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Abstract. Bedford and Smillie [A symbolic characterization of the horseshoe locus in the
Hénon family. Ergod. Th. & Dynam. Sys. 37(5) (2017), 1389-1412] classified the dynamics
of the Hénon map f,p : (x, y) — (x2 — a — by, x) defined on R? in terms of a symbolic
dynamics when (a, b) is close to the boundary of the horseshoe locus. The purpose of the
current article is to generalize their results for all » 7 0 (including the case b < 0 as well).
The method of the proof is first to regard f,; as a complex dynamical system in C? and
second to introduce the new Markov-like partition in R? constructed by us [On parameter

loci of the Hénon family. Comm. Math. Phys. 361(2) (2018), 343—414].
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1. Introduction and the main results
Consider the Hénon family

fap : (x, ) —> (x* —a — by, x)

defined on R2, where (a, b) € R x R*. Let §( fa.b) be the non-wandering set of f ;. We
say that f, ; is a hyperbolic horseshoe on R2 if Sfab + Q(fap) = Q(fap) is topologically
conjugate to the full shift with two symbols and 2(f, ;) is a hyperbolic set for f, .
Denote by hop(fa,p) the topological entropy of fup : 2(fap) — 2(fap). We know that
0 < hyp(fap) <log?2 for any (a,b) € R x R*. Note also that if f,; is a hyperbolic
horseshoe, then f, 5 attains the maximal entropy on R2, that is, hiop(fap) = log 2.

In [AI], we have defined the hyperbolic horseshoe locus as

Hr = {(a,b) e R x R* : f,; is a hyperbolic horseshoe on R?}
and the maximal entropy locus as
Mp = {(a, b) € R x R* : f,; attains the maximal entropy on Rz}.

Let us set Hﬁ = Hr N {£b > 0}. Based on previous work [BSg2], it has been shown in

[AI] that there exists a real analytic function g : R* — R from the b-axis to the a-axis of

the parameter space R x R* for the Hénon family f; ; with limy,_, ¢ agc(b) = 2 so that:

e (a,b) € Hgifand only if a > ai(b);

e (a,b) € Mg ifandonlyifa > ay (D).

Moreover, it has been shown that:

e when (a,b) € 87—{,3{5 holds (that is, a = ac(b) and b > 0), f,, has exactly one orbit
of homoclinic tangencies of W*(p) and W¥(p1);

e when (a, b) € IHy holds (that is, @ = ac(b) and b < 0), f, has exactly one orbit
of heteroclinic tangencies of W*(p;) and W*(p3),

where p; (respectively p3) is the unique saddle fixed point in the first (respectively third)

quadrant. These results extend the previous assertions in [BSg2] for the case |b] < 0.05

to all b # 0. We note that their proofs (and the ones in [AI] as well) rely on the profound

theory of quasi-hyperbolicity [BSc8] combined with a detailed analysis of Hénon maps

with maximal entropy [BSgr1].

In their subsequent paper [BSg3], Bedford and Smillie classified the dynamics of f, s
in terms of a symbolic dynamics when (a, b) is close to the boundary 87—[&. However,
their result holds only for 0 < » < 0.4 approximately because their construction is based
on Yoccoz puzzle pieces for the complex one-dimensional map p(z) = z> — 1 (see the last
paragraph of [AI, Appendix B]).

The purpose of the current article is to generalize the results in [BSg3] for all b # 0
(including the case b < 0 as well) by applying the new Markov-like partition constructed
in [AI]. To present our results, let us first recall that we have defined in [AI] a neighborhood
.7-"]1:{ of 8H§ so that f,; satisfies the crossed mapping condition with respect to a certain
family of projective polydisks {B*};cx+ for (a, b) € Fa (see [AL, Theorem 2.12(iii)]).
Moreover, their real sections Bl.ﬂE N RZ cover the set Ky of points in R2 whose both forward
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FIGURE 2. {L, R}-partition for (a, b) € &y .
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and the backward orbits by f,, are bounded. Let a; ., be the piecewise linear function

approximating 87—[% as in [AI] and set
&x ={(a.b) e R x {£b > 0} : |a — ag,, (b)] < 0.05}.

One can easily see that kaf C ]-'fkf. Moreover, in Appendix A, we show that kaf forms a
neighborhood of 87—[% (see Proposition A.1).

Let p; € R? be the unique saddle fixed point for i = 1,3 and the unique saddle
periodic point of period two for i = 2, 4 in the ith quadrant. In Theorem 4.3 (respectively
Theorem 4.6), we obtain a partition of Kg \ (W¥(p2) U W?*(ps)) (respectively Kg \
W (p3)) into two parts, say, the left part and the right part for (a, b) € Eﬂ'{ (respectively
for (a, b) € &y). Figures 1 and 2 describe the shape of the partition pieces. This partition
defines a coding with the alphabet {L, R} by assigning L to the left part and R to the right
part. (Our coding is different from that in [BSgr3] when » > 0 is close to 0.) As pointed
out in [BSgr3], this coding has both advantages and disadvantages; an advantage is that
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it applies to Hénon maps degenerated from the horseshoe and a disadvantage is that the
associated coding map is no more one-to-one.

Given a word w over an alphabet, w denotes either the left-infinite repetition - - - www
or the right-infinite repetition www - - - (depending on the context). Let - be the ‘decimal
point’ of a bi-infinite symbol sequence - - - £_1 - gg€1 - - - . Our first main result concerns
[BSg3, Theorem 1].

THEOREM 1.1. We have the following.
(1)  When (a, b) € £, there are at most two points in Kg \ (W*(p2) U W*(ps)) with
{L, R}-coding RL - LR € {L, RYZ counted without multiplicity. Moreover:
(@) fup is a hyperbolic horseshoe on R? if and only if there are two such points;
(b)  fap has a quadratic tangency but hiop(fap) = log 2 if and only if there is one
such point;
(©)  hwp(fap) < log 2 if and only if there are no such points.
(2) When (a, b) € &, there are at most four points in Kr \ W (p3) with {L, R}-coding
LRR - LR € {L, R} counted without multiplicity. Moreover:
(@) fap is a hyperbolic horseshoe on R? if and only if there are four such points;
(b)  fap has a quadratic tangency but hyp(fap) = log 2 if and only if there are
three such points;
(©)  hwop(fap) < log 2 if and only if there are at most two such points.

Obviously the map in either case (a) or (b) of Theorem 1.1 cannot be topologically
conjugate to the map in case (c) because they have different values of topological entropy.
M. Asaoka (private communication) pointed out that the map in case (b) is not expansive
on its non-wandering set. Hence, the map in case (a) is not topologically conjugate to the
map in case (b), that is, the map f,; with (a, b) € ’H?Rf cannot be topologically conjugate
to the map f,, ), with (a, b) € dHZ.

We found that the paper [BSr3] does not contain a proof of its theorem 1 (which corre-
sponds to our Theorem 1.1). Since our Theorem 1.1 originates from [BSg3, Theorem 1], we
describe the proof of Theorem 1.1 in detail in §4.2. We also remark that the paper [BSgr3]
did not treat the case b < 0 since their partition cannot directly apply to this case. Indeed,
it can be shown that the number of points in W*¥(p;) N W*(p3) having an appropriate
{L, R}-coding with respect to the partition in [BSg3] is infinite and cannot provide a
classification like [BSgp3 Theorem 1] (see Remark 4.10).

Next we analyze case (b) of Theorem 1.1 in detail. Denote by o : {«, B2 — {a, B}*
the shift map on the space of bi-infinite sequences with two symbols. Our second main
result concerns [BSg3, Theorem 2].

THEOREM 1.2 We have the following.
() If(a,b)e 87—[%, then fup: 2(fap) = QL(fap) is topologically conjugate to the
factor map o/~ : {a, B} )~ — {a, BY?/~, where we define ~ as
o"(@p - ppa) ~ o" (@p - apa)
foralln € Z.
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(2) If (a,b) € 0Hy, then fup : 2(fap) = Q(fap) is topologically conjugate to the
factor map o/~ : {a, B} )~ — {a, BY?/~, where we define ~ as

o" (Bo - Bp@) ~ 0" (B - af@)
foralln € Z.

Note that, in [BSgr3], the alphabet {a, b} is used instead of {«, B}.

It would be interesting to generalize our results to:

(1) areal Hénon map on R?, where (a, b) is taken near the boundary of a hyperbolic
component (see [A1] for hyperbolic components in the real parameter space);

(2) acomplex Hénon map on C2, where (a, b) is taken near the boundary of the complex
horseshoe locus (compare [BD, Theorem 3.6] for a related result which claims that
a topological horseshoe is a hyperbolic horseshoe in C2).

The structure of this paper is as follows. In §2, we discuss some properties of
symbolic dynamics associated with a family of boxes as well as its refinement. In §3,
we characterize local stable/unstable manifolds in terms of the symbolic dynamics above.
In §4, we construct the {L, R}-partition and prove Theorem 1.1. In §5, we construct the
{ar, B}-partition and prove Theorem 1.2. Some statements in this article are proved by Arai
[A2] with the help of computer assistance (see Appendix A for details).

2. Symbolic codings and refinements
In [AI §2.1], we constructed a complex neighborhood F* of the boundary 87—%. When
(a,b) € F* N {b # 0}, we can regard f, , as a complex dynamical system defined on C2.
Denote by K, 5 the set of points in C? whose both forward and backward orbits by fap are
bounded in C2.

Let us write }"]Rf = F* N R2. When (a, b) € }"ﬁf is a real parameter, the restriction
Sfablr2 : R? — R? is well defined. We denote it by fr when we insist it has real dynamics
and write Kr = K, N R2.

2.1. Symbolic codings. Given a finite set called an alphabet ¥ and asubset T C ¥ x X
called the set of allowed transitions, we define
Stwd(%) = {(i)ns0 € =V : (in, iny1) € T forall n > 0}
and call its element a forward admissible sequence with respect to . Also we define
Gpwd (%) = {(in)n<o € 7N (iy_1,in) € Tforall n < 0}
and call its element a backward admissible sequence with respect to . Finally, we set
S(X) = {(in)nez € £Z 2 (in,ing1) € Tforalln € 7}

and call its element a bi-infinite admissible sequence with respect to X.
Below, we set ¥t =1{0,1,2,3} and £~ ={0,1,2,3,4}. Choose a subset of
>t x Tt as

Tt ={(0,0), (0, 2), (0, 3), (1, 0), (2,2), (2,3), 3, 1)}
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FIGURE 3. Transition diagram for (a, b) € .FHJ{ N{b > 0}.
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FIGURE 4. Transition diagram for (a, b) € F N {b < 0}.

and a subset of X~ x X~ as
T ={(0,0), (0,2), (1,0), (1,2), 2,4), (3,4), 4, 1), (4,3)}.

We then write G5 ; = Gpya(TF), G, g = Gpwa(TF) and &* = &(TF).
The transition diagram for G (respectively &™) is a directed graph whose vertex set
is = (respectively ¥ ™) and the arrow set is T (respectively T 7). See Figures 3 and 4.
Let D, and D, be two topological disks in C. A projective polydisk (or a projective box,
or simply a box) B = D, xpr Dy is the product sets of D, and D, with respect to certain
projective coordinates in C? (see [I, §4.3] as well as [AI, §2.2] for more detail).

Definition 2.1. Let B = D, xp D, (respectively B’ = D, X, D,) be a projective
polydisk, and let n,: B8 — D, and m,:B — D, (respectively m, : B — D] and
n) . B' — D)) be the projections. We say that f : BN f~!(B') — B satisfies the crossed
mapping condition (CMC) of degree d if it satisfies conditions (1) and (2) below, where
1: BN f~1(B') — B denotes the inclusion map.

(1) Themap (7, o f,myo0t): BN f~YB) > D), x D, is proper and degree d.

(2) The sets 7, (BN f~1(B')) and (B’ N f(1B)) are relatively compact in D, and D/,

respectively.

See [AIL Definition 2.11] as well as [IS, Definition 5.1] for the original definition.
Definition 2.2. A triple (fap, {Bii}l-ezi, TF) is said to satisfy the crossed mapping
condition if fup : Bl-i N fa_’b1 (Bjﬁ) — Bji satisfies the crossed mapping condition for all

(i, j) €T+

The next proposition is identical to [AI, Theorem 2.12(iii)].
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THEOREM 2.3. For (a,b) € FE N {b # 0}, there is a family of projective polydisks
{B;t}iezi in C? so that the triple (f,p, {B;t}iezi, T*) satisfies the crossed mapping
condition.

The next fact is proved in [AI] and will be used later.

LEMMA 2.4. We have:

(1) BinNBfNKap=BfNBINKap=B NBy NKyp =0 for(a,b) e F* N {b>0};

(2 By N By N Kap =By N By NKap =By NBy NKgp =B NB; N
Kop =B NBy NKyp =8B, NB; NKyp =0 for(a,b) € F- N{b <0}.

Proof. For claim (1), see the proof of [AI, Lemma 3.4(i)]. For claim (2), see the proof of
[AI, Lemma 3.7(i)]. O]

For (a, b) € F* N {b # 0}, define the orbit space of f,, as
A* = {((nezs @n)nez) : ez € &%, 24 € B, f(zn) = zat1).

By [AL Proposition 3.1], we see that

N f”( U Bf) — K.

neZ iex*

Therefore, the projection
@ : A¥ 3 ((in)nez (@n)nez) — 20 € Kap

can be defined.

Definition 2.5. A bi-infinite sequence (i,) ez € G¥ is called a ©F-coding of z € Kup
if it satisfies @ ((in)nez, (f"(20))nez) = 20

The next proposition is a restatement of [AI, Propositions 3.3 and 3.6].
PROPOSITION 2.6. Let (a, b) € F* N {b # 0}. Then, ® : A* — K is surjective.

In particular, every point in K, , has at least one £*-coding thanks to Proposition 2.6.
One can also show that the map & is almost injective. To do this, below we write
B = Dy, xpe Dy

LEMMA 2.7. (Numerical Check 1) Let (a, b) € SH'{ . Then, there exist projective polydisks

'P& 3 771": 5 and 77; 5 SO that:

(1) Pg3 DB NBY, P, D Bf NB, and Py > By N B3 hold;

Q) [P0 NP = Ph P 0 fTNPE) = Pl and f i PY N0
f1 (sz) — 77?:2 are crossed mappings of degree one.

Proof. See Appendix A. O
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FIGURE 5. Pairwise transition diagram for (a, b) € EE;E.

2, 4}—{0,2}
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Cses B3 43 "0

FIGURE 6. Pairwise transition diagram for (a, b) € & .

LEMMA 2.8. (Numerical Check 2) Let (a, b) € Ey. Then, there exist projective polydisks

77(;2, 77;3, 77;4, and 773_’4 so that:

(1) Py, 2By NBy, Pi3 2By NB;y, Py DBy, NBy, and Py, D By N By hold;

Q) [Py, N NP — Poy £iPis N NP = Pry fiPh, N
f_l(P£4) — 733_’4, and f: 733;4 N f_l(P3_’4) — 733_’4 are crossed mappings of
degree one.

Proof. See Appendix A. O

PROPOSITION 2.9. We have the following.

(1) Let (a,b) € 5&'. Then, 1 < card(®~'(z)) <2 for any z € Kap and moreover
card(®~!(z)) = Lifand only if z € Kapp \ (V¥(p2) U V¥ (p4)).

(2) Let (a,b) € Ey. Then, 1 < card(®1(z)) <2 for any z € K, and moreover
card(®~'(z)) = Lifand onlyfz € Kop \ V°(p3).

Probably Proposition 2.9 would hold for any (a, b) € FEN{b #0}, but we restrict
ourselves to (a, b) € EIE{ which is sufficient for our purpose. The same would hold for
Lemmas 2.10, 2.11, 3.1, and 3.2 below.

To prove this proposition, we need to introduce a finite directed graph called the
pairwise transition diagram for T+ as follows. A vertex is an unordered pair {i, j} C =%
so that l’)’ii N Bf N Kap # O (see Lemma 2.4), and there is an arrow from {i, j} to {i’, j'}
if and only if both f : B N f~'(B%) — B and f : Bji n f_l(BjE) — Bf are crossed
mappings (by exchanging i’ and j’, if necessary). See Figures 5 and 6.
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Proof. We first prove case (1). Given a point z € K, 5, let us consider the following
condition (x):

there exists N € Z so that fV(z) € Bf}'v N B;:V holds for some {iy, jy} C =1 with

IN # JN-

Suppose first the case that z € K,p, does not satisfy condition (x). Since
Kap C Uie2+ Bf, this means that for any n € Z, there exists a unique i, € % so
that f"(z) € Bjn'. This obviously implies that card(®~'(z)) = 1.

Suppose second the case that z € K, satisfies condition (x). Since for every z € K, p,
there exist at most two i € 7 so that z € Bl."r (see item (1) of Lemma 2.4), such a pair
{in, jn} is uniquely determined for a given N. We next observe that in the pairwise
transition diagram, there exists exactly one out-going arrow from every vertex of the
form {i, j} with i # j (focus on bold arrows in Figure 5) and there are no arrows from
such a vertex to a vertex of the form {k, k}. This implies that there exists a unique path
{in, jN} = {in+1, jN+1} = - - - in the diagram starting from the vertex {iy, jy}. Since
this holds for every N appearing in condition (x), we conclude that card(®~!(z)) = 2.
This together with the conclusion in the previous paragraph yields that z € K, satisfies
condition (x) if and only if card(®~1(z)) = 2.

Under condition (x), we also observe that the path {iy, jy} = {iN+1, JN+1} — - - -
eventually falls into the cycle {0, 3} — {1, 2} — {0,3} — - - - of period 2. Now we apply
Lemma 2.7. Since 77({3 D Ba’ N B;r and Pffz D Bf’ N B;r hold by item (1) of Lemma 2.7,
this implies that f"(z) eventually drops into either 73(1' 3 or Pf" , and stays there. By item
(2) of Lemma 2.7, we see that " (z) eventually belongs to either the local stable manifold
of py in P(I 5 or the local stable manifold of p4 in Pffz. Therefore, we may conclude that
z € V¥(p2) U V¥(p4). Conversely, suppose that z € V*(p2) U V¥(p4). Since ps € Bar N
B;r and p4 € Bf’ ) B;, there exists N € Z so that either fV(z) € Bar N B;L or fV(z) e
Bfr 082+ holds. In particular, condition (x) is satisfied. Therefore, we conclude that
z € K, satisfies condition (x) if and only if z € V¥ (p2) U V*(p4).

The argument above obviously shows 1 < card(®~1(z)) <2 for all z € K,p. By
combining the conclusions in the previous two paragraphs, we obtain card(®~!(z)) = 2 if
and only if z € V¥(p2) U V¥(p4), which proves case (1). The proof for case (2) is similarly
obtained by using Lemma 2.8. [

2.2. Refined codings. In what follows, it is essential to refine the boxes B;' s Bz_ and 83_ .
LEMMA 2.10. (Numerical Check 3) When (a, b) € ET, the crossed mapping
LB BIN BN B0 TN BN — B
of degree two satisfies the off-criticality condition.
Proof. See Appendix A. O

It then follows from [I, Theorem 2.14] that the domain

Brn B n s n B N BH)))
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consists of two connected components denoted as BZ“, and B;, with py € B;C . Moreover,

both 35, and 35, are biholomorphic to polydisks, and f*: By — B} and f*: B}, — B;

are crossed mappings of degree one (see Step 5 of the proof of [I, Theorem 2.14]).

LEMMA 2.11. (Numerical Check 4) When (a, b) € &, the crossed mapping
2B N B, n By — By
of degree two satisfies the off-criticality condition fori = 2, 3.
Proof. See Appendix A. [
Again, it then follows from [I, Theorem 2.14] that the domain
By n =By N By)

consists of two connected components denoted as B; and Bi_/, fori = 2,3 with p3 € 837.
Moreover, both B;, and B;, are biholomorphic to polydisks, and f z. B, — B; and
f*: B, — Bj are crossed mappings of degree one. Note that, a priori, we are not able
to distinguish the components B;, and B, (modulo the condition p3 € B,) until items (3)
and (4) of Corollary 3.6, where we determine B;, and B;, so that B;,R contains a curve
Vi lefc on the ‘left’ and Blf,,’R contains a curve y; sight on the ‘right’.

It is useful to consider the corresponding refined symbolic dynamics as follows. We set
S+t =1{0,1,2,2",3Yand &~ = {0, 1, 2/,2", 3", 3", 4}. Choose a subset of & x &1 as

T = {(0,0), (0,2, (0,2"), (0, 3), (1,0), 2, 3), 2", 3), 3, 1)}
and a subset of ¥~ x £~ as

T ={(0,0), (0,2),(0,2"), (1,0), (1,2), (1,27,
2,4),@2",4),3,4),3", 4,4 1),473), 43"

We then write éfiwd = wad(ii), ébiwd = bed(‘zi), and &F = G(%i).
For (a, b) € fR% N {b # 0}, define the refined orbit space of f,p as

AE = {(((inez. @nInez) : (inez € &5, 20 € BE, f(zn) = 2at1).
Since B;, U B;,, C B; and Bl._, U Bl._,, C B; (i = 2, 3) hold, we see that
N f”( U s,.i) C Kup.
nez ieS*
Therefore, the projection
@ : A% 3 ((in)nezs (@ndnez) — 20 € Kap

can be defined.

Definition 2.12. A bi-infinite sequence (i,)ncz € &% is called a f)i—coding of zo € Kup
if it satisfies @ ((in)nez, (f"(20))nez) = 20
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3. Local stable/unstable manifolds
3.1. Dynamics in C%.  For a real parameter (a, b) € }'H:{ N{b # 0}, we let p; € R?
be either the unique saddle fixed point (for i =1, 3) or the unique saddle periodic
point of period two (for i =2, 4) of fr in the ith quadrant. For a complex parameter
(a, b) € F* N {b # 0}, denote again by p; € C? its complex continuation. Let V*/%(p;)
be the complex stable/unstable manifold at p;. Denote by V]f)/c" (pi); the connected
component of V*/*(p;) N B containing p;.

Recall that a bi-infinite Ti admissible sequence I = (iy)nez € Stisa T*- -coding of
z€Kypifandonlyifz € (,cz [~ "(Bif). Based on this observation, we define

=()r7"B

n>0

for a forward T*-admissible sequence I = (ip)n>0 € éﬁm. We also define

Kj=()f7"®;)

n<0

for a backward T*-admissible sequence J = ( Jn)n<0 € Gb 4- Given a point z € K5, a
forward T*-admissible sequence I = (i,)y>0 € (‘5 fwa 18 called a forward Ei-codmg of z
if z belongs to K.

We first characterize local stable manifolds in terms of forward ii—coding.

LEMMA 3.1. Let (a, b) € 5]1‘{. Then, we have the following.

(1) Vi.(p1)o is a vertical disk of degree one in B+ and Vi (p1)o = K%.
2) l06(1)4)2 is a vertical disk of degree one in B+ and Vlf)c(p4)2 = K;Bilo'
3) ‘/100(172)0 is a vertical disk of degree one in B+ and Vlf)c(pz)o = ngﬁ'
) l00(1)4)1 is a vertical disk of degree one in B+ and Vlf)c(p4)1 = K‘:OTS.
(®)] Vloc(p2)3 is a vertical disk of degree one in B+ and Vlf)c(pz)g = K;IW'

© f- ( loc (pa)2) N B is a vertical disk of degree ome in B;r. Moreover,

f ( ]Oc(p4)2) m B+ 2//2/310

Proof. Claim (1) follows from the fact that f : Ba’ nf _I(BSL ) — Ba’ is a crossed
mapping of degree one.
It follows from the definition of 3}, that Mn=o0 f (B3 =K. 1o Since 4Bl -8B

is a crossed mapping of degree one, ﬂnzO fon (B;I ) is a vertical disk of degree one in
B; containing the fixed point p4 and hence is equal to V}{ .(p4)2. This proves claim (2).
Claim (3) follows from claim (2) and the fact that f : Ba’ nf _I(B; ) — B;’ is a
crossed mapping of degree one, claim (4) follows from claim (3) and the fact that
[ Bfr N f*I(Bar) — B(J{ is a crossed mapping of degree one, claim (5) follows from
claim (4) and the fact that f : IS’+ Nnf! (B+) — B is a crossed mapping of degree one,
and claim (6) follows from clalm (2) and the fact that f : Bz// nf _1(85|r ) — B; is a
crossed mapping of degree one. O

Similarly, we have the following lemma.
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LEMMA 3.2. Let (a, b) € Ey. Then, we have the following.
(1) Vii.(p1)o is a vertical disk of degree one in By and Vi .(p1)o = K%
(2) Vi (p3)3 is a vertical disk of degree one in By and Vi (p3)3 = K‘;T‘.
(3) Vi (p3)4 is a vertical disk of degree one in B, and Vi (p3)4 = KiT,/'
@ f -1 (Vlf)C (p3)a) N B; consists of two mutually disjoint vertical disks of degree one in
B, denoted by Vy C By, and Vo» C B,,. Moreover, Vy = K ;@ and Vyr = K ;,/@~
o f -1 (Vlf)c( p3)4) N B; consists of two mutually disjoint vertical disks of degree one in
B3 denoted by V3 C By, and V3r C B;,. Moreover, Vy = K ‘;@ and Vyr = K ;/@.
6 fLva)n B\ is a vertical disk of degree one in B . Moreover, f~Y(va)n Bl =
S
12/43”
N f~'va)n By is a vertical disk of degree one in B . Moreover, v n By
S

02/43'

Proof. Claim (1) follows from the fact that f: By N f _I(BO_ ) —> B, is a crossed
mapping of degree one.

It follows from the definition of B, that ("),~o f (B = K- Since f 2By > By
is a crossed mapping of degree one, ﬂnzO f2n (By) is a vertical disk of degree one in
B3 containing the fixed point p3 and hence is equal to V}} .(p3)3. This proves claim (2).

Claim (3) follows from claim (2) and the fact that f : B, N f _1(63_ ) —> By is a
crossed mapping of degree one. Claims (6) and (7) follow from the fact in claim (3)
that Vo is a vertical disk of degree one in B, and that f : B N f -1 (By) — B, and
f:ByNf ’1(82_ ) — B, are crossed mappings of degree one.

By Lemma 2.11 and claim (2), we see that f‘z(Vlf)C(p3)3) N B;" consists of two
mutually disjoint vertical disks of degree one in B for i =2,3. Since we have
f_l(Vls (p3)a) N B = f‘z(Vlf)C(pg)3) N B;", the first half of claims (4) and (5) follow.

(V[

The second half of claims (4) and (5) easily follows from claim (3). ]

For (a,b) € FT N {b # 0}, we know that f : B(')" N f_l(Ba') — B(')" is a crossed
mapping of degree one. Hence, Vi .(p1)o is a vertical disk of degree one in B(')" and
Vioe(P1)o is a horizontal disk of degree one in BS’. For (a, b) € F~ N {b # 0}, we know
that f : By N f! (By) — B, is a crossed mapping of degree one. Hence, Vi .(p1)o is a
vertical disk of degree one in Ba . The next fact is stated in [AL, Proposition 3.10].

PROPOSITION 3.3. When (a,b) € F~ N{b # 0}, V,
one in B

(p3)3 is a horizontal disk of degree

u
ocC
Let (a,b) e F*N{b #0}. For a forward admissible sequence of the form
I =ipiy---i,0€ ngd’ we define
Vi byt =Bin i@ n T BEN T o)) ),

and for a backward admissible sequence of the form J =0j_, - -- j_1Jjo € G;Wd, we
define

Vita. byt =By nfB NN BN fFVige(pDo) - - -).
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Let (a,b) e F- N{b #0}. For a forward admissible sequence of the form
I =igiy---iy0 € Gyg» We define

Via,b)y" =B, N B N0 B0 T Wi pno)) <),

and for a backward admissible sequence of the form J =43/, ---j_1jo € Gpwar WE
define

Via, by =By 0 fB; NN fBL N F(Vike(p3)s) - ).

Remark 3.4. The set K is all the points whose »*-coding is J, but we defined Vi(a, b*
as a piece of a certain local unstable manifold. Hence, V}‘ (a, b)i CcK 3 always holds but
Vi(a, b)* is not necessarily equal to K 4. For example, K% consists of infinitely many
mutually disjoint horizontal disks in B; in the case of b < 0. However, V%(a, b)~ is one
of those disks. For the motivation of our definition, see Remark 4.10.

3.2. Dynamics in R%.  Let us assume that (a, b) € S]I:{E. We denote the real slice of lS’l.ﬂE
by Bf = B;—L NR2. Acurve y in BfR is said to be horizontal (respectively vertical) if the
projection 7y : Yy — D, R (respectively my : y — DyR) is a bijection, where D, g and
Dy R are intervals so that BjE,IR = Dy R Xpr DyR.

Recall that p; is either the unique saddle fixed point (for i = 1, 3) or the unique saddle
periodic point of period two (for i = 2,4) in the ith quadrant. Denote by W1 (i) j

the connected component of W“/5(p;) ﬂBj’R containing p;. We have Wloé (pi)j =
M/Y(Pz)/ NR2.

loc
COROLLARY 3.5. Let (a,b) € 5+ Then, we have the following.

(1) Wi .(p1)o is a vertical curve in B R denoted by Vo+right and Wy .

(p1)o = K5 N R2.
2) Wloc (pa)2 isavertical curve in Bz R denoted by y2+r1ght and Wloc (pa)2=Ki __nN R2.

2/310
3) loc (p2)o is a vertical curve in Bo g denoted by Vo et and W, loc (p2)o = ng a0 NR2
(@] loc (pa)1 is a vertical curve in 81 r denoted by 7/1 left and Wloc(p4)1 = 102,3 NR2
(5) W .(p2)sisavertical curvein 83’]R denoted by V3,right and Wi (p2)3 = Kﬁ NR2.

6) fRfl(Wl‘z)c(pzl)g)ﬂBzR is a vertical curve in BZR denoted by yz'Seﬁ and

+ 2
fR ( 1OC(P4)2) N BZ,R K;,/2,310 NR-

Proof. This immediately follows from Lemma 3.1 by taking the real parts. O

We also know that V| (p1)o is a horizontal disk of degree one in Bar . Therefore,

Wil .(p1)o is a horizontal curve in BO R
When there are two mutually disjoint vertical curves in B; , we can distinguish the left

one and the right one.

COROLLARY 3.6. Let (a, b) € £y . Then, we have the following.
(1) 10C(pl)o is a vertical curve in BOR denoted by y,, right and lOC(pl)o = KS NR2.
2) Wloc(p3)3 is a vertical curve in B3 g denoted by V3 left and Wloc(p3)3 = K‘ NR2.

(p3)a = Ks NR2

3) IOC (p3)a is a vertical curve in 34 r denoted by y, right and W, loc be
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(@) f]R (Wi (p3)a) N Bi R consists of two mutually disjoint vertical curves in Bz RS the
left one is denoted by v, oy, C B, p and the right one is denoted by V2 right C B, g-
Moreover, y, ¢ = K ;/43/ NR? and Varight = K ;//43, NR2,

(&) f]R (Wi (p3)a) N BS’R consists of two mutually disjoint vertical curves in B;’ RS the
left one is denoted by vy ,op C By g and the right one is denoted by V3 right C B3 g-

- 2 - 2
Moreover, y; ¢ = K ;/43/ N R* and Varight = K ;//43, N R~
© fr 1(V271eft) N B\ g is a vertical curve in B| i denoted by y/ s Moreover, y |4 =
S _NR? ’ ’ ,
12/43 ’
N fr ! (Vo 1er) N By is a vertical curve in By, denoted by y,, .- Moreover, g .4 =
K 2
Kooz VR
Proof. This immediately follows from Lemma 3.2 by taking the real parts. O

. . . + +
Below, when the context is clear, we drop the superscript &+ in y left and Y; right’ and
write ¥ lefe and ¥ right, respectively.
Since p3 € y31eft, We have y3 et = 10C(p3)3 We also know that Vlgc(p3)3 is a
horizontal disk of degree one in B (see Proposition 3.3), and hence W (p3)3 is a
horizontal curve in B3 .

Let (a, b) € Eﬂ‘{ . For a forward admissible sequence of the form I = ipiy ---i,0 €
61;;@’ we define

Wia, b =Bl o0 f B g0 0 B 0 g W (o)) ),

and for a backward admissible sequence of the form J =0j_, --- j_1jo € G[fwd, we
define

Wia, by =B g N fo@B g N0 frB 50 frWiee(p)o) - - ).

Let (a, b) € 5]1% . For a forward admissible sequence of the form I = ipiy ---i,0 €
Gjq» We define

Wia,b)” =B o N fg By g N0 f ' By 5 0 i (Wike(p)o)) - -+,

and for a backward admissible sequence of the form J =43j_, --- j_1jo € Gpwar WE
define

Wia,b)” =B g N foB; g NN fRB; g N R(Wg(p3)3) - ).

Asin [AI Definition 4.4], W-
(a, b);,

(a, b)~ is decomposed into two parts: the ‘inner part’
(a’ b )(?uter‘

4341 24

and the ‘outer part” WL

inner 434124

434124

4. Dynamics near the boundary 87—%

4.1. The {L, R}-coding. In this subsection, we define the {L, R}-coding with respect to
our box systems {Bii}l- <x+. We note that our partition to define the {L, R}-coding is more
involved than that given in [BSr3].
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When y C BfR is a vertical curve, the notion of left/right component of B?SR \ y can

be defined and denoted as left(BiER \ y) and right(BijjR \ ¥)-
Propositions 4.1 and 4.4 will be crucial in the rest of this paper.

PROPOSITION 4.1. Suppose that (a, b) € Sﬁ. Let z € Kr and let (in)n>0 € vad be its
forward £ -coding.

(1) Ifiop = 0, then z belongs to the closure ()flright([:”(')’:]R \ Wﬁ)c (p2)o)-

(2) Ifig = 1, then z belongs to the closure ofright(Bff]R \ Wit (P)1)-

(3) Ifip = 2, then z belongs to the closure ofleft(B;:]R \ Wit (P4)2).

4) Ifig = 3, then z belongs to the closure ofleft(lS’;:R \ Wi (p2)3).

Proof. Let ip = 0 and assume that z belongs to left(BJR \ Wi (p2)0). Since (in)n>0 is
admissible, iy is either 2 or 3 (but not 1). It follows that fr(z) belongs to right(BZ r\
Wl‘yoc(p4)2) (compare [AI, Lemma 4.7]) and i; = 2. Similarly, since iy is either 2 or
3 (but not 0), it follows that f]é(z) belongs to right(B; R\ Wlf)c(pz)3) and ip = 3. A
similar argument shows that fﬂg(z) belongs to left(BffR \ Wlsoc(p4)1) and i3 = 1, and
ffé(z) belongs to left(ngR\Wlsoc(pz)o) and i4 = 0. By repeating this, we see that
ZE K(§231 N R2. Moreover, since right(Bz]R \ Wi (pa)2) C BZF,,R, we obtain z € ngﬁ N
RZ. It follows from Lemma 3.1(1) that z € W} . (p2)o, which contradicts to the assumption
that z € left(Baj R\ WlsOC (p2)o)- Hence, claim (1) of this proposition is proved. The proofs
for the other cases are similar. O

To define the {L, R}-partition, it is important to control the slopes of local stable
manifolds. To obtain a simple criterion for estimates of the slopes, we employ the Poincaré
metric and (vertical) Poincaré cone field (see [I, Definition 2.5]). Let P = D, x D, be a
polydisk, where D, C C is a round disk of radius 6 > 0 and D, C C is the round disk of
radius R > 0. Take 0 < r < Randset’ P’ = D, x va, where D; C C is the round disk of
radius . Denote by |v,|p (respectively |vy|p) the Poincaré metric in D, (respectively Dy).

Let D be a vertical disk of degree one in P. It has been shown in [I, Corollary 2.10] that
every tangent vector v € T, D belongs to the vertical Poincaré cone at z:

C; ={v=(vx,vy) € TP : |vylp > |vxlp}.
As in the example following [I, Corollary 2.10], the condition [vy|p > |vy|p is rewritten as

2 2
Uy R —
|}|E > . |)’|2’
lvele = 8% — |x|

where |v,| g (respectively vy | g) denotes the Euclidean metric in C. Moreover, if we restrict
zto P/, the estimate above yields

loyle _ R*—7r?
_— >

lvele — 82

for any v € T D and any 7' € P’. Finally, let us replace P = Dy x D, by the projective
polydisk Dy X Dy, where the u-direction is (1, 0) and the v-direction s (s, 1) with s # 0.

https://doi.org/10.1017/etds.2024.34 Published online by Cambridge University Press


https://doi.org/10.1017/etds.2024.34

Symbolic dynamics for Hénon maps 155

The computation

82 R2_2
O B A
0 1|82 | R

52 52
shows that the slope of v € T» D in modulus is estimated from below by

R2 _rZ
52+ [s|(R2 — 12)

A.1

forany 7/ € P'.

In the following lemma, a horizontal edge (respectively vertical edge) of a quadrilateral
BfR in R? is a connected component of the real part of Dii X pr BDEL:Z. (respectively
BD:Z. X pr Dii). Given a closed interval I = [«, 8] in the y-axis, we put || = |8 — «]

and let Dy be the disk in the complex y-plane centered at (o + 8)/2 with radius |I]/2. As
before, given a polydisk P;, denote by P; R its real part.

LEMMA 4.2. (Numerical Check 5) Let (a, b) € & .
(1) One can find two concentric intervals Iy = [y, — Ra, y2» + R2] and 12’ = [yy — 1o,
Y2 + 2] in the y-axis with ro < R and a disk D> of radius §, > 0 so that:
(@) a projective polydisk of the form P, = Dy X Dy, contains p»;
() f2:Pan f2(Py) — P is a crossed mapping of degree one;
(©) pry(B(‘{R U B;R) c I
d PrNn B;’FR does not intersect the vertical edges of B;’FR fori =0,3;
(e) the slopes of the horizontal edges of B('{ R and B;: R in modulus are bounded by

R% — r22
83 + |s21(R3 —r3)

from above, where (s2, 1) is the v-direction in defining P».

(2) One can find two concentric intervals 14 = [y4 — R4, y4 + Ry4) and I = [y4 — r4,
Ya + r4] in the y-axis with ra < R4 and a disk D4 of radius §4 > 0 so that:
(@) a projective polydisk of the form Py = Dy Xpr Dy, contains ps;
(b) 2Py f2(Py) — Py is a crossed mapping of degree one;
© pr, (BfﬁR U BZR) c I
(d Psrn B;’FR does not intersect the vertical edges of B:’FR fori=1,2;
(e) the slopes of the horizontal edges of B?:R and Bz R in modulus are bounded by

22
Ry —rj

87 + Isal(RF —rd)

from above, where (s4, 1) is the v-direction in defining Pj.

Proof. See Appendix A. O
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N
Bor

I; <

FIGURE 7. The polydisk P,.

See Figure 7 for Lemma 4.2.
Let PL+ be the union of left(l’j’;f]R \ Wi (ps4)2) and left(BIR \ Wit (p2)3). Let P; be
the union of right(Bj \ Wi, (p2)o) and right(B} \ Wi (pa)1).

THEOREM 4.3. For (a, b) € £, the pair {P;", P;}forms a partition for Kg \ (W*(p2) N
W*(ps)), that is: (1) P NPfNKr=9 and (2) P} UPS D Kr\(WS(p2)N
W¥(p4)).

Proof. Let C, be the real local stable manifold at p, in the real part Pog. By
Lemma 4.2(1)(b), C; is a vertical curve connecting the upper boundary and the lower
boundary of R x I so that it divides R x I, into the left part and the right part. Note that
CyNPrr # @ by Lemma 4.2(1)(a). This together with Lemma 4.2(1)(d) yields that C»
intersects 86?"]R only at its horizontal edges for i = 0, 3.

However, thanks to the estimate in equation (4.1), C» intersects each of the horizontal
edges exactly once by Lemma 4.2(1)(c) and (e). It follows that C, divides BZ’R (i=0,3)
into two connected components, one is in the left part of R x I, and the other is
in the right part of R x I. By the uniqueness of the stable manifold W*(p;y), we
see that Co N B('{R = Wi .(p2)o and C2 N B;R = W} .(p2)3. Therefore, it follows that
left(B;: r \ Wi.(p2)3) N right(BS: r \ Wi.(p2)o) =¥. A similar argument with Lemma
4.2(2) shows that left(BZR \ Wi .(pa)2) N right(B‘ﬁR \ Wi .(pa)1) =0. This together
with B(J)F’R N BEL,R NKgr = BffR N B;R N Kr = ¥ (see item (1) of Lemma 2.4) yields item
(1) of Theorem 4.3.

Take z € Kr \ (W*(p2) N W¥(p4)). Since z ¢ W¥(p2) N W¥(pa), it does not belong
to the boundary of the pieces in Proposition 4.1). Hence, there exists a X *-coding
(in)nez € &7 of z by Proposition 2.6. Then, Proposition 4.1 yields that z belongs to either
P;" or P} This proves item (2) of Theorem 4.3. O
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Therefore, this defines a unique {L, R}-coding for every point in Kg \ (W¥(p2) N
W¥(p4)).

PROPOSITION 4.4. Suppose that (a, b) € Ey. Let z € Kr and let (ip)n>0 € &, be its
forward ¥~ -coding.

(1) Ifig = 0, then z belongs to the closure ofleft(BO_JR \ Wi (P1Do).

(2) Ifig =1, then z belongs to the closure of right(BI]R \ V1.left)-

(3) Ifio = 2, then z belongs to the closure of right(BZ R\ V2left)-

4) Ifig = 3, then z belongs to the closure of right(B; r \ V3left) N left(B; R \ V3.right)-
(5) Ifig = 4, then z belongs to the closure ofleft(BZ]R \ Wi (P3)4).

Proof. The proof is similar to that of Proposition 4.1, and hence is omitted. O

LEMMA 4.5. (Numerical Check 6) Let (a, b) € &y.

(1)  One can find two concentric intervals I3 = [y3 — R3, y3 + R3] and 13’ =[y3 —r3,
v3 + r3] in the y-axis with r3 < R3 and a disk D3 of radius §3 > 0 so that:

(@) a projective polydisk of the form P3 = D3 xXpr Dy, contains p3;
(®)  f: P3N fYP3) = P3 is a crossed mapping of degree one;
(© pry(Byp UBsR UB L) C I3
(d) P3r N B does not intersect the vertical edges of B fori =2, 3, 4;
(e) the slopes of the horizontal edges of By, By and B;R in modulus are
bounded by
2 2
Ry —r3
83 + Issl(R —r3)

from above, where (s3, 1) is the v-direction in defining P5.

(2) One can find two concentric intervals Iy = [y1 — Ry, y1 + R1] and I{ = [y —r1,
y1 + r1] in the y-axis with r1 < Ry and a disk Dy of radius §1 > 0 so that:
(@) a projective polydisk of the form Py = Dy xpr Dy, does not contain p3;
(®) [P0 fYP3) = Psis a crossed mapping of degree one;
(¢) pry (B;R UBg) C I;
d PirN Bit r does not intersect the vertical edges of B;R fori =1,3;
(e) the slopes of the horizontal edges of BiR and 83_’ R in modulus are bounded by

2 2
Ry —r
83+ Is1l(RF —r?)

from above, where (s1, 1) is the v-direction in defining P1.
Proof. See Appendix A. O

As an immediate consequence of Lemma 2.11, we know that fﬁ(B;’R) and fﬁ(Bi_,,,R)
are connected components of f( fR(Bi_,R) N B;R) N 83_, g for i =2,3. Let P, be the
union of left( fﬁ(B;’R U 33_',]1%) \ ¥3,right) and left(B‘Z]R \ Wi .(P3)4). Let Py be the union
of By g, right(B; p \ v1eft), right(By  \ 2,lef), and right(f[é(B;/,R UB3 ) \ V3eft)-
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THEOREM 4.6. For (a, b) € &y, the pair { P, , Py} forms a partition for Kgr \ W*(p3),
thatis (1) P, N Py N Kr =@ and (2) P, U Py D Kr \ W (p3).

Proof. We proceed as in the proof of Theorem 4.3. First, it follows from Lemma 4.5
that left(Byp \ ¥3right) N right(Byp \ yijer) = left(Byp \ Wi (p3)4)) N right(Byp \
V2 left) = 1eft(B4_R \ Wi (p3)a) N right(lf)’;’R \ ¥3Jeft) = Y. This together with BO_,R N
By NKg =Byp N B N Kg =By N B, p N Kg = By N By N Kg = 0 (see item
(2) of Lemma 2.4) yields item (1) of Theorem 4.6.

The proof of item (2) of Theorem 4.6 is slightly different from that of item (2) of
Theorem 4.3 since we replace B; r by fﬁ(BZ_,’R U BQ’R) and fﬂé(B;,’R @) 83_”,]1«)' Notice
that we use B;’R and BZ.T/’R (i = 2, 3) to define the partition {P; , Py }, but we do not use
B;C’R and B;”,R to define the partition {P;", PI‘;}. Take any z € Kr \ W¥(p3). Then, it
follows from Propositions 2.6 and 2.9(2) that z has a unique X~ -coding (i,),ez € &~
If ip # 3, then Proposition 4.4(1), (2), (3), and (5) yield that z belongs to either P, or
Py . So, suppose that ig = 3. Then, the forward ¥~ -coding of fp 2(z) is either 243 - - -
or 343 - ... Hence, fi’(2) € (Byp UBsp) N f ' (Byp N f ' (Byp))- It then follows
that

Kr N Bg,_’R C (fR(fR(BQ_R) N B;R) N B;R) U (fR(f]R(B?,_R) N B4_]R) N Bg_]R)
= fa(By x UBy ) U fz (B U By, ). (4.2)

Thanks to claim (4) of Proposition 4.4, we observe that z € (Kgr N By ) \ W¥(p3) is
a point in right(B3» \ ¥31eft) N 1eft(B5 R \ Y3right). This together with the inclusion in

equation (4.2) yields that z belongs to either P, or Pj, and hence we have item (2) of
Theorem 4.6. O

Therefore, this defines a unique {L, R}-coding for every point in Kr \ W*(p3).

4.2. Proof of Theorem 1.1. Below, card(A) denotes the cardinality of A counted without
multiplicity. The proof of Theorem 1.1 is based on the following two results from [AI].

THEOREM 4.7. [AL, Theorem 5.1] When (a, b) € EF, we have hwop(fr) = log 2 if and

only if card(W;m(a, »tn ng(a’ b)") > 1. When (a, b) € E, we have hip(fr) =
: : s - u -

log 2 if and only y‘card(W416(a, b)™ N WE4124(a, D)ipner) = 1

THEOREM 4.8. [Al, Theorem 5.14] When (a, b) € 5]1'{ , frR is a hyperbolic horseshoe

on R? if and only ifcard(nga(a, btn WgB(a, b)*t) =2. When (a,b) € &, fris a

hyperbolic horseshoe on R? if and only ifcard(W:la(a, by N WX (a,b); ) =2

434124 inner
Let us set
+ N + u +
S(a, b)) = W316(a, b)y™ N W623(a, b)
and
a— N — u —
S(a,b)” = W416(a,b) N W@‘m(a,b) .
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Note that we dropped ‘inner’ from WX in the definition above because the

434124 @ B)inner
inner part and the outer part of W% 1124 (a, b)™ cannot be distinguished by the ¥ ~-coding.

As an immediate consequence of Theorems 4.7 and 4.8, we have the following corollary.

COROLLARY 4.9. We have the following.
(1) Let(a,b) e Sﬂ'{. Then, we have card(S(a, b)) < 2. Moreover:
(@) fr is a hyperbolic horseshoe on R? if and only if card(S(a, b)) = 2;
(b) fr has a quadratic tangency but hwp(fr) =log?2 if and only if
card(S(a, b)T) = 1;
(©)  hwp(fR) < log 2 if and only if card(S(a, b)) =0.
(2) Let(a,b) € Ey. Then, we have card(S(a, b)) < 4. Moreover:
(@)  fRr is a hyperbolic horseshoe on R2 if and only if card(S(a, b)™) = 4,
(b) fr has a quadratic tangency but hp(fr) =log2 if and only if
card(S(a, b)™) = 3;
(©)  hwp(fr) < log2ifand only if card(S(a, b)™) < 2.

Proof. The bound card(S(a, b)*) < 2 in case (1) follows from the fact that V;]a(a, b)*

is a vertical disk of degree one in B;' and Va"23 (a, b)* is a horizontal disk of degree two

in BgL . The bound card(S(a, b) ™) < 4 in case (2) follows from the fact that V:lﬁ(a, b)~ is

a vertical disk of degree one in B, and V.

4124 (a, b)~ consists of two horizontal disks of

degree two in B} .
Consider first the classification in case (2). If W* _(a, b) ™ intersects WX

410 @1124(‘1’ b)
then it follows that Wi 15(@ b)~ intersects W% 1124 (@> D)outer exactly twice (see [AL, Figure
25 as well as Definition 4.4]). Hence,

inner’

card(W? ~(a, b)” N WX

410 54124(3’ b)) = max{0, card(S(a, b)) — 2}.

inner

Then, claim (a) follows from Theorem 4.8, claim (c) follows from Theorem 4.7 and that
(a, b) belongs to the closure of Hﬁ if and only if hp(fap) = log2 (see [AL Main
Corollary]), and claim (b) follows from claims (a), (c), and that Hﬁ is open. Proof for
the classification in case (1) is similar and hence omitted. ]

Thanks to this corollary, our task to finish the proof of Theorem 1.1 is to transfer the
Y *-coding to the {L, R}-coding. Notice that the paper [BSg3] lacks a proof of its theorem
1 which corresponds to our Theorem 1.1.

Proof of Theorem 1.1(1). For a point z € Kg \ (W%(p2) N W¥(p4)), we consider the
following conditions:
(a) the ©T-coding of z exists and is 02 - 310;
(b) 2@ € W (p1)os
© f@eWilpo:
(d) the {L, R}-coding of zis RL - LR.
It is easy to see that z € ST (a, b) if and only if z satisfies conditions (a), (b), and (c).
Assume that condition (a) holds. Then, the forward = *-coding of f2(z)is0 € 6;:“1' Since
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i Bg’ nf ’1(83 ) —> Bg’ is a crossed mapping of degree one, this yields condition (c)

as in Corollary 3.5(1). Since the backward £ *-coding of f~2(z) including the Oth digit is

0e GJWd, a similar argument yields condition (b). Therefore, it is sufficient to prove that

condition (a) holds if and only if condition (d) holds. Note that RL - LR = RL - LRR.
(a) implies (d): Since z ¢ W*(p2) U W*(p4), Proposition 4.1 and the definition of the

partition { P;", P;{ } imply the following.

o Ifip =0, then z € right(Bjp \ Wi (p2)o) C Py

o Ifip =1, then z € right(B{p \ Wi (pa)1) C Py

o Ifig =2, then z € left(Byx \ Wi .(pa)2) C P}

o Ifip =3, then z € left(Byx \ Wi.(p2)3) C P}

Therefore, we replace the Os and 1s in 02 - 310 by R, and the 2s and 3s in 02 - 310 by L to
obtain RL - LRR.

(d) implies (a): We note that z has a unique *-coding thanks to Proposition 2.6 and
claim (1) of Proposition 2.9.

First consider the forward {L, R}-coding L RR. By the definition of the {L, R}-partition,
the Oth digit of the X *-coding is either 2 or 3. There is no arrow from 2 to the R-side in
the transition graph, but there is an arrow 3 — 1 from 3 to the R-side. Hence, the Oth digit
of the ©T-coding is 3 and the 1st digit is 1. Then, the only arrow from 1 to the R-side is
1 — 0. By repeating this argument, we obtain 310 as the forward £ *-coding.

Next, consider the backward {L, R}-coding RL L (including the Oth digit). As discussed
above, the Oth digit of the £ -coding is 3. The only arrow in the transition graph from the
L-side to 3 is 2 — 3, and hence the —1th digit is 2. Then, there are two arrows 0 — 2 and
1 — 2 from the R-side to 2. There is no arrow from the R-side to 1, but there is an arrow
1 — 2 from the R-side. Hence, the —2th digit of the X "-coding is 1. By repeating this
argument, we obtain 023 as the backward ¥ *-coding including the Oth digit.

By combining the forward and the backward X *-codings above, we obtain condi-
tion (a). O]

Proof of Theorem 1.1(2). For a point z € Kr \ W*(p3), we consider the following
conditions:

(a) the X7 -coding of z exists and is 43412 - 410;

) @) € W (p3)3;

© A2 e Wi lpo

(d) the {L, R}-coding of zis LRR - LR.

It is easy to see that z € S~ (a, b) if and only if z satisfies conditions (a), (b), and (c).
Assume that condition (a) holds. Then, the forward ¥ ~-coding of f2(z)is0 € G- Since
f:ByNf - (By) — By is a crossed mapping of degree one, this yields condition (c) as
in Corollary 3.6(1). Therefore, it is sufficient to prove that conditions (a) and (b) hold if
and only if condition (d) holds. Note that LRR - LR = LLLRR - LRR.

(a) and (b) imply (d): Since z ¢ W*(p3), Proposition 4.4 and the definition of the
partition {P; ", Pg } imply the following.

e Ifip=0,thenz € left(B(IR \ Wi .(p1)o) C Py
o Ifip =1, then z € right(B|  \ y1ert) C Py
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fab (Bsm)

By r /—\ By fan(Bsr)

fan (B3 )

12, >

far(By0) HFTE

D3 Wise(®3)s = .
Wi N, B LeioR
B3 Lr:isR = [ (Wige(3)31) e
Wiee)s Wik (pg)yr :
= K37(a,b)~

FIGURE 8. The real box B3 ;.

e Ifig=2,thenz e right(Bz_,]R \ y2eft) C Pg .
e Ifig=3,thenz e I‘ight(B;R \ V3left) N left(B;’R \ V3 right)-
o Ifig=4,thenz e left(B;,R \ WlSoc(p3)4) cP.
Therefore, we replace the Os, 1s, and 2s in 43412 - 410 by R, and the 4s in 43412 - 410 by L
to obtain L¥LRR - LRR.

The problem here is that 83_, r 1s divided into both a part of P, and a part of Py, and
hence we need to determine the letters in the —(2n + 4)th digits (n > 0) which are denoted
by * above. Here, we claim that

f2 @ @) e W .(p3)s 4.3)

holds for all n > 0. Indeed, the case n = 0 is identical to assumption (b) and we see that
fa 2@ = [ PV @) € frT (W (p3)3) © Wi (p3)3, and hence equa-
tion (4.3) is proved. The claim in equation (4.3) together with case (4) of Proposition 4.4
implies that fp @n+4) (z) € P, (see Figure 8). Therefore, we conclude * = L and condi-
tion (d) follows.

(d) implies (a): We note that z has a unique X~ -coding thanks to Proposition 2.6 and
case (2) of Proposition 2.9. Then, the rest of the argument is similar to the proof of ‘(d)
implies (a)’ in the case b > 0, and hence is omitted.

(d) implies (b): A discussion similar to the previous paragraph yields that the only
transition with LRRL is 4124. Therefore, the backward ¥~ -coding of z including the
Oth digit is 434124 € G:Wd. Moreover, by case (3) of Proposition 4.4 and the definition of

the partition piece P, , we see that f @n+4) (z) € fﬁ(B;’R). This yields fp (2n+6) (z) €
B;,R for all n > 0. Since f2: By — By is a crossed mapping of degree one, we
have fp (2n+6) (z) € Wio.(p3) A (compare item (2) of Corollary 3.6). Hence, fp 4(z) €
fH%(Wlléc(p3)3/) = Wi .(p3)3 and claim (b) is proved. O

Remark 4.10

() When b<0, the crossed mapping f2:B; N f~'(B; N f~'(By)) — By has
degree two. Then the set K7 consists of infinitely many horizontal disks in B;,
and K‘% 11241 K 216 consists of infinitely many points. Hence, we cannot classify
the dynamics of the Hénon maps only by the number of points with the ¥ ~-coding

43412 - 410. In Corollary 4.9(2), we classify the dynamics by S(a, b)~ instead. Here,
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S(a, b)~ is the number of intersection points of W% m 4(a, b)~ and ij(a, b)~,
and W% m 4(a, b)~ is defined as a certain preimage of the local unstable manifold
W%(a, b)~, one of the disks which K4’L3 consists of.

Our goal was to classify the dynamics in terms of {L, R}-coding. Hence, our
{L, R}-partition must distinguish W%(a, b)~ from the other horizontal disks in K%
(more precisely, claim (d) must imply claim (a) in the proof of Theorem 1.1(2)).
This is the reason why we refined the box B into two parts B3, and By, so that

2 By, — By has degree one and hence we have K% = W%(a, b)~.

However, since f : BgE nf _I(B(jf) — BgE is degree one, Kg/ * are disks of degree
one without any refinement.

5. Dynamics at the boundary 87—[%
The purpose of this section is to prove Theorem 1.2.

For simplicity, we write 1eft(B;R) = left(B;R \ 'y jﬁeﬁ) (j=0,1,2)and right(B;R) =
right(zsj]R \'y jfright) (j =2,3) below. Let M be the family of these sets. Similarly,
we write left(B;R) = left(B;]R \ yj_’left) (j=0,1,2,3) and right(B;R) = right(B;R \
y;righl) (j =2, 3,4) below. Let 9} be the family of these sets. We call the elements
of imf margins of BTR'

5.1. Refined dynamics. We first refine local stable/unstable manifolds for our purpose.
The proofs of the following lemmas are analogous to Lemmas 3.1 and 3.2, and hence are
omitted.

LEMMA 5.1. Let (a, b) € ‘SIE{—' Then, we have the following.

(1
2)
3)
4)
®)
(6)
)
()
)
(10)

Vg (a, b)* is a vertical disk of degree one in B(J)r and Vg (a,b)T = K%.
Vl%(a, b)T is a vertical disk of degree one in Bfr and Vl%(a, bt = Kfﬁ.
V3S16(a’ b)T is a vertical disk of degree one in B;r and V3s16(a, bt = K;la.
V6" (a, b)* is a horizontal disk of degree one in Bar and Va" (a,b)T = K(')l.

Vﬁ"3 (a, b) is a horizontal disk of degree two in B;‘ and V6“3 (a,b)T = K“ .

03
Vﬁ"2 (a, b)" is a horizontal disk of degree one in BEL and Vﬁ"2 (a,b)yt =K gz'
Vs, @ b)" is a horizontal disk of degree two in B} and Vs, @ bt = Ky .

u + . . . + u + _ pu
V623 (a, b)™ is a horizontal disk of degree two in B; and V623 (a,b)T = K623'

VY (a,b)" is a horizontal disk of degree one in By and V¥ (a,b)* = K*

022 022 022
u + . . . L - L
V6310(a, b)T is a horizontal disk of degree two in B and V6310(a’ b)yT = K6310'

LEMMA 5.2. Let (a, b) € Sﬂg. Then, we have the following.

ey
2
3
“
(&)

Vg (a, b)~ is a vertical disk of degree one in B, and Vg (a,b)” = K%.
Vl%(a, D)~ is a vertical disk of degree one in B and V]%(a, by = Kfﬁ.

s _. . . o i _ s
V416(a, b)™ is a vertical disk of degree one in B, and V416(a, b)y” = K416'
V%(a, b)~ is a horizontal disk of degree one in B3 and V%(a, b))~ C K%.

u — . . . — u - u
VE4 (a, b)™ is a horizontal disk of degree two in 64 and VE4 (a,b)” C Kﬁ4'
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P1
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|
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022 031 >
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FIGURE 9. The =" -coding of pieces of stable/unstable manifolds for & > 0.

Vi543(@> b)™ consists of two mutually disjoint disks of degree one in B3 . Moreover,
u — u
VE43(a’ b) C KE’
5 . ) . . p— u - u
Vﬁm (a, b)™ is a horizontal disk of degree two in B|" and VE41 (a,b)” C Kﬁm‘
5 o ) . . — u - u
Vﬁmo(a’ b)™ is a horizontal disk of degree two in B, and Vgéuo(a’ b)~ C Kﬁmo'
Vz%mz(a’ b)~ consists of two mutually disjoint disks of degree one in B, . Moreover,
u — u
V@uz(a’ b~ c K@uz'
> . . . . — u -
V§4100(a, b)~ is a horizontal disk of degree one in B, and VB4100(a’b) -
434100
V% 02 (a,b)™ consists of two mutually disjoint disks of degree one in B, .
u — u

Moreover, Vﬂ4loz(a’ by~ C K@mog'

Vit 1104 (@ D)™ consists of two mutually disjoint disks of degree two in By .
u — u

Moreover, VE4124(a’ by~ C K@4124‘

The corollary below follows from Lemma 5.1 (see Figure 9).

COROLLARY 5.3. Let (a, b) € 87—[]}5. Then, we have the following.

ey
(@)
3
“
(&)

(6)
@)

®)

W(‘)i(a, b)T is a vertical curve in B(-)FR and Wg(a, T = K% NR2.
Wlsa(a, b)t is a vertical curve in BT and Wl%(a, bt = Kfa NR2

R
s + . : —+ s + _ xS 2
W316(a, b)T is a vertical curve in Bs,R and W316(a, b)yT = K316 N R~

Woi‘ (a, b)T is a horizontal curve in B(T,R and Wg (a,b)t = K(’)l NR2.
The intersection of Wg3 (a, b)* and BI R\ left(B;: R\ ngﬁ(a, b)™*) consists of two

horizontal curves in B;FR \ left(B3+R \ W3S16(a’ b)*t) and Wﬁ”3 (a,b)T = K’é NR2

u + . : —+ u + _ pu 2
W62 (a, b)™ is a horizontal curve in Bz,R and W62 (a,b)™ = K62 NR-.

The intersection of W* _(a, b)* and BT’R \ right(B?:]R \ Wl%(a, b)*) consists of two

031
horizontal curvesin BiR \ right(lS’I‘:R \ Wi%(a, b)t)and Wg31(a, bt = Kg31 NR2.
W6”23(a, b)t is a horizontal curve in B;' r Jrom its right boundary to itself.

Moreover, WgB (a,b)t = K6“23 NR? and this curve is tangent to W3S]6(a, b)*T at
just one point.

https://doi.org/10.1017/etds.2024.34 Published online by Cambridge University Press


https://doi.org/10.1017/etds.2024.34

164 Y. Hironaka and Y. Ishii

410 Bar Bzr Bor
434 43412 43410
43412
134124 734102 P1 o=
434124 434102 434100

)

434124 “5
434124 4343 __
4341
D3 i34 P3 3
B3k Bir 10

FIGURE 10. The ¥~ -coding of pieces of stable/unstable manifolds for b < 0.

9) WX (a,b)t is a horizontal curve in BZR and WX _(a,b)t = KX NR?2

022 022 022 )
(10)  The intersection of Wg,, (a, byt and B({R \right(B&R \ W (a, b)) consists
of two horizontal curves in B(T,R \ right(B(J)fIR \ Was(a, b)*t) and W6“310(a, bt =
K(I)jgl() NR.

Proof. The claims (1)—(4), (6), and (9) immediately follow from Lemma 5.1. Claim (8)
follows from this lemma and the assumption that Wg23 (a, b)T is tangent to W;la(a, b)t at
just one point. Since Wy (a, b)™T is further out than Ws . (a. b, Ws . (a, b)T intersects
with W3S _(a, b)™ at distinct two points. This proves the claim (5). Claim (7) follows from
claim (5), and claim (10) follows from claim (7). L]

Similarly, we have the corollary below from Lemma 5.2 (see Figure 10). The proof is
analogous to that of Corollary 5.3, and hence is omitted.

COROLLARY 5.4. Let (a,b) € BHHE. Then, we have the following.
) Wg(a, b)~ is a vertical curve in B&R and Wg(a, by = K% NR2.
2) Wi%(a, b)~ is a vertical curve in BiR and Wi%(a, b)y” = Ki% NR2.
3) W‘fla(a, b)~ is a vertical curve in B4_,R and W:la(a, by = Kilﬁ NR2
@) W%(a, b)™ is a horizontal curve in B;R and W%(a, b)” C K% NR2,
(5) The intersection of W% 4(a, b)” and B;R \ left(B;R \ Wim(a, b)7) consists of two

horizontal curves in B4_,IR \left(B;R \ Wim(a, b)) and W%4 (a,b)” C K%4 NR2.

(6) W% 0 (a, b)~ consists of two mutually disjoint horizontal curves in 83_ r- Moreover,

u - u 2
W@B(a, b)” C KBO]R .

(7) The intersection of WX

(a,b)” and BE]R \right(Bl_,R \ Wfa(a, b)™) consists

of two horizontal curv:;i’ln BIR \right(Bi]R \ Wl%(a, b)™) and W%M (a,b)” C
Ki, NR2

(8) The intersection of W%MO(a, b)~ and B&R \ right(B&R \ Wg(a, b)™) consists
of two horizontal curves in B(IR \ right(BO_,IR \ Wg(a, b)~) and W%mo(a’ b)y” C
Kﬁ%410 n Rz'
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9)  Wx, . (a, b)~ consists of two mutually disjoint horizontal curves in B, . Moreover,

43412
(a,b)” C KX NR2

43412 43412
(10)  The intersection of Wi‘34100(a, b)~ and BaR \right(lﬁ'of]R \ Wﬁ(a, b)™) consists
of two horizontal curves in BO]R \rlght(BO]R \ W (a,b)™) and W. 434100((1 b)y” C
KZ34100 n Rz

n

43 4102 (a, b)~ consists of two mutually disjoint horizontal curves in B, . More-

u u 2
over, W434102(a b) B K434102 NR~

(12) WL  (a,b)” consists of two mutually disjoint horizontal curves in B;R from the

434124

right boundary to itself and W- (a,b)™ C K NRZ2 Moreover, the inner

434124

and this curve is tangent to WZ]O(a b)~

4341 24

one of these two curves is W. (a, b):_

at just one point.

4341 24 inner

The following definitions of pieces of stable/unstable manifolds are necessary to

construct the {«, B}-partition for the proof of Theorem 1.2. First, we let (a, b) € B’HE{J.

T +
We write v ; oht 38 Wg (a,b)™.
We write y]tight as Ws(a, bT.
o +
We write VS.;.leﬁ as W3 | O(a b)™".
: +
We write Youpper 45 Wg (a,b)™.
We write V3+upper (respectively V3+lower) as the upper (respectively lower) connected
component of Wﬁ"3 (a,b)t N (BI R \left(B;: g\ VS—Seft))'
We write y;upper (respectively V2+10wer) as the upper (respectively lower) connected
component of W5 (a, bt NBig
We write yfrupper (respectively yfrlower) as the upper (respectively lower) connected
component of Wz, (a, hTnN (B \right(Bff]R \ yf’rright)).

: u +
We write V3,inner as W023 (a,b)™.

: + u +
We write V2. upper 4 Wozz (a,b)™.

. + +
VYe wrie Vo,liwer as the lower connected component of Wé‘3 10 (a,b)* N (li"o,]R \
right(By g \ ¥ right))-
See Figure 11 for more details. Next, we let (a, b) € BHHQ .
We write yOTright as Wﬁs (a,b)”.
We write leright as W"f(a b)~.
We write y4]eft as W* p 0(a b)~.
We write Y3 lower 35 Wﬁ(a, b)~.
We write y[upper (respectively v, ..) as the upper (respectively lower) connected
component of WL 4(a by~ N (15’4]R \1eft(B4R \ Y4 lee)-
We write y;, upper (respectively y;,...) as the upper (respectively lower) connected
4343 (@, b)".
We write y|, upper (respectively yl_lower) as the upper (respectively lower) connected

component of Wz, (a, )™ N (B \ right(B) g \ ¥ ion)-

component of W.
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+ +
V3 left u})per(B;R) Yo,right P

upper(Bir)  Big
+ \
V3,upper L b Z V(-)fupper
left(B;:]R) —t + rlght(Ba‘,R) —
+ lower(Bo,R) +
y3,inner \\ 7/— ¥ YO,lower
+
B3r Bt upper(Big) upper(Big)
2 14 » .yil»
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+ /YZ,lower +
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B
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FIGURE 11. Margins in DJI;
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1
v

Al
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X Y2,upper

v
A

< YZ_,lower p1

N = YO,lower

¥
Y4_,inner ~
\7/ Byr l\ower(BZ r) Bor lower(Byg)

B, - -
“R B3y upper(Big)  upper(Big)
1 4 3 -
— Y1,
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— D3 D3 /y3,lower —
YaJower P 7 i Y1,lower
- - { Big |
1 BT lower(Bz r lower(B LR _
ower(Bg) (Bsr) (Bir) Viright
FIGURE 12. Margins in 9 .
. _ u _ _
We write Yolower 35 the lower connected component of WB 41O(a, b)™ N (BO,R\

. + —

right(By g \ ¥ rigny))-

S u _ -
We write Y2.lower 48 the lower connected component of WE m 2(a, by~ N B2,R'

. Z u Z _
We write Yo.upper 35 the upper connected component of WB 4100(51, b)y™ N (BO’R\
1ight(By g \ ¥ rignt))-
We write yz_upper as the upper connected component of

(a, D),

inner*

; A
Wi (@ D)™ N By,

3 - u
We write y, ;e a8 WE 1124

See Figure 12 for more details.

5.2. The {a, B}-coding. The purpose of this subsection is to define the {«, §}-coding.
We basically follow the construction of B¢ and BY in [BSg3, §6]. Hereafter, we always
assume that (a, b) € 87—%.
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For y ].J’rleﬂ, y ;fright, yjfupper, y J,Jflower, y ].J’rinner given in the previous subsection, we set
le.ft(B;fR), right(B;”R), upper(B;fR), lower(BIR), inner(B;”R) C B;F,JR as follows (see
Figure 11).

o We write left(B]z) = left(Bip \ ¥31er0)-

e We write right(B}fR) = right(B;R \ y;:right) (j=0,1).

o We write upper(BiR) as the part further up than y;'upp or
(j =0.1). Bip(j =2),0r Bip \ left(BT)(j = 3).

B >

in either B;.”',R \ right(B}"R)

e We write lower(B;fR) as the part lower than y ;flower in either B;”R \right(B}ﬁR)
(=0, 1), Bjx(j =2), 01 B \Ieft(B ) (j = 3).

e We write inner(B; ;) as the part further in than y;nner in B;f -

Let sm; be the family of sets defined as above.

For y J]eft, y ;right, y]fupper, y jflower, y j_’inner given in the previous subsection, we set
left(B;R), right(B;R), upper(B;R), lower(B;R), inner(B;R) C B;R as follows (see
Figure 12).

o We write left(B, ) = left(B;  \ J/4Tleft)'

e  We write right(B;R) = right(B;R \ y]iri ght) (G =0,1.

e We write upper(B /_R) as the part further up than y  upper in either B/'_R \
right(B;R)(j =0,1), B;R(j =2,3),or B;R \ left(B;R)(j =4).

o We write lower(BZR) as the part lower than Y, lower in either B;R\right(B;R)
(j=0,1), B;R(j =2,3),or B;R \1eft(B;R)(j =4).

e  We write inner(B;’R) as the part further in than y,; .. in B;R.

Let 9, be the family of sets defined as above. We call the elements of smjt the margins

of Bi just like 9.

We then construct the {«, §}-partition as described in Figures 13 and 14. Define B;f «R
for j =0 and B;f gp for j=1,2as B;R \ (left(B;fR) U right(BxR) U upper(Bj:R) U
lower(B;R)). The set B;R \ (left(B;fR) U right(B;fR) U upper(B;fR) U lower(B;fR)) with
one point ™ being removed has two connected components. We let B;“ o De the upper
one with ™ being added, and let B;r AR be the lower one with x* being added.

Definition 5.5. We define B} = Bj, 5 UBy, g and By =By UBY ;5 UB3 4 5.

o

Similarly, define B;Q’R for j =0,1 and B;ﬁ’R for j =2,3 as B;R \ (left(B;R) U
right(B;R) U upper(B;R) U lower(B;R)). The set B;R \ (left(B;R) U right(B;R) U
upper(B;R) Ulower(B“_’R)) with one point x~ being removed has two connected

components. We let B, , », be the upper one with x~ being added, and let B;ﬁR be
the lower one with x~ being added.

Definition 5.6. We define B;R = B()ia,R U Bzia’R u B;W’R and BER = Biﬂ’R u B;’&R U

>

B;,/S,R'

The transitions between the margins can be described in the following two lemmas.
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+ + + +
V3 left y3,right Yoleft i Yo,right
o,R

+ +

¥3,upper m Yo,upper
a a

vl |- D2 .

/— 023 Yo,lower
+ +
* B;,]R Y2,upper Bf]R

%4 _ +

11023 Fd Y1,upper
+
VS,inner ﬁ B B
+ >
YB,lower——> T Pa P4 yzlower
310 Big |

+ + + + +
Y2left Y2 ower V2right V1left Y1,right

FIGURE 13. The {«, B}-partition (b > 0).

Yalete Varight Y2jeft Yzupper Yzright Yoleft  Yoright
_ 3 Ve
Ya,upper 0,upper
Y4,inner a . a a
11434124 P1 _
>/* 334124 LT % Volower
/ B2_,]]!g yz_,lower B(;,]R
. —
\ - B3_,1112. Véjupper 31_,111{
\- 434124 4 Y1,upper
1434124
B . B B
_ 3 _
y4,lower 2 ) V1lower
410 Bgp | 1

yii_,left 73_,lower y?,_,right y1_,left y1_,right

FIGURE 14. The {«, B}-partition (b < 0).

C right(Bg ) +—right(B{g) «—left(Big)

lower(B3 ) — upper(Big)
lower(B3g) i: inner(B3g)

upper(B3g)

C upper(Big) § upper (B3 ) — lower(B; ) — lower(B{g)

FIGURE 15. The transitions between margins in 93?2'

LEMMA 5.7. The transitions between margins in zm; are given by Figure 15. In this figure,
for example, left(B3 ) — right(B p) means f(eft(By ) N B C right(B] ).

LEMMA 5.8. The transitions between margins in I, are given by Figure 16. In this figure,
left(B;’R) — right(BiR) means f (left(BA:]R)) N BER - right(Bl_’R).

From these lemmas, we have the following proposition.
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C right(Bgg) +—right(Big) «—left(Byg)

lower(B3r) — upper(B;g) i: upper(Bigr)
l T upper(B3g)
lower(B; ) — lower(Big) : upper(Byg) Y lower(Bgg)

lower(Bz_, R)
upper(B;r) — inner(B;g)

FIGURE 16. The transitions between margins in 9 .

PROPOSITION 5.9. For (a, b) € 87—[;{, we have Kr C B;']R U B;R.

Proof. Suppose p € K. It suffices to show that
the Oth coordinate of the X *-coding of pis 1 => p ¢ M

forany M € EITZ; (compare Proposition 4.1). Here, we show this claim for M = right(Bf“,R)
for example. We can also show this for another M similarly.

Take a point p € Kg. Assume that the zeroth coordinate of the X t-coding of p is
1 and p € right(BtR). By the transitions between symbols, the first coordinate of the
¥ T-coding of p is either 0 or 2. Since p € right(BtR), the first coordinate must be 0.
Then, we have f(p) € right(BOf ) by Lemma 5.7. By chasing the orbit of p similarly,
we can find that f"°(p) belongs to right(B('{ r) and f"(p) also belongs to right(B('{ R)
for any n > ng. Therefore, f"°(p) lies on Wl‘i)c(pl)(‘)|r . This contradicts to the fact that
[ (p) € right(Byp). O

PROPOSITION 5.10. For (a, b) € 0Hy, we have Kr C B, p U BER.

Proof. The proof is similar to that of the previous proposition, and hence is omitted. [

5.3. Proofof Theorem 1.2. In this subsection, we continue to assume that (a, b) € 87—%.
Below, we write

Ktwa = {p € C? : (f"(p))u=0 is bounded}
and
Kowa = {p € C*: (f"(p))n=o is bounded)

as the forward/backward filled Julia set of f, 5, respectively. We also write Jiwg = 0 Kfwd
and Jywd = 9 Kpwq as the forward/backward Julia set, and let J = Jgyq N Jpwd be the Julia
set. By [AIL Proposition 3.1], the filled Julia set Kfyq N Kpwa coincides with K = K.
Moreover, the filled Julia set is included in the real plane R? and coincides with the
Julia set J by [BLS, Theorem 10.1(4), (7)] since hp(f) = log 2 holds. Hence, we have
J =K = Kg.

We write Bﬁ{f as the region in R? enclosed by the curves WIL(’)C( P1)0s yl“’Ll ower? y{lower,
y;}eft, y;upper, y_;iower, and f_l(Wlf)C (p1)o).- Moreover, let B;’,R = f‘l(B;R) and
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fajl? (*+) Bﬁ fa_,g (*+) P1
f. az,b ")
*t B a
S / \ S
To.1+ T0.1- fab S
fab G f
L5 L5

FIGURE 17. The {@, §}-partition.

BEJR =f _I(BER). Also, we write By as the region in R? enclosed by the curves

WIL([)c(p 3)3’ yOTupper’ 7/ljlower’ VZTupper’ 7/4Tleft’ y4jupper’ y4j10wer’ and f ! (Wli)c(p 1)0)'
Moreover, let By p = f _I(B;R) and Bg’R =f _I(BE’R). Then, the {&, B}-partition is
described in Figure 17.

For any point p € J, the {&, f}-coding of f~!(p) coincides with the symbolic sequence
obtained by replacing « and 8 in the {e, B}-coding of p for & and S, respectively.

From now, we assume that (a, b) € 87—[&. The argument for the case (a, b) € IHy is
similar, and hence will be omitted.

For p € K, let sT(p) be the set of all {«, 8}-codings of p, that is,

st (p) = () jez € (e BYE - (fF () € Bl ands; =a) or (f/(p) € Bj and s; = ).

In the case that p = f"*(x") for some n € Z, we have s (p) = {6 (@B - afa), o" (@B -
Bpa)}. However, if p € J' = J\{f"(x") :n € Z}, then sT(p) consists of one point.
Therefore, s* : p > sT(p) is a map from J to {, ,B}Z/N, where ~ is the equivalence
relation generated by " (a8 - afx) ~ o™ (@B - BBw), n € Z.

PROPOSITION 5.11. The map st : J — {a, B2 is continuous.

Proof. The map s™ is obviously continuous on J’. We show that it is continuous on
f™(*T). The neighborhood basis for s™(f"(x")) according to the quotient topology is
given by {xa™ B-28a" x} N>0» Where ? is either & or B, and * means any one-sided infinite
sequence. Take any N. The map f J is continuous for each j € Zsuchthat —N < j <N,
J #0. Hence, we can choose a neighborhood U; of f"Hi(x%) such that U; C Bf
if —-N<j<N,j#0,%l and U; CB; if j = £1. Then, U = ﬂjez f‘j(Uj) is a
neighborhood of f”(x*) and satisfies p € U N J = sT(p) € {o"(xa™ B-2BaV%)}). O

To prove Theorem 1.2 in the case b > 0, it suffices to show that the continuous map st
is bijective. In the rest this subsection, we will show its surjectivity and injectivity.

For each binomial number 0 < 6§ < 1, we define a curve tg in Bﬁg included in W*(p1)
as follows. For @ = 0, 1, let 7; be the right-hand boundary of Bﬁg and let 7; be its left-hand
boundary.

Next, for a finite binomial 0 < 6 < 1, we define r(j inductively as follows. Assume that
T, is already defined for a finite binomial 0 < § < 1. Then, we let f’] () N B;;R = tg/z
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and £~ (g) NBfp =1}, ,for6 = 6/2,1 - 6/2. However, 7} , = f~'(z}) for6’ = §
instead. The curve 7 is represented as two connected curves 7, , from the upper hand
boundary of Bﬂ{ to its lower hand boundary, where 7, ,_is left of 7, _. By definition, 7 is
included in W*(p1) for any finite binomial 0 < 6 < 1. Also, for any pointin W*(p1) N B,
there is a unique finite binomial 6 such that the curve 7 passes that point.

Finally, any infinite binomial 0 <6 <1 can be represented as the limit of some
sequence (0;); of finite binomials. Then, we have rgj cf _I(Bf) for some preimage
f’l(B;’) and large j. For each j, the connected component V; of W*(p1)N f’l(B;r)
including rgj can be described as a graph of some holomorphic function since this

component is a vertical disk of f~! (Bi‘" ). Since the sequence of these functions uniformly
converges, its limit function is also holomorphic. Hence, the limit set V of V; is a graph
of this holomorphic function, which implies V is a vertical disk of f -1 (B;r). We let tg be
the limit set of tgj. Then, 7 is a curve from the upper hand boundary of Bﬂ{ to its lower
hand boundary, and it is included in V.

Remark 5.12. A finite binomial number 6 has two infinite binomial representations
(e.g. 0.1 =0.0111 - - - = 0.1000 - - - ). Each representation corresponds to each of the two
curves 7, of degree one, respectively (e.g. 75 g111... = T 1> T 1000... = T0.14)- From now,
we distinguish two infinite binomial representations of a finite binomial number if needed.

For a point p € J’, we choose 0 < 6 < 1 so that tg passes p. Let 0.d1d>ds - - - be the
binomial representation of . By the definition of 7, d; = 0 if and only if f I(p) e B;:R
and d; =1 if and only if fj(p) € B/‘J{R for each j > 1. Hence, we have the following
proposition.

PROPOSITION 5.13. The map s+ : J — {a, B}2/~ is surjective.

Proof. Let S’ = {a, B}%\ Ujez o/{@p - apa,@p - ppa). It suffices to show that there
exists a point p € J' for each s € 8’ with sT(p) =s. Take any s = (s;); € S’. For
each j, let d; =0 if s; =« and d; =1 if s; = B, and consider a binomial number
6/ = dj.djt1djiodjys - - - . If we choose a point p, € t;,_, N J for each n € Z, then
the jth coordinate of the {«, B}-coding of f"(p,) is s; for j > —n. Since J is compact,
f"(pn) € ‘L'go has a cluster point p € 1'950. Here, if p is on the orbit of »*, then we have
s € 8. Therefore, p belongs to J' and satisfies sT(p) = s. O

We can also construct a curve 7 included in W#(p;) for each binomial number
0 < ¥ < 1 by asimilar argument according to B:ZR, B;R instead of B;’R, BER. For a point
p € J', we choose 0 < ¢ < 1 so that rg passes p, and let 0.dpd_1d_» - - - be the infinite
binomial representation of . Then, d; = 0 if and only if f I(p) e B;“R andd; = 1if and

only if f/(p) € B;R for each j < 0. Therefore, we have the following proposition.

PROPOSITION 5.14. The map s* : J — {a, B}%/~ is injective.

Proof. It suffices to show that there exists at most one point p € J' forany s = (s;); € S’
with sT(p) =s.Letd; =0if s; =w and dj = 1 if s; = B for each j € Z, and consider
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two binomial numbers 6 = 0.d1d>d3 - - - and ¥ = 0.dpd—1d—7 - - - . Then, 6 corresponds
to a curve 7 (or one of 7, ), and ¥ corresponds to a curve 7 (or one of 7j, ). We can
obtain a point p with s*(p) = s as an intersection point of z; and ;.

The curve tj N U™ is included in either Ba' U BT, BS‘ U B;', or B;', and 7f NU™T is
included in either Bg U B; or BT U B; U B;“ . Hence, tg N rg is included in one of four
boxes B;r (i =0,1,2,3). We can obtain tg N B;’ as the intersection of a vertical disk
of degree one in B;r and R2, or as one of two branches of the intersection of a vertical
disk of degree two in B;“ and R2. Also, we can obtain Ty N l’)’;r as the intersection of a
horizontal disk of degree one in Bl.+ and R?, or as one of two branches of the intersection
of a horizontal disk of degree two in Bj' and R?. Therefore, rg and rl?,‘ intersect at at most
one point. O

Proof of Theorem 1.2. By Propositions 5.11, 5.13, and 5.14, we obtain Theorem 1.2. O
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A. Appendix. Computer-assisted proofs

In this appendix, we explain the proofs of Proposition A.l and Lemmas 2.7, 2.8, 2.10,
2.11, 4.2, and 4.5. These proofs require computer-assistance, and are performed by Arai
[A2]. Note that these lemmas concern only the real parameters (a, b) € & *and hence the
computational cost is not so high.

PROPOSITION A.l. The locus Eﬂz{f forms a neighborhood of 87{%.

Proof. When (a, b) belongs to the left boundary of Ei, we show that there exists a
periodic point of period 7 in C>\ R? by using the interval Krawczyk method (see [Al,
Theorem 2.12(i)]). This implies Ap( fup) < log 2 by [BLS, Theorem 10.1]. When (a, b)
belongs to the right boundary of & = we show that fap 1s hyperbolic by using a technique
in [A1] (see [AI, Theorem 2.12(ii)]). These results together with [AI, Main Theorem]
yields that the locus Eﬂ:{ forms a neighborhood of 87—[?{. O

Proof of Lemmas 2.7 and 2.8. For Lemma 2.7, we first choose appropriate topologl—
cal disks D+ D+ (i =0,1,2) and set Py 03 = D“O xprD C By, 7312 = Dul X pr

U’ C B+ and PB = Du’2 X pr DU,2 C B so that COndlthIlS (1) and (2) in the lemma
are satisﬁed.

For Lemma 2.8, we choose appropriate topological disks 5] cD,; (i=0,123)
and set P 2_D 0 ><prDv0 C B, P13 _D 1 Xpr Dy c B, P£455;2 X pr
DU’2 C B and 7?3’4 =D~ 3 Xpr D, w3 C BO so that COIldlthIlS (1) and (2) in the lemma
are satisﬁed. O
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Proof of Lemmas 2.10 and 2.11. Let m,; : BijE — Dii be the projection given by
7y,i(, v) = u and let tyy; : Dy — Bl.jE be given by ¢, ; (1) = (u, vo) for vy € Dii. The
proof is similar to [AI, Lemma 3.13] and goes as follows.

Let (a, b) € Sﬂiﬁ . For Lemma 2.10, we show the following claim by computer assistance.
For every fixed vg € D;fz, we have

d
om0 fH o) #0

foru € D, with 1,y 2(u) € By 0 f~1 By N f~1 BN 1By N f1B)))).

Let (a,b) € &y. For Lemma 2.11, we show the following claims by computer
assistance.
(1) For every fixed vy € D, ,, we have

d,__ =
om0 £ 0 g2 () #0

foru € D, with 1, 2(u) € By 0 =1 (B, N f~1(By)).
(2) For every fixed vg € D, 5, we have

d
S50 f7 oty 3w} #£0
foru € D 5 with 1, 3(u) € By 0 f~1 (B, N f~1(By)). O

Proof of Lemmas 4.2 and 4.5. We define the projective polydisk P; = D; Xy Dy, in claim
(b) as follows. For i = 2, 3, 4, we first compute the stable direction at the saddle point p;
and define 7, to be the projection to this direction. We also define 7, as the projection pr,
orthogonal to the y-axis. We let D; be a disk centered at 7, (p;) and determine its radius
8; > 01is determined so that claims (a) and (c¢) hold. Fori = 1, we approximately compute
the tangential direction of Wi .(p3)4 at some p € Wy (p3)4 N B, and pull it back by f
to define the direction of the projection 7, for P;. We also define 7, as the projection pr,
orthogonal to the y-axis. We let D; be a disk centered at m,, (f ~1(p)) and determine its
radius 8; > 0 is determined so that claims (a) and (c) hold. O
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