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A mathematical  model  based on queuing theory is used to study the dynamics of envi ronmental
influence on twin pai rs. The model  takes into consideration genetic factors and effects of non-
shared envi ronment. Histograms are exploi ted as base analysed character istics, wi th the method
of minimum chi -square yielding estimated character istics. The proposed technique was appl ied to
analysis of longi tudinal  data for  MZ and DZ twins. I t was shown that the same envi ronment
impact may yield di fferent contr ibutions to final  var iances of the IQ parameters under
investigation. Magni tudes of these contr ibutions depend on the genetic factor  represented by
distr ibutions of an analysed parameter  at the point of bi r th. Twin Research (2000) 3, 92–98.
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Introduction

We present a technique intended for studying
dynamics of individual  characteristics dependent on
heredi ty and also envi ronmental  influence. Using
twin measurements at a series of time points, this
technique makes i t possible to observe how envi ron-
mental  factors change ini tial  personal  di fferences
resul ting from genetic factors during the selected
time period and to estimate parameters of interest
quanti tatively. Parameters describing the effect of
both types of factors are discussed. In contrast to
tradi tional  confirmatory factor analysis,

1,2
histo-

grams are used as the basis for analysis instead of
covariance matrices. The approach may be used in
longi tudinal  research together wi th the analysis of
simplex models

3,4
and is i l lustrated by an appl ica-

tion to the study of IQ.

Mater ials and methods

The quanti ty to be analysed is the absolute di ffer-
ence between the members of a twin pai r for the trai t
of interest. The range of this quanti ty is divided into
several  intervals, wi th each interval  considered as a
separate state in which a twin pai r has some
probabi l i ty to find i tsel f. Transi tions between the
states are possible over time.

Queuing theory yields a convenient mathematical
model  that may be used to describe the dynamics of
these transi tions. The model  is represented by a
graph (an example is presented in Figure1) in which
nodes (depicted as rectangles) correspond to the
states, and branches (depicted as arrows) correspond
to transi tions. The process of development of di ffer-
ences between twins may be imagined as a random
walk along the graph from one state to another
fol lowing the arrows. Time is taken as continuous.
The ini tial  distribution of state probabi l i ties at the
moment of bi rth reflects genetic di fferences between
twins. As a resul t of envi ronmental  influences, this
ini tial  distribution is transformed during the time of
observation by instantaneous state-to-state transi -
tions which take place at random time points. It is
important to note that only the envi ronmental
influence di ffering for the members of a pai r (non-
shared envi ronment) is taken into account in the
current model .

It is assumed that state-to-state transi tions (corre-
sponding to each branch of the graph) meet the
fol lowing two properties of Poisson’s flows of
events:

• ordinariness (a flow is ordinary i f the probabi l -
i ty of appearance of more than one event
during a smal l  time interval  is much less than
the probabi l i ty of appearance of one event for
the same time);

• absence of contagion (the numbers of events
fal l ing into any two disjoint intervals are
independent).

It may be proved
5

that the number of events X in
these flows fal l ing into any interval  of the length τ
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adjoining to the time point t is distributed according
to the law of smal l  numbers:

Pt,τ (X = m) = e
–a(t, τ)

,
(a(t, τ))

m

m!

where Pt,τ (X = m) is the probabi l i ty of appearance of
m events during the considered interval , a(t,τ) is the
mean number of events fal l ing into an interval  of the
length τ adjoining to time point t. Only stationary
flows (where a(t,τ) = ητ) w i l l  be considered here,
where parameter η i s a constant representing the
densi ty of a stationary flow and is equal  to mean
number of events per uni t time interval . Mean time
interval  between two adjacent events in such a flow
is therefore 1/η.

The system shown in Figure1 is a fini te chain of
n + 1 states where transi tions from the state xk(k ≠ 0,
k ≠ n) are possible only to the preceding state xk – 1 or
to the next state xk + 1. From the states x0 and xn the
only avai lable states are x1 and xn – 1 respectively.
Processes described by means of such graphs are
cal led ‘the processes of death and propagation’ since
first they were appl ied in biology to analyse dynam-
ics of population growth. Flow densi ties from state k
are denoted as λk and µk. The parameter λk represents
envi ronmental  influences making twins less al ike
(divergence), whi lst µk represents envi ronmental
processes where the envi ronment makes twins more
al ike (convergence).

If the total  admissible range of absolute di fferences
between twins is denoted as D, the state x0 corre-
sponds to the pai r di fference interval  from 0 to
D/(n + 1), the state x1 to the interval  from D/(n + 1)
to 2D/(n + 1), and so on. The fol lowing set of
ordinary di fferential  equations

5
may be drawn to

describe the time history of state probabi l i ties:

= –λ0p0(t)+µ1p1(t);
dp0 (t)

dt

= –µnpn(t)+λn–1pn–1(t)
dpn (t)

dt

= –(λk+µk)pk(t)+λk–1pk–1(t)+µk+1pk+1(t),

where (k = 1,2,...,n–1);

dpk (t)

dt

where pk(t) is the probabi l i ty to be wi thin the state xk

at the time point t. To simpl i fy the problem, flow
densi ties are here assumed to be constant wi th
regard to the index k: λ0 = λ1 = … = λn – 1 = λ and
µ1 = µ2 = … = µn = µ. To integrate these equations,
one has to assign ini tial  condi tions

p0(0),p1(0),...,pn(0); pk(0) = 1.Σ
n

k=0

Σ
n

k=0

pk(t) = 1 is val id atThe normal isation condi tion
any time point.

Applying this model  to twins, i t is postulated that
t = 0 is the moment of thei r bi rth. For MZ twins,
p0(0) = 1 and pk(0) = 0 (k = 1,…,n) since there are no
genetic di fferences between them and no envi ron-
ment effects at this time point. Starting di fferences
for DZ twins and unrelated pai rs may be described
by a normal  distribution wi th zero mean and some
standard deviations σdz and σun which are used to
characterise genetic di fferences. Because of distribu-
tion symmetry, 

p0(0)= e
–x2/ 2�

2

dx, p1
(0)= e

–x2/ 2�
2

dx,...,
2

�2��

2

�2���
D/(n+1)

0

�
2D/(n+1)

D/(n+1)

and so on (σ = σdz for DZ twins and σ = σum for
unrelated pai rs). Genetic and envi ronmental  effects
are estimated in terms of the standard deviations σdz

and σun and flow densi ties λ and µ.
Expected state probabi l i ties are calculated by

integrating the above set of di fferential  equations.
The expected frequency of being at the kth state in
the gth group (g = 1,2,…,G) is equal  to pkgNg, where
pkg is the probabi l i ty of being at the kth state in the
gth group and Ng is the number of cases in the group.
The corresponding observed frequencies Fkg resul t
from measurements obtained during a longi tudinal
twin study. Under some condi tions, the fol lowing
statistic is distributed asymptomatical ly according
to a chi -square distribution:

(Fkg – pkgNg)
2

pkgNg
.Σ

G

g=1
Σ
n

k=0

This sum should be regarded as a goodness-of-fi t
measure, wi th the number of degrees of freedom
equal  to Gn-l where l is the total  number of
independent parameters. The technique that finds

Figure1 The model  used to describe dynamics of tw in development, where the xi (i = 0,1,…,n) are states, and the λi (i = 0,1,…,n-I) and
µi (i = 1,2,…2,n) are flow densi ties
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independent parameters as the parameters minimis-
ing the aforementioned statistic is cal led the method
of minimum chi -square. For the problems under
consideration, i t usual ly yields estimations which
are close to ones of the maximum l ikel ihood method.
The statistic is minimised at the specified time
points in which observed data are avai lable.

Computation of parameters consists of two stages.
In the preparatory stage, numerical  integration of the
di fferential  equations is requi red to calculate al l  pk.
In our case this was done using the Microsoft®

Excel 97 spreadsheet. These probabi l i ty functions
are computed wi th some specified time step h from
the ini tial  zero time point to the given specified
upper time bound. Runge-Kutta methods

6
(or thei r

equivalents) proved to be sufficient to obtain accept-
able accuracy of solution. For example, the fol lowing
integration scheme of the second order (the modified
Euler method adapted to the equations in question)
may be used: 

pk ((m+1)h) = pk (mh) + 

h{ƒk[pk–1 (mh), pk (mh), pk+1 (mh)]+

ƒk[pk–1 (mh) + hpk–1 (mh), pk (mh) +

hpk (mh), pk+1 (mh) + hpk+1 (mh)]},

1
2

where k=0,1,...,n (i f k=0, pk–1 is to be dropped; i f
k=n, pk+1 is to be dropped); m=0,1,...,�, prime

denotes dt; and ƒk [...] indicates dPk (t) in the right-

hand side of a corresponding equation.

d

dt

dpk (t)

dt

In the second stage, an optimisation procedure to
obtain estimates of the free parameters is run. The
procedure of numerical  non-l inear optimisation
cal led General ized Reduced Gradient (GRG2), devel -
oped by Leon Lasdon (Universi ty of Texas at Austin)
and Al lan Waren (Cleveland State Universi ty), was
used in this study.

Resul ts

The technique described above was appl ied to
analysis of longi tudinal  measures of general  IQ (GIQ)
for 6- and 14-year-old pai rs of MZ and DZ twins.
Three groups of pai rs took part in the analysis: MZ
twins (47 6-year-old pai rs, 37 14-year-old pai rs), DZ
twins (47 6-year-old pai rs, 33 14-year-old pai rs), and
unrelated pai rs (41 6-year-old pai rs, 45 14-year-old
pai rs). The sum of goodness-of-fi t measures at the
time points of 6 and 14 years was minimised by
estimation of the fol lowing free parameters:

• flow densi ties λ0–6 and µ0–6 which were
assumed to be common for the range
0–6 years,

• flow densi ties λ6–14 and µ6–14 which were
assumed to be common for the range
6–14 years,

• standard deviations σdz and σun characterising
ini tial  GIQ distributions at the zero time
point.

One year was used as the uni t of time measure-
ment, and the modified Euler method was coded as a
numerical  integration scheme wi th a time step from
0.006 to 0.008 years. The model  to be fi tted was

Table 1 Resul ts of fi tting models to observed general  IQ
distributions

Age Degrees of freedom Chi-square statistics P-value

6 years 29 19.36 0.91
14 years 31 25.09 0.76
Total 60 44.44 0.93

Table 2 Estimates of the independent parameters

Parameter Value

Genetic effects
Ini tial  standard deviation for DZ twins 7.90
Ini tial  standard deviation for unrelated pairs 18.56

Environment effects
Divergence flow densi ty (0–6 years) 0.128
Convergence flow densi ty (0–6 years) 0.206
Divergence flow densi ty (6–14 years) 0.194
Convergence flow densi ty (6–14 years) 0.176

Figure2 Distributions of expected state probabi l i ties for the
ini tial  time point: (a) DZ twins, (b) unrelated pai rs
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represented by a chain containing 12 states as shown
in Figure1, and the interval  of GIQ di fferences

wi thin pai rs (from 0 to 60 uni ts) was divided into
12 equal  parts. Fi tting the model  to the longi tudinal

Figure3 Observed and expected state probabi l i ties vs GIQ di fference: (a) MZ twins–6 years, (b) MZ twins–14 years, (c) DZ twins–6 years,
(d) DZ twins–14 years, (e) unrelated pai rs–6 years, (f) unrelated pai rs–14 years
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GIQ data yielded the resul ts presented in Table1,
wi th the chi -square statistics indicating a very good
fit of the model  to the observed data.

Table2 shows the estimates obtained for the
parameters of interest. Distributions of expected
state probabi l i ties for the ini tial  time point for DZ
twins and unrelated pai rs are given in Figure2,
whi lst observed and expected state probabi l i ties for
6-year and 14-year pai rs are presented in Figure3. As
an i l lustration, estimations of functions pk(t) for MZ
twins wi thin the interval  from 0 to 6 years are shown
in Figure4.

To determine how the standard deviations of GIQ
di fferences change in the time domain, normal
distributions wi th zero mean were selected wi th the
aid of the optimisation procedure to obtain the best
chi -square fi t wi th regard to the distributions of
expected probabi l i ties. Comparisons of estimated
parameters for 6- and 14-year ages are presented in
Table3.

Final  values of state probabi l i ties pk determined
by the aforementioned numerical  integration scheme
at the specified time points may be considered as
functions of independent parameters. These values
agree wi th an exact solution to the precision of the
numerical  integration, which may be set arbi trari ly
smal l . Wi thin some neighbourhood of the solution
found by the optimisation procedure, i t may be
shown that:

• a set of values of the independent parameters
minimising the goodness-of-fi t measure exists
and is unique;

• this set of independent parameters converges
in probabi l i ty to the set of values which yields
true probabi l i ties pk when the number of tests
approaches infini ty;

• the goodness-of-fi t measure is distributed
asymptotical ly according to a chi -square dis-
tribution wi th a number of degrees of freedom
that is equal  to the di fference between the
number of independent observed statistics and
the number of independent parameters.

Rigorous formulation and proof of the correspond-
ing theorem may be found, for example, in the
monograph by H Cramer.

7
The truths of some

assumptions of this theorem for the specific problem
under study were proved wi th the aid of a special
numerical  procedure coded in the spreadsheet.
Since parameters of the optimisation procedure in
use were tuned for running one of the quasi -Newton
algori thm variants, finding strict local  minima, i f
any, was guaranteed wi thin the specified accuracy
range. As the procedure finds a point in which the
gradient equals to zero, such point is unique in some
neighbourhood of the solution that has been found
(up to the corresponding numerical  method error).

Discussion

The resul ts presented in Table3 demonstrate clear
dependence of ini tial  GIQ distributions on the
relationship proximi ty: the greater degree of this
proximi ty the less corresponding standard deviation

Figure4 Functions pf(t) for MZ twins from 0 to 6 years (state intervals are shown in IQ uni ts)
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(σun > σdz > σmz = 0). This fact agrees wi th the usual
expectations concerning the effect of genetic factor.
The estimate of the ini tial  standard deviation for DZ
twins equals 43% of this quanti ty for unrelated pai rs
(in other investigations i t was located wi thin the
interval  40–60%). It would be interesting to clari fy
the interdependence of this parameter and pai r
correlation coefficient in further research. As a rule,
envi ronmental  impact resul ts in ‘the washing out’ of
ini tial  distributions: the greater the elapsed time, the
greater the standard deviation. The only exception
(for the case of 6-year-old unrelated pai rs) may be
explained by sampl ing errors.

Estimations of flow densi ties (see Table2) show
that before school  (unti l  the age of 6 years) the
envi ronment promotes convergence in GIQ more
than divergence. In school  (after the age of 6 years)
the si tuation changes: the envi ronment promotes
divergence in GIQ more than convergence. It may be
also noted that after entering school  divergence

densi ty increases but convergence densi ty
decreases.

To clari fy how the independent parameters esti -
mated may be changed in the case of other length of
state intervals, two estimates for 14-year-old twins
were obtained in another GIQ study (119 MZ pai rs,
90 DZ pai rs). Thei r resul ts corresponding to 5- and
10-uni t intervals are shown in Table4. One can see
that the di fference in ini tial  standard deviations is
not greater than 6–15%. Taking into account the
sizes of state intervals this may be regarded as a good
fit. Comparison of flow densi ties indicates the
dependencies between state interval  size and the
flow densi ties are non-l inear.

Table5 shows ini tial  variance as a proportion of
final  variance for di fferent pai r types. Wi thin the
framework of the model  under consideration, these
data make i t possible to draw an important conclu-
sion: the same envi ronment impact (represented by
flow densi ties) may yield di fferent contributions to
final  variances. Magni tudes of these contributions
depend on the genetic factor (represented by dis-
tributions of an analysed parameter at the point of
bi rth).

It would be interesting to compare resul ts obtained
by the approach presented and confirmatory factor
analysis. However, since analysed absolute di ffer-
ences in a pai r di ffer from parameters which are
studied tradi tional ly in tw in confirmatory factor
analysis, di rect comparison of both approaches is
impossible. Such estimated characteristics as flow
densi ties are qui te di fferent from quanti ties that are
used in factor analysis and cannot be calculated wi th
i ts aid. Since they are of interest in tw in research, the
approach in question may be considered as a new
source of information which supplements tradi -
tional  ones.
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