(B−

in
∩ f −1(V s

loc(p1)0)) · · · ),

and for a backward admissible sequence of the form J = 43j−n · · · j−1j0 ∈ S−
bwd, we

define
V u

J (a, b)− ≡ B−
j0

∩ f (B−
j−1

∩ · · · ∩ f (B−
j−n

∩ f (V u
loc(p3)3)) · · · ).

Remark 3.4. The set Ku
J is all the points whose �±-coding is J, but we defined V u

J (a, b)±
as a piece of a certain local unstable manifold. Hence, V u

J (a, b)± ⊂ Ku
J always holds but

V u
J (a, b)± is not necessarily equal to Ku

J . For example, Ku

43
consists of infinitely many

mutually disjoint horizontal disks in B−
3 in the case of b < 0. However, V u

43
(a, b)− is one

of those disks. For the motivation of our definition, see Remark 4.10.

3.2. Dynamics in R
2. Let us assume that (a, b) ∈ E±

R
. We denote the real slice of B±

i

by B±
i,R ≡ B±

i ∩ R
2. A curve γ in B±

i,R is said to be horizontal (respectively vertical) if the
projection πx : γ → Dx,R (respectively πy : γ → Dy,R) is a bijection, where Dx,R and
Dy,R are intervals so that B±

j ,R = Dx,R ×pr Dy,R.
Recall that pi is either the unique saddle fixed point (for i = 1, 3) or the unique saddle

periodic point of period two (for i = 2, 4) in the ith quadrant. Denote by W
u/s

loc (pi)j

the connected component of Wu/s(pi) ∩ B±
j ,R containing pi . We have W

u/s

loc (pi)j =
V

u/s

loc (pi)j ∩ R
2.

COROLLARY 3.5. Let (a, b) ∈ E+
R

. Then, we have the following.
(1) Ws

loc(p1)0 is a vertical curve in B+
0,R denoted by γ +

0,right and Ws
loc(p1)0 = Ks

0
∩ R

2.

(2) Ws
loc(p4)2 is a vertical curve inB+

2,R denoted by γ +
2,right and Ws

loc(p4)2 = Ks

2′310
∩ R

2.

(3) Ws
loc(p2)0 is a vertical curve in B+

0,R denoted by γ +
0,left and Ws

loc(p2)0 = Ks

02′31
∩ R

2.

(4) Ws
loc(p4)1 is a vertical curve in B+

1,R denoted by γ +
1,left and Ws

loc(p4)1 = Ks

102′3 ∩ R
2.

(5) Ws
loc(p2)3 is a vertical curve inB+

3,R denoted by γ +
3,right and Ws

loc(p2)3 = Ks

3102′ ∩ R
2.

(6) f −1
R

(Ws
loc(p4)2) ∩ B+

2,R is a vertical curve in B+
2,R denoted by γ +

2,left and

f −1
R

(Ws
loc(p4)2) ∩ B+

2,R = Ks

2′′2′310
∩ R

2.

Proof. This immediately follows from Lemma 3.1 by taking the real parts.

We also know that V u
loc(p1)0 is a horizontal disk of degree one in B+

0 . Therefore,
Wu

loc(p1)0 is a horizontal curve in B+
0,R.

When there are two mutually disjoint vertical curves in B−
i,R, we can distinguish the left

one and the right one.

COROLLARY 3.6. Let (a, b) ∈ E−
R

. Then, we have the following.
(1) Ws

loc(p1)0 is a vertical curve in B−
0,R denoted by γ −

0,right and Ws
loc(p1)0 = Ks

0
∩ R

2.

(2) Ws
loc(p3)3 is a vertical curve in B−

3,R denoted by γ −
3,left and Ws

loc(p3)3 = Ks

3′4 ∩ R
2.

(3) Ws
loc(p3)4 is a vertical curve in B−

4,R denoted by γ −
4,right and Ws

loc(p3)4 = Ks

43′ ∩ R
2.
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(4) f −1
R

(Ws
loc(p3)4) ∩ B−

2,R consists of two mutually disjoint vertical curves in B−
2,R; the

left one is denoted by γ −
2,left ⊂ B−

2′,R and the right one is denoted by γ −
2,right ⊂ B−

2′′,R.
Moreover, γ −

2,left = Ks

2′43′ ∩ R
2 and γ −

2,right = Ks

2′′43′ ∩ R
2.

(5) f −1
R

(Ws
loc(p3)4) ∩ B−

3,R consists of two mutually disjoint vertical curves in B−
3,R; the

left one is denoted by γ −
3,left ⊂ B−

3′,R and the right one is denoted by γ −
3,right ⊂ B−

3′′,R.
Moreover, γ −

3,left = Ks

3′43′ ∩ R
2 and γ −

3,right = Ks

3′′43′ ∩ R
2.

(6) f −1
R

(γ −
2,left) ∩ B−

1,R is a vertical curve in B−
1,R denoted by γ −

1,left. Moreover, γ −
1,left =

Ks

12′43′ ∩ R
2.

(7) f −1
R

(γ −
2,left) ∩ B−

0,R is a vertical curve in B−
0,R denoted by γ −

0,left. Moreover, γ −
0,left =

Ks

02′43′ ∩ R
2.

Proof. This immediately follows from Lemma 3.2 by taking the real parts.

Below, when the context is clear, we drop the superscript ± in γ ±
j ,left and γ ±

j ,right, and
write γj ,left and γj ,right, respectively.

Since p3 ∈ γ3,left, we have γ3,left = Ws
loc(p3)3. We also know that V u

loc(p3)3 is a
horizontal disk of degree one in B−

3 (see Proposition 3.3), and hence Wu
loc(p3)3 is a

horizontal curve in B−
3,R.

Let (a, b) ∈ E+
R

. For a forward admissible sequence of the form I = i0i1 · · · in0 ∈
S+

fwd, we define

Ws
I (a, b)+ ≡ B+

i0,R ∩ f −1
R

(B+
i1,R ∩ · · · ∩ f −1

R
(B+

in,R ∩ f −1
R

(Ws
loc(p1)0)) · · · ),

and for a backward admissible sequence of the form J = 0j−n · · · j−1j0 ∈ S+
bwd, we

define

Wu
J (a, b)+ ≡ B+

j0,R ∩ fR(B+
j−1,R ∩ · · · ∩ fR(B+

j−n,R ∩ fR(Wu
loc(p1)0)) · · · ).

Let (a, b) ∈ E−
R

. For a forward admissible sequence of the form I = i0i1 · · · in0 ∈
S−

fwd, we define

Ws
I (a, b)− ≡ B−

i0,R ∩ f −1
R

(B−
i1,R ∩ · · · ∩ f −1

R
(B−

in,R ∩ f −1
R

(Ws
loc(p1)0)) · · · ),

and for a backward admissible sequence of the form J = 43j−n · · · j−1j0 ∈ S−
bwd, we

define

Wu
J (a, b)− ≡ B−

j0,R ∩ fR(B−
j−1,R ∩ · · · ∩ fR(B−

j−n,R ∩ fR(Wu
loc(p3)3)) · · · ).

As in [AI, Definition 4.4], Wu

434124
(a, b)− is decomposed into two parts: the ‘inner part’

Wu

434124
(a, b)−inner and the ‘outer part’ Wu

434124
(a, b)−outer.

4. Dynamics near the boundary ∂H±
R

4.1. The {L, R}-coding. In this subsection, we define the {L, R}-coding with respect to
our box systems {B±

i }i∈�± . We note that our partition to define the {L, R}-coding is more
involved than that given in [BSRRR3].
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When γ ⊂ B±
i,R is a vertical curve, the notion of left/right component of B±

i,R \ γ can
be defined and denoted as left(B±

i,R \ γ ) and right(B±
i,R \ γ ).

Propositions 4.1 and 4.4 will be crucial in the rest of this paper.

PROPOSITION 4.1. Suppose that (a, b) ∈ E+
R

. Let z ∈ KR and let (in)n≥0 ∈ S+
fwd be its

forward �+-coding.
(1) If i0 = 0, then z belongs to the closure of right(B+

0,R \ Ws
loc(p2)0).

(2) If i0 = 1, then z belongs to the closure of right(B+
1,R \ Ws

loc(p4)1).
(3) If i0 = 2, then z belongs to the closure of left(B+

2,R \ Ws
loc(p4)2).

(4) If i0 = 3, then z belongs to the closure of left(B+
3,R \ Ws

loc(p2)3).

Proof. Let i0 = 0 and assume that z belongs to left(B+
0,R \ Ws

loc(p2)0). Since (in)n≥0 is
admissible, i1 is either 2 or 3 (but not 1). It follows that fR(z) belongs to right(B+

2,R \
Ws

loc(p4)2) (compare [AI, Lemma 4.7]) and i1 = 2. Similarly, since i2 is either 2 or
3 (but not 0), it follows that f 2

R
(z) belongs to right(B+

3,R \ Ws
loc(p2)3) and i2 = 3. A

similar argument shows that f 3
R
(z) belongs to left(B+

1,R \ Ws
loc(p4)1) and i3 = 1, and

f 4
R
(z) belongs to left(B+

0,R \ Ws
loc(p2)0) and i4 = 0. By repeating this, we see that

z ∈ Ks

0231
∩ R

2. Moreover, since right(B+
2,R \ Ws

loc(p4)2) ⊂ B+
2′,R, we obtain z ∈ Ks

02′31
∩

R
2. It follows from Lemma 3.1(1) that z ∈ Ws

loc(p2)0, which contradicts to the assumption
that z ∈ left(B+

0,R \ Ws
loc(p2)0). Hence, claim (1) of this proposition is proved. The proofs

for the other cases are similar.

To define the {L, R}-partition, it is important to control the slopes of local stable
manifolds. To obtain a simple criterion for estimates of the slopes, we employ the Poincaré
metric and (vertical) Poincaré cone field (see [I, Definition 2.5]). Let P = Dx × Dy be a
polydisk, where Dx ⊂ C is a round disk of radius δ > 0 and Dy ⊂ C is the round disk of
radius R > 0. Take 0 < r < R and set P ′ = Dx × D′

y , where D′
y ⊂ C is the round disk of

radius r. Denote by |vx |P (respectively |vy |P ) the Poincaré metric in Dx (respectively Dy).
Let D be a vertical disk of degree one in P . It has been shown in [I, Corollary 2.10] that

every tangent vector v ∈ TzD belongs to the vertical Poincaré cone at z:

Cv
z = {v = (vx , vy) ∈ TzP : |vy |P ≥ |vx |P }.

As in the example following [I, Corollary 2.10], the condition |vy |P ≥ |vx |P is rewritten as

|vy |E
|vx |E ≥ R2 − |y|2

δ2 − |x|2 ,

where |vx |E (respectively |vy |E) denotes the Euclidean metric in C. Moreover, if we restrict
z to P ′, the estimate above yields

|vy |E
|vx |E ≥ R2 − r2

δ2

for any v ∈ Tz′D and any z′ ∈ P ′. Finally, let us replace P = Dx × Dy by the projective
polydisk Dx ×pr Dy , where the u-direction is (1, 0) and the v-direction is (s, 1) with s �= 0.
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The computation

[
1 |s|
0 1

] ⎡⎣ 1

R2−r2

δ2

⎤⎦ =
⎡⎣ δ2+|s|(R2−r2)

δ2

R2−r2

δ2

⎤⎦
shows that the slope of v ∈ Tz′D in modulus is estimated from below by

R2 − r2

δ2 + |s|(R2 − r2)
(4.1)

for any z′ ∈ P ′.
In the following lemma, a horizontal edge (respectively vertical edge) of a quadrilateral

B±
i,R in R

2 is a connected component of the real part of D±
u,i ×pr ∂D±

v,i (respectively
∂D±

u,i ×pr D±
v,i). Given a closed interval I = [α, β] in the y-axis, we put |I | = |β − α|

and let DI be the disk in the complex y-plane centered at (α + β)/2 with radius |I |/2. As
before, given a polydisk Pi , denote by Pi,R its real part.

LEMMA 4.2. (Numerical Check 5) Let (a, b) ∈ E+
R

.
(1) One can find two concentric intervals I2 = [y2 − R2, y2 + R2] and I ′

2 = [y2 − r2,
y2 + r2] in the y-axis with r2 < R2 and a disk D2 of radius δ2 > 0 so that:
(a) a projective polydisk of the form P2 = D2 ×pr DI2 contains p2;
(b) f 2 : P2 ∩ f −2(P2) → P2 is a crossed mapping of degree one;
(c) pry(B+

0,R ∪ B+
3,R) ⊂ I ′

2;
(d) P2,R ∩ B+

i,R does not intersect the vertical edges of B+
i,R for i = 0, 3;

(e) the slopes of the horizontal edges of B+
0,R and B+

3,R in modulus are bounded by

R2
2 − r2

2

δ2
2 + |s2|(R2

2 − r2
2 )

from above, where (s2, 1) is the v-direction in defining P2.
(2) One can find two concentric intervals I4 = [y4 − R4, y4 + R4] and I ′

4 = [y4 − r4,
y4 + r4] in the y-axis with r4 < R4 and a disk D4 of radius δ4 > 0 so that:
(a) a projective polydisk of the form P4 = D4 ×pr DI4 contains p4;
(b) f 2 : P4 ∩ f −2(P4) → P4 is a crossed mapping of degree one;
(c) pry(B+

1,R ∪ B+
2,R) ⊂ I ′

4;
(d) P4,R ∩ B+

i,R does not intersect the vertical edges of B+
i,R for i = 1, 2;

(e) the slopes of the horizontal edges of B+
1,R and B+

2,R in modulus are bounded by

R2
4 − r2

4

δ2
4 + |s4|(R2

4 − r2
4 )

from above, where (s4, 1) is the v-direction in defining P4.

Proof. See Appendix A.
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FIGURE 7. The polydisk P2.

See Figure 7 for Lemma 4.2.
Let P +

L be the union of left(B+
2,R \ Ws

loc(p4)2) and left(B+
3,R \ Ws

loc(p2)3). Let P +
R be

the union of right(B+
0,R \ Ws

loc(p2)0) and right(B+
1,R \ Ws

loc(p4)1).

THEOREM 4.3. For (a, b) ∈ E+
R

, the pair {P +
L , P +

R } forms a partition for KR \ (Ws(p2) ∩
Ws(p4)), that is: (1) P +

L ∩ P +
R ∩ KR = ∅ and (2) P +

L ∪ P +
R ⊃ KR \ (Ws(p2) ∩

Ws(p4)).

Proof. Let C2 be the real local stable manifold at p2 in the real part P2,R. By
Lemma 4.2(1)(b), C2 is a vertical curve connecting the upper boundary and the lower
boundary of R × I2 so that it divides R × I2 into the left part and the right part. Note that
C2 ∩ P2,R �= ∅ by Lemma 4.2(1)(a). This together with Lemma 4.2(1)(d) yields that C2

intersects ∂B+
i,R only at its horizontal edges for i = 0, 3.

However, thanks to the estimate in equation (4.1), C2 intersects each of the horizontal
edges exactly once by Lemma 4.2(1)(c) and (e). It follows that C2 divides B+

i,R (i = 0, 3)
into two connected components, one is in the left part of R × I2 and the other is
in the right part of R × I2. By the uniqueness of the stable manifold Ws(p2), we
see that C2 ∩ B+

0,R = Ws
loc(p2)0 and C2 ∩ B+

3,R = Ws
loc(p2)3. Therefore, it follows that

left(B+
3,R \ Ws

loc(p2)3) ∩ right(B+
0,R \ Ws

loc(p2)0) = ∅. A similar argument with Lemma
4.2(2) shows that left(B+

2,R \ Ws
loc(p4)2) ∩ right(B+

1,R \ Ws
loc(p4)1) = ∅. This together

with B+
0,R ∩ B+

2,R ∩ KR = B+
1,R ∩ B+

3,R ∩ KR = ∅ (see item (1) of Lemma 2.4) yields item
(1) of Theorem 4.3.

Take z ∈ KR \ (Ws(p2) ∩ Ws(p4)). Since z /∈ Ws(p2) ∩ Ws(p4), it does not belong
to the boundary of the pieces in Proposition 4.1). Hence, there exists a �+-coding
(in)n∈Z ∈ S+ of z by Proposition 2.6. Then, Proposition 4.1 yields that z belongs to either
P +

L or P +
R . This proves item (2) of Theorem 4.3.
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Therefore, this defines a unique {L, R}-coding for every point in KR \ (Ws(p2) ∩
Ws(p4)).

PROPOSITION 4.4. Suppose that (a, b) ∈ E−
R

. Let z ∈ KR and let (in)n≥0 ∈ S−
fwd be its

forward �−-coding.
(1) If i0 = 0, then z belongs to the closure of left(B−

0,R \ Ws
loc(p1)0).

(2) If i0 = 1, then z belongs to the closure of right(B−
1,R \ γ1,left).

(3) If i0 = 2, then z belongs to the closure of right(B−
2,R \ γ2,left).

(4) If i0 = 3, then z belongs to the closure of right(B−
3,R \ γ3,left) ∩ left(B−

3,R \ γ3,right).
(5) If i0 = 4, then z belongs to the closure of left(B−

4,R \ Ws
loc(p3)4).

Proof. The proof is similar to that of Proposition 4.1, and hence is omitted.

LEMMA 4.5. (Numerical Check 6) Let (a, b) ∈ E−
R

.
(1) One can find two concentric intervals I3 = [y3 − R3, y3 + R3] and I ′

3 = [y3 − r3,
y3 + r3] in the y-axis with r3 < R3 and a disk D3 of radius δ3 > 0 so that:
(a) a projective polydisk of the form P3 = D3 ×pr DI3 contains p3;
(b) f : P3 ∩ f −1(P3) → P3 is a crossed mapping of degree one;
(c) pry(B−

2,R ∪ B−
3,R ∪ B−

4,R) ⊂ I ′
3;

(d) P3,R ∩ B−
i,R does not intersect the vertical edges of B−

i,R for i = 2, 3, 4;
(e) the slopes of the horizontal edges of B−

2,R, B−
3,R and B−

4,R in modulus are
bounded by

R2
3 − r2

3

δ2
3 + |s3|(R2

3 − r2
3 )

from above, where (s3, 1) is the v-direction in defining P3.
(2) One can find two concentric intervals I1 = [y1 − R1, y1 + R1] and I ′

1 = [y1 − r1,
y1 + r1] in the y-axis with r1 < R1 and a disk D1 of radius δ1 > 0 so that:
(a) a projective polydisk of the form P1 = D1 ×pr DI1 does not contain p3;
(b) f : P1 ∩ f −1(P3) → P3 is a crossed mapping of degree one;
(c) pry(B−

1,R ∪ B−
3,R) ⊂ I ′

1;
(d) P1,R ∩ B−

i,R does not intersect the vertical edges of B−
i,R for i = 1, 3;

(e) the slopes of the horizontal edges of B−
1,R and B−

3,R in modulus are bounded by

R2
1 − r2

1

δ2
1 + |s1|(R2

1 − r2
1 )

from above, where (s1, 1) is the v-direction in defining P1.

Proof. See Appendix A.

As an immediate consequence of Lemma 2.11, we know that f 2
R
(B−

i′,R) and f 2
R
(B−

i′′,R)

are connected components of fR(fR(B−
i,R) ∩ B−

4,R) ∩ B−
3,R for i = 2, 3. Let P −

L be the
union of left(f 2

R
(B−

2′,R ∪ B−
3′,R) \ γ3,right) and left(B−

4,R \ Ws
loc(p3)4). Let P −

R be the union
of B−

0,R, right(B−
1,R \ γ1,left), right(B−

2,R \ γ2,left), and right(f 2
R
(B−

2′′,R ∪ B−
3′′,R) \ γ3,left).
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THEOREM 4.6. For (a, b) ∈ E−
R

, the pair {P −
L , P −

R } forms a partition for KR \ Ws(p3),
that is (1) P −

L ∩ P −
R ∩ KR = ∅ and (2) P −

L ∪ P −
R ⊃ KR \ Ws(p3).

Proof. We proceed as in the proof of Theorem 4.3. First, it follows from Lemma 4.5
that left(B−

3,R \ γ3,right) ∩ right(B−
1,R \ γ1,left) = left(B−

4,R \ Ws
loc(p3)4)) ∩ right(B−

2,R \
γ2,left) = left(B−

4,R \ Ws
loc(p3)4)) ∩ right(B−

3,R \ γ3,left) = ∅. This together with B−
0,R ∩

B−
3,R ∩ KR = B−

0,R ∩ B−
4,R ∩ KR = B−

1,R ∩ B−
4,R ∩ KR = B−

2,R ∩ B−
3,R ∩ KR = ∅ (see item

(2) of Lemma 2.4) yields item (1) of Theorem 4.6.
The proof of item (2) of Theorem 4.6 is slightly different from that of item (2) of

Theorem 4.3 since we replace B−
3,R by f 2

R
(B−

2′,R ∪ B−
3′,R) and f 2

R
(B−

2′′,R ∪ B−
3′′,R). Notice

that we use B−
i′,R and B−

i′′,R (i = 2, 3) to define the partition {P −
L , P −

R }, but we do not use
B+

2′,R and B+
2′′,R to define the partition {P +

L , P +
R }. Take any z ∈ KR \ Ws(p3). Then, it

follows from Propositions 2.6 and 2.9(2) that z has a unique �−-coding (in)n∈Z ∈ S−.
If i0 �= 3, then Proposition 4.4(1), (2), (3), and (5) yield that z belongs to either P −

L or
P −

R . So, suppose that i0 = 3. Then, the forward �−-coding of f −2
R

(z) is either 243 · · ·
or 343 · · · . Hence, f −2

R
(z) ∈ (B−

2,R ∪ B−
3,R) ∩ f −1

R
(B−

4,R ∩ f −1
R

(B−
3,R)). It then follows

that

KR ∩ B−
3,R ⊂ (fR(fR(B−

2,R) ∩ B−
4,R) ∩ B−

3,R) ∪ (fR(fR(B−
3,R) ∩ B−

4,R) ∩ B−
3,R)

= f 2
R
(B−

2′,R ∪ B−
3′,R) ∪ f 2

R
(B−

2′′,R ∪ B−
3′′,R). (4.2)

Thanks to claim (4) of Proposition 4.4, we observe that z ∈ (KR ∩ B−
3,R) \ Ws(p3) is

a point in right(B−
3,R \ γ3,left) ∩ left(B−

3,R \ γ3,right). This together with the inclusion in
equation (4.2) yields that z belongs to either P −

L or P −
R , and hence we have item (2) of

Theorem 4.6.

Therefore, this defines a unique {L, R}-coding for every point in KR \ Ws(p3).

4.2. Proof of Theorem 1.1. Below, card(A) denotes the cardinality of A counted without
multiplicity. The proof of Theorem 1.1 is based on the following two results from [AI].

THEOREM 4.7. [AI, Theorem 5.1] When (a, b) ∈ E+
R

, we have htop(fR) = log 2 if and
only if card(Ws

310
(a, b)+ ∩ Wu

023
(a, b)+) ≥ 1. When (a, b) ∈ E−

R
, we have htop(fR) =

log 2 if and only if card(Ws

410
(a, b)− ∩ Wu

434124
(a, b)−inner) ≥ 1.

THEOREM 4.8. [AI, Theorem 5.14] When (a, b) ∈ E+
R

, fR is a hyperbolic horseshoe
on R

2 if and only if card(Ws

310
(a, b)+ ∩ Wu

023
(a, b)+) = 2. When (a, b) ∈ E−

R
, fR is a

hyperbolic horseshoe on R
2 if and only if card(Ws

410
(a, b)− ∩ Wu

434124
(a, b)−inner) = 2.

Let us set

S(a, b)+ ≡ Ws

310
(a, b)+ ∩ Wu

023
(a, b)+

and

S(a, b)− ≡ Ws

410
(a, b)− ∩ Wu

434124
(a, b)−.
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Note that we dropped ‘inner’ from Wu

434124
(a, b)−inner in the definition above because the

inner part and the outer part of Wu

434124
(a, b)− cannot be distinguished by the �−-coding.

As an immediate consequence of Theorems 4.7 and 4.8, we have the following corollary.

COROLLARY 4.9. We have the following.
(1) Let (a, b) ∈ E+

R
. Then, we have card(S(a, b)+) ≤ 2. Moreover:

(a) fR is a hyperbolic horseshoe on R
2 if and only if card(S(a, b)+) = 2;

(b) fR has a quadratic tangency but htop(fR) = log 2 if and only if
card(S(a, b)+) = 1;

(c) htop(fR) < log 2 if and only if card(S(a, b)+) = 0.
(2) Let (a, b) ∈ E−

R
. Then, we have card(S(a, b)−) ≤ 4. Moreover:

(a) fR is a hyperbolic horseshoe on R
2 if and only if card(S(a, b)−) = 4;

(b) fR has a quadratic tangency but htop(fR) = log 2 if and only if
card(S(a, b)−) = 3;

(c) htop(fR) < log 2 if and only if card(S(a, b)−) ≤ 2.

Proof. The bound card(S(a, b)+) ≤ 2 in case (1) follows from the fact that V s

310
(a, b)+

is a vertical disk of degree one in B+
3 and V u

023
(a, b)+ is a horizontal disk of degree two

in B+
3 . The bound card(S(a, b)−) ≤ 4 in case (2) follows from the fact that V s

410
(a, b)− is

a vertical disk of degree one in B−
4 and V u

434124
(a, b)− consists of two horizontal disks of

degree two in B−
4 .

Consider first the classification in case (2). If Ws

410
(a, b)− intersects Wu

434124
(a, b)−inner,

then it follows that Ws

410
(a, b)− intersects Wu

434124
(a, b)−outer exactly twice (see [AI, Figure

25 as well as Definition 4.4]). Hence,

card(Ws

410
(a, b)− ∩ Wu

434124
(a, b)−inner) = max{0, card(S(a, b)−) − 2}.

Then, claim (a) follows from Theorem 4.8, claim (c) follows from Theorem 4.7 and that
(a, b) belongs to the closure of H±

R
if and only if htop(fa,b) = log 2 (see [AI, Main

Corollary]), and claim (b) follows from claims (a), (c), and that H±
R

is open. Proof for
the classification in case (1) is similar and hence omitted.

Thanks to this corollary, our task to finish the proof of Theorem 1.1 is to transfer the
�±-coding to the {L, R}-coding. Notice that the paper [BSRRR3] lacks a proof of its theorem
1 which corresponds to our Theorem 1.1.

Proof of Theorem 1.1(1). For a point z ∈ KR \ (Ws(p2) ∩ Ws(p4)), we consider the
following conditions:
(a) the �+-coding of z exists and is 02 · 310;
(b) f −2(z) ∈ Wu

loc(p1)0;
(c) f 2(z) ∈ Ws

loc(p1)0;
(d) the {L, R}-coding of z is RL · LR.

It is easy to see that z ∈ S+(a, b) if and only if z satisfies conditions (a), (b), and (c).
Assume that condition (a) holds. Then, the forward �+-coding of f 2(z) is 0 ∈ S+

fwd. Since
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f : B+
0 ∩ f −1(B+

0 ) → B+
0 is a crossed mapping of degree one, this yields condition (c)

as in Corollary 3.5(1). Since the backward �+-coding of f −2(z) including the 0th digit is
0 ∈ S+

bwd, a similar argument yields condition (b). Therefore, it is sufficient to prove that
condition (a) holds if and only if condition (d) holds. Note that RL · LR = RL · LRR.

(a) implies (d): Since z /∈ Ws(p2) ∪ Ws(p4), Proposition 4.1 and the definition of the
partition {P +

L , P +
R } imply the following.

• If i0 = 0, then z ∈ right(B+
0,R \ Ws

loc(p2)0) ⊂ P +
R .

• If i0 = 1, then z ∈ right(B+
1,R \ Ws

loc(p4)1) ⊂ P +
R .

• If i0 = 2, then z ∈ left(B+
2,R \ Ws

loc(p4)2) ⊂ P +
L .

• If i0 = 3, then z ∈ left(B+
3,R \ Ws

loc(p2)3) ⊂ P +
L .

Therefore, we replace the 0s and 1s in 02 · 310 by R, and the 2s and 3s in 02 · 310 by L to
obtain RL · LRR.

(d) implies (a): We note that z has a unique �+-coding thanks to Proposition 2.6 and
claim (1) of Proposition 2.9.

First consider the forward {L, R}-coding LRR. By the definition of the {L, R}-partition,
the 0th digit of the �+-coding is either 2 or 3. There is no arrow from 2 to the R-side in
the transition graph, but there is an arrow 3 → 1 from 3 to the R-side. Hence, the 0th digit
of the �+-coding is 3 and the 1st digit is 1. Then, the only arrow from 1 to the R-side is
1 → 0. By repeating this argument, we obtain 310 as the forward �+-coding.

Next, consider the backward {L, R}-coding RLL (including the 0th digit). As discussed
above, the 0th digit of the �+-coding is 3. The only arrow in the transition graph from the
L-side to 3 is 2 → 3, and hence the −1th digit is 2. Then, there are two arrows 0 → 2 and
1 → 2 from the R-side to 2. There is no arrow from the R-side to 1, but there is an arrow
1 → 2 from the R-side. Hence, the −2th digit of the �+-coding is 1. By repeating this
argument, we obtain 023 as the backward �+-coding including the 0th digit.

By combining the forward and the backward �+-codings above, we obtain condi-
tion (a).

Proof of Theorem 1.1(2). For a point z ∈ KR \ Ws(p3), we consider the following
conditions:
(a) the �−-coding of z exists and is 43412 · 410;
(b) f −4(z) ∈ Wu

loc(p3)3;
(c) f 2(z) ∈ Ws

loc(p1)0;
(d) the {L, R}-coding of z is LRR · LR.

It is easy to see that z ∈ S−(a, b) if and only if z satisfies conditions (a), (b), and (c).
Assume that condition (a) holds. Then, the forward �−-coding of f 2(z) is 0 ∈ S−

fwd. Since
f : B−

0 ∩ f −1(B−
0 ) → B−

0 is a crossed mapping of degree one, this yields condition (c) as
in Corollary 3.6(1). Therefore, it is sufficient to prove that conditions (a) and (b) hold if
and only if condition (d) holds. Note that LRR · LR = LLLRR · LRR.

(a) and (b) imply (d): Since z /∈ Ws(p3), Proposition 4.4 and the definition of the
partition {P −

L , P −
R } imply the following.

• If i0 = 0, then z ∈ left(B−
0,R \ Ws

loc(p1)0) ⊂ P −
R .

• If i0 = 1, then z ∈ right(B−
1,R \ γ1,left) ⊂ P −

R .
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FIGURE 8. The real box B−
3,R.

• If i0 = 2, then z ∈ right(B−
2,R \ γ2,left) ⊂ P −

R .
• If i0 = 3, then z ∈ right(B−

3,R \ γ3,left) ∩ left(B−
3,R \ γ3,right).

• If i0 = 4, then z ∈ left(B−
4,R \ Ws

loc(p3)4) ⊂ P −
L .

Therefore, we replace the 0s, 1s, and 2s in 43412 · 410 by R, and the 4s in 43412 · 410 by L
to obtain L∗LRR · LRR.

The problem here is that B−
3,R is divided into both a part of P −

L and a part of P −
R , and

hence we need to determine the letters in the −(2n + 4)th digits (n ≥ 0) which are denoted
by ∗ above. Here, we claim that

f
−(2n+4)
R

(z) ∈ Wu
loc(p3)3 (4.3)

holds for all n ≥ 0. Indeed, the case n = 0 is identical to assumption (b) and we see that
f

−(2(n+1)+4)
R

(z) = f −2
R

(f
−(2n+4)
R

(z)) ∈ f −2
R

(Wu
loc(p3)3) ⊂ Wu

loc(p3)3, and hence equa-
tion (4.3) is proved. The claim in equation (4.3) together with case (4) of Proposition 4.4
implies that f

−(2n+4)
R

(z) ∈ P −
L (see Figure 8). Therefore, we conclude ∗ = L and condi-

tion (d) follows.
(d) implies (a): We note that z has a unique �−-coding thanks to Proposition 2.6 and

case (2) of Proposition 2.9. Then, the rest of the argument is similar to the proof of ‘(d)
implies (a)’ in the case b > 0, and hence is omitted.

(d) implies (b): A discussion similar to the previous paragraph yields that the only
transition with LRRL is 4124. Therefore, the backward �−-coding of z including the
0th digit is 434124 ∈ S+

bwd. Moreover, by case (3) of Proposition 4.4 and the definition of
the partition piece P −

L , we see that f
−(2n+4)
R

(z) ∈ f 2
R
(B−

3′,R). This yields f
−(2n+6)
R

(z) ∈
B−

3′,R for all n ≥ 0. Since f 2 : B−
3′ → B−

3 is a crossed mapping of degree one, we

have f
−(2n+6)
R

(z) ∈ Wu
loc(p3)p′

3
(compare item (2) of Corollary 3.6). Hence, f −4

R
(z) ∈

f 2
R
(Wu

loc(p3)3′) = Wu
loc(p3)3 and claim (b) is proved.

Remark 4.10
(a) When b<0, the crossed mapping f 2 : B−

3 ∩ f −1(B−
4 ∩ f −1(B−

3 )) → B−
3 has

degree two. Then the set Ku

43
consists of infinitely many horizontal disks in B−

3 ,
and Ku

434124
∩ Ks

410
consists of infinitely many points. Hence, we cannot classify

the dynamics of the Hénon maps only by the number of points with the �−-coding
43412 · 410. In Corollary 4.9(2), we classify the dynamics by S(a, b)− instead. Here,
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S(a, b)− is the number of intersection points of Wu

434124
(a, b)− and Ws

410
(a, b)−,

and Wu

434124
(a, b)− is defined as a certain preimage of the local unstable manifold

Wu

43
(a, b)−, one of the disks which Ku

43
consists of.

(b) Our goal was to classify the dynamics in terms of {L, R}-coding. Hence, our
{L, R}-partition must distinguish Wu

43
(a, b)− from the other horizontal disks in Ku

43
(more precisely, claim (d) must imply claim (a) in the proof of Theorem 1.1(2)).
This is the reason why we refined the box B−

3 into two parts B−
3′ and B−

3′′ so that
f 2 : B−

3′ → B−
3′ has degree one and hence we have Ku

43′ = Wu

43
(a, b)−.

(c) However, since f : B±
0 ∩ f −1(B±

0 ) → B±
0 is degree one, K

u/s

0
are disks of degree

one without any refinement.

5. Dynamics at the boundary ∂H±
R

The purpose of this section is to prove Theorem 1.2.
For simplicity, we write left(B+

j ,R) ≡ left(B+
j ,R \ γ +

j ,left) (j = 0, 1, 2) and right(B+
j ,R) ≡

right(B+
j ,R \ γ +

j ,right) (j = 2, 3) below. Let M+
1 be the family of these sets. Similarly,

we write left(B−
j ,R) ≡ left(B−

j ,R \ γ −
j ,left) (j = 0, 1, 2, 3) and right(B−

j ,R) ≡ right(B−
j ,R \

γ −
j ,right) (j = 2, 3, 4) below. Let M−

1 be the family of these sets. We call the elements
of M±

1 margins of B±
j ,R.

5.1. Refined dynamics. We first refine local stable/unstable manifolds for our purpose.
The proofs of the following lemmas are analogous to Lemmas 3.1 and 3.2, and hence are
omitted.

LEMMA 5.1. Let (a, b) ∈ E+
R

. Then, we have the following.
(1) V s

0
(a, b)+ is a vertical disk of degree one in B+

0 and V s

0
(a, b)+ = Ks

0
.

(2) V s

10
(a, b)+ is a vertical disk of degree one in B+

1 and V s

10
(a, b)+ = Ks

10
.

(3) V s

310
(a, b)+ is a vertical disk of degree one in B+

3 and V s

310
(a, b)+ = Ks

310
.

(4) V u

0
(a, b)+ is a horizontal disk of degree one in B+

0 and V u

0
(a, b)+ = Ku

0
.

(5) V u

03
(a, b)+ is a horizontal disk of degree two in B+

3 and V u

03
(a, b)+ = Ku

03
.

(6) V u

02
(a, b)+ is a horizontal disk of degree one in B+

2 and V u

02
(a, b)+ = Ku

02
.

(7) V u

031
(a, b)+ is a horizontal disk of degree two in B+

1 and V u

031
(a, b)+ = Ku

031
.

(8) V u

023
(a, b)+ is a horizontal disk of degree two in B+

3 and V u

023
(a, b)+ = Ku

023
.

(9) V u

022
(a, b)+ is a horizontal disk of degree one in B+

2 and V u

022
(a, b)+ = Ku

022
.

(10) V u

0310
(a, b)+ is a horizontal disk of degree two in B+

0 and V u

0310
(a, b)+ = Ku

0310
.

LEMMA 5.2. Let (a, b) ∈ E−
R

. Then, we have the following.
(1) V s

0
(a, b)− is a vertical disk of degree one in B−

0 and V s

0
(a, b)− = Ks

0
.

(2) V s

10
(a, b)− is a vertical disk of degree one in B−

1 and V s

10
(a, b)− = Ks

10
.

(3) V s

410
(a, b)− is a vertical disk of degree one in B−

4 and V s

410
(a, b)− = Ks

410
.

(4) V u

43
(a, b)− is a horizontal disk of degree one in B−

3 and V u

43
(a, b)− ⊂ Ku

43
.

(5) V u

434
(a, b)− is a horizontal disk of degree two in B−

4 and V u

434
(a, b)− ⊂ Ku

434
.
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FIGURE 9. The �+-coding of pieces of stable/unstable manifolds for b > 0.

(6) V u

4343
(a, b)− consists of two mutually disjoint disks of degree one in B−

3 . Moreover,
V u

4343
(a, b)− ⊂ Ku

43
.

(7) V u

4341
(a, b)− is a horizontal disk of degree two in B−

1 and V u

4341
(a, b)− ⊂ Ku

4341
.

(8) V u

43410
(a, b)− is a horizontal disk of degree two in B−

0 and V u

43410
(a, b)− ⊂ Ku

43410
.

(9) V u

43412
(a, b)− consists of two mutually disjoint disks of degree one in B−

2 . Moreover,
V u

43412
(a, b)− ⊂ Ku

43412
.

(10) V u

434100
(a, b)− is a horizontal disk of degree one in B−

0 and V u

434100
(a, b)− ⊂

Ku

434100
.

(11) V u

434102
(a, b)− consists of two mutually disjoint disks of degree one in B−

2 .
Moreover, V u

434102
(a, b)− ⊂ Ku

434102
.

(12) V u

434124
(a, b)− consists of two mutually disjoint disks of degree two in B−

4 .
Moreover, V u

434124
(a, b)− ⊂ Ku

434124
.

The corollary below follows from Lemma 5.1 (see Figure 9).

COROLLARY 5.3. Let (a, b) ∈ ∂H+
R

. Then, we have the following.
(1) Ws

0
(a, b)+ is a vertical curve in B+

0,R and Ws

0
(a, b)+ = Ks

0
∩ R

2.

(2) Ws

10
(a, b)+ is a vertical curve in B+

1,R and Ws

10
(a, b)+ = Ks

10
∩ R

2.

(3) Ws

310
(a, b)+ is a vertical curve in B+

3,R and Ws

310
(a, b)+ = Ks

310
∩ R

2.

(4) Wu

0
(a, b)+ is a horizontal curve in B+

0,R and Wu

0
(a, b)+ = Ku

0
∩ R

2.

(5) The intersection of Wu

03
(a, b)+ and B+

3,R \ left(B+
3,R \ Ws

310
(a, b)+) consists of two

horizontal curves in B+
3,R \ left(B+

3,R \ Ws

310
(a, b)+) and Wu

03
(a, b)+ = Ku

03
∩ R

2.

(6) Wu

02
(a, b)+ is a horizontal curve in B+

2,R and Wu

02
(a, b)+ = Ku

02
∩ R

2.

(7) The intersection of Wu

031
(a, b)+ and B+

1,R \ right(B+
1,R \ Ws

10
(a, b)+) consists of two

horizontal curves inB+
1,R \ right(B+

1,R \ Ws

10
(a, b)+) and Wu

031
(a, b)+ = Ku

031
∩ R

2.
(8) Wu

023
(a, b)+ is a horizontal curve in B+

3,R from its right boundary to itself.

Moreover, Wu

023
(a, b)+ = Ku

023
∩ R

2 and this curve is tangent to Ws

310
(a, b)+ at

just one point.
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FIGURE 10. The �−-coding of pieces of stable/unstable manifolds for b < 0.

(9) Wu

022
(a, b)+ is a horizontal curve in B+

2,R and Wu

022
(a, b)+ = Ku

022
∩ R

2.

(10) The intersection of Wu

0310
(a, b)+ and B+

0,R \ right(B+
0,R \ Ws

0
(a, b)+) consists

of two horizontal curves in B+
0,R \ right(B+

0,R \ Ws

0
(a, b)+) and Wu

0310
(a, b)+ =

Ku

0310
∩ R

2.

Proof. The claims (1)–(4), (6), and (9) immediately follow from Lemma 5.1. Claim (8)
follows from this lemma and the assumption that Wu

023
(a, b)+ is tangent to Ws

310
(a, b)+ at

just one point. Since Wu

03
(a, b)+ is further out than Wu

023
(a, b)+, Wu

023
(a, b)+ intersects

with Ws

310
(a, b)+ at distinct two points. This proves the claim (5). Claim (7) follows from

claim (5), and claim (10) follows from claim (7).

Similarly, we have the corollary below from Lemma 5.2 (see Figure 10). The proof is
analogous to that of Corollary 5.3, and hence is omitted.

COROLLARY 5.4. Let (a, b) ∈ ∂H−
R

. Then, we have the following.
(1) Ws

0
(a, b)− is a vertical curve in B−

0,R and Ws

0
(a, b)− = Ks

0
∩ R

2.

(2) Ws

10
(a, b)− is a vertical curve in B−

1,R and Ws

10
(a, b)− = Ks

10
∩ R

2.

(3) Ws

410
(a, b)− is a vertical curve in B−

4,R and Ws

410
(a, b)− = Ks

410
∩ R

2.

(4) Wu

43
(a, b)− is a horizontal curve in B−

3,R and Wu

43
(a, b)− ⊂ Ku

43
∩ R

2.
(5) The intersection of Wu

434
(a, b)− and B−

4,R \ left(B−
4,R \ Ws

410
(a, b)−) consists of two

horizontal curves in B−
4,R \ left(B−

4,R \Ws

410
(a, b)−) and Wu

434
(a, b)− ⊂ Ku

434
∩R

2.
(6) Wu

4343
(a, b)− consists of two mutually disjoint horizontal curves in B−

3,R. Moreover,

Wu

4343
(a, b)− ⊂ Ku

43
∩ R

2.

(7) The intersection of Wu

4341
(a, b)− and B−

1,R \ right(B−
1,R \ Ws

10
(a, b)−) consists

of two horizontal curves in B−
1,R \ right(B−

1,R \ Ws

10
(a, b)−) and Wu

4341
(a, b)− ⊂

Ku

4341
∩ R

2.

(8) The intersection of Wu

43410
(a, b)− and B−

0,R \ right(B−
0,R \ Ws

0
(a, b)−) consists

of two horizontal curves in B−
0,R \ right(B−

0,R \ Ws

0
(a, b)−) and Wu

43410
(a, b)− ⊂

Ku

43410
∩ R

2.
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(9) Wu

43412
(a, b)− consists of two mutually disjoint horizontal curves in B−

2,R. Moreover,

Wu

43412
(a, b)− ⊂ Ku

43412
∩ R

2.

(10) The intersection of Wu

434100
(a, b)− and B−

0,R \ right(B−
0,R \ Ws

0
(a, b)−) consists

of two horizontal curves in B−
0,R \ right(B−

0,R \ Ws

0
(a, b)−) and Wu

434100
(a, b)− ⊂

Ku

434100
∩ R

2.
(11) Wu

434102
(a, b)− consists of two mutually disjoint horizontal curves in B−

2,R. More-

over, Wu

434102
(a, b)− ⊂ Ku

434102
∩ R

2.
(12) Wu

434124
(a, b)− consists of two mutually disjoint horizontal curves in B−

4,R from the

right boundary to itself and Wu

434124
(a, b)− ⊂ Ku

434124
∩ R

2. Moreover, the inner
one of these two curves is Wu

434124
(a, b)−inner and this curve is tangent to Wu

410
(a, b)−

at just one point.

The following definitions of pieces of stable/unstable manifolds are necessary to
construct the {α, β}-partition for the proof of Theorem 1.2. First, we let (a, b) ∈ ∂H+

R
.

• We write γ +
0,right as Ws

0
(a, b)+.

• We write γ +
1,right as Ws

10
(a, b)+.

• We write γ +
3,left as Ws

310
(a, b)+.

• We write γ +
0,upper as Wu

0
(a, b)+.

• We write γ +
3,upper (respectively γ +

3,lower) as the upper (respectively lower) connected
component of Wu

03
(a, b)+ ∩ (B+

3,R \ left(B+
3,R \ γ +

3,left)).
• We write γ +

2,upper (respectively γ +
2,lower) as the upper (respectively lower) connected

component of Wu

02
(a, b)+ ∩ B+

2,R.
• We write γ +

1,upper (respectively γ +
1,lower) as the upper (respectively lower) connected

component of Wu

031
(a, b)+ ∩ (B+

1,R \ right(B+
1,R \ γ +

1,right)).
• We write γ +

3,inner as Wu

023
(a, b)+.

• We write γ +
2,upper as Wu

022
(a, b)+.

• We write γ +
0,lower as the lower connected component of Wu

0310
(a, b)+ ∩ (B+

0,R \
right(B+

0,R \ γ +
0,right)).

See Figure 11 for more details. Next, we let (a, b) ∈ ∂H−
R

.
• We write γ −

0,right as Ws

0
(a, b)−.

• We write γ −
1,right as Ws

10
(a, b)−.

• We write γ −
4,left as Ws

410
(a, b)−.

• We write γ −
3,lower as Wu

43
(a, b)−.

• We write γ −
4,upper (respectively γ −

4,lower) as the upper (respectively lower) connected
component of Wu

434
(a, b)− ∩ (B−

4,R \ left(B−
4,R \ γ −

4,left)).
• We write γ −

3,upper (respectively γ −
3,lower) as the upper (respectively lower) connected

component of Wu

4343
(a, b)−.

• We write γ −
1,upper (respectively γ −

1,lower) as the upper (respectively lower) connected
component of Wu

4341
(a, b)− ∩ (B−

1,R \ right(B−
1,R \ γ −

1,right)).
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FIGURE 11. Margins in M+
2 .

FIGURE 12. Margins in M−
2 .

• We write γ −
0,lower as the lower connected component of Wu

43410
(a, b)− ∩ (B−

0,R \
right(B+

0,R \ γ −
0,right)).

• We write γ −
2,lower as the lower connected component of Wu

43412
(a, b)− ∩ B−

2,R.
• We write γ −

0,upper as the upper connected component of Wu

434100
(a, b)− ∩ (B−

0,R \
right(B−

0,R \ γ −
0,right)).

• We write γ −
2,upper as the upper connected component of Wu

434102
(a, b)− ∩ B−

2,R.
• We write γ −

4,inner as Wu

434124
(a, b)−inner.

See Figure 12 for more details.

5.2. The {α, β}-coding. The purpose of this subsection is to define the {α, β}-coding.
We basically follow the construction of Ba and Bb in [BSRRR3, §6]. Hereafter, we always
assume that (a, b) ∈ ∂H±

R
.
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For γ +
j ,left, γ +

j ,right, γ +
j ,upper, γ +

j ,lower, γ +
j ,inner given in the previous subsection, we set

left(B+
j ,R), right(B+

j ,R), upper(B+
j ,R), lower(B+

j ,R), inner(B+
j ,R) ⊂ B+

j ,R as follows (see
Figure 11).
• We write left(B+

3,R) ≡ left(B+
3,R \ γ +

3,left).
• We write right(B+

j ,R) ≡ right(B+
j ,R \ γ +

j ,right) (j = 0, 1).
• We write upper(B+

j ,R) as the part further up than γ +
j ,upper in either B+

j ,R \ right(B+
j ,R)

(j = 0, 1), B+
j ,R(j = 2), or B+

j ,R \ left(B+
j ,R)(j = 3).

• We write lower(B+
j ,R) as the part lower than γ +

j ,lower in either B+
j ,R \ right(B+

j ,R)

(j = 0, 1), B+
j ,R(j = 2), or B+

j ,R \ left(B+
j ,R)(j = 3).

• We write inner(B+
3,R) as the part further in than γ +

3,inner in B+
3,R.

Let M+
2 be the family of sets defined as above.

For γ −
j ,left, γ −

j ,right, γ −
j ,upper, γ −

j ,lower, γ −
j ,inner given in the previous subsection, we set

left(B−
j ,R), right(B−

j ,R), upper(B−
j ,R), lower(B−

j ,R), inner(B−
j ,R) ⊂ B−

j ,R as follows (see
Figure 12).
• We write left(B−

4,R) ≡ left(B−
3,R \ γ −

4,left).
• We write right(B−

j ,R) ≡ right(B−
j ,R \ γ −

j ,right) (j = 0, 1).
• We write upper(B−

j ,R) as the part further up than γ −
j ,upper in either B−

j ,R \
right(B−

j ,R)(j = 0, 1), B−
j ,R(j = 2, 3), or B−

j ,R \ left(B−
j ,R)(j = 4).

• We write lower(B+
j ,R) as the part lower than γ −

j ,lower in either B−
j ,R \ right(B−

j ,R)

(j = 0, 1), B−
j ,R(j = 2, 3), or B−

j ,R \ left(B−
j ,R)(j = 4).

• We write inner(B−
4,R) as the part further in than γ −

4,inner in B−
4,R.

Let M−
2 be the family of sets defined as above. We call the elements of M±

2 the margins
of B±

j ,R just like M±
1 .

We then construct the {α, β}-partition as described in Figures 13 and 14. Define B+
j ,α,R

for j = 0 and B+
j ,β,R for j = 1, 2 as B+

j ,R \ (left(B+
j ,R) ∪ right(B+

j ,R) ∪ upper(B+
j ,R) ∪

lower(B+
j ,R)). The set B+

3,R \ (left(B+
3,R) ∪ right(B+

3,R) ∪ upper(B+
3,R) ∪ lower(B+

3,R)) with
one point �+ being removed has two connected components. We let B+

3,α,R be the upper
one with �+ being added, and let B+

3,β,R be the lower one with �+ being added.

Definition 5.5. We define B+
α,R ≡ B+

0,α,R ∪ B+
3,α,R and B+

β,R ≡ B+
1,β,R ∪ B+

2,β,R ∪ B+
3,β,R.

Similarly, define B−
j ,α,R for j = 0, 1 and B−

j ,β,R for j = 2, 3 as B−
j ,R \ (left(B−

j ,R) ∪
right(B−

j ,R) ∪ upper(B−
j ,R) ∪ lower(B−

j ,R)). The set B−
4,R \ (left(B−

4,R) ∪ right(B−
4,R) ∪

upper(B−
4,R) ∪ lower(B−

4,R)) with one point �− being removed has two connected
components. We let B−

4,α,R be the upper one with �− being added, and let B−
4,β,R be

the lower one with �− being added.

Definition 5.6. We define B−
α,R ≡ B−

0,α,R ∪ B−
2,α,R ∪ B−

4,α,R and B−
β,R ≡ B−

1,β,R ∪ B−
3,β,R ∪

B−
4,β,R.

The transitions between the margins can be described in the following two lemmas.
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FIGURE 13. The {α, β}-partition (b > 0).

FIGURE 14. The {α, β}-partition (b < 0).

FIGURE 15. The transitions between margins in M+
2 .

LEMMA 5.7. The transitions between margins in M+
2 are given by Figure 15. In this figure,

for example, left(B+
3,R) → right(B+

1,R) means f (left(B+
3,R)) ∩ B+

1,R ⊂ right(B+
1,R).

LEMMA 5.8. The transitions between margins in M−
2 are given by Figure 16. In this figure,

left(B−
4,R) → right(B−

1,R) means f (left(B−
4,R)) ∩ B−

1,R ⊂ right(B−
1,R).

From these lemmas, we have the following proposition.
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FIGURE 16. The transitions between margins in M−
2 .

PROPOSITION 5.9. For (a, b) ∈ ∂H+
R

, we have KR ⊂ B+
α,R ∪ B+

β,R.

Proof. Suppose p ∈ KR. It suffices to show that

the 0th coordinate of the �+-coding of p is 1 �⇒ p /∈ M

for any M ∈ M+
2 (compare Proposition 4.1). Here, we show this claim for M = right(B+

1,R)

for example. We can also show this for another M similarly.
Take a point p ∈ KR. Assume that the zeroth coordinate of the �+-coding of p is

1 and p ∈ right(B+
1,R). By the transitions between symbols, the first coordinate of the

�+-coding of p is either 0 or 2. Since p ∈ right(B+
1,R), the first coordinate must be 0.

Then, we have f (p) ∈ right(B+
0,R) by Lemma 5.7. By chasing the orbit of p similarly,

we can find that f n0(p) belongs to right(B+
0,R) and f n(p) also belongs to right(B+

0,R)

for any n > n0. Therefore, f n0(p) lies on Ws
loc(p1)

+
0 . This contradicts to the fact that

f n0(p) ∈ right(B+
0,R).

PROPOSITION 5.10. For (a, b) ∈ ∂H−
R

, we have KR ⊂ B−
α,R ∪ B−

β,R.

Proof. The proof is similar to that of the previous proposition, and hence is omitted.

5.3. Proof of Theorem 1.2. In this subsection, we continue to assume that (a, b) ∈ ∂H±
R

.
Below, we write

Kfwd ≡ {p ∈ C
2 : (f n(p))n≥0 is bounded}

and

Kbwd ≡ {p ∈ C
2 : (f n(p))n≤0 is bounded}

as the forward/backward filled Julia set of fa,b, respectively. We also write Jfwd ≡ ∂Kfwd

and Jbwd ≡ ∂Kbwd as the forward/backward Julia set, and let J ≡ Jfwd ∩ Jbwd be the Julia
set. By [AI, Proposition 3.1], the filled Julia set Kfwd ∩ Kbwd coincides with K ≡ Ka,b.
Moreover, the filled Julia set is included in the real plane R

2 and coincides with the
Julia set J by [BLS, Theorem 10.1(4), (7)] since htop(f ) = log 2 holds. Hence, we have
J = K = KR.

We write B+
R

as the region in R
2 enclosed by the curves Wu

loc(p1)0, γ +
1,lower, γ +

2,lower,
γ +

3,left, γ +
3,upper, γ +

3,lower, and f −1(Ws
loc(p1)0). Moreover, let B+

α̃,R = f −1(B+
α,R) and
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FIGURE 17. The {α̃, β̃}-partition.

B+
β̃,R

= f −1(B+
β,R). Also, we write B−

R
as the region in R

2 enclosed by the curves

Wu
loc(p3)3, γ −

0,upper, γ −
1,lower, γ −

2,upper, γ −
4,left, γ −

4,upper, γ −
4,lower, and f −1(Ws

loc(p1)0).

Moreover, let B−
α̃,R = f −1(B−

α,R) and B−
β̃,R

= f −1(B−
β,R). Then, the {α̃, β̃}-partition is

described in Figure 17.
For any point p ∈ J , the {α̃, β̃}-coding of f −1(p) coincides with the symbolic sequence

obtained by replacing α and β in the {α, β}-coding of p for α̃ and β̃, respectively.
From now, we assume that (a, b) ∈ ∂H+

R
. The argument for the case (a, b) ∈ ∂H−

R
is

similar, and hence will be omitted.
For p ∈ K , let s+(p) be the set of all {α, β}-codings of p, that is,

s+(p) ≡ {(sj )j∈Z ∈ {α, β}Z : (f j (p) ∈ B+
α,R and sj = α) or (f j (p) ∈ B+

β,R and sj = β)}.
In the case that p = f n(�+) for some n ∈ Z, we have s+(p) = {σn(αβ · αβα), σn(αβ ·
ββα)}. However, if p ∈ J ′ ≡ J \ {f n(�+) : n ∈ Z}, then s+(p) consists of one point.
Therefore, s+ : p �→ s+(p) is a map from J to {α, β}Z/∼, where ∼ is the equivalence
relation generated by σn(αβ · αβα) ∼ σn(αβ · ββα), n ∈ Z.

PROPOSITION 5.11. The map s+ : J → {α, β}Z is continuous.

Proof. The map s+ is obviously continuous on J ′. We show that it is continuous on
f n(�+). The neighborhood basis for s+(f n(�+)) according to the quotient topology is
given by {∗αNβ·?βαN∗}N≥0, where ? is either α or β, and ∗ means any one-sided infinite
sequence. Take any N. The map f j is continuous for each j ∈ Z such that −N ≤ j ≤ N ,
j �= 0. Hence, we can choose a neighborhood Uj of f n+j (�+) such that Uj ⊂ B+

α

if −N ≤ j ≤ N , j �= 0, ±1 and Uj ⊂ B+
β if j = ±1. Then, U = ⋂

j∈Z f −j (Uj ) is a
neighborhood of f n(�+) and satisfies p ∈ U ∩ J ⇒ s+(p) ∈ {σn(∗αNβ·?βαN∗)}.

To prove Theorem 1.2 in the case b > 0, it suffices to show that the continuous map s+
is bijective. In the rest this subsection, we will show its surjectivity and injectivity.

For each binomial number 0 ≤ θ ≤ 1, we define a curve τ s
θ in B+

R
included in Ws(p1)

as follows. For θ = 0, 1, let τ s
0 be the right-hand boundary of B+

R
and let τ s

1 be its left-hand
boundary.

Next, for a finite binomial 0 < θ < 1, we define τ s
θ inductively as follows. Assume that

τ s
θ is already defined for a finite binomial 0 < θ ≤ 1. Then, we let f −1(τ s

θ ) ∩ B+
α,R = τ s

θ/2
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and f −1(τ s
θ ) ∩ B+

β,R = τ s
1−θ/2 for θ ′ = θ/2, 1 − θ/2. However, τ s

1/2 = f −1(τ s
1 ) for θ ′ = 1

2
instead. The curve τ s

θ is represented as two connected curves τ s
θ ′± from the upper hand

boundary of B+
R

to its lower hand boundary, where τ s
θ ′+ is left of τ s

θ ′−. By definition, τ s
θ is

included in Ws(p1) for any finite binomial 0 ≤ θ ≤ 1. Also, for any point in Ws(p1) ∩ B+
R

,
there is a unique finite binomial θ such that the curve τ s

θ passes that point.
Finally, any infinite binomial 0 ≤ θ ≤ 1 can be represented as the limit of some

sequence (θj )j of finite binomials. Then, we have τ s
θj

⊂ f −1(B+
i ) for some preimage

f −1(B+
i ) and large j. For each j, the connected component Vj of Ws(p1) ∩ f −1(B+

i )

including τ s
θj

can be described as a graph of some holomorphic function since this

component is a vertical disk of f −1(B+
i ). Since the sequence of these functions uniformly

converges, its limit function is also holomorphic. Hence, the limit set V of Vj is a graph
of this holomorphic function, which implies V is a vertical disk of f −1(B+

i ). We let τ s
θ be

the limit set of τ s
θj

. Then, τ s
θ is a curve from the upper hand boundary of B+

R
to its lower

hand boundary, and it is included in V.

Remark 5.12. A finite binomial number θ has two infinite binomial representations
(e.g. 0.1 = 0.0111 · · · = 0.1000 · · · ). Each representation corresponds to each of the two
curves τ s

θ± of degree one, respectively (e.g. τ s
0.0111··· = τ s

0.1−, τ s
0.1000··· = τ s

0.1+). From now,
we distinguish two infinite binomial representations of a finite binomial number if needed.

For a point p ∈ J ′, we choose 0 ≤ θ ≤ 1 so that τ s
θ passes p. Let 0.d1d2d3 · · · be the

binomial representation of θ . By the definition of τ s
θ , dj = 0 if and only if f j (p) ∈ B+

α,R
and dj = 1 if and only if f j (p) ∈ B+

β,R for each j ≥ 1. Hence, we have the following
proposition.

PROPOSITION 5.13. The map s+ : J → {α, β}Z/∼ is surjective.

Proof. Let S ′ = {α, β}Z \ ⋃
j∈Z σ j {αβ · αβα, αβ · ββα}. It suffices to show that there

exists a point p ∈ J ′ for each s ∈ S ′ with s+(p) = s. Take any s = (sj )j ∈ S ′. For
each j, let dj = 0 if sj = α and dj = 1 if sj = β, and consider a binomial number
θj = dj .dj+1dj+2dj+3 · · · . If we choose a point pn ∈ τ s

θ−n ∩ J for each n ∈ Z, then
the jth coordinate of the {α, β}-coding of f n(pn) is sj for j ≥ −n. Since J is compact,
f n(pn) ∈ τ s

θ0 has a cluster point p ∈ τ s
θ0 . Here, if p is on the orbit of �+, then we have

s ∈ S ′. Therefore, p belongs to J ′ and satisfies s+(p) = s.

We can also construct a curve τu
ϑ included in Wu(p1) for each binomial number

0 ≤ ϑ ≤ 1 by a similar argument according to B+
α,R, B+

β,R instead of B+
α̃,R, B+

β̃,R
. For a point

p ∈ J ′, we choose 0 < ϑ < 1 so that τu
ϑ passes p, and let 0.d0d−1d−2 · · · be the infinite

binomial representation of ϑ . Then, dj = 0 if and only if f j (p) ∈ B+
α,R and dj = 1 if and

only if f j (p) ∈ B+
β,R for each j ≤ 0. Therefore, we have the following proposition.

PROPOSITION 5.14. The map s+ : J → {α, β}Z/∼ is injective.

Proof. It suffices to show that there exists at most one point p ∈ J ′ for any s = (sj )j ∈ S ′
with s+(p) = s. Let dj = 0 if sj = α and dj = 1 if sj = β for each j ∈ Z, and consider
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two binomial numbers θ = 0.d1d2d3 · · · and ϑ = 0.d0d−1d−2 · · · . Then, θ corresponds
to a curve τ s

θ (or one of τ s
θ±), and ϑ corresponds to a curve τu

ϑ (or one of τu
ϑ±). We can

obtain a point p with s+(p) = s as an intersection point of τ s
θ and τu

ϑ .
The curve τ s

θ ∩ U+ is included in either B+
0 ∪ B+

1 , B+
0 ∪ B+

2 , or B+
3 , and τu

ϑ ∩ U+ is
included in either B+

0 ∪ B+
3 or B+

1 ∪ B+
2 ∪ B+

3 . Hence, τ s
θ ∩ τu

ϑ is included in one of four
boxes B+

i (i = 0, 1, 2, 3). We can obtain τ s
θ ∩ B+

i as the intersection of a vertical disk
of degree one in B+

i and R
2, or as one of two branches of the intersection of a vertical

disk of degree two in B+
i and R

2. Also, we can obtain τu
ϑ ∩ B+

i as the intersection of a
horizontal disk of degree one in B+

i and R
2, or as one of two branches of the intersection

of a horizontal disk of degree two in B+
i and R

2. Therefore, τ s
θ and τu

ϑ intersect at at most
one point.

Proof of Theorem 1.2. By Propositions 5.11, 5.13, and 5.14, we obtain Theorem 1.2.
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A. Appendix. Computer-assisted proofs
In this appendix, we explain the proofs of Proposition A.1 and Lemmas 2.7, 2.8, 2.10,
2.11, 4.2, and 4.5. These proofs require computer-assistance, and are performed by Arai
[A2]. Note that these lemmas concern only the real parameters (a, b) ∈ E±

R
, and hence the

computational cost is not so high.

PROPOSITION A.1. The locus E±
R

forms a neighborhood of ∂H±
R

.

Proof. When (a, b) belongs to the left boundary of E±
R

, we show that there exists a
periodic point of period 7 in C

2 \ R2 by using the interval Krawczyk method (see [AI,
Theorem 2.12(i)]). This implies htop(fa,b) < log 2 by [BLS, Theorem 10.1]. When (a, b)

belongs to the right boundary of E±
R

, we show that fa,b is hyperbolic by using a technique
in [A1] (see [AI, Theorem 2.12(ii)]). These results together with [AI, Main Theorem]
yields that the locus E±

R
forms a neighborhood of ∂H±

R
.

Proof of Lemmas 2.7 and 2.8. For Lemma 2.7, we first choose appropriate topologi-
cal disks D̃+

u,i ⊂ D+
u,i (i = 0, 1, 2) and set P+

0,3 ≡ D̃+
u,0 ×pr D+

v,0 ⊂ B+
0 , P+

1,2 ≡ D̃+
u,1 ×pr

D+
v,1 ⊂ B+

1 and P+
2,3 ≡ D̃+

u,2 ×pr D+
v,2 ⊂ B+

2 so that conditions (1) and (2) in the lemma
are satisfied.

For Lemma 2.8, we choose appropriate topological disks D̃−
u,i ⊂ D−

u,i (i = 0, 1, 2, 3)
and set P−

0,2 ≡ D̃−
u,0 ×pr D−

v,0 ⊂ B−
0 , P−

1,3 ≡ D̃−
u,1 ×pr D−

v,1 ⊂ B−
0 , P−

2,4 ≡ D̃−
u,2 ×pr

D−
v,2 ⊂ B−

0 and P−
3,4 ≡ D̃−

u,3 ×pr D−
v,3 ⊂ B−

0 so that conditions (1) and (2) in the lemma
are satisfied.
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Proof of Lemmas 2.10 and 2.11. Let πu,i : B±
i → D±

u,i be the projection given by
πu,i (u, v) = u and let ιv0,i : Du,i → B±

i be given by ιv0,i (u) = (u, v0) for v0 ∈ D±
v,i . The

proof is similar to [AI, Lemma 3.13] and goes as follows.
Let (a, b) ∈ E+

R
. For Lemma 2.10, we show the following claim by computer assistance.

For every fixed v0 ∈ D+
v,2, we have

d

du
{π−

u,2 ◦ f 4 ◦ ιv0,2(u)} �= 0

for u ∈ D+
u,2 with ιv0,2(u) ∈ B+

2 ∩ f −1(B+
3 ∩ f −1(B+

1 ∩ f −1(B+
0 ∩ f −1(B+

2 )))).
Let (a, b) ∈ E−

R
. For Lemma 2.11, we show the following claims by computer

assistance.
(1) For every fixed v0 ∈ D−

v,2, we have

d

du
{π−

u,3 ◦ f 2 ◦ ιv0,2(u)} �= 0

for u ∈ D−
u,2 with ιv0,2(u) ∈ B−

3 ∩ f −1(B−
4 ∩ f −1(B−

2 )).
(2) For every fixed v0 ∈ D−

v,3, we have

d

du
{π−

u,3 ◦ f 2 ◦ ιv0,3(u)} �= 0

for u ∈ D−
u,3 with ιv0,3(u) ∈ B−

3 ∩ f −1(B−
4 ∩ f −1(B−

3 )).

Proof of Lemmas 4.2 and 4.5. We define the projective polydisk Pi = Di ×pr DIi
in claim

(b) as follows. For i = 2, 3, 4, we first compute the stable direction at the saddle point pi

and define πu to be the projection to this direction. We also define πv as the projection pry
orthogonal to the y-axis. We let Di be a disk centered at πu(pi) and determine its radius
δi > 0 is determined so that claims (a) and (c) hold. For i = 1, we approximately compute
the tangential direction of Ws

loc(p3)4 at some p ∈ Ws
loc(p3)4 ∩ B−

2,R and pull it back by f
to define the direction of the projection πu for P1. We also define πv as the projection pry
orthogonal to the y-axis. We let D1 be a disk centered at πu(f

−1(p)) and determine its
radius δ1 > 0 is determined so that claims (a) and (c) hold.
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