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Let N be a homomorphically closed class of associative rings. Put N, = N'= N and,
for ordinals a =2, define N, (N*) to be the class of all associative rings R such that every
non-zero homomorphic image of R contains a non-zero ideal (left ideal) in Ny for some
B < a. In this way we obtain a chain {N,} ({N“}), the union of which is equal to the
lower radical class IN (lower left strong radical class IsN) determined by N. The chain
{N.} is called Kurosh’s chain of N. Sulifiski, Anderson and Divinsky proved [7] that
IN =, N;,. Heinicke [3] constructed an example of N for which IN#N, for
k=1,2,.... In (1] Beidar solved the main problem in the area showing that for every
natural number n =1 there exists a class N such that IN=N,,;# N,. Some results
concerning the termination of the chain {N®} were obtained in [2,4]. In this paper we
present some classes N with N, = N for all a. Using this and Beidar’s example we prove
that for every natural number n =1 there exists an N such that N, = N® for all &« and
N, # N,,, = N, ,,. This in particular answers Question 6 of [4].

All rings in the paper are associative and N is a homomorphically closed class of such
rings. To denote that [ is an ideal (left ideal) of a ring R we write /<R (I<R). A
subring A of a ring R is called accessible (left accessible) if there is a chain of subrings
A=A,cA,_1c...cAg=Rsuchthat 4,<lA,_, (A;<A,_))fori=1,2,...,n

Z is used to denote the ring of integers, Q the field of rational numbers and Q(i) the
field of complex numbers a + bi, where a, b € Q.

The fundamental definitions and properties of radicals may be found in [8] and those
of strong radicals in [2]. The following proposition collects some well known properties of
classes N, and N<

ProrosiTioN 1. (i) N, = N® for every ordinal «;

(it) classes N, and N* are homomorphically closed for all «;

(iii) ([2]) if 0# R € IsN then R contains a non-zero left accessible subring in N,

@iv) ([71) R €N if and only if every non-zero homomorphic image of R contains a
non-zero accessible subring in N;

(v) ([2]) if 0#ReN""', where n is an integer =1, then there are subrings
0#L,<...<Ly=Rof Rsuch that L, € N,

(vi) [7] ReN,.,, where n is an integer =1, if and only if every non-zero
homomorphic image R' of R contains subrings 0+ 1,<... <Iy=R' such that I, € N.

Recall that a radical class S is called left stable if for every L<R, S(L) = S(R). An
example of a left stable radical class is the generalized nil radical N,; this is the upper
radical determined by the class of reduced rings i.e. rings without non-zero nilpotent
elements.

THEOREM 1. If S is a left stable radical class containing N, then for N =8 U P, where P
is a homomorphically closed class of commutative rings, N, = N* for every ordinal a.
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Proof. In view of Proposition 1 it suffices to prove that if 0#L,<...<Ly=R and
L, € N then there are 0#1,<1...<{[,=R with I, e N. It is so if S(R) #0. Hence, since
N, c S and S is left stable, we can assume that the ring R is reduced and L, € P. Let k be
a minimal number such that L, is contained in the centre of L,. Suppose that k = 1. Then
there are leL, and !' € L,_, such that lI' —I'l #0. Now (Il' —I'I)*=(l')* - I(I')*l -
I'Pl'+ (I'D) Since I'l, (I')le L, and L, is contained in the centre of L,, we have
(Y =1UPr, Iy = ")*? and (I'1)*= (I")%* Thus (I’ — I'l)* =0 and, since the ring R is
reduced, I’ — I'l =0. This contradiction shows that L, is contained in the centre of R. On
the other hand RL?c L,. Hence L,=L,+RL:<|L,+RL:'<...<L,+RL,<R
and the result follows.

Let p be a prime of the form 4m + 3 and, for n=0, let A, be the subring of Q(i)
generated by p and ip”". The following properties of the rings A, were established by
Beidar in [1, Lemma 1].

ProrosiTioN 2. (i) A, <]A,, ifand only if n=morn=m +1;

(ii) proper homomorphic images of A, are finite;

(iii) the only subring of Q(i) isomorphic to A, is the ring A, itself ;

(iv) if B is a subring of Q(i) and A,<lBthenle Bor B=A,or B=A,_,.

Now we prove the following theorem.

THEOREM 2. If N=N,UTU{A,}, where T is the class of rings whose additive
groups are torsion and {A,} is the class of all isomorphic images of A, for an n =1, then
Ni=N'gN,=N>c...gN,,;=N""=N,,,=N"*%

Proof. As an immediate consequence of Theorem 1 and Proposition 2(ii) one
obtains that, for every ordinal o, N,=N* It follows from Proposition 1 (vi) and
Proposition 2 that Ag€ N,,;\N,. Hence Nyg N, <. .. g N,,,. It remains to prove that
IN = N,,, or, equivalently, that every non-zero ring R € IN contains a non-zero ideal in
N,. Obviously we can assume that R is semiprime and the additive group of R is
torsion-free. Then by Propositions 1 (iv) and 2 (ii), R contains an accessible subring
isomorphic to A,. Let ¢ be the minimal integer =0 such that there are
I <1,_,<...<Iy=R with I, isomorphic to A; for some 0 <k <n. We claim that r<1.
For, suppose that t =2 and take [ the ideal of /,_, generated by I,. By Andrunakievich’s
lemma, I° < I,. This, semiprimeness of R and properties of A,, imply that / is a prime ring
without 1. Since the additive group of I is torsion-free, we can form the quotient ring
Z7'I. Now Z7',<dZ7'I and Z"'I,, being isomorphic to Q(i), contains 1. However the
ring Z~'I is prime, so Z~'I,=Z"'I. Thus I is a ring without 1 isomorphic to a subring of
@Q(i). By Proposition 2 (iii) and (iv), I is isomorphic to A, or A,_,. Moreover, if  is
isomorphic to A, _, then, since [ is a ring without 1, n —1>0. This and the fact that the
sequence I <1[,_, <I,_;<...<L=R is shorter than ,<1I,_, <...<Il,=R prove the
claim. Thus R contains a non-zero ideal isomorphic to A, for some 0 <k =<n. It is clear
from Proposition 2 that A, € N,. The result follows.

ReEMARk. Let N=N,UTU{A,n:n=1,2,...}. One can easily check using
Propositions 1 and 2 that for every 0<i<2", n=1,2,...,An,; € Nyn_;,,\N,n_,.
Hence by Theorem 1, Ny = N* ¢ Njpy =N**'fork=1,2,... and IN = sN =\, N*.
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In [4] it was proved that if the class N is hereditary (hereditary and contains nilpotent
rings) then IsN = N* (IsN = N°) i.e. in those cases the chain {N®} terminates one step
further than {N,}. In [6] Stewart proved that if N is a class of zero rings then IN = Nj.
The following theorem shows in particular that in this case IsN =IN = N°. It can also be
regarded as a generalization of the fact that the prime radical is strong.

THEOREM 3. If N is a class of zero rings then S = IN is a left strong radical class.

Proof. Suppose that L<Rand LeS. Let U={xeL:Lx=0}. If U=L then L>=0
and it is easy to check that LR'€ S, where R' is the ring R with an unity adjoined.
Suppose U#L. Then 0#L/UeS, so L/U contains a non-zero accessible subring
A/U € N. Hence there are subrings Ay, ..., A, of L such that A <A, <...<{A,=L.
Now 0#LAR'<R. Since (LAR")Y" c(LA)"R' for m=1,2,... and the ideal of L
generated by A is nilpotent, LAR' is a nilpotent ideal of R. Suppose that (LAR')**! =0,
(LARY* #0 and take ¢ € (LAR'")*~". Obviously LAR!tR' <IR. Foreveryle L, x, y e R,
the map f:A— [Axty given by f(a) = laxty is a ring epimorphism and [Axty < LAR'tR'.
Hence (LAR')* € S. Therefore S(R)+#0 and the result follows.

Let us observe that if N is a class of N-nilpotent rings [5] and N, is the class of zero
IN-radical rings then IN, = (N, N N). Applying [5, Theorem 4] to & = IN one obtains that
R°e N, where R is the zero ring on the additive group of a ring R € N. The same
theorem applied to a = IN; implies N < IN,. Hence IN = LN, and Theorem 3 gives

CoRrOLLARY. If N is a class of M-nilpotent rings then IN = IsN = N;= N>,
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