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Abstract

The family 7, of orientation-preserving harmonic functions f = & + g in the unit disc D (normalised in
the standard way) satisfying

H@+g@=——— zeD,
1+ 22)(1 + A7)

for some A € dD, along with their rotations, play an important role among those functions that are
harmonic and orientation-preserving and map the unit disc onto a convex domain. The main theorem
in this paper generalises results in recent literature by showing that convex combinations of functions in
F, are convex.
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1. Introduction

A complex-valued harmonic function f in the unit disc D can be represented as
f =h+g, where both /& and g are analytic in D. This representation is unique up
to an additive constant which is usually determined by imposing the condition that the
function g fixes the origin. The representation f = & + g is then unique and is called
the canonical representation of f.

It is a consequence of the inverse mapping theorem that if the Jacobian of a C!
mapping from R” to R" is different from zero, the function is locally univalent. Lewy
[8] showed that when the function is harmonic, the converse also holds. Hence, a
harmonic mapping f = h + g is locally univalent if and only if its Jacobian J; =
|W'|> —|g’|* # 0. Thus, locally univalent harmonic mappings in the unit disc can be
classified as orientation-preserving mappings (if J; > 0 in D) or orientation-reversing
(if Jr <0in D).
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It is obvious that f is orientation-preserving if and only if }_C is orientation-reversing.
Note that f = i + g is orientation-preserving if and only if 4’ # 0 in D and the dilatation
w = g'/h’ is an analytic function in the unit disc which maps D into itself.

For a comprehensive treatment of harmonic mappings in the unit disc, we refer the
reader to [4].

1.1. Convex harmonic mappings. Let A denote the class of all analytic functions
¢ in the unit disc D normalised by the conditions ¢(0) = ¢’(0) — 1 = 0. Let H denote
the family of complex-valued harmonic mappings f = h + g in D that preserve the
orientation and are normalised by the conditions 2(0) = g(0) = 0 and #’(0) = 1. The
class H consists of those functions f € H with g’(0) = 0.

We will consider particular properties of functions f € H, that map the unit disc
onto a convex domain. The family of such mappings is, as usual, denoted by Kg.
It is known that every function f € KQI is univalent in D (see [2, Theorem 5.7] and
[7, Corollary 2.2]).

According to [2, Theorem 5.7], a harmonic mapping f = h + g belongs to Kg if and
only if, for each 6 € (—x/2, 7/2], the analytic function gy = h + €*g belongs to A and
is convex in the direction (6 + 7/2), meaning that the intersection of (D) with any
line parallel to the line through 0 and ie is an interval or the empty set.

It is obvious that ¥ is convex in the (6 + m/2)-direction if and only if the function
@o = e~y is convex in the direction of the imaginary axis (that is, the r/2-direction).
The following characterisation, due to Royster and Ziegler [10], of analytic functions
in the unit disc that map D onto a domain convex in the vertical direction will be used
later in this paper.

THeOREM A. Let ¢ be a locally univalent analytic function in the unit disc. Then ¢
maps D onto a domain convex in the direction of the imaginary axis if and only if
there are numbers u € [0, 27) and v € [0, 7] such that

Re{—ie*(1 — 2ze " cosv + e 22 ¢’ (2)} =0, zeD.

1.2. Some special convex harmonic mappings. By applying different transfor-
mations to some of the harmonic mappings considered by Hengartner and Schober
in [6], Dorff [3] showed that if the harmonic function f = h + g € Hy maps the unit
disc onto a vertical strip

Qaz{WGC: 7T Refw) < — }
2sina 2sina

where 7/2 < @ < &, then
1+ €%z

h _ ( .
(@) + (@) 2isin 08 1+ etz

), zeD. (1.1)

Some nice consequences are obtained from this result. Thus, Dorff [3] shows that
iff=h+ge Kg maps the unit disc onto a half-plane of the form {Re{w} > a}, where
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a is any negative real number, then a = —1/2. Moreover, such a harmonic mapping f
from the unit disc onto the half-plane Q = {w € C: Re{w} > —1/2} satisfies

h(z) + g(z) = IL_Z zeD. (1.2)

Note that if a function f = h + g € H, satisfies either (1.1) or (1.2), then there exists

A € 0D such that {

(1+ Az)(1 +/_1z).

In what follows, given A € D, we denote by ¥, the family of harmonic mappings
f =h+3 € K}, for which (1.3) holds.

W) +g @)= (1.3)

1.3. Rotations. It is obvious that if f = h + g € K¥, and u € 8D, then the rotation f,,
defined in the unit disc by the formula

Ju(@) = pf(uz)

also belongs to KEI. Moreover, a straightforward calculation shows that the functions
h,, and g, in the canonical decomposition of f, = h, + g, are, respectively,

h(@) =Fh(uz) and  g,() = pug(uz), z€D.

Therefore, f = h + g € F, if and only if for all z € D and A and u as above,
1

(1 + pz)(1 + Auz)

In other words, we have proved the following result.

H,(2) + 12g/(2) =

ProposiTiON 1.1. A harmonic mapping F = H + G € Hy satisfying
— 1
H'(2) + i>’G’(z) = = (1.4)
(1 + Auz)(1 + Auz)

for certain A and p in 0D and all |z| < 1 has a rotation f = h + g which satisfies (1.3).

Some particular cases of harmonic functions F = H + G € H, for which (1.4) holds
have been considered in the literature. For example, harmonic mappings F = H + G
satisfying (1.4) for the particular values A = u = i were considered in [5] and [12]. The
functions H and G in the canonical decomposition of such functions F satisfy

H@) - G() = 11og(£), zeD. (1.5)
2 1-z2

It was proved in [5] (and independently in [12]) that any normalised harmonic
mapping F'= H + G € H, for which (1.5) holds is convex. It is shown in [13] that the
convex combination of such harmonic mappings is convex in the horizontal direction.
The following stronger result is given in [12]: convex combinations of functions
satisfying (1.5) are convex (see [12, Theorem 4]).
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A related result appears in [11]. Take A = —1 and an arbitrary g € dD in (1.4).
Following the terminology in [9], these harmonic functions are called slanted half-
plane harmonic mappings with parameter yi. The main result in [ 1 1] shows that convex
combinations of slanted half-plane harmonic mappings are convex.

The goal in this paper is to show that there is no need to specialise the parameters A
and yp in (1.4) to get the results cited from [11] and [12]. More specifically, our main
theorem is as follows.

TueoreM 1.2. Let A and p be fixed but arbitrary complex numbers in 0D. Assume that
the harmonic mappings f; € Ho, j=1,2,...,n, satisfy (1.4) for these values of A and
w. Then, any convex combination of the f; is a convex harmonic mapping.

2. Two key results

The following lemma was proved in [11]. We include the proof here for the sake of
completeness.

Lemma 2.1. Let wy and w, be two analytic functions in the unit disc that map D to
itself. Then, for any real number 6 and all z € D,

1 —
Re{ | ‘Ul(Z)(UZ(Z)' } 0.
(1 + e20w ()1 + e*%w,(2))
Proor. The analytic functions ¢;(z) = 1/(1 + z) and ¢»(z) = z/(1 — z) in D map the unit
disc onto the half-planes {Re{w} > 1/2} and {Re{w} > —1/2}, respectively. Hence, for

any given ¢ with || = 1, any analytic function w in D for which the inclusion w(D) c D
holds, and all |z] < 1,

(2.1)

1 1 - 1
Re—L}o g R )L
1+lw(z)) 2 1+ {w(2) 2
Using the identity
1-wiw; 1 e 20w,

(1 + e 20w + e?wy) - 1 + e 20, 1 +e2ifg,’
we obtain (2.1). This ends the proof. O

A modification of the arguments used in [1] gives the following fundamental result,
which will be used to prove Theorem 1.2.

THEOREM 2.2. Let f = h + g belong to F, for some A € dD. Then f is convex.
Proor. If f = h + g € F,, we can write

1 1

W) +g(@)= = ’
¢ 1+ (1 +1z) 1 +2zcosa + 22

2.2)

where « € [0, 7] is such that cos @ = Re{4}. Also, since the dilatation w = g’/h’ of f
maps the unit disc to itself, the function (h' — g")/(h’ + g’) has a positive real part.
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As explained in the introduction, according to both [2, Theorem 5.7] and
Theorem A, in order to check that f is convex we need to show that for all values of
6 € (—m/2,m/2] there are real numbers y and v with 0 < u < 27 and v € [0, 7], possibly
depending on 6, such that for all z € D,

Re{—ie™(1 — 2z ¥ cos v + e 2172l (2)} > 0, (2.3)
where @g = e (h + €*?g).
Assume first that 8 € (—/2,0] and set u = 0 and v = 7 — @ (so that cos v = —cos ).
From (2.2), for z € D, the function that appears in (2.3) satisfies
Re{—i(1 +2zcosa + 22)(e h (2) + € g'(2)))
= Im{(1 + 2zcosa + 22)(e 1’ (z) + €” g'(2))}
=Im{(1 + 2zcos @ + z°)[cos B(H (z) + &' (2)) — i sin O(H (2) — &' ()]}

= Im{cos 0 —isin 9(—h’(z) A )}

W (z)+g'(2)
hl _ 7’
= —sin@Re{M} > 0.
() + g ()
For the remaining case when 6 € (0, /2], we set 4 = m and v = @ and proceed in exactly
the same way. O

3. Proof of Theorem 1.2

By Proposition 1.1, if f;=h; +g;, j=1,2,...,n, satisfy (1.4), we can consider
appropriate rotations (denoted again by f;) such that f; € ;. If we can show that

=) tifieFu
j=1

where 1, 1,, . ..,t, are nonnegative real numbers with Z:?ZI t; =1, then by Theorem 2.2
f is convex and we will be done.

Clearly, the function f is harmonic in the unit disc and its canonical decomposition
is given by f = h + g, where

h@) =) 1hix) and g(2)= ) 1;gj2), z€D.
j=1 j=1

Therefore, h(0) = g(0) =0 and A’(0) — 1 = g’(0) = 0. Moreover, since f;=h;+g;
belongs to F, for j=1,2,...,n,

1
(1 + az)(1 +/_1z).

The only remaining step required to show that f € #, is that f preserves the
orientation.

W) +g'(x)=
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Let w; denote the dilatation of f;, so that g’ = w; h’.. Since f; € F,, for all z in the

unit disc,
Wyiz) = 1 .
(14221 + 22)(1 + wj(z))
This gives
, 1
= (1 + 22)(1 + A2) jz::‘ I+ w@)
On the other hand,

t; a)j(z)

(1+2)(1 + z) “ Z 1+ wiz)

g = Z 1g)(2) = Z £ (2 (2) =

j=1
Consider the function

ti w,(z)

D(z) = zeD.

Since
D(2)

I(1+ A2)(1 + )

it is obvious that f preserves the orientation if @ > 0 in the unit disc. Now, a
straightforward calculation shows that

- E i) ( s )

Ji(2) =

j_

_ & 1ty " t]tka)]wk
j_ZI;(l+w)(l+wk) ;Z(l+w1)(l+wk)
iz ll‘k(l w]wk)
== (I + w1 + wy)

1 titr(1 — w ;o 2 (1 - wj?)

=22 Rl o] D e
= (1 + w1 +wy) P 1+ wjl

Since w; are analytic and w;(D) C D forall j=1,2,...,n, we see by Lemma 2.1 that
@ > 0 in D. This completes the proof of Theorem 1.2.
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