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On the application of queuing theory for analysis of twin

data
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A mathematical model based on queuing theory is used to study the dynamics of environmental
influence on twin pairs. The model takes into consideration genetic factors and effects of non-
shared environment. Histograms are exploited as base analysed characteristics, with the method
of minimum chi-square yielding estimated characteristics. The proposed technique was applied to
analysis of longitudinal data for MZ and DZ twins. It was shown that the same environment
impact may yield different contributions to final variances of the 1Q parameters under
investigation. Magnitudes of these contributions depend on the genetic factor represented by
distributions of an analysed parameter at the point of birth. Twin Research (2000) 3, 92—-98.
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Introduction

We present a technique intended for studying
dynamics of individual characteristics dependent on
heredity and also environmental influence. Using
twin measurements at a series of time points, this
technique makesit possible to observe how environ-
mental factors change initial personal differences
resulting from genetic factors during the selected
time period and to estimate parameters of interest
quantitatively. Parameters describing the effect of
both types of factors are discussed. In contrast to
traditional confirmatory factor analysis,’? histo-
grams are used as the basis for analysis instead of
covariance matrices. The approach may be used in
longitudinal research together with the analysis of
simplex models®* and is illustrated by an applica-
tion to the study of IQ.

Materials and methods

The quantity to be analysed is the absolute differ-
ence between the members of atwin pair for the trait
of interest. The range of this quantity isdivided into
several intervals, with each interval considered as a
separate state in which a twin pair has some
probability to find itself. Transitions between the
states are possible over time.
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Queuing theory yields a convenient mathematical
model that may be used to describe the dynamics of
these transitions. The model is represented by a
graph (an exampleis presented in Figure1) in which
nodes (depicted as rectangles) correspond to the
states, and branches (depicted as arrows) correspond
to transitions. The process of development of differ-
ences between twins may be imagined as a random
walk along the graph from one state to another
following the arrows. Time is taken as continuous.
The initial distribution of state probabilities at the
moment of birth reflects genetic differences between
twins. As a result of environmental influences, this
initial distribution is transformed during the time of
observation by instantaneous state-to-state transi-
tions which take place at random time points. It is
important to note that only the environmental
influence differing for the members of a pair (non-
shared environment) is taken into account in the
current model.

It is assumed that state-to-state transitions (corre-
sponding to each branch of the graph) meet the
following two properties of Poisson’s flows of
events:

» ordinariness (aflow is ordinary if the probabil-
ity of appearance of more than one event
during a small time interval is much less than
the probability of appearance of one event for
the same time);

» absence of contagion (the numbers of events
falling into any two disjoint intervals are
independent).

It may be proved® that the number of events X in
these flows falling into any interval of the length 1
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adjoining to thetime point t is distributed according
to the law of small numbers:

_ (@t )" a0

Pt,t (X:m) m| 3

where P, . (X = m) isthe probability of appearance of
m events during the considered interval, a(t,t) is the
mean number of events fallinginto an interval of the
length t adjoining to time point t. Only stationary
flows (where a(t,t) = nt) will be considered here,
where parameter 1 is a constant representing the
density of a stationary flow and is equal to mean
number of events per unit time interval. Mean time
interval between two adjacent eventsin such a flow
is therefore 1/7.

The system shown in Figure1 is a finite chain of
n + 1 stateswheretransitions from the state x,(k # 0,
k # n) are possible only to the preceding state x,_, or
to the next state x, , ;. From the states x, and x, the
only available states are x, and x,_, respectively.
Processes described by means of such graphs are
called ‘the processes of death and propagation’ since
first they were applied in biology to analyse dynam-
ics of population growth. Flow densities from state k
aredenoted as ), and u,. The parameter A, represents
environmental influences making twins less alike
(divergence), whilst p, represents environmental
processes where the environment makes twins more
alike (convergence).

If the total admissible range of absolute differences
between twins is denoted as D, the state x, corre-
sponds to the pair difference interval from 0 to
D/(n + 1), the state x, to the interval from D/(n + 1)
to 2D/(n + 1), and so on. The following set of
ordinary differential equations® may be drawn to
describe the time history of state probabilities:
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where p,(t) isthe probability to be within the state x,
at the time point t. To simplify the problem, flow
densities are here assumed to be constant with
regard to the index k: A\g=XA; =...=A,_4=A and
Wy =W, = ... = U, = u. To integrate these equations,
one has to assign initial conditions

po(O),p1(0),---,pn(0);Zpk(O) =1.

n
The normalisation condition 2 pk(t) = 1is valid at
any time point. k=0
Applying this model to twins, it is postulated that
t =0 is the moment of their birth. For MZ twins,
pPo(0) = 1and p,(0) = 0(k = 1,...,n) sincethereare no
genetic differences between them and no environ-
ment effects at this time point. Starting differences
for DZ twins and unrelated pairs may be described
by a normal distribution with zero mean and some
standard deviations o4, and o,, which are used to
characterise genetic differences. Because of distribu-
tion symmetry,

Di(n+1), o 2Dim+)
0)=—— —Xx“/ 20 0)=—— —X“/ 25
Po(0) o fe dx, p1©) o € dx,...,
D/(n+1)

and so on (o = o4, for DZ twins and o = o, for
unrelated pairs). Genetic and environmental effects
are estimated in terms of the standard deviations oy,
and o,, and flow densities A and p.

Expected state probabilities are calculated by
integrating the above set of differential equations.
The expected frequency of being at the kth state in
the gth group (g = 1,2,...,G) is equal to p,¢Ng, where
Pk i8S the probability of being at the kth state in the
gth group and N is the number of casesin the group.
The corresponding observed frequencies F,, result
from measurements obtained during a longitudinal

M: —hopo(t)+uips(t); twin study. Under some conditions, the following
dt statistic is distributed asymptomatically according
to a chi-square distribution:
dpk (t)_ G n 2
= =Mt )Pk () + 1P () + e 1P (t), (Fkg — PkgNg)
dt 2 X e e
g=1 k=0 pngg
where (k = 1,2,...,n—1); . i
This sum should be regarded as a goodness-of-fit
dpn (1) measure, with the number of degrees of freedom
Pn () _ —tnPn(t)+An—1Ppn-1(t) equal to Gn-l where | is the total number of
dt independent parameters. The technique that finds
R'fl )"k-.l_ ?‘k | }“n-l
’ Ll Ll — ’
x{) ‘ xi " xk_f ‘ 4Y)7( 4 xk_} [N JY!I‘I ‘ xn
M Hi My Hn
Figure1 Themodel used to describe dynamics of twin development, where the x; (i = 0,1,...,n) are states, and the }; (i = 0,1,...,n-l) and
w (i =1,2,...2,n) are flow densities
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independent parameters as the parameters minimis-
ing the aforementioned statisticis called the method
of minimum chi-square. For the problems under
consideration, it usually yields estimations which
are close to ones of the maximum likelihood method.
The statistic is minimised at the specified time
points in which observed data are available.
Computation of parameters consists of two stages.
In the preparatory stage, numerical integration of the
differential equations is required to calculate all p,.
In our case this was done using the Microsoft®

Table 1 Results of fitting models to observed general 1Q
distributions

Age Degrees of freedom  Chi-square statistics P-value
6 years 29 19.36 0.91

14 years 31 25.09 0.76
Total 60 44.44 0.93
Table2 Estimates of the independent parameters

Parameter Value

Genetic effects
Initial standard deviation for DZ twins 7.90

Initial standard deviation for unrelated pairs 18.56
Environment effects

Divergence flow density (06 years) 0.128

Convergence flow density (0—6 years) 0.206

Divergence flow density (6—14 years) 0.194

Convergence flow density (6—14 years) 0.176

5 10 5 20 25 3 35 40 45 50 55 50
CGIQ difference

5 10 15 20 25 a0 3B 40 45 50 55 80
GIQ difference

Figure2 Distributions of expected state probabilities for the
initial time point: (a) DZ twins, (b) unrelated pairs
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Excel 97 spreadsheet. These probability functions
are computed with some specified time step h from
the initial zero time point to the given specified
upper time bound. Runge-Kutta methods® (or their
equivalents) proved to be sufficient to obtain accept-
able accuracy of solution. For example, the following
integration scheme of the second order (the modified
Euler method adapted to the equations in question)
may be used:

Pk ((M+1)h) = px (mh) +
3h{fdpict (mh), pi (Mh), pices (mh)]+
flpk-1 (mh) + hpiq (Mh), px (mh) +
hpx (mh), pk+1 (Mh) + hpies (Mh)]},
where k=0,1,...,n (if k=0, px-1 is to be dropped; if

k=n, pk+1 is to be dropped); m=0,1,...,00, prime
denotes%; and fi [...] indicatesdpgt(t) in the right-

hand side of a corresponding equation.

In the second stage, an optimisation procedure to
obtain estimates of the free parameters is run. The
procedure of numerical non-linear optimisation
called Generalized Reduced Gradient (GRG2), devel-
oped by Leon Lasdon (University of Texas at Austin)
and Allan Waren (Cleveland State University), was
used in this study.

Results

The technique described above was applied to
analysis of longitudinal measures of general 1Q (GIQ)
for 6- and 14-year-old pairs of MZ and DZ twins.
Three groups of pairs took part in the analysis: MZ
twins (47 6-year-old pairs, 37 14-year-old pairs), DZ
twins (47 6-year-old pairs, 33 14-year-old pairs), and
unrelated pairs (416-year-old pairs, 4514-year-old
pairs). The sum of goodness-of-fit measures at the
time points of 6 and 14years was minimised by
estimation of the following free parameters:

+ flow densities A, s and ugs Which were
assumed to be common for the range
0—6 years,

+ flow densities hg_q, and pe_q4 Which were
assumed to be common for the range
614 years,

» standard deviations o4, and o, characterising
initial GIQ distributions at the zero time
point.

One year was used as the unit of time measure-
ment, and the modified Euler method was coded as a
numerical integration scheme with a time step from
0.006 to 0.008years. The model to be fitted was
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Figure3 Observed and expected state probabilities vs GIQ difference: (a) MZ twins—6 years, (b) MZ twins—14 years, (c) DZ twins—6 years,
(d) DZ twins—14years, (e) unrelated pairs—6years, (f) unrelated pairs—14 years
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represented by achain containing 12 states as shown within pairs (from 0 to 60units) was divided into
in Figure1, and the interval of GIQ differences 12equal parts. Fitting the model to the longitudinal
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GIQ data yielded the results presented in Table1,
with the chi-square statistics indicating a very good
fit of the model to the observed data.

Table2 shows the estimates obtained for the
parameters of interest. Distributions of expected
state probabilities for the initial time point for DZ
twins and unrelated pairs are given in Figure2,
whilst observed and expected state probabilities for
6-year and 14-year pairsare presented in Figure3. As
an illustration, estimations of functions p,(t) for MZ
twinswithin theinterval from 0 to 6 years are shown
in Figure4.

To determine how the standard deviations of GIQ
differences change in the time domain, normal
distributions with zero mean were selected with the
aid of the optimisation procedure to obtain the best
chi-square fit with regard to the distributions of
expected probabilities. Comparisons of estimated
parameters for 6- and 14-year ages are presented in
Table 3.

Final values of state probabilities p, determined
by the aforementioned numerical integration scheme
at the specified time points may be considered as
functions of independent parameters. These values
agree with an exact solution to the precision of the
numerical integration, which may be set arbitrarily
small. Within some neighbourhood of the solution
found by the optimisation procedure, it may be
shown that:

+ a set of values of the independent parameters
minimising the goodness-of-fit measure exists
and is unique;

» this set of independent parameters converges
in probability to the set of values which yields
true probabilities p, when the number of tests
approaches infinity;

* the goodness-of-fit measure is distributed
asymptotically according to a chi-square dis-
tribution with a number of degrees of freedom
that is equal to the difference between the
number of independent observed statistics and
the number of independent parameters.

Rigorous formulation and proof of the correspond-
ing theorem may be found, for example, in the
monograph by H Cramer.” The truths of some
assumptions of this theorem for the specific problem
under study were proved with the aid of a special
numerical procedure coded in the spreadsheet.
Since parameters of the optimisation procedure in
use were tuned for running one of the quasi-Newton
algorithm variants, finding strict local minima, if
any, was guaranteed within the specified accuracy
range. As the procedure finds a point in which the
gradient equalsto zero, such pointisuniquein some
neighbourhood of the solution that has been found
(up to the corresponding numerical method error).

Discussion

The results presented in Table3 demonstrate clear
dependence of initial GIQ distributions on the
relationship proximity: the greater degree of this
proximity the less corresponding standard deviation

0;\
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Figure4 Functions p(t) for MZ twins from 0 to 6years (state intervals are shown in 1Q units)
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(Oyn > 04, > 0, = 0). This fact agrees with the usual
expectations concerning the effect of genetic factor.
The estimate of the initial standard deviation for DZ
twins equals 43% of this quantity for unrelated pairs
(in other investigations it was located within the
interval 40-60%). It would be interesting to clarify
the interdependence of this parameter and pair
correlation coefficient in further research. As arule,
environmental impact resultsin ‘the washing out’ of
initial distributions: the greater the elapsed time, the
greater the standard deviation. The only exception
(for the case of 6-year-old unrelated pairs) may be
explained by sampling errors.

Estimations of flow densities (see Table2) show
that before school (until the age of 6years) the
environment promotes convergence in GIQ more
than divergence. In school (after the age of 6 years)
the situation changes: the environment promotes
divergence in GIQ more than convergence. It may be
also noted that after entering school divergence

Table 3 Standard deviations of normally distributed general 1Q
differencesin different time points

Types of Age, Standard deviation,
pair years GIQ units
MZ twins 0 0
6 6.39
14 10.97
DZ twins 0 7.90
6 9.09
14 12.93
Unrelated pairs 0 18.56
6 18.04
14 20.47

Table4 Comparison of estimations of independent parameters for
the models with 5- and 10-unit state intervals (14-year-old pairs)

5-unit state 10-unit state

interval interval

Parameter (model 1)  (model 2)  Percentage
Initial standard deviation

for DZ twins 10.85 12.71 85
Initial standard deviation

for unrelated pairs 21.28 22.57 94
Final standard deviation

for MZ twins 9.70 9.86 98
Final standard deviation

for DZ twins 13.82 15.09 92
Final standard deviation

for unrelated pairs 22.89 22.94 99.8
Divergence flow density 0.027 0.151 18
Convergence flow density 0.029 0.185 15

Table5 Initial variance as proportion of final variance for different
pair types

Types of pair Initial variance as % of final
MZ twins 0

DZ twins 37

Unrelated pairs 82
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density increases but
decreases.

To clarify how the independent parameters esti-
mated may be changed in the case of other length of
state intervals, two estimates for 14-year-old twins
were obtained in another GIQ study (119MZ pairs,
90DZ pairs). Their results corresponding to 5- and
10-unit intervals are shown in Table4. One can see
that the difference in initial standard deviations is
not greater than 6-15%. Taking into account the
sizes of state intervals this may be regarded as a good
fit. Comparison of flow densities indicates the
dependencies between state interval size and the
flow densities are non-linear.

Table5 shows initial variance as a proportion of
final variance for different pair types. Within the
framework of the model under consideration, these
data make it possible to draw an important conclu-
sion: the same environment impact (represented by
flow densities) may yield different contributions to
final variances. Magnitudes of these contributions
depend on the genetic factor (represented by dis-
tributions of an analysed parameter at the point of
birth).

It would beinterestingto compareresults obtained
by the approach presented and confirmatory factor
analysis. However, since analysed absolute differ-
ences in a pair differ from parameters which are
studied traditionally in twin confirmatory factor
analysis, direct comparison of both approaches is
impossible. Such estimated characteristics as flow
densities are quite different from quantities that are
used in factor analysis and cannot be calculated with
itsaid. Since they are of interest in twin research, the
approach in question may be considered as a new
source of information which supplements tradi-
tional ones.

convergence density
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