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The Poiseuille and thermal transpiration flows of a dense gas between two parallel plates
are investigated on the basis of the Enskog kinetic equation under the diffuse reflection
boundary condition. In contrast to the case of an ideal gas, the density and the gradients
of pressure and the normal stress component in the flow direction are not uniform in the
direction normal to the plates for a dense gas. The non-uniform normal stress gradient
contributes also to the acceleration or deceleration of the thermal transpiration flow for
small Knudsen numbers. The profiles of mass and heat flows as well as the net mass
flows are obtained for various Knudsen numbers and ratios of the molecular diameter
to the distance of plates. In the analysis of the Poiseuille flow, most characteristics of a
force-driven flow with a small force are recovered. However, for the case of a dense gas,
differences between the force-driven and the present pressure-driven flows are observed
even within the linearized regime for small force and pressure gradient, especially at the
microscopic level. The behaviour of the velocity distribution functions, in particular, the
way in which they approach the ones for the Boltzmann equation as the molecular diameter
becomes smaller, is clarified.

Key words: kinetic theory, non-continuum effects

1. Introduction

Gases in small systems, such as porous media with small pores and micro and nanodevices,
cannot be described properly by conventional fluid dynamics. This is because the mean
free path of gas molecules can be comparable to the characteristic length of system so
that the underlying assumption that the gas is very close to the local equilibrium breaks
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down due to insufficient intermolecular collisions. The kinetic theory of gases is required
to describe their behaviour correctly.

Generally, the solution of the Boltzmann equation, the governing equation in the kinetic
theory, is a formidable task since, besides a time and a position, the molecular velocity also
plays a role of independent variable and the term representing the effect of intermolecular
collisions (the collision integral) is complicated. As for its numerical solution method,
both the stochastic direct simulation Monte Carlo (DSMC) method (see, e.g. Bird 1994)
and deterministic methods (see, e.g. Dimarco & Pareschi 2014, and the references therein)
have been developed continuously from earlier times. Owing to the continuous efforts
of many researchers, there is a huge accumulation of results for the flows of ideal gases
these days (see, e.g. Cercignani 1988; Sone 2007) which are described by the Boltzmann
equation. There are a large number of kinetic theory studies on classical problems in
fluid dynamics such as the Poiseuille flow, the Couette flow, etc. and those on phenomena
peculiar to non-equilibrium gases such as the thermal transpiration flow, which is induced
by a temperature gradient along a channel wall in the absence of an external force and a
pressure gradient.

Meanwhile, when gases become dense, they exhibit non-ideal gas effects. Kinetic
theory descriptions are available also for this case. The Enskog equation, which can
describe effects owing to the finite size of molecules such as the excluded volume, and
its extension, the Enskog–Vlasov equation, in which long-range interactions are dealt with
by a collective mean field, have been widely accepted. Because the finite size of molecules
is taken into account in the Enskog collision integral, it is more complicated than the
Boltzmann collision integral. For these equations, the DSMC method was successfully
constructed more than two decades ago (Montanero & Santos 1996; Frezzotti 1997). Then,
using this method Frezzotti and co-workers have conducted many studies on liquid–vapour
systems based on the Enskog–Vlasov equation (see, e.g. Frezzotti, Gibelli & Lorenzani
2005; Frezzotti, Barbante & Gibelli 2019).

Besides the liquid–vapour systems, the dense gas effects become relevant in small
systems, such as nanoporous media, which has been activating the recent kinetic theory
studies (see, e.g. Wu et al. 2016; Sheng et al. 2020; Shan et al. 2021). In these
studies, the competition of system characteristic length, mean free path and molecular
diameter is focused on, and its effect on the phenomena is investigated. This trend
may be due to related applications such as shale gas extraction, where the pressure is
high and the characteristic length is short, and to the fact that deterministic numerical
computations are becoming feasible thanks to the extension of the fast Fourier spectral
method (Filbet, Mouhot & Pareschi 2006) to the Enskog equation (Wu, Zhang &
Reese 2015). However, all of the aforementioned works concentrate on the force-driven
Poiseuille flow, and currently, no other type of flow seems to be investigated at the
same level.

Under these circumstances, a time-dependent heat transfer in a dense gas between two
parallel plates was investigated in Hattori, Tanaka & Takata (2022) and interesting features
such as the effect of the finite molecular size on the propagation of disturbance were
demonstrated. In the present work, we newly consider the thermal transpiration flow as
well as the pressure-driven Poiseuille flow of a dense gas between two parallel plates.
Analysis of these flows for the case of a rarefied gas is a fundamental problem in the
kinetic theory (see, e.g. Cercignani & Daneri 1963; Cercignani & Sernagiotto 1966; Niimi
1968; Sone & Yamamoto 1968; Loyalka 1971; Niimi 1971; Hasegawa & Sone 1988;
Ohwada, Sone & Aoki 1989; Loyalka & Hamoodi 1990; Kosuge et al. 2005; Takata &
Funagane 2011; Funagane & Takata 2012). We investigate the counterpart problem for
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Poiseuille and thermal transpiration flows of a dense gas

a dense gas. We clarify how finite-size effects of molecules affect these flows, thereby
aiming to contribute to increased understanding of the dense gas flow characteristics.

The paper is organized as follows. In § 2, the problem is stated and formulated. The
problem is reduced to the spatially one-dimensional boundary-value problems of the
linearized Enskog equation for the Poiseuille and thermal transpiration flows, in which
the ratio of the mean free path and that of the molecular diameter to the distance between
the plates are included as non-dimensional parameters characterizing the smallness of
the system and denseness of the gas. Then, the numerical method is briefly explained
in § 3. The method is an iteration based on the integral formulation of the Enskog
equation combined with the fast Fourier spectral method for the computation of the
collision integral. Section 4 presents the numerical results, where we show the behaviour
of the macroscopic quantities (gradients of pressure and stress and profiles of density
and mass/heat flow) as well as the velocity distribution functions (VDFs). Comparison
between the force-driven and the present pressure-driven Poiseuille flows is also carried
out. Section 5 concludes the paper.

2. Formulation

2.1. Problem and assumptions
Consider a dense gas between two parallel plates at rest located respectively at X1 =
±D/2, where Xi are the Cartesian coordinates. The two plates are kept at the temperature
Tw(X2) = T0(1 + cTX2/D) (cT = (D/T0)(dTw/dX2) is a constant), and the gas is subject
to some pressure gradient in the X2 direction. We will find a solution that has a pressure
gradient that is constant in the X2 direction (but non-constant in the X1 direction). There is
no external force acting on the gas. The average density of the gas over the cross-section
X2 = 0 is given by ρ0. We will investigate the steady behaviour of the gas under the
assumptions that (i) the behaviour of the gas can be described by the Enskog equation
for hard-sphere molecules with a common diameter σ and mass m with the factor of pair
correlation being given according to the Carnahan–Starling equation of state (Carnahan &
Starling 1969); (ii) the gas molecules are diffusely reflected on the surface of the plates;
(iii) the magnitudes of the applied temperature gradient |cT | and the pressure gradient
(D/p0)|∂p/∂X2| are so small that the equation and boundary condition can be linearized
around the state that is achieved when both gradients are absent (p is the pressure,
p0 = ρ0RT0 and R is the specific gas constant).

Some comments on the appropriateness of the linearization assumption (iii) may be
in order. At a glance, the assumption might look restrictive to describe the flows well.
However, (a) the pressure and temperature gradients can in fact be small in small systems
like micro/nano channels and porous media with small pores; (b) the assumption is actually
employed also in the literature (see, e.g. any references cited in the third sentence of the
fifth paragraph in § 1); (c) it is reported (see, e.g. Ohwada et al. 1989; Sharipov 2003;
Ewart et al. 2007) that the results for rarefied gases obtained based on the linearized
Boltzmann or model kinetic equations agree well with experimental results for a wide
range of the Knudsen number. Based on these facts, the assumption is also employed here
for the Enskog equation. Phenomena due to nonlinear effects, expected to be significant
when the applied pressure or temperature gradient is not small, e.g. non-uniformity of
temperature profile in pressure-driven flow (Zheng, Garcia & Alder 2002), are outside of
the scope of the present work.
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2.2. Basic equation and boundary condition
Let us denote by X = Dx the position, by (2RT0)

1/2ζ the molecular velocity, by
ρ0(2RT0)

−3/2 f̂ the VDF of gas molecules, by σ = Dσ̂ the molecular diameter, by ρ0ρ̂ the
density of the gas and by Tw = T0T̂w the temperature of the plates. Then, from assumptions
(i) and (ii), the behaviour of the gas is described by the following boundary-value problem
for f̂ :

ζ1
∂ f̂
∂x1

+ ζ2
∂ f̂
∂x2

= 1
k

Q̂(f̂ )
(

−1 − σ̂

2
< x1 <

1 − σ̂

2

)
, (2.1a)

Q̂(f̂ ) = 1

2
√

2π

∫ [
Ŷ
(
ρ̂

(
x + 1

2
σ̂k
)

; η0

)
f̂ (x + σ̂k, ζ ′

∗)f̂ (x, ζ
′)

− Ŷ
(
ρ̂

(
x − 1

2
σ̂k
)

; η0

)
f̂ (x − σ̂k, ζ ∗)f̂ (x, ζ )

]

×(V̂ · k)H(V̂ · k) dk dζ ∗, (2.1b)

Ŷ(ρ̂; η0) = Y(ρ̂η0)

Y(η0)
, Y(η) = 1

2
2 − η

(1 − η)3
, η0 = (ρ0/m)πσ 3

6
, (2.1c)

ρ̂ =
∫

f̂ dζ , (2.1d)

ζ ′ = ζ + (V̂ · k)k, ζ ′
∗ = ζ ∗ − (V̂ · k)k, V̂ = ζ ∗ − ζ , (2.1e)

k =
√

π

2
Kn, Kn = �0

D
, �0 =

[√
2πσ 2(ρ0/m)Y(η0)

]−1
, (2.1f )

b.c: f̂ = ρ̂w

(π T̂w(x2))3/2
exp

(
− ζ 2

T̂w(x2)

) (
ζ1 ≷ 0, x1 = ∓1 − σ̂

2

)
, (2.1g)

ρ̂w = ∓2

√
π

T̂w(x2)

∫
ζ1≶0

ζ1 f̂ dζ , (2.1h)

T̂w(x2) = 1 + cTx2, (2.1i)

with
1

1 − σ̂

(∫ (1−σ̂ )/2

−(1−σ̂ )/2

∫
f̂ dζ dx1

)∣∣∣∣∣
x2=0

= 1. (2.1j)

Here, k is the unit vector in the direction joining the centres of the colliding molecules, H
is the Heaviside function, η0 and ρ̂η0 are the volume fractions of molecules corresponding
to the average and local densities which indicate denseness of the gas and ζ = |ζ |,
respectively. The quantity �0 is the mean free path of gas molecules at the equilibrium
state at rest with density ρ0 and temperature T0. We shall use k in place of the Knudsen
number Kn to indicate the degree of gas rarefaction (or smallness of the system). The
operator Q̂ is the Enskog collision integral, and it includes the parts which are quadratic
in f̂ like the Boltzmann collision integral. However, colliding molecules occupy different
positions due to the finite molecular size, and the collision frequency is increased by the
function Ŷ that represents an approximate pair correlation function. Hence Q̂ is a fivefold
integral that is non-local in the position x as well as ζ and it is more complicated than the
Boltzmann collision integral which is local in x. The integration in Q̂ is carried out over
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Figure 1. Plot of the volume fraction of molecules η0 as a function of k for σ̂ = 0.001, 0.01, 0.05, 0.1
and 0.15.

the whole space of ζ ∗ and over the whole direction of k. In the integral, quantities, here
the VDF f̂ (x ± σ̂k, ·) and the density ρ̂(x ± (1/2)σ̂k), are read as zero if their arguments
are outside of the domain {z = (z1, z2, z3)||z1| ≤ (1 − σ̂ )/2}. This rule is also applied to
various integrals appearing later. The functional form (2.1c) of Ŷ (or Y) corresponds to
the Carnahan–Starling equation of state. The centre of a molecule is able to move in the
domain with a width D − σ , which is narrower than the gap width D by the molecular
diameter σ . This fact is reflected in the collision integral (2.1b) and the condition (2.1j) as
well as the equation (2.1a) and the boundary condition (2.1g).

Note that the non-dimensional numbers k, σ̂ and η0 in (2.1) are not independent but are
related as (Sheng et al. 2020)

k =
√

π

2
σ̂

1

6
√

2η0Y(η0)
. (2.2)

In the present paper, k and σ̂ , the degree of gas rarefaction and the molecular size, are
considered as the parameters of the problem. We regard the volume fraction of molecules
η0 as a function of k and σ̂ determined by (2.2). Its plot is shown in figure 1, which implies
that the gas becomes more dense with the decrease of k and the increase of σ̂ and that it
becomes less dense with the increase of k and the decrease of σ̂ .

2.3. Macroscopic quantities
For later convenience, here, we introduce the macroscopic variables besides the density
given by (2.1d). The flow velocity, temperature, pressure, stress tensor and heat-flow vector
are given by (2RT0)

1/2v̂i, T0T̂ , p = p0p̂, p0p̂ij and p0(2RT0)
1/2q̂i, respectively, where v̂i,

T̂ , p̂, p̂ij and q̂i are defined as the following moments of the VDF f̂ :

v̂i = 1
ρ̂

∫
ζif̂ dζ , (2.3a)

T̂ = 2
3ρ̂

∫
(ζk − v̂k)

2 f̂ dζ , (2.3b)

p̂ = ρ̂T̂ × 1 + η + η2 − η3

(1 − η)3
, η = ρ̂η0, (2.3c)
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p̂ij = p̂(k)ij + p̂(v)ij , (2.3d)

p̂(k)ij = 2
∫
(ζi − v̂i)(ζj − v̂j)f̂ dζ , (2.3e)

p̂(v)ij = 1

2
√

2πk

∫∫ σ̂

0
kikjŶ

(
ρ̂

(
x +

(
1
2
σ̂ − α̂

)
k
)

;η0

)
f̂ (x − α̂k, ζ ∗)f̂ (x + (σ̂ − α̂)k, ζ )

× (V̂ · k)2H(V̂ · k) dα̂ dk dζ dζ ∗, (2.3f )

q̂i = q̂(k)i + q̂(v)i , (2.3g)

q̂(k)i =
∫
(ζi − v̂i)(ζk − v̂k)

2 f̂ dζ , (2.3h)

q̂(v)i = 1

4
√

2πk

∫∫ σ̂

0
ki

[
(ζ ′
� − v̂�)

2 − (ζ� − v̂�)
2
]

× Ŷ
(
ρ̂

(
x +

(
1
2
σ̂ − α̂

)
k
)

; η0

)
f̂ (x − α̂k, ζ ∗)f̂ (x + (σ̂ − α̂)k, ζ )

× (V̂ · k)H(V̂ · k) dα̂ dk dζ dζ ∗. (2.3i)

Equation (2.3c) is the Carnahan–Starling equation of state. The stress tensor p̂ij and the
heat-flow vector q̂i are given by a sum of two parts, respectively. The first part, p̂(k)ij and

q̂(k)i , is called the kinetic part and has a familiar form. The second part, p̂(v)ij and q̂(v)i , is
called the potential part (Cercignani & Lampis 1988), and it represents the contribution of
instantaneous transfers of momentum and energy in binary collisions.

2.4. Linearization
Recalling that we consider the situation where the applied temperature and pressure
gradients are small (see assumption (iii) in § 2.1), within the linearized regime, we can
seek the solution f̂ of problem (2.1) as a sum of reference state and perturbation, as follows:

f̂ = M̂(x1, ζ )+Φ(x1, x2, ζ )+ O(Φ2) (|Φ| � M̂), (2.4a)

M̂ = ρ̂M(x1)E(ζ ), E(ζ ) = π−3/2e−ζ 2
, (2.4b)

Φ = cT

{
x2E(ζ )

[
ω̂T(x1)+

(
ζ 2 − 3

2

)
ρ̂M(x1)

]
+ ΨT(x1, ζ )

}

+ cP
[
x2E(ζ )ω̂P(x1)+ ΨP(x1, ζ )

]
. (2.4c)

Here, some notes may be in order:

(i) The function M̂ is the reference state of the gas that is achieved when both the
temperature and pressure gradients are absent, i.e. when there is no driving factor
in the system. While for an ideal gas (the case of the Boltzmann equation) this
state is a uniform equilibrium state at rest, for a dense gas it is an equilibrium state
at rest with a density distribution ρ̂M(x1) varying in the direction normal to the
plates (Frezzotti (1997); see also figure 2(a) shown later). The non-uniformity of
the reference density is attributed to the fact that some of intermolecular collisions

962 A20-6

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

27
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.270


Poiseuille and thermal transpiration flows of a dense gas

which detach the molecules from the plates are forbidden near the boundary due to
their finite size and accordingly they are pushed to the plates.

(ii) The function Φ is a perturbation around the reference state M̂. In its expression,
the subscripts T and P are attached to discriminate the quantities related to the
thermal transpiration and Poiseuille flows, respectively. The O(Φ2) term in (2.4a)
is the negligible error in the linearized regime. As will be seen later in § 4, when
the molecular size σ̂ is finite, the pressure gradient ∂x2 p̂ and the stress gradient
∂x2 p̂22 are not identical, and moreover they are non-uniform in x1. Here, the latter
is regarded as the driving force for the Poiseuille flow since it is the stress rather
than the pressure that has the role of the mechanical surface force. Thus, we
require that its average in the x1 direction be normalized and zero, in accordance
with the nature of the Poiseuille and thermal transpiration flows, respectively. To
be more precise, with p̂22 being evaluated with f̂ = M̂ +Φ, we require that (1 −
σ̂ )−1 ∫ (1−σ̂ )/2

−(1−σ̂ )/2 ∂x2 p̂22|cT=0 dx1 = cP and (1 − σ̂ )−1 ∫ (1−σ̂ )/2
−(1−σ̂ )/2 ∂x2 p̂22|cP=0 dx1 = 0

for respective flows, where the constant cP represents the magnitude of the averaged
stress gradient in the Poiseuille flow (|cP| � 1 by assumption (iii)). Since ∂x2 p̂22 =
∂x2 p̂ = const. for the Boltzmann equation, cP also corresponds to the magnitude of
the pressure gradient (D/p0)| dp/dX2| in this case. The parts cPx2E(ζ )ω̂P(x1) and
cTx2E(ζ )[ω̂T(x1)+ (ζ 2 − 3

2)ρ̂M(x1)] are the perturbed Maxwellians representing
the pressure (or stress) and temperature gradients, respectively. Recall that the
magnitude of the latter is represented by the coefficient cT [= (D/T0)(dTw/dX2)].
The functions ΨT and ΨP, which are considered to be odd in ζ2, represent the
respective flows.

(iii) The expression (2.4) might look like an arbitrary assumption at a glance, however, it
turns out to be an appropriate form of the solution. It is an extension of the similarity
solution for a rarefied gas (see also, e.g. (2.8) in Takata & Funagane (2011) or (1)
in Ohwada et al. 1989) to the case of the dense gas, where the non-uniformity
of densities in x1 is taken into account here due to the finite molecular size both
for the reference part ρ̂M and the perturbed parts ω̂T,P (the case of Boltzmann
equation corresponds to the case ρ̂M(x1) ≡ 1, ω̂T(x1) ≡ −1 and ω̂P(x1) ≡ 1). To
confirm the consistency of (2.4), actually we can proceed in the following way,
which is detailed in Appendix A. First, substitute f̂ = M̂ = ρ̂ME into the equation
(2.1a) and the condition for average density (2.1j). Then, we reach the system which
determines the reference density ρ̂M (and M̂ accordingly) with no inconsistency.
Second, introduce the perturbation Φ and substitute f̂ = M̂ +Φ (see also (2.4a))
into the equation (2.1a), the boundary condition (2.1g) and the condition for average
density (2.1j), and neglect the second- and higher-order terms of perturbation Φ
according to assumption (iii). Then, we are left with the linearized system for the
perturbation Φ, without any inconsistency. Third, substitute the expression (2.4c)
into the system for Φ and closely examine the resulting expressions, in particular
those of the collision integral. Then, we find that the form (2.4c) introduces no
inconsistency, and the systems for the perturbed densities ω̂T,P and the VDFs ΨT,P
are accordingly obtained.

2.4.1. Problems of ρ̂M, ω̂T,P and ΨT,P
In (2.4), ρ̂M , ω̂T,P and ΨT,P are the functions to be determined. Following the above steps
explained in the item (iii) or Appendix A, we find that the densities ρ̂M , ω̂T and ω̂P satisfy
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the following integro-differential equations, while the VDFs ΨT and ΨP are the solutions
of the following boundary-value problems of the linearized Enskog equation:

dρ̂M(x1)

dx1
= J1[ρ̂M](x1)

(
−1 − σ̂

2
< x1 <

1 − σ̂

2

)
, (2.5a)

with
1

1 − σ̂

∫ (1−σ̂ )/2

−(1−σ̂ )/2
ρ̂M(x1) dx1 = 1, (2.5b)

dω̂β(x1)

dx1
= K1[ω̂β, ρ̂M](x1)

(
−1 − σ̂

2
< x1 <

1 − σ̂

2

)
, (2.6a)

with K2[ω̂T , ρ̂M] = J2[ρ̂M] − 1, (2.6b)

K2[ω̂P, ρ̂M] = 1, (2.6c)

ζ1
∂Ψβ

∂x1
= 1

k
L(Ψβ)+ Iβ

(
−1 − σ̂

2
< x1 <

1 − σ̂

2

)
, (2.7a)

b.c. Ψβ = 0
(
ζ1 ≷ 0, x1 = ∓1 − σ̂

2

)
. (2.7b)

Here, β = T,P in (2.6a) and (2.7). The operators J1, J2 and J3 appearing in (2.5a),
(2.6b) and the definition (2.11a) of the source term IT shown later are integrals of ρ̂M
given by (B1) in Appendix B. The operators K1, K2 and K3 appearing in (2.6) and the
definition (2.11) of Iβ are integrals that are linear with respect to ω̂β given by (B3) in
Appendix B. The integrals J1 and K1 represent the contribution coming from the collision
integral Q̂ to the densities ρ̂M and ω̂β . Equations (2.6c) and (2.6b) are the reduced form
of the aforementioned conditions on the stress gradient ∂x2 p̂22 explained in the item (ii)
of § 2.4 (see also the last paragraph in Appendix A.3). By these conditions (2.6c) and
(2.6b), ω̂P and ω̂T , which satisfy the same linear equation (2.6a) and are thus equal up
to a multiplicative constant, are distinguished from each other. The quantity L appearing
in (2.7a) is the following Enskog collision operator linearized around the reference local
equilibrium state M̂(x1, ζ ):

L(ψ)(x, ζ ) = C(ψ)(x, ζ )− ν(x1, ζ )ψ(x, ζ ), (2.8a)

C(ψ)(x, ζ ) = 1

2
√

2π

∫ {
Ŷ
(
ρ̂M

(
x1 + 1

2
σ̂k1

)
; η0

)

×
[
M̂(x1 + σ̂k1, ζ

′
∗)ψ(x, ζ

′)+ ψ(x + σ̂k, ζ ′
∗)M̂(x1, ζ

′)
]

− Ŷ
(
ρ̂M

(
x1 − 1

2
σ̂k1

)
; η0

)
ψ(x − σ̂k, ζ ∗)M̂(x1, ζ )

+ Ŷ1

(
ρ̂M

(
x1 + σ̂

2
k1

)
; η0

)
〈ψ〉

(
x + σ̂

2
k
)

M̂(x1 + σ̂k1, ζ
′
∗)M̂(x1, ζ

′)

− Ŷ1

(
ρ̂M

(
x1 − σ̂

2
k1

)
; η0

)
〈ψ〉

(
x − σ̂

2
k
)

M̂(x1 − σ̂k1, ζ ∗)M̂(x1, ζ )

]}

× (V̂ · k)H(V̂ · k) dk dζ ∗, (2.8b)
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Poiseuille and thermal transpiration flows of a dense gas

ν(x1, ζ ) = 1

2
√

2π

∫
Ŷ
(
ρ̂M

(
x1 − 1

2
σ̂k1

)
; η0

)

× M̂(x1 − σ̂k1, ζ ∗)(V̂ · k)H(V̂ · k) dk dζ ∗, (2.8c)

where

Ŷ1 (r; η0) = 1
Y(η0)

η0(5 − 2rη0)

2(1 − rη0)4
, (2.9a)

〈ψ〉 (x) =
∫
ψ(x, ζ ) dζ . (2.9b)

In the decomposition (2.8a) of L, C is the integral operator with some smoothing property
in the molecular velocity ζ and ν is the collision frequency for the reference equilibrium
state M̂(x1, ζ ). The function Ŷ1 given in (2.9a) is just a perturbed part of Ŷ such that

Ŷ(ρ̂M + c 〈ψ〉 ; η0) = Ŷ(ρ̂M; η0)+ c 〈ψ〉 Ŷ1(ρ̂M; η0)+ O(c2) (|c| � 1). (2.10)

The source term Iβ in (2.7a) is given in terms of the densities ρ̂M and ω̂T,P as

IT(x1, ζ ) = −ζ2E(ζ )
[
ρ̂M(x1)

(
ζ 2 − 3

2

)
+ ω̂T(x1)

]

− σ̂E(ζ )

k2
√

2π

{
ζ2K3[ω̂T , ρ̂M](x1)+ J3[ρ̂M](x1, ζ )

}
, (2.11a)

IP(x1, ζ ) = −ζ2E(ζ )ω̂P(x1)− σ̂

k2
√

2π
ζ2E(ζ )K3[ω̂P, ρ̂M](x1). (2.11b)

Thanks to the symmetry of the present problem with respect to the middle of the gap
x1 = 0, we can seek the VDF Ψβ with the following property:

Ψβ(x1, ζ1, ζ2, ζ3) = Ψβ(−x1,−ζ1, ζ2, ζ3)

(
0 < x1 <

1 − σ̂

2
;β = T,P

)
. (2.12)

Thus, hereafter, we impose the following condition:

Ψβ(0, ζ1, ζ2, ζ3) = Ψβ(0,−ζ1, ζ2, ζ3) (2.13)

on Ψβ , which is obtained by substituting x1 = 0 into (2.12), and we consider the problem
of Ψβ on −(1 − σ̂ )/2 < x1 < 0.

2.4.2. Expressions of macroscopic quantities
Substituting the solution (2.4) into (2.1d), (2.3a)–(2.3c), (2.3e), (2.3f ), (2.3h) and (2.3i),
within negligible error O(c2

P, c2
T) in the linearized regime, we have the following

expressions for the macroscopic quantities ρ̂, v̂i, T̂ , p̂, p̂(k)ij , p̂(v)ij , q̂(k)i and q̂(v)i :

ρ̂ = ρ̂M(x1)+ cTx2ω̂T(x1)+ cPx2ω̂P(x1)+ O(c2
P, c2

T), (2.14a)

v̂2 = cTu[ΨT ](x1)+ cPu[ΨP](x1)+ O(c2
P, c2

T), (2.14b)

v̂1 = O(c2
P, c2

T), v̂3 = O(c2
P, c2

T), (2.14c)

T̂ = 1 + cTx2 + O(c2
P, c2

T), (2.14d)
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M. Hattori

p̂ = ρ̂M(x1)S1(ρ̂M(x1)η0)+ cTx2GT(x1)+ cPx2GP(x1)+ O(c2
P, c2

T), (2.14e)

p̂(k)22 = ρ̂M(x1)+ cTx2G(k)22,T(x1)+ cPx2G(k)22,P(x1)+ O(c2
P, c2

T), (2.14f )

p̂(k)12 = cTP(k)12 [ΨT ](x1)+ cPP(k)12 [ΨP](x1)+ O(c2
P, c2

T), (2.14g)

p̂(k)11 = p̂(k)22 + O(c2
P, c2

T), p̂(k)33 = p̂(k)22 + O(c2
P, c2

T),

p̂(k)13 = O(c2
P, c2

T), p̂(k)23 = O(c2
P, c2

T), (2.14h)

p̂(v)11 = P(v)11,M(x1)+ cTx2G(v)11,T(x1)+ cPx2G(v)11,P(x1)+ O(c2
P, c2

T), (2.14i)

p̂(v)22 = P(v)22,M(x1)+ cTx2G(v)22,T(x1)+ cPx2G(v)22,P(x1)+ O(c2
P, c2

T), (2.14j)

p̂(v)12 = cTP(v)12,T(x1)+ cPP(v)12,P(x1)+ O(c2
P, c2

T), (2.14k)

p̂(v)33 = p̂(v)22 + O(c2
P, c2

T), p̂(v)13 = O(c2
P, c2

T), p̂(v)23 = O(c2
P, c2

T), (2.14l)

q̂(k)2 = cTQ(k)[ΨT ](x1)+ cPQ(k)[ΨP](x1)+ O(c2
P, c2

T), (2.14m)

q̂(v)2 = cTQ(v)T (x1)+ cPQ(v)P (x1)+ O(c2
P, c2

T), (2.14n)

q̂(k)1 = O(c2
P, c2

T), q̂(k)3 = O(c2
P, c2

T), q̂(v)1 = O(c2
P, c2

T), q̂(v)3 = O(c2
P, c2

T). (2.14o)

Here,

u[Ψβ] = 1
ρ̂M

∫
ζ2Ψβ dζ , (2.15a)

GT = ρ̂M(x1)S1(ρ̂M(x1)η0)+ ω̂T(x1)[S1(ρ̂M(x1)η0)+ S2(ρ̂M(x1)η0)], (2.15b)

GP = ω̂P(x1)[S1(ρ̂M(x1)η0)+ S2(ρ̂M(x1)η0)], (2.15c)

S1(r) = 1 + r + r2 − r3

(1 − r)3
, S2(r) = 2r(2 + 2r − r2)

(1 − r)4
, (2.15d)

G(k)22,T = ρ̂M(x1)+ ω̂T(x1), G(k)22,P = ω̂P(x1), (2.15e)

P(k)12 [Ψβ] = 2
∫
ζ1ζ2Ψβ dζ , (2.15f )

P(v)12,β(x1) = P(v)12,ωβ (x1)+ P(v)12 [Ψβ](x1), (2.15g)

Q(k)[Ψβ] =
∫
ζ2

(
ζ 2 − 5

2

)
Ψβ dζ , (2.15h)

Q(v)T = Q(v)[ΨT ](x1)−
{

u[ΨT ](x1)+ σ̂√
2π

}
P(v)22,M(x1), (2.15i)

Q(v)P = Q(v)[ΨP](x1)− u[ΨP](x1)P
(v)
22,M(x1). (2.15j)

The expressions of the stress contributions P(v)11,M , P(v)22,M , P(v)12,ωT
and P(v)12,ωP

and the

gradients G(v)11,T , G(v)11,P, G(v)22,T and G(v)22,P, which are all defined as the integrals of the

densities ρ̂M , ω̂T and ω̂P, and those of P(v)12 [Ψβ] and Q(v)[Ψβ], are given in Appendix C.
Note that cTGT , cT(G

(k)
22,T + G(v)22,T) and cT(Q(k)[ΨT ] + Q(v)T ) (or cPGP, cP(G

(k)
22,P + G(v)22,P)
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Poiseuille and thermal transpiration flows of a dense gas

and cP(Q(k)[ΨP] + Q(v)P )) are the gradient of pressure ∂x2 p̂, that of the (2, 2) component
of stress ∂x2 p̂22 and the heat flow q̂2 for the thermal transpiration (or Poiseuille) flow,
respectively, within the linearized regime (see (2.14e), (2.3d), (2.14f ), (2.14j), (2.3g),
(2.14m) and (2.14n)).

It is better to mention again the expression (2.14) is obtained within the linearized
regime. At a glance, it might look strange that the temperature T̂ is uniform for the
Poiseuille flow and that the diagonal kinetic-part stress components are equal to each
other (see (2.14d) with cT = 0 and (2.14h)). However, they are justified in the linearized
regime, and deviations from them are attributed to nonlinear effects of O(c2

P, c2
T), which

are neglected here due to the smallness (see also the last sentence in § 2.1). The coefficients
cP,T need to be sufficiently small compared with 1, and, in addition, compared with the
degree of gas rarefaction k when we consider the flow with small k. (Some of the quantities
of interest in the present paper are of O(k) rather than O(1).) Although there is no definite
threshold, e.g. when cP,T � 0.001 or cP,T � 0.0001, the nonlinear effects would likely not
be significant for the cases presented in § 4, where k is in the range [0.05, 10].

Also, as in other works based on the linearization assumption, flows between two
infinitely wide parallel plates are considered in the present work. Thus, when flow in a
finite-length channel with moderate pressure and temperature differences is considered, its
length (and the lateral width when a rectangular channel is considered as in experiments)
needs to be sufficiently long compared with both its gap width D and the mean free path
so that the results for infinitely wide plates give a good description of the flow (Sharipov
1999). Note that, for the case of a rarefied gas, there is an experiment of pressure-driven
flow (Ewart et al. 2007) taking this condition carefully into consideration (the channel
length and lateral width are respectively approximately 1000 and 52 times the gap width).
There, it is reported that the experimental results agree well with numerical results for
infinitely wide plates (Loyalka 1975) based on a model kinetic equation for a wide range
of the Knudsen number approximately up to 10.

2.4.3. Net mass flow and conservation law
Denoting by ρ0(2RT0)

1/2DM the net mass flow through the gap per unit time and unit
length in X3, M is given as

M = cTMT + cPMP + O(c2
P, c2

T), (2.16)

where

Mβ =
∫ (1−σ̂ )/2

−(1−σ̂ )/2
ρ̂M(s)u[Ψβ ](s) ds. (2.17)

Multiplying (2.1a) by ζ2 and integrating the result over the whole space of ζ , we have the
following conservation equation for the momentum in the x2 direction within negligible
error in the linearized regime:

∂ p̂12

∂x1
+ ∂ p̂22

∂x2
= O(c2

P, c2
T). (2.18)

Substituting the expression of p̂12 and p̂22 (see (2.3d), (2.14f ), (2.14g), (2.14j) and (2.14k))
into (2.18) and integrating the result over [−(1 − σ̂ )/2, x1] with respect to x1, we obtain

cTST(x1)+ cPSP(x1) = O(c2
P, c2

T), (2.19)
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where

Sβ(x1) = P(k)12 [Ψβ](x1)+ P(v)12,β(x1)− P(k)12 [Ψβ]
(

−1 − σ̂

2

)

+
∫ x1

−(1−σ̂ )/2

[
G(k)22,β(s)+ G(v)22,β(s)

]
ds. (2.20)

In obtaining (2.20), we have used the fact that the potential part of the stress P(v)12,β vanishes
on the boundary x1 = −(1 − σ̂ )/2. The relation (2.19) will be used for the accuracy test
of our computation.

3. Numerical method

The densities ρ̂M , ω̂T and ω̂P, which are defined by (2.5) and (2.6), can be obtained
numerically by the method in Frezzotti (1997). Thus, the problem is reduced to (2.7) with
(2.13) for the VDFs ΨT and ΨP.

Let us explain the numerical solution method for the problems of ΨT and ΨP. We
solve them by using iteration based on the integral formulation (Takata & Funagane 2011;
Hattori & Takata 2015) of the Enskog equation combined with the fast Fourier spectral
method (Filbet et al. 2006) for the computation of the collision integral. Taking into
account (2.8a) and (2.13) and formally integrating the equation (2.7a) with respect to x1,
we have

Ψβ(x1, ζ ) =
∫ x1

−(1−σ̂ )/2

[
1

kζ1
C(Ψβ)(s, ζ )+ 1

ζ1
Iβ(s, ζ )

]
exp

(
− 1

kζ1

∫ x1

s
ν( p, ζ ) dp

)
ds,

(
−1 − σ̂

2
< x1 < 0, ζ1 > 0

)
, (3.1a)

Ψβ(x1, ζ ) = Ψβ(0, ζ−) exp
(

− 1
kζ1

∫ x1

0
ν( p, ζ ) dp

)

+
∫ x1

0

[
1

kζ1
C(Ψβ)(s, ζ )+ 1

ζ1
Iβ(s, ζ )

]
exp

(
− 1

kζ1

∫ x1

s
ν( p, ζ ) dp

)
ds,

(
−1 − σ̂

2
< x1 < 0, ζ1 < 0

)
, (3.1b)

where ζ− = (−ζ1, ζ2, ζ3) and β = T,P. Since C is an integral operator, C(Ψβ) is mild in
ζ even if its argument function Ψβ is not. Thus, the factor of steep variation of Ψβ in ζ
(or ζ1) is explicit in this formulation, which will be advantageous in accurately capturing
the structure of the solution. The solution Ψβ is constructed by iteration based on (3.1)
from its initial guess. The data of C(Ψβ) are computed by the fast Fourier spectral method
from the given data of Ψβ . The fast Fourier spectral method for the nonlinear Enskog
collision integral is explained in Wu et al. (2015). Following the reference, we can prepare
the method for the linearized Enskog collision operator C in the present work. The spatial
integration with respect to p and that with respect to s in (3.1) are performed analytically
after ν and (C(Ψβ), Iβ) are interpolated respectively with piecewise linear and quadratic
functions from their data on the lattice points for position x1.

Information of lattice systems and accuracy is briefly given in Appendix D.
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Poiseuille and thermal transpiration flows of a dense gas
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Figure 2. Profiles of quantities related to the density and the gradients of the pressure and the (2, 2)
component of stress; (a) ρ̂M , (b) ω̂T and ω̂P, (c) GT , (d) G(k)22,T + G(v)22,T , (e) GP and ( f ) G(k)22,P + G(v)22,P.

4. Numerical results and discussions

Figure 2 shows the quantities related to the density and the gradients of the pressure and the
(2, 2) component of stress in the x2-direction, namely ρ̂M , ω̂T and ω̂P, GT , G(k)22,T + G(v)22,T ,

GP and G(k)22,P + G(v)22,P, for the molecular-size parameter σ̂ = 0.01 and 0.1 and the degree
of gas rarefaction k = 0.1, 1 and 10 (see also the last sentence of the first paragraph in
§ 2.4.2). The profiles for small σ̂ and large k (e.g. for σ̂ = 0.01 and k = 10) are almost
uniform and close to their counterparts for the Boltzmann equation. On the other hand,
for large σ̂ and small k (e.g. for σ̂ = 0.1 and k = 0.1), or when the gas is dense, they
vary significantly near the boundary and are non-uniform in the x1 direction. As for the
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origin of the non-uniformity of densities ρ̂M and ω̂T,P (figure 2a,b), see also the item
(i) in § 2.4. The gradient of the pressure actually differs from that of the (2, 2) component
of stress (compare figures 2c and 2d, and figures 2e and 2f ), even if their averages over
x1 are taken. This is in marked contrast to the case of an ideal gas (or the Boltzmann
equation), in which the gradients of the pressure and the normal stress components are
uniform and identical for each of the two flows considered here. The stress gradient for the
thermal transpiration flow is negative near the boundary and positive in the central part
of the gap (figure 2d). That for the Poiseuille flow is smaller in the central part of the gap
than near the boundary (figure 2f ).

The densities ρ̂M(x1) and ω̂P(x1) shown in figure 2 seem to vary significantly only near
the boundary within the distance O(σ̂ ) and approach their values ρ̂M(0) and ω̂P(0) at the
middle of the gap. By using the rescaled distance from the boundary (x1 + (1 − σ̂ )/2)/σ̂
and semilog plot, figure 3(a–d) demonstrates this observation. The approach to the values
ρ̂M(0) and ω̂P(0) in the uniform region is actually sufficiently fast in the scale of O(σ̂ ).
Moreover, the magnitude of the deviation between the density on the boundary and that at
the middle of the gap is of the order of the volume fraction of molecules η0 (figure 3e, f ).
From these results, when σ̂ and k are decreased simultaneously so that η0 is finite, a thin
layer with the thickness of O(σ̂ ) adjacent to the boundary, where the densities deviate up
to O(η0) from their values in the uniform region outside the layer, is expected to appear.

In figure 4, the profiles of the mass flow ρ̂Mu[ΨT ] for the thermal transpiration flow
are shown for various values of the degree of gas rarefaction k and the molecular-size
parameter σ̂ . When k is not small, the flow is smaller for larger σ̂ (see panel a). Its main
reason is simply that the increase of the temperature along the plate in units of the effective
width D − σ where the centre of a molecule can move, which becomes shorter for larger σ ,
is small, so that the flow is less driven. This effect is more significant than the enhancement
of the flow due to the increase of the effective Knudsen number defined with the length
D − σ , which should be taken into account too. Related observation will be done for the
net mass flow shown later. When k is relatively small, in turn, as σ̂ increases, the flow
is enhanced over the whole gap including near the boundary. Indeed, for k = 0.1, the
mass flow is larger for larger σ̂ (see panel b). This is expected to be associated with the
increase of the thermal conductivity of the gas accompanied by the increase of σ̂ , which
is explained by the Chapman–Enskog theory for a dense gas (Chapman & Cowling 1991)
for small Knudsen numbers, because the thermal slip coefficient, which approximately
represents the magnitude of the induced flow, is likely larger for the gas with larger thermal
conductivity, judging from the relation between them for monoatomic rarefied gases. The
negative gradient of stress near the boundary also contributes to the increase of the mass
flow there (see figure 2d). With further decrease of k, we observe considerable decrease of
the mass flow in the central part of the gap (see figure 4c,d). Figure 2(d) implies that this
is due to the deceleration by the positive gradient of stress there. Incidentally, when k is
small and σ̂ is large, although the profile of the flow velocity u[ΨT ] differs quantitatively
from the mass flow ρ̂Mu[ΨT ] due to the non-uniformity of ρ̂M , the qualitative features
mentioned above are in common with u[ΨT ].

The profiles of the mass flow ρ̂Mu[ΨP] for the Poiseuille flow are shown in figure 5 for
various values of the degree of gas rarefaction k and the molecular-size parameter σ̂ . The
profile is flatter and the flow is smaller for larger σ̂ , which is consistent with the fact that
the magnitude of the Poiseuille flow is roughly inversely proportional to the viscosity for
small k and its increase is accompanied by the increase of σ̂ .

Figure 6 shows the profiles of the heat flow for the thermal transpiration flow. When k is
small, the heat flow is enhanced for larger σ̂ , which is consistent with the aforementioned
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Figure 3. Deviation of densities ρ̂M and ω̂P from their values at the middle of the gap; (a) |ρ̂M(x1)− ρ̂M(0)|
for k = 0.1, (b) |ρ̂M(x1)− ρ̂M(0)| for k = 1, (c) |ω̂P(x1)− ω̂P(0)| for k = 0.1, (d) |ω̂P(x1)− ω̂P(0)| for k = 1,
(e) |ρ̂M(−(1 − σ̂ )/2)− ρ̂M(0)|/(4η0) and ( f ) |ω̂P(−(1 − σ̂ )/2)− ω̂P(0)|/(8η0). In (a–d), the quantities are
plotted as functions of (x1 + (1 − σ̂ )/2)/σ̂ , the distance from the boundary scaled by the molecular diameter
σ̂ . In (e, f ), the quantities are scaled by the volume fraction of molecules η0 and plotted as functions of k.
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Figure 4. Profiles of the mass flow of the thermal transpiration flow; ρ̂Mu[ΨT ] vs x1. (a) k = 10, 1 and 0.3,
(b) k = 0.1, (c) k = 0.07 and (d) k = 0.05.

increase of the thermal conductivity. It changes steeply near the boundary for large σ̂ as in
the mass flow. The profile of the heat flow for the Poiseuille flow is shown in figure 7. This
heat flow is known to be owing to the effect of gas rarefaction in the case of an ideal gas
since it occurs under the isothermal condition and it has no direct relation to the thermal
conductivity and viscosity. Our result shows that heat flow of this kind is also enhanced
with the increase of σ̂ .

Let us consider the force-driven flow, a flow driven by a uniform external force in the
direction parallel to the plates. This flow has been studied in the framework of kinetic
theory with an interest in non-Navier–Stokes effects such as the heat flow along the force
direction, the temperature bimodality and the anisotropy of normal stress components
(see, e.g. Tij & Santos 1994; Malek Mansour, Baras & Garcia 1997). Note that these
are nonlinear effects, i.e. they manifest themselves at second order in the magnitude of
the normalized force. The behaviour of the mass flow of the Poiseuille flow observed in
figure 5 is similar to that of the force-driven flow within the linearized regime for small
force (Wu et al. 2016; Sheng et al. 2020), where the aforementioned effects are suppressed
sufficiently. Thus, we have also carried out the computations of the latter case, which is
described by the solution of the problem (2.7) ofΨP with the source term IP being replaced
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Figure 5. Profiles of the mass flow of the Poiseuille flow; ρ̂Mu[ΨP] vs x1. (a) k = 10 and 1, (b) k = 0.3,
(c) k = 0.1, (d) k = 0.07 and (e) k = 0.05.

by
− ζ2ρ̂ME ≡ IF. (4.1)

Since IP and IF are identical for the Boltzmann equation (both are given by −ζ2E),
so are the VDFs (ΨP and its counterpart) and the flow velocities, heat flows and shear
stresses obtained as their moments. On the other hand, for the case of a dense gas, there
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Figure 6. Profiles of the heat flow of the thermal transpiration flow; Q(k)[ΨT ] + Q(v)T vs x1; (a) k = 10, 1 and
0.3, (b) k = 0.1, (c) k = 0.07 and (d) k = 0.05.

are differences for the profiles of mass and heat flows between two cases although the
differences are very slight (see figure 8(a,b), in particular, the curves for σ̂ = 0.15). Recall
that the expressions of IP and IF (see (2.11b) and (4.1)) differ for the case of a dense gas.
Actually, there is a difference between their marginal functions∫ ∞

−∞

∫ ∞

0
(IP(x1, ζ ), IF(x1, ζ )) dζ2 dζ3 ≡ (I†

P(x1, ζ1), I†
F(x1, ζ1)) (4.2)

near the boundary for large σ̂ , as shown in figure 8(c,d). For σ̂ = 0.1 and x1 = −0.45, their
difference normalized by the maximum, maxζ1 |I†

P − I†
F|/maxζ1 |I†

F|, is larger than 0.051
(5.1 %). This demonstrates that, for the case of the Enskog equation, there are differences
between the force-driven and the pressure-driven flows even within the linearized regime,
especially at the microscopic level.

In figure 9, we show the net mass flows for the thermal transpiration and Poiseuille flows.
In panels (a,b), MT and MP given by (2.17) are shown, respectively, while in panels (c,d),
their ratios to the net mass flows for the case of the Boltzmann equation, say MT,B and
MP,B, are shown. The quantity MT exhibits the behaviour corresponding to that for the
mass flow profile observed in figure 4. Namely, as k becomes smaller, the enhancement of
the flow with the increase of σ̂ compensates for the decrease of the effective gap width, and
consequently the values of the net mass flows are close to each other for different σ̂ values
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Figure 7. Profiles of the heat flow of the Poiseuille flow; Q(k)[ΨP] + Q(v)P vs x1; (a) k = 10, 1 and 0.3,
(b) k = 0.1, (c) k = 0.07 and (d) k = 0.05.

(e.g. for k = 0.1 and 0.07). With further decrease of k, the mass flow rate is smaller for
larger σ̂ again because the flow decreases in the central part of the gap. For the Poiseuille
flow, when σ̂ is small, the Knudsen minimum is clearly observed (see panel b), which is
attributed to the fact that the braking effect due to the plate becomes smaller both as k → 0
and k → ∞ (more thorough explanation is found in the literature). On the other hand, as is
also pointed out in Wu et al. (2016) and Sheng et al. (2020) for the force-driven flows, the
plot becomes flatter for larger σ̂ and the Knudsen minimum becomes more invisible. This
is because the flow is not enhanced in the central part of the gap as k becomes smaller;
see the plot curves for σ̂ = 0.1 or 0.15 in figure 5(c–e), which are almost unchanged. In
figure 9(e, f ), we show the following quantities:

k∗ = k
1 − σ̂

, Mβ,∗ = Mβ

(1 − σ̂ )2
(β = T,P), (4.3)

introduced by the conversion which corresponds to the replacement of the reference length
D by D − σ . As k∗ becomes larger, the plots for different σ̂ values exhibit the common
trend, which implies that the behaviour of the gas for large Knudsen numbers can be
characterized well in terms of the length D − σ . This is consistent with the explanation of
the mass flow for the thermal transpiration flow given in the third paragraph of this section.
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Figure 8. Comparison between the pressure-driven and force-driven Poiseuille flows for the mass flow, heat
flow and marginal source term for k = 0.1; (a) ρ̂Mu[ΨP], (b) Q(k)[ΨP] + Q(v)P , (c) I†

P and I†
F for σ̂ = 0.1 and

(d) I†
P and I†

F for σ̂ = 0.001. In (a,b), the symbols indicate the pressure-driven case, while the solid lines
the force-driven case. In (c,d), the solid lines indicate the pressure-driven case, while the dashed lines the
force-driven case.

Figures 10–12 show the VDF ΨT for the degree of gas rarefaction k = 0.1, 1 and 10
at three spatial points x1 = −(1 − σ̂ )/2, −0.25 and 0 as functions of the normal velocity
component ζ1 with (ζ2, ζ3) being fixed at (1.106, 0). In the figures, the close-ups of the
VDFs at the boundary near ζ1 = 0 are also shown in panel (b) of each figure. First, the
following overall behaviour similar to the case of the Boltzmann equation is observed:

(a) There is a jump discontinuity at ζ1 = 0 on the boundary x1 = −(1 − σ̂ )/2.
(b) When k is small, the discontinuity is small and the VDFs behave moderately in the

gas.
(c) When k is large, the VDFs are localized around ζ1 = 0 including in the gas.

However, for the finite molecular size σ̂ /= 0, the VDFs deviate considerably from those for
the Boltzmann equation for ζ1 < 0 near the origin on the boundary even when σ̂ is small
(see panel (b) of each figure). As σ̂ is decreased, while the values of the macroscopic
quantities approach those for the Boltzmann equation uniformly in x1 (see, e.g. figures 4
and 5), the VDFs exhibit non-uniform approach in (x1, ζ1). In the following, we consider
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the cause of this behaviour of the VDFs with the aid of the expression (3.1b). Since the
first term on the right-hand side of (3.1b) is exponentially small for |ζ1| � 1, we only
have to examine the second term. As in the case of the Boltzmann equation, the integral
C(ΨT), the collision frequency ν and the source term IT are smooth in velocity ζ (or ζ1)
also for finite σ̂ , which can be confirmed actually from the numerical results. Thus it is
the exponential function that induces the steep variation of ΨT in ζ1 < 0 near the origin.
Taking into account the expression of the argument of the exponential function, we see
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Figure 10. The VDF ΨT at (ζ2, ζ3) = (1.106, 0) for k = 0.1; (a) x1 = −(1 − σ̂ )/2, (b) close-up of (a),
(c) x1 = −0.25 and (d) x1 = 0.

that only the integrand in the range |s + (1 − σ̂ )/2| � k|ζ1| actually contributes to the
integral with respect to s. In the meantime, C(ΨT) and ν vary significantly in x1 in the
region within O(σ̂ ) from the boundary, as figure 13 implies. Thus, for |ζ1| � σ̂/k, Ψβ is
determined from C(Ψβ) and ν substantially affected by the boundary and accordingly its
value may deviate largely from that for the case of the Boltzmann equation. To confirm the
estimate, we show the deviation of the VDF ΨT from that for the case of the Boltzmann
equation ΨT,B, say �ΨT = ΨT − ΨT,B, normalized by its value at ζ1 = −0 in figure 14.
When they are plotted as functions of kζ1/σ̂ , they overlap well with each other for large k
and small σ̂ . This supports the above estimate. Note that ΨP also has the features described
in this paragraph although their figures are omitted.

The comparison of the results shown in this section with other approaches like molecular
dynamics (MD) simulation is not carried out here since, unfortunately, it is difficult to
find the simulation result of a corresponding system such as molecules under the dense
gas condition confined in a channel joined to two reservoirs maintained at different
temperature and pressure. However, instead, let us mention some known correspondences
between results obtained by the Enskog equation and MD, which support the description
of phenomena in dense gases based on the kinetic theory:

(i) It is known that the profile of the reference density obtained from the Enskog
equation, ρ̂M(x1) in the present paper, agrees well with that obtained by MD
simulation (see, e.g. figure 6 in Frezzotti 1997).
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(c) x1 = −0.25 and (d) x1 = 0.

(ii) For the force-driven flow, it is demonstrated in Sheng et al. (2020) that the velocity
profile obtained from the Enskog equation agrees well with that obtained by MD
simulation (see figures 5 and 6 in the reference).

(iii) As for the thermal response, heat flow as well as the profiles of stress, density
and temperature between two parallel plates kept at different constant temperatures
obtained from the Enskog equation agree well with those obtained by MD simulation
(see Frezzotti 1999).

5. Concluding remarks

We have investigated the thermal transpiration and Poiseuille flows of a dense gas between
two parallel plates based on the Enskog equation under the diffuse reflection boundary
condition. The problem was linearized around the local equilibrium state that is achieved
in the absence of driving sources. Then, the reduced spatially one-dimensional problems
were solved numerically by a method based on the integral formulation combined with
the fast Fourier spectral method for the computation of the Enskog collision integral. Our
findings in the present work are summarized as follows:

(i) In contrast to the case of an ideal gas, the density and the gradients of pressure
and normal stress component in the flow direction are not uniform in the direction
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Figure 12. The VDF ΨT at (ζ2, ζ3) = (1.106, 0) for k = 10; (a) x1 = −(1 − σ̂ )/2, (b) close-up of (a),
(c) x1 = −0.25 and (d) x1 = 0.

normal to the plates for a dense gas. The non-uniformity or significant variation has
been observed near the boundary within a distance of the order of the molecular
diameter for various quantities for a dense gas. The non-uniform normal stress
gradient contributes to the acceleration or deceleration of the thermal transpiration
flow for small Knudsen numbers.

(ii) The behaviour of mass and heat flows as well as net mass flows has been clarified
for various Knudsen numbers and ratios of the molecular diameter to the distance
between the plates.

(iii) In the analysis of the Poiseuille flow, most characteristics of the force-driven flow
with a small force are recovered. However, for the case of a dense gas, differences
between the force-driven and the present pressure-driven flows are observed even
within the linearized regime for small force and pressure gradient, especially at the
microscopic level.

(iv) The behaviour of VDFs, in particular, the way they approach those for the Boltzmann
equation as the molecular diameter becomes smaller, has been clarified.
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Figure 13. Plots of the collision integral C(ΨT ) and the collision frequency ν at (ζ2, ζ3) = (1.106, 0) for k =
1; (a) C(ΨT ) at x1 = −(1 − σ̂ )/2, (b) C(ΨT ) at x1 = −0.25, (c) ν at x1 = −(1 − σ̂ )/2, (d) ν at x1 = −0.25
and (e) ν at ζ1 = 0.
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Appendix A. Outline of linearization procedure

In this appendix, we summarize the outline of the linearization procedure for the Enskog
equation.

A.1. Reference equilibrium state

First, substitute f̂ = M̂ = ρ̂M(x1)E(ζ ) into (2.1a). Then, the left-hand side of (2.1a) is
recast as

[Left-hand side of (2.1a)] = ζ1E(ζ )
dρ̂M(x1)

dx1
. (A1)

On the other hand, the right-hand side of (2.1a) is transformed as

[Right-hand side of (2.1a)]

= 1

k2
√

2π

∫ [
Ŷ
(
ρ̂M

(
x1 + 1

2
σ̂k1

)
; η0

)
ρ̂M(x1 + σ̂k1)E(ζ ′

∗)ρ̂M(x1)E(ζ ′)

−Ŷ
(
ρ̂M

(
x1 − 1

2
σ̂k1

)
; η0

)
ρ̂M(x1 − σ̂k1)E(ζ∗)ρ̂M(x1)E(ζ )

]
(V̂ · k)H(V̂ · k) dk dζ ∗

= − 1

k2
√

2π

∫
Ŷ
(
ρ̂M

(
x1 − 1

2
σ̂k1

)
; η0

)
ρ̂M(x1 − σ̂k1)ρ̂M(x1)

× (V̂ · k)[H(−V̂ · k)+ H(V̂ · k)]E(ζ∗)E(ζ ) dk dζ ∗

= 1

k2
√

2π

∫
Ŷ
(
ρ̂M

(
x1 − 1

2
σ̂k1

)
; η0

)
ρ̂M(x1 − σ̂k1)ρ̂M(x1)

× (ζ1k1 + ζ2k2 + ζ3k3)E(ζ ) dk
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= 2π

k2
√

2π
ρ̂M(x1)ζ1E(ζ )

∫ 1

−1
Ŷ
(
ρ̂M

(
x1 − 1

2
σ̂ z
)

; η0

)
ρ̂M(x1 − σ̂ z)z dz

= ζ1E(ζ )J1[ρ̂M](x1), (A2)

where J1 is given in Appendix B. Note that (a) at the second equality, E(ζ ′∗)E(ζ ′) =
E(ζ∗)E(ζ ) is used and change of a variable k → −k is applied for the first term in the
integrand; (b) at the third equality, H(−V̂ · k)+ H(V̂ · k) = 1 is used and the integration
over ζ ∗ is carried out; (c) at the fourth equality, with the x1 direction as the polar direction,
the integration with respect to the azimuthal angle of k is carried out (then the contribution
from the parts multiplied by ζ2k2 and ζ3k3 vanish) and that with respect to the polar angle
of k is expressed as the integral with respect to the variable z.

Equating (A1) and (A2), we have the equation (2.5a) for the density ρ̂M(x1). Since
M̂ is a Maxwellian, it satisfies the diffuse reflection boundary condition (2.1g) with the
plate temperature T̂w(x2) being replaced by the reference temperature 1. Substituting f̂ =
M̂ = ρ̂M(x1)E(ζ ) into the condition (2.1j) for average density, immediately we have (2.5b).
When the density ρ̂M(x1) satisfies (2.5), the local equilibrium state M̂ = ρ̂M(x1)E(ζ )
satisfies the Enskog equation (2.1a) in the domain −(1 − σ̂ )/2 < x1 < (1 − σ̂ )/2.

A.2. Perturbation
Now, let us introduce the perturbation, Φ, and express f̂ as f̂ = M̂ +Φ. Then, subtracting
Enskog equation (2.1a) for f̂ = M from that for f̂ = M̂ +Φ, we have

ζ1
∂Φ

∂x1
+ ζ2

∂Φ

∂x2
= 1

k
[Q̂(M̂ +Φ)− Q̂(M̂)] = 1

k
L(Φ)+ O(Φ2), (A3)

where L is the collision operator linearized around the reference local equilibrium
state M̂(x1, ζ ). The expression (2.8) of L is obtained in a straightforward
way by using the transformation Ŷ

(
ρ̂
)

f̂ f̂ = [Ŷ
(
ρ̂M
)+ 〈Φ〉 Ŷ1

(
ρ̂M
)+ O(Φ2)](M̂ +

Φ)(M̂ +Φ) = Ŷ
(
ρ̂M
)

M̂M̂ +
{

Ŷ
(
ρ̂M
)
(M̂Φ +ΦM̂)+ 〈Φ〉 Ŷ1

(
ρ̂M
)

M̂M̂
}

+ O(Φ2) (see
also (2.10)).

Subtracting the boundary condition (2.1g) or the condition (2.1j) for average density for
f̂ = M from those for f̂ = M̂ +Φ, respectively, we have

b.c. Φ =
[
ρ̌w + ρ̂M

(
∓1 − σ̂

2

)(
ζ 2 − 3

2

)
cTx2

]
E(ζ )+ O(cTΦ,Φ

2),

(
ζ1 ≷ 0, x1 = ∓1 − σ̂

2

)
, (A4a)

ρ̌w = −1
2

cTx2ρ̂M

(
∓1 − σ̂

2

)
∓ 2

√
π

∫
ζ1≶0

ζ1Φ dζ , (A4b)

with

(∫ (1−σ̂ )/2

−(1−σ̂ )/2

∫
Φ dζ dx1

)∣∣∣∣∣
x2=0

= 0. (A4c)

Derivation of (A4) is straightforward and parallel to the case of the Boltzmann equation.
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A.3. Form of perturbation
We need to find the appropriate form of the perturbation Φ such that Φ represents
the gradients of temperature and pressure (or stress) and satisfies its equation (A3) and
conditions (A4) within the linearized regime.

For the Boltzmann equation, it is known that such a solution Φ can be sought in the
form

Φ = cT

[
x2E(ζ )

(
−1 +

(
ζ 2 − 3

2

))
+ Ψ̄T(x1, ζ )

]
+ c̄P

[
x2E(ζ )+ Ψ̄P(x1, ζ )

]
, (A5)

where c̄P is a small constant and Ψ̄T and Ψ̄P are odd in ζ2. The bar is attached
to discriminate the quantities from those for the Enskog equation. Calculating the
temperature T̂ and the stress p̂22 with f̂ = M̂ +Φ for the Boltzmann equation, we
have T̂ = 1 + cTx2 and p̂22 = 1 + c̄Px2(= p̂) within the linearized regime (the negligible
O(c̄2

P, c2
T) error terms are dropped in these expressions). We see that c̄P corresponds to the

gradient of stress (or pressure) in the x2 direction. The problem for Φ is rewritten to those
for Ψ̄T and Ψ̄P.

Unfortunately, for the case of Enskog equation, the form (A5) cannot satisfy the
equation (A3) and a modification is required. A clue for an appropriate modification
is that the reference state M̂ is a Maxwellian with uniform temperature but
variable density profile in the x1 direction for the case of Enskog equation. We
attempt to make the perturbation have the corresponding properties too. Accordingly,
we introduce perturbed density profile, say ω̂T(x1) and ω̂P(x1), as well while
keeping the temperature is constant in x1. This leads to the introduction of the
form (2.4c) of Φ, i.e. Φ = cT

{
x2E(ζ )

[
ω̂T(x1)+ (ζ 2 − 3

2 )ρ̂M(x1)
]

+ ΨT(x1, ζ )
}

+
cP
[
x2E(ζ )ω̂P(x1)+ ΨP(x1, ζ )

]
. Note that the case of Boltzmann equation corresponds

to the case ρ̂M(x1) ≡ 1, ω̂T(x1) ≡ −1 and ω̂P(x1) ≡ 1.
Calculating the temperature T̂ and the stress p̂22 with f̂ = M̂ +Φ for the Enskog

equation, we have T̂ = 1 + cTx2 and

p̂22 = p̂(k)22 + p̂(v)22 ( /=p̂)

= [ρ̂M(x1)+ P(v)22,M(x1)] + cTx2[G(k)22,T(x1)

+ G(v)22,T(x1)] + cPx2[G(k)22,P(x1)+ G(v)22,P(x1)], (A6)

within the linearized regime (the negligible O(c2
P, c2

T) error terms are dropped in these
expressions), where G(k)22,T = ρ̂M(x1)+ ω̂T(x1) and G(k)22,P = ω̂P(x1), and the expressions

of the stress contribution P(v)22,M and the gradients G(v)22,T and G(v)22,P are given in Appendix C.

The calculation of p̂(k)22 is parallel to the case of Boltzmann equation. As for that of p̂(v)22
(2.3f ), thanks to the explicit functional form of Φ in ζ except the parts of ΨT,P, the
integration with respect to ζ and ζ ∗ can be carried out firstly with k and α̂ being fixed
and that with respect to the azimuthal angle of k can also be carried out subsequently. The
contribution from ΨT,P vanishes due to their oddness in ζ2. Now, in accordance with the
nature of the Poiseuille and thermal transpiration flows, we require that

1
1 − σ̂

∫ (1−σ̂ )/2

−(1−σ̂ )/2
[G(k)22,P(x1)+ G(v)22,P(x1)] dx1 = 1, (A7a)
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1
1 − σ̂

∫ (1−σ̂ )/2

−(1−σ̂ )/2
[G(k)22,T(x1)+ G(v)22,T(x1)] dx1 = 0. (A7b)

See also the item (ii) in § 2.4. Under (A7), cP corresponds to the gradient of stress in the
x2 direction averaged in the x1 direction (see (A6)). Substituting the expressions of G(k,v)22,P

and G(k,v)22,T into (A7a) and (A7b), they reduce to the subsidiary conditions (2.6c) and (2.6b)
for ω̂P and ω̂T . Their derivations are straightforward.

A.4. Compatibility of perturbation
Finally, we have to check if the solution Φ of the equation (A3) under the conditions (A4)
can be sought without any inconsistency in the form (2.4c) within negligible error in the
linearized regime.

Since Φ|x2=0 = cTΨT + cPΨP and ΨT,P is considered to be odd in ζ2, the condition
(A4c) for average density is satisfied automatically. Substituting (2.4c) into the boundary
condition (A4a) and (A4b) leads to the homogeneous boundary condition (2.7b) for ΨT,P,
whose derivation is parallel to the case of Boltzmann equation. It remains to check the
compatibility with the equation (A3).

Substituting (2.4c) into the equation (A3) for Φ, its left-hand side is recast as

ζ1
∂Φ

∂x1
+ ζ2

∂Φ

∂x2
= cT

{
x2ζ1E(ζ )

[
dω̂T(x1)

dx1
+
(
ζ 2 − 3

2

)
dρ̂M(x1)

dx1

]

+ ζ1
∂ΨT

∂x1
(x1, ζ )+ ζ2E(ζ )

[
ω̂T(x1)+

(
ζ 2 − 3

2

)
ρ̂M(x1)

]}

+ cP

{
x2ζ1E(ζ )

dω̂P(x1)

dx1
+ ζ1

∂ΨP

∂x1
(x1, ζ )+ ζ2E(ζ )ω̂P(x1)

}
. (A8)

We see that the terms in (A8) can be classified into three different kinds of terms according
to their functional form with respect to x2 and ζ : (I) cTx2ζ1E(ζ )(ζ 2 − 3/2) dρ̂M(x1)/dx1,

(II) cT,Px2ζ1E(ζ ) dω̂T,P(x1)/dx1, (III) cT

{
ζ1∂ΨT(x1, ζ )/∂x1 + ζ2E(ζ )

[
ω̂T(x1)+ (ζ 2 − 3

2 )

ρ̂M(x1)
]}

and cP
{
ζ1∂ΨP(x1, ζ )/∂x1 + ζ2E(ζ )ω̂P(x1)

}
. The terms of third kind are odd

in ζ2 and do not depend on x2.
For the right-hand side of (A3), first let us rewrite the form (2.4c) as Φ = (cTΨT +

cPΨP)+ cTx2E(ζ 2 − 3
2)ρ̂M + x2E(cT ω̂T + cPω̂P). Then substituting it into the right-hand

side of (A3) and making use of the linearity of the collision operator L, we have

1
k

L(Φ) = 1
k

L(cTΨT + cPΨP)+ 1
k

L
(

cTx2E
(
ζ 2 − 3

2

)
ρ̂M

)

+ 1
k

L(x2E(cT ω̂T + cPω̂P)), (A9a)

where

1
k

L(cTΨT + cPΨP) = cT
1
k

L(ΨT)+ cP
1
k

L(ΨP), (A9b)
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1
k

L
(

cTx2E
(
ζ 2 − 3

2

)
ρ̂M

)

= cTx2ζ1E(ζ )
(
ζ 2 − 3

2

)
J1[ρ̂M](x1)− cT

σ̂E(ζ )

k2
√

2π
J3[ρ̂M](x1, ζ ), (A9c)

1
k

L(x2E(cT ω̂T + cPω̂P))

= cTx2ζ1E(ζ )K1[ω̂T , ρ̂M](x1)− cT
σ̂E(ζ )

k2
√

2π
ζ2K3[ω̂T , ρ̂M](x1)

+ cPx2ζ1E(ζ )K1[ω̂P, ρ̂M](x1)− cP
σ̂E(ζ )

k2
√

2π
ζ2K3[ω̂P, ρ̂M](x1), (A9d)

and the integrals J1, J3, K1 and K3 are given in Appendix B. Derivation of (A9c) and
(A9d) can be done straightforwardly in the similar way as (A2), where the same kind
of operations (see the items (a)–(c) after (A2)) can be used again. When the arguments
proportional to x2 are substituted into the collision operator L(ψ) ((A9c) and (A9d)), due
to the position displacements x ± σ̂k forψ and x ± (σ̂/2)k for 〈ψ〉 (see also (2.8)), factors
with x2 ± σ̂k2 and x2 ± (σ̂/2)k2 occur in the integrand of L(ψ). Then, the contribution
from parts proportional to x2 gives the first term of the right-hand side of (A9c) and the
first and third terms of the right-hand side of (A9d), and that from parts proportional to
±σ̂k2 and ±(σ̂/2)k2 gives the second term of the right-hand side of (A9c) and the second
and fourth terms of the right-hand side of (A9d), respectively.

Corresponding to the classification after (A8), the terms on the right-hand side of
(A3), 1

k L(Φ) given in (A9), can also be classified into: (I) cTx2ζ1E(ζ )(ζ 2 − 3
2)J1[ρ̂M](x1),

(II) cT,Px2ζ1E(ζ )K1[ω̂T,P, ρ̂M](x1) and (III) cT,P(1/k)L(ΨT,P), −cT(σ̂E(ζ )/
k2

√
2π)J3[ρ̂M](x1, ζ ) and −cT,P(σ̂E(ζ )/k2

√
2π)ζ2K3[ω̂T,P, ρ̂M](x1). The terms of the

third kind can be confirmed to be actually odd in ζ2.
Finally, we equate (A8) and (A9a) by taking into account the classification (I)–(III)

of the terms. For the first kind of terms, because the equation for ρ̂M , dρ̂M(x1)/dx1 =
J1[ρ̂M](x1), holds, we find that they nicely cancel out. Equating the second kind of terms,
we obtain the equation (2.6) for ω̂T,P. Equating the third kind of terms, the equation (2.7)
for ΨT,P with the source term (2.11) is obtained.

Appendix B. Definitions of Ji and Ki

The integrals J1, J2 and J3 in (2.5a), (2.6b) and (2.11a) are given by

J1[ρ̂M](x1) = 1
k

√
π

2
ρ̂M(x1)

∫ 1

−1
Ŷ
(
ρ̂M (rm) ; η0

)
ρ̂M(ro)z dz, (B1a)

J2[ρ̂M] = −
√

π

4
√

2k(1 − σ̂ )

∫ (1−σ̂ )/2

−(1−σ̂ )/2

∫ σ̂

0

∫ 1

−1
(1 − z2)Ŷ

(
ρ̂M (rc) ; η0

)
×ρ̂M(ra)ρ̂M(rb) dz dα̂ ds, (B1b)

J3[ρ̂M](x1, ζ ) = 1√
π

∫
k2Ŷ

(
ρ̂M

(
x1 + 1

2
σ̂k1

)
; η0

)
×ρ̂M(x1 + σ̂k1)ρ̂M(x1)Z(ζ · k) dk, (B1c)
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Poiseuille and thermal transpiration flows of a dense gas

where

ro = x1 − σ̂ z, rm = x1 − 1
2
σ̂ z, (B2a)

ra = s − α̂z, rb = s + (σ̂ − α̂)z, rc = s +
(

1
2
σ̂ − α̂

)
z, (B2b)

Z(t) = 1
2
(1 − t2)e−t2 +

√
π

2

(
t3 − 1

2
t
)
(1 − erf(t)) , erf(t) = 2√

π

∫ t

0
e−τ 2

dτ.

(B2c)

The integrals K1, K2 and K3 in (2.6) and (2.11) are given as follows:

K1[ω̂β, ρ̂M](x1) = 1
k

√
π

2

[∫ 1

−1
Ŷ
(
ρ̂M (rm) ; η0

)
[ρ̂M(ro)ω̂β(x1)+ ω̂β(ro)ρ̂M(x1)]z dz

+
∫ 1

−1
Ŷ1
(
ρ̂M (rm) ; η0

)
ω̂β(rm)ρ̂M(ro)ρ̂M(x1)z dz

]
, (B3a)

K2[ω̂β, ρ̂M] =
√

π

4
√

2k(1 − σ̂ )

∫ (1−σ̂ )/2

−(1−σ̂ )/2

∫ σ̂

0

∫ 1

−1
(1 − z2)

×
{

Ŷ
(
ρ̂M (rc) ; η0

) [
ρ̂M(ra)ω̂β(rb)+ ω̂β(ra)ρ̂M(rb)

]
+ Ŷ1

(
ρ̂M (rc) ; η0

)
ω̂β (rc) ρ̂M(ra)ρ̂M(rb)

}
dz dα̂ ds

+ 1
1 − σ̂

∫ (1−σ̂ )/2

−(1−σ̂ )/2
ω̂β(s) ds, (B3b)

K3[ω̂β, ρ̂M](x1) = π

∫ 1

−1
(1 − z2)

[
Ŷ
(
ρ̂M (rm) ; η0

)
ω̂β(ro)ρ̂M(x1)

+ 1
2

Ŷ1
(
ρ̂M (rm) ; η0

)
ω̂β(rm)ρ̂M(ro)ρ̂M(x1)

]
dz. (B3c)

Appendix C. Definitions of several moments

The functions P(v)11,M , P(v)22,M , G(v)11,T , G(v)22,T , P(v)12,ωT
, P(v)12 [Ψβ] and Q(v)[Ψβ] in (2.14) and

(2.15) are given by[
P(v)11,M
P(v)22,M

]
=

√
π

4
√

2k

∫ 1

−1

∫ σ̂

0

[
2z2

1 − z2

]
Ŷ
(
ρ̂M (rC) ; η0

)
ρ̂M(rA)ρ̂M(rB) dα̂ dz, (C1a)

[
G(v)11,T
G(v)22,T

]
=

√
π

4
√

2k

∫ 1

−1

∫ σ̂

0

[
2z2

1 − z2

]

×
{

Ŷ
(
ρ̂M (rC) ; η0

) [
ρ̂M(rA)ω̂T(rB)+ ω̂T(rA)ρ̂M(rB)

]
+ Ŷ1

(
ρ̂M (rC) ; η0

)
ω̂T (rC) ρ̂M(rA)ρ̂M(rB)

+ Ŷ
(
ρ̂M (rC) ; η0

)
ρ̂M(rA)ρ̂M(rB)

}
dα̂ dz, (C1b)
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P(v)12,ωT
=

√
π

4
√

2k

∫ 1

−1

∫ σ̂

0
z(1 − z2)

×
{

Ŷ
(
ρ̂M (rC) ; η0

) [
(σ̂ − α̂)ρ̂M(rA)ω̂T(rB)− α̂ω̂T(rA)ρ̂M(rB)

]
+
(

1
2
σ̂ − α̂

)
Ŷ1
(
ρ̂M (rC) ; η0

)
ω̂T (rC) ρ̂M(rA)ρ̂M(rB)

+
(

1
2
σ̂ − α̂

)
Ŷ
(
ρ̂M (rC) ; η0

)
ρ̂M(rA)ρ̂M(rB)

}
dα̂ dz, (C1c)

P(v)12 [Ψβ] = 1

2
√

2πk

∫ σ̂

0

∫∫
k1k2Ŷ

(
ρ̂M

(
x1 +

(
1
2
σ̂ − α̂

)
k1

)
; η0

)

×
[
I(+)P (ζ · k)ρ̂M(x1 − α̂k1)Ψβ(x1 + (σ̂ − α̂)k1, ζ )

+ I(−)P (ζ · k)ρ̂M(x1 + (σ̂ − α̂)k1)Ψβ(x1 − α̂k1, ζ )
]

dζ dk dα̂, (C1d)

Q(v)[Ψβ] = 1

4
√

2πk

∫ σ̂

0

∫∫
k2Ŷ

(
ρ̂M

(
x1 +

(
1
2
σ̂ − α̂

)
k1

)
; η0

)

×
[
I(+)Q (ζ · k)ρ̂M(x1 − α̂k1)Ψβ(x1 + (σ̂ − α̂)k1, ζ )

+ I(−)Q (ζ · k)ρ̂M(x1 + (σ̂ − α̂)k1)Ψβ(x1 − α̂k1, ζ )
]

dζ dk dα̂, (C1e)

where

rA = x1 − α̂z, rB = x1 + (σ̂ − α̂)z, rC = x1 +
(

1
2
σ̂ − α̂

)
z, (C2a)

I(±)P (t) = π−1/2
∫ ∞

±t
(τ ∓ t)2e−τ 2

dτ, (C2b)

I(±)Q (t) = ±π−1/2
∫ ∞

±t
(τ ∓ t)2(τ ± t)e−τ 2

dτ. (C2c)

The functions (G(v)11,P, G(v)22,P) and P(v)12,ωP
are respectively given by the definitions of (G(v)11,T ,

G(v)22,T ) and P(v)12,ωT
with their respective last terms Ŷ(ρ̂M(rC); η0)ρ̂M(rA)ρ̂M(rB) and (1

2 σ̂ −
α̂)Ŷ(ρ̂M(rC); η0)ρ̂M(rA)ρ̂M(rB) in the curly brackets being dropped and ω̂T being replaced
by ω̂P.

Appendix D. Information of computations

In this appendix, the information of computations is briefly described. The results shown in
§ 4 are those obtained with the molecular-velocity lattice system consisting of 336 × 64 ×
64 points in ζ1ζ2ζ3-space and the spatial lattice system consisting of 181 points. For ζ1,
the minimum lattice interval is 1.243 × 10−5 around ζ1 = 0, while the maximum interval
is 0.0931 around ζ1 = ±4.5. For ζ2 and ζ3, the lattice interval is uniformly 0.369. For
x1, the minimum lattice interval is 5.242 × 10−5 around x1 = −1/2, while the maximum
interval is 6.944 × 10−3 around x1 = 0 in the case of σ̂ = 0. In the case of σ̂ /= 0, this
arrangement is shrunk to the interval [−(1 − σ̂ )/2, 0]. In the computation of the collision
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Poiseuille and thermal transpiration flows of a dense gas

integral, 192 × 64 × 64 modes in the frequency domain for ζ1ζ2ζ3-space and 32 and 16
Gauss–Legendre quadrature points for the polar and azimuthal angles of vector k (with
the x1 direction as the polar direction) are used. The results shown in figures 2–14 are
those for which numerical convergence has been judged within the error invisible in
the figures through the comparison with the results obtained with other lattice systems
and parameters. The momentum conservation law (2.19) provides another measure of
accuracy. The values of |ST | and |SP|, which should theoretically be zero within the
linearized regime, are bounded respectively by 6.0 × 10−6 and 3.0 × 10−5 for all values
of k and σ̂ chosen. This also supports the accuracy of the present computation.
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