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Reduced kinetic model of polyatomic gases
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Kinetic models of polyatomic gas typically account for the internal degrees of freedom at
the level of the two-particle distribution function. However, close to the hydrodynamic
limit, the internal (rotational) degrees of freedom tend to be well represented just by
rotational kinetic energy density. We account for the rotational energy by augmenting
the ellipsoidal statistical Bhatnagar–Gross–Krook (ES–BGK) model, an extension of
the BGK model, at the level of the single-particle distribution function with an
advection–diffusion–relaxation equation for the rotational energy. This reduced model
respects the H theorem and recovers the compressible hydrodynamics for polyatomic
gases as its macroscopic limit. As required for a polyatomic gas model, this extension
of the ES–BGK model not only has the correct specific heat ratio but also allows for
three independent tunable transport coefficients: thermal conductivity, shear viscosity and
bulk viscosity. We illustrate the effectiveness of the model via a lattice Boltzmann method
implementation.
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1. Introduction

The dynamics of a dilute monatomic gas in terms of the single-particle distribution
function is described by the Boltzmann equation (Chapman & Cowling 1970; Cercignani
1988). Unlike the continuum Navier–Stokes–Fourier hydrodynamics equation, the
Boltzmann equation is a valid description even at highly non-equilibrium states
(Mott-Smith 1951; Liepmann, Narasimha & Chahine 1962; Cercignani 1988), encountered
in the presence of strong shock waves at high Mach number (ratio of flow speed to sound
speed) and in a highly rarefied flow characterized by a large Knudsen number (ratio of
the mean free path to characteristic length scale) (Oh, Oran & Sinkovits 1997; Struchtrup
2004; Ansumali et al. 2007b). However, any analysis of the integro-differential Boltzmann
equation is a formidable task even for the simplest problems. Thus, one often models the
Boltzmann dynamics via a simplified collision term that converts the evolution equation
to a partial differential equation (Bhatnagar, Gross & Krook 1954; Lebowitz, Frisch &
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Helfand 1960; Holway 1966; Shakhov 1968; Gorban & Karlin 1994; Levermore 1996;
Andries et al. 2000; Ansumali et al. 2007a; Singh & Ansumali 2015; Agrawal, Singh
& Ansumali 2020). An important example is the Bhatnagar–Gross–Krook (BGK) model
(Bhatnagar et al. 1954), which states that the relaxation of the distribution function towards
the Maxwell–Boltzmann (MB) form happens on a time scale corresponding to the mean
free time τ with the assumption that every moment of the distribution function relaxes
at the same rate. The BGK model is quite successful in replicating qualitative features
of the Boltzmann dynamics (collisional invariants, the zero of the collision, H theorem,
conservation laws, etc.). However, the BGK model predicts the Prandtl number of the fluid
to be unity, while the value predicted by the Boltzmann equation for a monatomic gas is
2/3. Thus, several other variations of the collision model such as the ellipsoidal statistical
BGK (ES–BGK) model (Holway 1966; Andries et al. 2000), the quasi-equilibrium models
(Gorban & Karlin 1994; Levermore 1996), the Shakhov model (Shakhov 1968) and the
Fokker–Planck model (Singh & Ansumali 2015; Singh, Thantanapally & Ansumali 2016)
are used as kinetic models with tunable Prandtl number. The ES–BGK model (Holway
1966; Andries et al. 2000) is an elegant but simple improvement over the BGK model.
This model assumes that the distribution function relaxes to an anisotropic Gaussian
distribution within mean free time τ . The anisotropic Gaussian in itself evolves towards
the MB distribution with a second time scale. The presence of a second time scale as free
parameter ensures that the time scales related to momentum and thermal diffusivity are
independent, thus permitting one to vary the Prandtl number in the range of 2/3 to ∞.

Despite their success, the Boltzmann collision kernel and its aforementioned
simplifications are limited to monatomic gases as they do not account for the internal
molecular structure. However, many real gases such as nitrogen, oxygen and methane
are polyatomic. At the macroscopic level, the internal molecular structure predominantly
manifests in terms of modified specific heat ratio γ and bulk viscosity ηb, which is
crucial for a number of aerodynamic and turbomachinery engineering applications (von
Backstrom 2008; Wu et al. 2015). The specific heat ratio predicted by the Boltzmann
equation is that of a monatomic gas (γ = 5/3), whereas that of a diatomic gas is 7/5.

Two-particle kinetic theory as an extension of the Boltzmann equation as expected
correctly predicts the specific heat ratio for polyatomic gases along with heat conductivity
and the bulk viscosity (Wang-Chang & Uhlenbeck 1951; Wu et al. 2015; Chapman &
Cowling 1970). However, it is often not feasible to do any analysis on the Boltzmann-type
equation for polyatomic gases. Therefore, several simplifications to model polyatomic
gases have also been proposed. They essentially incorporate the rotational kinetic
energy by decomposing the two-particle distribution function into two independent
single-particle distribution functions (Morse 1964; Andries et al. 2000; Kataoka &
Tsutahara 2004; Watari 2007; Nie, Shan & Chen 2008; Tsutahara et al. 2008; Larina
& Rykov 2010; Wu et al. 2015; Wang et al. 2017; Bernard, Iollo & Puppo 2019).
Furthermore, a thermodynamic framework and extensions thereof were developed for
modelling highly nonequilibrium phenomena in dense and rarefied polyatomic gases
where the Navier–Stokes–Fourier theory is no longer valid (Arima et al. 2012; Müller
& Ruggeri 2013; Ruggeri & Sugiyama 2015). A few BGK-like models have also been
proposed for polyatomic gases which accept the Prandtl number as a tunable parameter
(Andries et al. 2000; Brull & Schneider 2009).

Hydrodynamic simulations for a realistic system require the development of
reduced-order models to account for rotational degrees of freedom ideally without
increasing the phase-space dimensionality. Indeed, the standard approach is to demonstrate
that the two-particle distribution function describing the translational and rotational
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degrees of freedom can be approximated by considering two single-particle distribution
functions (one for the translational and another for the rotational degrees of freedom)
whose dynamics are coupled to each other (Andries et al. 2000). However, recently it was
pointed out that a simplified description in terms of a single-particle distribution function
for the translational degree of freedom and a scalar field variable for rotational kinetic
energy is sufficient for modelling the change in specific heat ratio for a dilute diatomic gas
in the hydrodynamic limit (Kolluru, Atif & Ansumali 2020a). This model supplemented
the standard Boltzmann BGK equation with an advection–relaxation equation for the
evolution of rotational energy. It preserved the correct conservation laws for diatomic
gases in the hydrodynamic limit and satisfied the H theorem. However, the model was
restricted to diatomic gases and a Prandtl number 7/5, limiting its application for heat
transfer problems.

We propose a kinetic model of polyatomic gases to tune Prandtl number, specific
heat ratio and bulk viscosity in a physically transparent fashion. To do so, we write a
new collision kernel which is a linear combination of the ES–BGK and BGK kernels
that are locally relaxing to different temperatures at different time scales. The ratio
of the two relaxation time scales is used to tune the Prandtl number. We couple the
evolution of the single-particle distribution function (with this modified collision kernel)
via an advection–diffusion–relaxation equation for the rotational energy. The rotational
contribution to the internal energy alters the specific heat ratio to that of a polyatomic gas
and allows the modelling of the bulk viscosity contribution arising out of the rotational
degree of freedom. Such an extension of the ES–BGK model indeed reproduces the
hydrodynamic behaviour of a polyatomic gas and also has a valid H theorem. These
minimal extensions of the ES–BGK model of monatomic gases are constructed at a
single-particle level for polyatomic gases and are phenomenological by construction. It
is commensurate with the top-down modelling approach as developed in the context of
the lattice Boltzmann models and aims to be analytically and numerically tractable (Succi
2001; Ansumali et al. 2007b; Atif et al. 2017; Atif, Kolluru & Ansumali 2022). The present
model which requires only the solution of an advection–diffusion–relaxation equation
along with the Boltzmann ES–BGK equation adds only a minor complexity over analogous
monatomic gas ES–BGK model and can be implemented in the mesoscale framework such
as the lattice Boltzmann method quite easily. This approach is distinctly different from
and is more detailed than the existing approach in the lattice Boltzmann models where the
effect of rotational degree of freedom is further coarse-grained and the correction needed
to model specific heat ratio is directly added as a force term in the BGK collision model
(Kataoka & Tsutahara 2004; Nie et al. 2008; Chen et al. 2010; Huang, Lan & Li 2020).
In contrast, this model of polyatomic gases enlarges the set of microscopic degrees of
freedom and models dynamics of rotational energy in an explicit manner.

The paper is organized as follows. Brief kinetic descriptions of monatomic and
polyatomic gases are given in §§ 2 and 3 respectively. In § 4, we propose an extension to
the ES–BGK model for polyatomic gases. The lattice Boltzmann formulation is described
in § 5. The proposed model is numerically validated in § 6. Finally, in § 7, we discuss the
outlook of the present work.

2. Kinetic description of a monatomic gas

The dynamics of dilute monatomic gases is well described by the Boltzmann equation in
terms of the evolution of the single-particle distribution function f , where f (x, c, t) dx dc is
the probability of finding a particle within (x, x + dx), possessing a velocity in the range
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(c, c + dc) at a time t. The hydrodynamic variables are density ρ(x, t), velocity u(x, t) and
total energy E(x, t) = (ρu2 + 3ρkBT/m)/2. Here onwards, we use a scaled temperature θ

defined in terms of Boltzmann constant kB and mass of the particle m as θ = kBT/m.
The thermodynamic pressure p and the scaled temperature θ are related via the ideal gas
equation of state as p = ρθ . These hydrodynamic variables are computed as the moments
of the single-particle distribution function:

{ρ, ρu, E} =
〈{

1, c,
c2

2

}
, f
〉
, (2.1)

where we define the averaging operator 〈φ1(c), φ2(c)〉 = ∫∞
−∞ φ1(c)φ2(c) dc. In the

co-moving reference frame with fluctuating velocity ξ = c − u, the stress tensor σαβ is
the traceless part of the flux of the momentum tensor Θij ≡ σαβ + ρθδαβ and the heat flux
qα is the flux of the energy. Thus,

Θij ≡ 〈
ξiξj, f

〉
, σαβ = 〈

ξαξβ, f
〉
, qα =

〈
ξα

ξ2

2
, f
〉
, (2.2a–c)

where the symmetrized traceless part Aαβ for any second-order tensor Aαβ is Aαβ =
(Aαβ + Aβα − 2Aγ γ δαβ/3)/2. The stress tensor and heat flux tensor are related to the
pressure tensor Pαβ = 〈

cαcβ, f
〉

and energy flux 〈c2cα/2, f 〉 respectively as

σαβ = Pαβ − ρuαuβ − ρθδαβ, qα =
〈

c2cα

2
, f
〉
− uα (E + ρθ) − uβσαβ. (2.3a,b)

In the dilute gas limit, the time evolution of the distribution function is a sequence of
free-flight and binary collisions well described by the Boltzmann equation ∂tf + cα∂αf =
Ω( f , f ), where the collision kernel Ω( f , f ) models the binary collisions between particles
under the assumptions of molecular chaos (Chapman & Cowling 1970; Cercignani 1988;
McQuarrie 2000). The nonlinear integro-differential Boltzmann collision kernel is often
replaced by simpler models that should recover the following essential features such as
the conservation laws, the H theorem, and that the MB distribution is the zero of collision
(Cercignani 1988).

We briefly describe the two most widely used models, the BGK collision model and
the ES–BGK model. The BGK model, perhaps the simplest and most widely used model
of the Boltzmann collision kernel, models the collision as a relaxation of the distribution
function towards the equilibrium f MB (Bhatnagar et al. 1954) as

ΩBGK = 1
τ
( f MB(ρ, u, θ) − f ). (2.4)

This assumes that the process occurs at a single time scale τ corresponding to the mean
free time. The hydrodynamic limit is typically analysed via Chapman–Enskog expansion
which allows evaluating the dynamic viscosity μ and thermal conductivity κ for the model
with the specific heat Cp for a monatomic ideal gas as 5/2 (Chapman & Cowling 1970):

μ = pτ, κ = 5
2

pτ =⇒ Pr = μCp

k
= 1. (2.5a,b)

Despite this defect of Pr = 1, the BGK model is extremely successful as both a numerical
and an analytical tool for analysis. The ES–BGK model (Holway 1965) also describes
the collision as simple relaxation process but, unlike the BGK model, it overcomes the
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restriction on the Prandtl number. The extra ingredient for the ES–BGK model is a
quasi-equilibrium form of distribution derived by minimizing the H function under the
constraints of an additional condition of fixed stresses. The ES–BGK model uses the
anisotropic Gaussian distribution f ES ≡ f Quasi(ρ, u, λij):

f ES (ρ, u, λij
) = ρ√

det[2πλij]
exp

(
−1

2
ξiλ

−1
ij ξj

)
, (2.6)

where instead of pressure tensor a positive-definite matrix λij = (1 − b)θδij + bΘij ≡
θδij + bσij is used with −1/2 � b � 1 as a free parameter, the range of b being dictated
by the positive definiteness of λ−1

ij (Andries et al. 2000). The Chapman–Enskog analysis
of this model yields

μ = pτ

1 − b
, κ = 5

2
pτ =⇒ Pr = 1

1 − b
. (2.7a,b)

Thus, the free parameter b in the anisotropic Gaussian allows one to vary the Prandtl
number from 2/3 to infinity. At b = −1/2, the Prandtl number predicted by the ES–BGK
model is 2/3, which matches with the value obtained from the Boltzmann equation, and
when b = 0, the model is equivalent to the BGK model. The thermal conductivity is fixed
only by τ while the viscosity can be tuned via b to obtain the required Prandtl number.

3. Kinetic description of a polyatomic gas

The rotational degrees of freedom of a polyatomic gas manifest themselves at the
continuum level in terms of change in specific heat ratio γ and a non-zero bulk
viscosity due to interaction among the translational component ET = ρu2/2 + 3ρθT/2
and rotational component ER of energy. Thus, the rotational degrees of freedom need to
be explicitly accounted for in any microscopic or kinetic description. Indeed, typically the
kinetic descriptions are in terms of a two-particle distribution function F(x, c, t, I) which
defines the probability of finding a molecule with a position in the range (x, x + dx)

possessing a velocity in the range (c, c + dc) in an internal energy parameter range
(I, I + dI) due to the additional degrees of freedom (Morse 1964; Rykov 1975; Kuščer
1989). The internal energy due to these additional degrees of freedom is defined by
assuming a continuous variable in the internal energy space as eint = I2/δ.

For a polyatomic gas with δ additional rotational degrees of freedom, the moments
of this distribution function give the density, momentum and total energy (with δ = 0
corresponding to a monatomic gas):

{ρ, ρu, ET + ER} =
〈〈{

1, c,
c2

2
+ I2/δ

}
, F

〉〉
, (3.1)

like its monatomic counterpart and the operator 〈〈. . .〉〉 is defined as 〈〈φ1(c, I), φ2(c, I)〉〉 =∫ ∫
φ1(c, I)φ2(c, I) dc dI. For the reduced-order modelling, the distribution function

F(x, c, t, I) is often split into two coupled distribution functions f1(x, c, t) and f2(x, c, t)
defined as f1(x, c, t) = ∫

F(x, c, I, t) dI and f2(x, c, t) = ∫
F(x, c, I, t)I2/δ dI, where f1 is

related to the translational energy and f2 to the rotational energy dynamics (Rykov 1975;
Andries et al. 2000). The moments of reduced distribution f1(x, c, t) are then the same as
the moments of the single-particle distribution function (2.1).
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By construction, we have the zeroth moment of f2(x, c, t) as the rotational energy:

ER =
〈〈

c2

2
+ I2/δ, F

〉〉
−
〈
f1,

c2

2

〉
=
〈〈

F, I2/δ
〉〉

≡ 〈f2, 1〉 = δ

2
ρθR. (3.2)

In other words, the temperature θ consists of contributions from the translational and
rotational temperatures, and they follow the relation

θ = 3
3 + δ

θT + δ

3 + δ
θR, (3.3)

and in thermodynamic equilibrium the equipartition of energy requires θR = θT . The heat
flux for a polyatomic gas is qα = qT

α + qR
α , where qT

α is the translational heat flux and qR
α

is an additional heat flux due to rotational energy.
As for a monatomic gas, the evolution equation for this distribution function F(x, c, t, I)

with collisional kernel Ω(F, F) in the Boltzmann form is

∂tF + cα∂αF = Ω(F, F), (3.4)

which is consistent with the equipartition of energy at equilibrium (Pullin 1978; Kuščer
1989). Similar to a monatomic gas, one defines the BGK collision kernel in terms of the
two-particle distribution function for a polyatomic gas as (Brull & Schneider 2009)

ΩBGK = 1
τ
(FMB(ρ, u, θ, I) − F),

FMB(ρ, u, θ, I) = ρΛδ

(2πθ)3/2 θδ/2
exp

(
−
(

(c − u)2

2θ
+ I2/δ

θ

))
,

⎫⎪⎪⎬
⎪⎪⎭ (3.5)

with normalization factor Λδ = ∫
exp(−I2/δ) dI. Equation (3.4) with ΩBGK is written as

two kinetic equations for the reduced distributions f1(x, c, t) and f2(x, c, t) by multiplying
by 1 and I2/δ and then integrating over the internal energy variable as

∂tf1 + cα∂αf1 = 1
τ
( f MB

1 (ρ, u, θ) − f1),

∂tf2 + cα∂αf2 = 1
τ

(
δ

2
θ f MB

1 (ρ, u, θ) − f2

)
.

⎫⎪⎪⎬
⎪⎪⎭ (3.6)

This approach, where two reduced distributions are weakly coupled via temperature,
recovers all the features of (3.4) and is widely adopted for polyatomic gases. Andries et al.
(2000) extended this approach via an extended ES–BGK collision kernel as

ΩESBGK(F) = ZES

τ
(FES(ρ, u, λij, θrel) − F), (3.7)

where λij = (1 − α)[(1 − b)θTδij + bΘij] + αθδij with a generalized Gaussian FES:

FES(ρ, u, λij, θrel) = ρΛδ

θ
δ/2
rel

√
det[2πλij]

exp
(

−1
2
ξiλ

−1
ij ξj − I2/δ

θrel

)
, (3.8)

with θrel = αθ + (1 − α)θR and ZES = 1/(1 − b + bα). Similar to the monatomic
ES–BGK model, the parameter b is used to tune the Prandtl number, while parameter
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α is used to tune the bulk viscosity coefficient independently. The reduced description
which generalizes the ES–BGK model in terms of f1 and f2 is

∂tf1 + cα∂αf1 = ZES

τ
( f ES(ρ, u, λij) − f1),

∂tf2 + cα∂αf2 = ZES

τ

(
δ

2
θrelf ES(ρ, u, λij) − f2

)
.

⎫⎪⎪⎬
⎪⎪⎭ (3.9)

A Chapman–Enskog analysis shows that the momentum equation yields the familiar
compressible Navier–Stokes equation form as

∂t(ρuα) + ∂β(ρuαuβ) + ∂αp − ∂β

(
2η∂βuα + ηb∂κuκδαβ

) = 0, (3.10)

with the shear and bulk viscosities

η = pτ,
ηb

η
= 2δ

3(3 + δ)ZE
. (3.11a,b)

Similarly, an analysis of the translational and rotational heat flux dynamics at O(Kn)

leads to qT
α = −κT∂αθ , qR

α = −κR∂αθ, with the translational and rotational thermal
conductivities κT = 5pτ/(2Zq), κR = δpτ/(2Zq) respectively. The effective thermal
conductivity κ = κT + κR = (5 + δ)pτ/(2Zq). Thus, the Prandtl number is Pr = Zq,
i.e. Pr = 1 for the BGK model and Pr = 1/(1 − b + bα) for the ES–BGK model.

4. Reduced ES–BGK model for polyatomic gases

In the kinetic theory of gases, one often builds an extended moment system in terms of
physically relevant lower-order moments (Grad 1958). In this spirit of Grad’s moment
method, one may ask whether a reduced description for rotational degrees of freedom is
feasible. It should be noted that the evolution equation of f1 is only weakly coupled with the
evolution of f2 via θR. An appropriate choice in the current context is a reduced description
in terms of lower-order moments of second distribution f2. For example, the rotational
component can be modelled by the evolution of two scalars – rotational energy and its flux
(which are the zeroth and the first moment of f2). Such a class of reduced-order kinetic
models might be better suited for large-scale hydrodynamic simulations. An extended
BGK model for diatomic gases was formulated by Kolluru et al. (2020a) wherein the
BGK collision model was coupled with the rotational part of energy (zeroth moment of
f2) which in itself follows an advection–relaxation equation.

We extend this approach by a generalized ES–BGK model for polyatomic gases with
tunable Prandtl numbers where the collision term is a linear combination of ES–BGK
and the BGK collision kernels. In this model, the ES–BGK term describes relaxation to
a temperature θT over a time τ whereas the BGK collision kernel describes relaxation to
a temperature θ over a time τ1. The kinetic equation of the unified model along with the
evolution equation for the rotational energy is

∂tf1 + cα∂αf1 = 1
τ
( f ES(ρ, u, θTδαβ + bσαβ) − f1) + 1

τ1
( f MB(ρ, u, θ) − f1),

∂t (ER) + ∂α(ERuα + qR
α) = 1

τ1

(
δ

2
ρθ − ER

)
,

⎫⎪⎪⎬
⎪⎪⎭ (4.1)

with the form of heat flux due to internal degrees of freedom as

qR
α = −κR∂αθR. (4.2)
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This model is a minimal extension of the monatomic ES–BGK model needed for
modelling polyatomic gases which also recovers all important features such as the
positivity, macroscopic limit and the H theorem. Here, the Prandtl number is a tunable
parameter due to the presence of two relaxation time scales, whereas the rotational part
of the internal energy alters the specific heat ratio to that of a polyatomic gas. The model
satisfies the H theorem, thus ensuring convergence to a unique equilibrium state. A few
important characteristic of the present model are as follows:

(i) Conservation laws. The mass and momentum conservation equations for the
proposed model are obtained by taking the zeroth and first moments of f1 evolution
(4.1). The second moment signifying the translational energy evolution equation is

∂tET + ∂β

[
(ET + ρθT) uβ + σβγ uγ + qT

β

]
= ρ

τ1

(
3
2
θ − 3

2
θT

)
, (4.3)

which when combined with the rotational energy equation shows that the total
energy is conserved. This implies that the evolution equation for slow moments

Mslow =
{
ρ, ρuα,

1
2
ρu2 + 3 + δ

2
ρθ

}
, (4.4)

mass density, momentum density and total energy density are

∂tρ + ∂α(ρuα) = 0,

∂t(ρuα) + ∂β

(
ρuαuβ + ρθδαβ + σ̂αβ

) = 0,

∂t (ET + ER) + ∂β

[
(ET + ER + ρθ) uβ + σ̂βγ uγ + qβ

] = 0.

⎫⎪⎬
⎪⎭ (4.5)

Thus, the conservation laws have the correct macroscopic form.
(ii) H theorem. For polyatomic gases, a part of entropy production should be due to

rotational degrees of freedom. In the current model, as internal degrees of freedom
are accounted for in a mean-field manner, similar to the Enskog equation one
would expect that entropy contribution should only depend on rotational energy
(Resibois 1978). Thus, we write a generalized H function for polyatomic gas H1
in Sackur–Tetrode form as a sum of Boltzmann part for monatomic contribution and
rotational part kρ ln θR (Huang 2009):

H1 = H + kρ ln θR, (4.6)

with k being an unknown scale factor to be fixed later. On multiplying (4.1) with ln f ,
and integrating over the velocity space, we obtain the evolution of H as

∂tH + ∂αJH
α = ΣESBGK + τ

τ1
ΣBGK( f MB(ρ, u, θ)) − 3ρ

2τ1

θ − θT

θ
, (4.7)

where JH
α is related to the entropy flux with ΣESBGK and ΣBGK being the entropy

production due to the ES–BGK and the BGK terms respectively. The evolution of
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Reduced kinetic model of polyatomic gases

the rotational energy (second equation in (4.1)) can be rewritten as

∂t ln θR + uα∂α ln θR + 2
δρθR

∂αqR
α = θ − θR

τ1θR
. (4.8)

Multiplying the above equation with ρ and exploiting continuity we obtain

∂t (ρ ln θR) + ∂α

(
ρuα ln θR + 2

δ

qR
α

θR

)
= ρ

τ1

θ − θR

θR
− 2

δ

qR
α

θ2
R
∂αθR. (4.9)

Thereby, adding (4.7) and (4.9) and using the form of qR
α from (4.2), the evolution of

H1 is obtained as

∂tH1 + ∂α

(
JH
α + kρuα ln θR + k

2
δ

qR
α

θR

)
= ΣESBGK + ΣBGK + Σ̂, (4.10)

where the right-hand side is the net entropy production with contributions from the
ES–BGK collision, the BGK collision and the rotational component of the model.
Here,

Σ̂ = − 3ρ

2τ1

θ − θT

θ
+ kρ

τ1

θ − θR

θR
+ k

2
δ
κR

(
∂αθR

θR

)2

. (4.11)

Similar to the standard BGK or ES–BGK case (Andries et al. 2000), the entropy
production Σ̂ in this model is also non-positive. This is achieved by choosing k =
−δ/2 and exploiting relation (3.3) to rewrite Σ̂ as

Σ̂ = −δ

2
ρ

τ1

(θ − θR)2

θθR
− κR

(
∂αθR

θR

)2

≤ 0. (4.12)

Hence, the proposed model satisfies the H theorem.
(iii) Hydrodynamics. In order to derive the hydrodynamic limit and the transport

coefficients, the moments are typically categorized into fast Mfast and slow Mslow
moments. The stress tensor and the heat flux constitute the relevant set of fast
moments along with the translational and rotational temperatures as they are not
conserved:

Mfast = {
θT , θR, σαβ, qα

}
. (4.13)

The base state is obtained from zero of collision from (4.1) as

f = f MB =⇒ θ = θT and θ = θR. (4.14a,b)

Thus, the fast moment can be expanded around the equilibrium values in a series as

Mfast = Mfast( f MB) + τM(1)
fast + · · · . (4.15)

In the Chapman–Enskog expansion, the time derivative of any quantity φ is
expanded as

∂tφ = ∂
(0)
t φ + τ∂

(1)
t φ + O(τ 2). (4.16)
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The set of conservation laws (4.5) upon substituting the expansion of time derivative
provide the definition of time derivative at O(1) of slow variables as Euler equations:

∂
(0)
t ρ + ∂α (ρuα) = 0,

∂
(0)
t (ρuα) + ∂β

(
ρuαuβ + ρθδαβ

) = 0,

∂
(0)
t E + ∂β

(
Euβ + ρθuβ

) = 0.

⎫⎪⎪⎬
⎪⎪⎭ (4.17)

Thus, pressure evolution at O(1) satisfies the adiabatic condition for a polyatomic
gas: (

∂
(0)
t + uβ∂β

)( p
ργ

)
= 0, where γ = 5 + δ

3 + δ
. (4.18)

Similarly, at order O(τ ) we have

∂
(1)
t ρ = 0,

∂
(1)
t (ρuα) + ∂α(ρθ

(1)
T ) + ∂βσ

(1)
αβ = 0,

∂
(1)
t E + ∂β

(
σ

(1)
αβ uα + ρθ

(1)
T uβ + q(1)

β

)
= 0.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(4.19)

The expressions for ρθ
(1)
T and σ

(1)
αβ can be obtained from the evolution equations of

translational temperature (A13) and stress tensor (A15) respectively as (details of
derivations in Appendix A)

ρθ
(1)
T = − 2δ

3(3 + δ)

τ1

τ
p∂γ uγ , σ

(1)
αβ = −2p∂βuα

B − b
, (4.20a,b)

where B = 1 + τ/τ1. Substituting the above expressions in the momentum
conservation equation, O(τ ) hydrodynamics with shear viscosity η and bulk
viscosity ηb is

η = pτ

B − b
and ηb = 2δ

3(3 + δ)
pτ1. (4.21a,b)

Similarly, translational thermal conductivity for the model is obtained from the
translational heat flux evolution (A16). A Chapman–Enskog expansion of (A16)
by substituting qT

α = (qT
α)MB + τ(qT

α)
(1) + O(τ 2) at O(1) yields(

1 + τ

τ1

)
(qT

α)
(1) = −5

2
ρθ∂αθ. (4.22)

Thus, the translational thermal conductivity is κT = 5pτ/(2B) which means the
total thermal conductivity κ = κT + κR with kr = κR/κT is κ = 5pτ/(2B)(1 + kr).
Hence,

Pr = ηCp

κ
=
(

B
B − b

)(
1 + δ

5

)(
1

1 + kr

)
. (4.23)

To summarize, the parameter δ is determined directly from specific heat ratio γ .
While the rotational relaxation time τ1 is fixed based on δ and bulk viscosity ηb. The
translational relaxation time τ is then determined based on δ, shear viscosity η and
τ1. The parameter b is then fixed using τ , τ1, Pr and kr thereby imposing the target
Prandtl number.

963 A7-10

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

32
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.323


Reduced kinetic model of polyatomic gases

Discrete velocities (ci) Weight (wi)

(0, 0, 0) (52 − 323θ0 + 921θ2
0 − 1036θ3

0 )/52
(±1, 0, 0), (0, ±1, 0), (0, 0, ±1) θ0(12 − 38θ0 + 63θ2

0 )/39
(±2, 0, 0), (0, ±2, 0), (0, 0, ±2) θ0(3 − 29θ0 + 84θ2

0 )/312
(±1, ±1, 0), (±1, 0, ±1), (0, ±1, ±1) θ0(45θ0 − 6 − 77θ2

0 )/26
(±1, ±1, ±1) θ0(20 − 163θ0 + 378θ2

0 )/312
(±0.5, ±0.5, ±0.5) 8θ0(4 − 17θ0 + 21θ2

0 )/39

Table 1. Velocities and their corresponding weights for the RD3Q41 model with θ0 = 0.2948964908710633.

5. Discretizing via lattice Boltzmann method

In this section, we formulate a lattice Boltzmann scheme for solving the proposed
model. Firstly, the velocity space is discretized into a discrete velocity set c = {ci, i =
1 . . . N} consisting of N vectors. These vectors form the links of a lattice that should
satisfy appropriate isotropy conditions (Succi 2001; Atif, Namburi & Ansumali 2018).
In particular, we validate the proposed kinetic model using a 41-velocity crystallographic
lattice from Kolluru et al. (2020b), which uses a body-centred cubic arrangement of grid
points. The body-centred cubic lattice contains two simple cubic lattices offset by half
the length of grid spacing in all directions for better spatial discretization (Namburi,
Krithivasan & Ansumali 2016). The weights for this lattice Boltzmann model are derived
by imposing the following constraints on the discrete velocity set:

∑
wi = 1,

∑
wic2

ix = θ0,
∑

wic4
ix = 3θ2

0 ,∑
wic2

ixc2
iy = θ2

0 ,
∑

wic4
ixc2

i = 21θ3
0 ,∑

wic2
ixc4

i = 35θ3
0 ,

∑
wic8

i = 945θ4
0 ,

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(5.1)

where θ0 is a reference lattice temperature. The discrete velocities and their corresponding
weights for this RD3Q41 model are given in table 1.

The kinetic equation (4.1) in discrete in velocity space for populations f1i is

∂tf1i (x, c, t) + cα∂αf1i (x, c, t) = Ωi(x, t), (5.2)

where

Ωi (x, t) = 1
τ

[f ES
1i (ρ, u, θTδαβ + bσαβ) − f1i] + 1

τ1
[ f Eq

1i (ρ, u, θ) − f1i], (5.3)

with moments of the discrete populations f1i defined as

ρ( f1) =
∑

i

f1i, ρuα( f1) =
∑

i

f1iciα, θT( f1) = 1
3ρ( f1)

(∑
i

f1ic2
i − ρu2

)
.

(5.4a–c)

To have a numerically efficient scheme for the N coupled partial differential equations of
(5.2), it is desirable to have large time steps, i.e. �t � τ . Upon integrating (5.2) along the
characteristics and approximating the integral related to the collision term via the trapezoid
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rule, we obtain the implicit relation

f1i(x + c�t, t + �t) = f1i(x, t) + �t
2

[Ωi(x, t) + Ωi(x + ct, t + �t)] , (5.5)

which is made explicit by a transformation to an auxiliary population g1i(x, c, t) =
f1i(x, c, t) − (�t/2)Ωi(x, c, t). This implies the evolution equation for g1i is

g1i (x + ci�t, t + �t) = g1i (x, t)
(
1 − 2β∗) + 2τ ∗β∗Ωi (x, c, t) , (5.6)

with 1/τ ∗ = 1/τ + 1/τ1 and β∗ = �t/(2τ ∗ + �t). The moments of the auxiliary
distribution g1 are related to the moments of discrete populations f1 as

ρ(g1) = ρ( f1), u(g1) = u( f1), θT(g1) = θT( f1) + δ�t
2τ1(3 + δ)

(θT( f1) − θR) ,

σαβ(g1) = σαβ( f1)
(

1 + �t
2τ ∗ − �t

2τ
b
)

.

⎫⎪⎪⎬
⎪⎪⎭
(5.7)

To solve the second part of (4.1) that represents the internal energy, we write

∂θR

∂t
+ uα

∂θR

∂xα

= 1
τ1

(θ − θR) + 2
ρδ

κR∇2θR, (5.8)

by exploiting equations (3.3) and (4.2) and the continuity equation. The above equation is
an advection–relaxation–diffusion equation that is solved by the steps detailed below:

(i) The relaxation equation
∂θR

∂t
= 1

τ1
(θ − θR) (5.9)

is first solved using the backward Euler method for a half-time step along with the
relation in (3.3) to obtain

θ
t+�t/2
R = 1

1 + X
θ t

R + X
1 + X

θT( f1), (5.10)

where X = 3�t/(2τ1(3 + δ)).
(ii) The MacCormack scheme (MacCormack 2003), which uses forward and backward

differences for spatial derivatives in the predictor and corrector steps respectively, is
used to solve the advection equation

∂θR

∂t
+ uα

∂θR

∂xα

= 0. (5.11)

(iii) The diffusion equation
∂θR

∂t
= 2

ρδ
κR∇2θR (5.12)

is then solved using the standard forward time centred space scheme to get θ
dif
R .

(iv) Finally, the second part of relaxation is completed by an advance of θ
dif
R by another

half-time step �t/2 leading to the final solution at t + �t as

θ t+�t
R = 1

1 + X
θ

dif
R + X

1 + X
θT( f1). (5.13)
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Reduced kinetic model of polyatomic gases

Note that the choice of the solver for the evolution equation of rotational energy is
independent of the lattice Boltzmann solver used for solving f1. The use of a scalar
equation for rotational energy offers a significant computational advantage over using an
additional distribution function, with memory usage and computational time reduced by a
factor of 3–4. The difference between the two approaches lies in the treatment of internal
degrees of freedom, but the accuracy remains the same for both formulations when the
same flow solver is used (for low-Knudsen problems). The computational cost savings are
entirely due to using a scalar variable instead of a full distribution function.

In contrast, solving kinetic equations with a D3Q15 velocity model requires at least five
times more storage than advection–diffusion–reaction solvers, which typically work with
2–3 variables per grid point. We recall that both kinetic equation and advection–diffusion
solvers are memory-bound; hence, the cost of floating point variables does not have a
significant impact on the computational cost of either method. Instead, the number of
memory read and write operations determines the computational cost.

A 15-velocity lattice Boltzmann model, for instance, requires 30 memory read/write
operations per grid point for advection, and another 30 memory read/write operations and
approximately 100 floating-point operations per grid point for the collision step. Thus,
a simulation of the second kinetic equation requires 60 memory read/write operations
and around 100 floating-point operations per grid point. Since most stencil-based
finite-difference-type codes, including lattice Boltzmann codes, are memory-bound
due to slower memory access in modern computers, the proposed model with
advection–diffusion–relaxation would require only about 20–24 reads and writes per grid
point. This leads to a 3–4 times reduction in computational time when using a scalar
equation compared with a D3Q15 stencil.

In the next section, we validate the proposed numerical model by simulating a few
benchmark problems related to acoustics, hydrodynamics and heat transfer such as
propagation of an acoustic pulse, startup of a simple shear flow, thermal conduction and
viscous heat dissipation.

6. Validation

In this section, we validate the model by contrasting simulation results with various
benchmark results. As a first example, we consider a periodic domain [−π, π] with
128 × 4 × 4 lattice points to verify numerical sound speed. We initialize the domain with a
pressure fluctuation of the form p(x, t = 0) = p0(1 + ε cos(x)) with p0 = θ0. The pressure
pulse is expected to reach the same state as the initial condition after one acoustic time
period (ta). The L2-norm of the pressure fluctuation is computed using the current state and
initial state which is expected to be minimum when the waves are in phase. The number of
time steps taken to achieve the least L2-norm is used to compute ta and the speed of sound
as cs = L/ta, where L is the domain length. Thus, γ = c2

s /θ0 is computed from the speed
of sound and the lattice temperature. Here, we demonstrate the versatility of the model
by simulating several real fluids by imposing the effective rotational degrees of freedom
δ as given in table 2. We show in figure 1 that our model accurately recovers the specific
heat ratio for various polyatomic gases, even for fractional (effective) rotational degrees of
freedom. The proposed model remains accurate even for fractional rotational degrees of
freedom, thereby achieving any target specific heat ratio values. In figure 2, we perform
a grid convergence study for air and observe a second-order convergence. We perform
additional validation studies by restricting our attention to diatomic gases with variable
Prandtl number.
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n-pentane
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Figure 1. Specific heat ratio in simulating sound propagation in different gases. The line represents the
reference value with δ the number of effective rotational degrees of freedom for various gases as listed
in table 2.
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Figure 2. Grid convergence study showing a second-order convergence for air.

Fluid γ Effective δ

Argon, helium 1.66 0.03
Air 1.403 1.96
Nitrogen 1.404 1.95
Steam 1.33 3.06
Methane 1.31 3.45
Ethane 1.22 6.09
Ethyl alcohol 1.13 12.38
Benzene 1.1 17
n-pentane 1.086 20.26
Hexane 1.08 22
Methylal 1.06 30.33

Table 2. Specific heat ratios of real fluids (Green & Southard 2019) and their effective rotational degrees of
freedom.
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Figure 3. (a) Pressure perturbations versus Pr with (b) a zoomed plot. The width of the Gaussian wave
increases with a decrease in Pr.

Next, we study the absorption of sound in a dissipative compressible medium. The
presence of both viscosity and thermal conductivity leads to the dissipation of energy
in the sound waves. For an emitted wave, the pressure perturbations p′ far away from the
source decay during a finite time as (Landau & Lifshitz 1987)

p′(r, t) ∝ (La rL)−1/2 exp

(
−(r − cst)2

2La rL

)
, (6.1)

where the dimensionless Landau number La is (Ansumali, Karlin & Öttinger 2005)

La = Kn
(

4
3

+ λ
)

+ Kn
Pr

(γ − 1) . (6.2)

Here, λ is the ratio of bulk to shear viscosities and Kn is the Knudsen number. The form
of pressure perturbation shows that the wave profile is Gaussian-like at large distances and
the width of the wave is proportional to

√
La for a fixed domain length L.

To demonstrate the effectiveness of the lattice Boltzmann scheme, we perform a
simulation at a fixed Kn value of 10−3 on a domain of size 400 × 400 at Prandtl numbers
1.4, 2, 5 and 10. We initialize the domain with a normal density perturbation of amplitude
0.001 at the centre of the fluid of uniform density 1 at rest. From (4.21a,b) and setting
τ = (3/5)τ1 one obtains λ = 224/(225 Pr).

Using this relation and γ = 7/5, the Landau number La is calculated as

La = Kn
(

4
3

+ 314
225

1
Pr

)
. (6.3)

The Landau numbers for the chosen set of parameters are listed in table 3. It is evident that
La is a linear function of 1/Pr which suggests that the width of the Gaussian increases with
a decrease in Pr. The pressure fluctuations far from the source of perturbation after t =
0.2ta for various Prandtl numbers are plotted in figure 3, where ta = L/cs is the acoustic
time scale. It is evident that as expected the width of the wave decreases with an increase
in the Prandtl number.

Next, we investigate the propagation of an acoustic pulse in a diatomic gas with γ =
7/5, where the isentropic speed of sound is cs = √

γ θ . An axisymmetric pressure pulse
is initialized at the centre of a domain of size [−1, 1] with 256 × 256 × 4 grid points.
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Pr La

1.4 2.3302 × 10−3

2.0 2.0311 × 10−3

5.0 1.6124 × 10−3

10.0 1.4729 × 10−3

Table 3. Variation of La with Pr at Kn = 10−3.
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Figure 4. Comparison of the pressure fluctuation along the centreline at time t∗ from lattice Boltzmann
simulation (points) and exact solution (line).

The acoustic pulse is of the form

p(x, y, t = 0) = p0(1 + εe−αr2
), (6.4)

with p0 = θ0, ε = 0.001, b = 0.1, α = ln(2)/b2 and r =
√

x2 + y2. For low amplitudes of
pressure fluctuations and low viscosity, the exact form of the pressure fluctuation is known
as the solution of the linearized Euler equations as (Tam & Webb 1993)

p′(x, y, t) = p0 × ε

2α

∫ ∞

0
exp

(−ξ2

4α

)
cos(csξ t)J0(ξr)ξ dξ, (6.5)

where J0 is the Bessel function of the first kind of zero order (Abramowitz & Stegun 1965).
Figure 4 shows that the pressure fluctuations from the simulation and the exact solution
along the centreline of the y axis are in agreement.

Next, we simulate the transient hydrodynamics in the startup of a simple shear flow
between two flat plates separated by a distance L on a grid of size 128 × 64 × 8 with
diffusive wall boundary condition (Ansumali & Karlin 2002) and periodicity in the other
two directions. Here, the top plate is suddenly started with a velocity uw while the bottom
plate remains stationary. The viscous effects play an important role in the development
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Figure 5. Transients in a planar Couette flow.

of the flow which is driven by momentum diffusion. Figure 5 contrasts the solutions
at various diffusion times t∗ = t/(L2/ν) obtained from our simulations with the known
analytical solution for the velocity (Pozrikidis & Jankowski 1997):

u∗ = u
uw

= y
L

− 2
π

∞∑
k=1

[
1
k

exp
(
−k2π2 νt

L2

)
sin

(
kπ

(
1 − y

L

))]
. (6.6)

As expected, the simulation recovers the analytical solution with good accuracy.
Next, we investigate the effects of thermal conduction by considering a set-up consisting

of fluid confined in a square cavity of size [L, L] with 128 × 128 points and stationary
walls. The top wall is maintained at a higher temperature T1, while the other three walls
are maintained at a temperature T0 (<T1). Diffusive wall boundary conditions are applied
in both directions. The analytical solution for the temperature profile at steady state is (Leal
2007)

T − T0

T1 − T0
= 2

π

∞∑
n=1

(−1)n+1 + 1
n

sin (nπx)
sinh(nπy)
sinh(nπ)

. (6.7)

Figure 6 shows that the simulated temperature profiles along lines x = 0.1L, 0.2L and 0.5L
and along y = 0.25L, 0.5L and 0.75L for a temperature difference of 0.1θ0 match well with
the analytical solution.

Next, we validate our model for a thermal Couette flow problem to evaluate its capability
in simulating viscous heat dissipation at various Prandtl numbers. We study the steady
state of a flow induced by a wall at y = H moving with a constant horizontal velocity
U0 and maintained at a constant elevated temperature T1. The lower wall at y = 0 is
kept stationary at a constant temperature T0 (T1 > T0). The analytical solution for the
temperature profile for this set-up is (Bird et al. 2015)

T − T0

�T
= y

H
+ Pr Ec

2
y
H

(
1 − y

H

)
, (6.8)

where �T = T1 − T0 is the temperature difference between the two walls and Ec =
U2

0/(cp�T) is the Eckert number that represents the ratio of viscous dissipation to heat
conduction with cp = 7/2 as the specific heat at constant pressure for a diatomic gas.
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Figure 6. Temperature profiles at y = 0.25L, 0.5L and 0.75L (a) and at x = 0.1L, 0.2L and 0.5L (b) in a
two-dimensional heated cavity.
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Figure 7. Temperature profiles at steady state (symbols) compared with the analytical solution (lines) at
varying Prandtl numbers.

Simulations were performed for Pr = 0.75, 2.5, 5.0, 7.5 and 10 at Eckert number fixed
at unity on a domain with 128 grid points. The walls were maintained at temperatures
θ0 + 0.5�θ and θ0 − 0.5�θ and plate velocity U0 is chosen corresponding to a Mach
number of 0.1. Figure 7 compares the temperature profiles obtained analytically and via
simulations and they are found to be in good agreement.

6.1. Transonic flows
A higher-order model (RD3Q167) capable of simulating transonic flows is employed
(Hanumantharayappa et al. 2021) for the following validation cases. The energy shells and
their corresponding velocities with weights for this RD3Q167 model are given in table 4.

We present a Sod’s test problem with a initial density ratio of 8 and pressure ratio of 10
on the left and right halves of the domain⎛

⎝ρL
uL
pL

⎞
⎠ =

⎛
⎝1

0
1

⎞
⎠ ,

⎛
⎝ρR

uR
pR

⎞
⎠ =

⎛
⎝0.125

0
0.1

⎞
⎠ (6.9a,b)
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Discrete velocities (ci) Weight (wi)

(0, 0, 0) 0.0296445287398454
(±1, 0, 0), (0,±1, 0), (0, 0,±1) 0.011144397119839009
(±2, 0, 0), (0,±2, 0), (0, 0,±2) 0.000992582094090251
(±3, 0, 0), (0,±3, 0), (0, 0,±3) 0.0004322964922277557
(±1,±1, 0), (±1, 0,±1), (0,±1,±1) 0.0078020595256513905
(±2,±2, 0), (±2, 0,±2), (0,±2,±2) 0.0008848260211852592
(±3,±3, 0), (±3, 0,±3), (0,±3,±3) 6.6974998420071616 × 10−6

(±2,±1, 0), (±2, 0,±1), (0,±2,±1), (±1,±2, 0), (±1, 0,±2), (0,±1,±2) 0.004147252375006042
(±0.5,±0.5,±0.5) 0.044780123964114515
(±1,±1,±1) 0.007147942701081054
(±1.5,±1.5,±1.5) 0.0026467301988094528
(±2,±2,±2) 0.000012175651763644929
(±2.5,±2.5,±2.5) 4.816438635687508 × 10−6

(±1.5,±0.5,±0.5), (±0.5,±1.5,±0.5), (±0.5,±0.5,±1.5) 0.01038287235627671
(±3,±1,±1), (±1,±3,±1), (±1,±1,±3) 0.00021497980321030788

Table 4. Velocities and their corresponding weights for the RD3Q167 model with θ0 = 0.7374708021487686.

0

 0.5

1.0
(a)

(b)

(c)

ρ

–0.1

 0.2

 0.5

 0.8

 1.1

Ma

0

 0.3

 0.6

 0.9

 1.2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

p

x/L

γ = 1.666 – δ  = 0.030

γ = 1.403 – δ  = 1.967

γ = 1.040 – δ  = 30.33

Exact

Figure 8. Density, Mach number and pressure after time = 0.1 for Sod’s test problem.
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Figure 9. Vorticity profile around a circular cylinder after 10 convection times.

on a grid of size 4096 × 4 × 4 for this test case. In figure 8, we present the density, Mach
number and pressure profiles at time = 0.1 for specific heat ratios of helium (δ = 0.03),
air (δ = 1.96) and methylal (δ = 30.33) as given in table 2 and contrast the solution with
the exact Reimann solution.

To demonstrate the capability of the proposed model to simulate complex flows, we
show a qualitative simulation of flow past a circular cylinder at a Reynolds number of
5000 defined based on diameter and free-stream velocity. The specific heat ratio for this
simulation was chosen to be 1.22 with additional rotational degrees of freedom δ = 6.
The Mach number for the present simulation is fixed at 0.45 with 40 lattice points per
diameter. We show the vorticity profile around the cylinder after 10 convection times in
figure 9. It should be noted that the proposed formulation is quite stable even for such a
severely under-resolved simulation.

7. Outlook

We have proposed a kinetic model for polyatomic gases with a tunable Prandtl number,
by augmenting the ES–BGK model, an extension of the BGK model, at the level of the
single-particle distribution function with an advection–diffusion–relaxation equation for
the rotational energy. We show that close to the hydrodynamic limit, the internal degrees
of freedom tend to be well represented just by rotational kinetic energy density and the
proposed model recovers the compressible hydrodynamic equations of polyatomic gases
as its macroscopic limit. It was shown that the transport coefficients of the model can be
tuned for simulation of flows at different Prandtl numbers and specific heat ratios. A set
of free parameters such as number of rotational degrees of freedom, translation relaxation
time, rotational relaxation time, rotational thermal conductivity and a free parameter b in
the ES–BGK model can be used to tune the specific heat ratio, shear viscosity and bulk
viscosity and set a target Prandtl number. This framework is general enough to deal with a
more complex model of internal structures. We also demonstrated that the model respects
the H theorem. The simplicity of the model makes it suitable for lattice Boltzmann and
other numerical implementations.
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Appendix A. Evolution equations

A.1. The BGK model
By taking appropriate moments of the Boltzmann BGK equation, we can see that the
evolution of the stress and the heat flux are (Liboff 2003)

∂tσαβ + ∂γ

(
σαβuγ

) + ∂γ Qαβγ + 2σγβ∂γ uα + 2p∂βuα + 4
5
∂βqα = −1

τ
σαβ,

∂tqα + 1
2
∂β

(
Rαβ + 1

3
R δαβ

)
+ Qαβγ ∂γ uβ + ∂β

(
qαuβ

) + 7
5

qβ∂βuα

+2
5

qα∂βuβ + 2
5

qβ∂αuβ − 5
2

p
ρ

∂αp − 5
2

p
ρ

∂βσαβ − σαβ

ρ
∂βp − σαβ

ρ
∂ησβη = −qα

τ
.

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(A1)

The form of relaxation dynamics shows that the time scales for the momentum diffusivity
and thermal diffusivity are equal for the BGK model. These equations show that, like
any equation of Boltzmann type, the dynamics of Mth-order moment involves (M + 1)th
moment and thus forms an infinite-order-moment chain.

A.2. Two-population polyatomic model
For polyatomic gases, the energy equation gets an additional contribution from the
rotational energy. In both the BGK and ES–BGK models, the evolution equations for the
translational part of the energy and the rotational part of the energy ER = δρθR/2 are of
the form

∂tET + ∂α[(ET + ρθ) uα + qT
α + uγ σ̂αγ ] = ZE

τ

3ρ

2
(θ − θT) ,

∂tER + ∂α(ERuα + qR
α) = ZE

τ

δρ

2
(θ − θR) ,

⎫⎪⎪⎬
⎪⎪⎭ (A2)

with ZE = 1 for the BGK model and ZE = αZES for the ES–BGK model. The evolution
equation for the total energy is written as the sum of (A2) as

∂t (ET + ER) + ∂α

[
(ET + ER + ρθ) uα + qα + uγ σ̂αγ

] = 0, (A3)

where the relationship between translational and rotational temperatures (3.3) is used to
show that energy is collisional invariant.
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From (3.6) and (3.9), the stress evolution and the translational heat flux evolution
equations in explicit form are

∂tσαβ + ∂γ

(
uγ σαβ

) + ∂γ Qαβγ + 4
5
∂βqT

α + 2ρθT∂βuα + 2∂γ uασγβ = −1
τ
σαβ,

∂tqT
α + ∂β

(
uβqT

α

)
+ Qαβγ ∂βuγ + 1

2
∂βRαβ + 7

5
qT
β∂βuα + 2

5
qT
α∂ηuη + 2

5
qT
β∂αuβ

−5
2
θT∂α(ρθT) − σαβ

ρ
∂β(ρθT) − 5

2
θT∂κσκα − σαβ

ρ
∂κσκβ = −Zq

τ
qT
α,

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(A4)

with Zq = 1 for the BGK model and Zq = ZES for the ES–BGK model. Multiplying the
rotational energy equation from (A2) with uα and using velocity evolution we have

∂t (ERuα) + ∂β

(
ERuαuβ

) + uα∂βqR
β + ER

ρ
∂β

(
ρθδαβ + σ̂αβ

) = ZE

τ

δ

2
ρuα (θ − θR) .

(A5)

The rotational heat flux evolution can be obtained as the first moment of f2 dynamics as

∂tqR
α + ∂β

(
uβqR

α

)
+ qR

β∂βuα + ∂βσR
αβ + ∂α

(
ρθ2

)
− δ

2
θR∂β

(
ρθδαβ + σ̂αβ

) = −Zq

τ
qR
α.

(A6)

A.3. Proposed polyatomic model
We derive the evolution equations for kinetic energy, internal energy, pressure, stress,
heat flux and translational and rotational temperatures for the proposed model. Using the
momentum evolution equation (4.5), we obtain the evolution equation for ρuαuβ as

∂t
(
ρuαuβ

) + ∂γ (ρuαuβuγ ) + uα∂γ (ρθTδβγ + σβγ ) + uβ∂γ (ρθTδαγ + σαγ ) = 0. (A7)

Evolution of kinetic energy obtained by taking the trace of the above equation is

∂t

(
1
2ρu2

)
+ ∂γ

(
1
2ρu2uγ

)
+ uβ∂γ (ρθTδβγ + σβγ ) = 0. (A8)

Subtracting the above equation from the evolution equation of total energy from (4.5) gives
the evolution equation for internal energy e = (3 + δ)ρθ/2 as

∂te + ∂β

(
euβ

) + ∂βqβ + σβγ ∂γ uβ + ρθT∂γ uγ = 0 (A9)

and the evolution equation of pressure p = ρθ as

∂tp + ∂β

(
puβ

) +
(

2
3 + δ

) (
∂βqβ + σβγ ∂γ uβ + ρθT∂γ uγ

) = 0. (A10)

Using the pressure and continuity equation, the evolution equation for temperature θ is

∂tθ + uβ∂βθ +
(

2
(3 + δ)ρ

) (
∂βqβ + σβγ ∂γ uβ + ρθT∂γ uγ

) = 0. (A11)
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From the evolution of kinetic energy (A8) and the translational temperature (4.3), the
evolution for translational energy can be evaluated as

∂t

(
3ρθT

2

)
+ ∂β

(
3ρθT

2
uβ

)
+ ρθT∂βuβ + σβγ ∂βuγ + ∂βqT

β = ρ

τ1

(
3
2
θ − 3

2
θT

)
.

(A12)

Using the continuity equation, the evolution for translational temperature θT is

∂tθT + uβ∂βθT + 2
3
θT∂βuβ + 2

3ρ
σβγ ∂βuγ + 2

3ρ
∂βqT

β = 1
τ1

(θ − θT) . (A13)

For the evolution of the stress tensor σαβ , we multiply the kinetic equation (4.1) with
ξαξβ and integrate over the velocity space to obtain

∂t(ρθTδαβ + σαβ) + ∂κQT
αβκ + ∂κ

(
uκ(ρθTδαβ + σαβ)

) + (ρθTδκβ + σκβ)∂κuα

+ (ρθTδκα + σκα)∂κuβ = 1
τ

(b − 1) σαβ + 1
τ1

(
ρθδαβ − ρθTδαβ − σαβ

)
. (A14)

Thereafter, multiplying (A12) with δαβ and subtracting from the above equation, one
obtains evolution of the stress tensor as

∂t(σαβ) + ∂γ

(
uγ σαβ

) + ∂γ QT
αβγ + 4

5
∂βqT

α + 2ρθT∂βuα + 2∂γ uασγβ

=
(

1
τ

(b − 1) − 1
τ1

)
σαβ. (A15)

Similarly, the evolution equation for translational heat flux is obtained by multiplying
the kinetic equation (4.1) with ξ2ξα to obtain

∂tqT
α + ∂β(uβqT

α) + QT
αβγ ∂βuγ + 1

2
∂βRαβ + 7

5
qT
β∂βuα + 2

5
qT
α∂ηuη + 2

5
qT
β∂αuβ

− 5
2
θT∂α(ρθT) − σαβ

ρ
∂β(ρθT) − 5

2
θT∂κσκα − σαβ

ρ
∂κσκβ = −

(
1
τ

+ 1
τ1

)
qT
α. (A16)
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