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Well-posedness in time-weighted spaces of certain quasilinear (and semilinear)
parabolic evolution equations u′ = A(u)u+ f(u) is established. The focus lies on the
case of strict inclusions dom(f) ( dom(A) of the domains of the nonlinearities
u 7→ f(u) and u 7→ A(u). Based on regularizing effects of parabolic equations it is
shown that a semiflow is generated in intermediate spaces. In applications this allows
one to derive global existence from weaker a priori estimates. The result is illustrated
by examples of chemotaxis systems.
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1. Introduction

Let E 0 and E 1 be two Banach spaces over K ∈ {R,C} with continuous and dense
embedding

E1
d
↪→ E0.

For each θ ∈ (0, 1), let (·, ·)θ be an arbitrary admissible interpolation functor of
exponent θ and denote by Eθ := (E0, E1)θ the corresponding Banach space with
norm ‖ · ‖θ. Then

E1
d
↪→ Eθ

d
↪→ Eϑ

d
↪→ E0 , 0 6 ϑ 6 θ 6 1.

In this paper, we shall focus our attention on quasilinear parabolic problems

u′ = A(u)u+ f(u) , t > 0 , u(0) = u0. (1.1)
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2 B.V. Matioc and C. Walker

Here, we assume for the quasilinear part

A ∈ C1−(Oβ ,H(E1, E0)
)
, (1.2a)

where

β ∈ [0, 1) and ∅ 6= Oβ is an open subset of Eβ , (1.2b)

and where H(E1, E0) is the open subset of the bounded linear operators L(E1, E0)
consisting of generators of strongly continuous analytic semigroups on E 0.
Moreover, for the semilinear part we assume that there are numbers

0 < γ < 1 , β 6 ξ < 1 , q > 1, (1.2c)

with the property that f : Oξ → Eγ is locally Lipschitz continuous on the open
subset Oξ := Oβ ∩Eξ of Eξ in the sense that for each R> 0 there is c(R) > 0 such
that, for all w, v ∈ Oξ ∩ B̄Eβ

(0, R),

‖f(w)− f(v)‖γ
6 c(R)

[
1 + ‖w‖q−1

ξ + ‖v‖q−1
ξ

][(
1 + ‖w‖ξ + ‖v‖ξ

)
‖w − v‖β + ‖w − v‖ξ

]
.

(1.2d)

As for the initial value we fix

α ∈ (β, 1) with (ξ − α)q < min{1, 1 + γ − α}. (1.2e)

Under assumptions (1.2) we shall prove that, for any u0 ∈ Oα := Oβ ∩ Eα,
problem (1.1) is well-posed and in fact generates a semiflow on Oα. Note that (1.2d)
includes in particular the case when, for all w, v ∈ Oξ ∩ B̄Eβ

(0, R),

‖f(w)− f(v)‖γ 6 c(R)
(
1 + ‖w‖q−1

ξ + ‖v‖q−1
ξ

)
‖w − v‖ξ, (1.3)

and that (1.2e) is satisfied if α ∈ (ξ, 1). The local Lipshitz continuity property (1.2d)
and its stronger version (1.3) appear quite naturally in applications, see lemma 4.1
and the examples in §5 and §6. Once E 0 and E 1 are fixed, the parameters β and
ξ are chosen minimally such that A and f are well-defined on the corresponding
spaces (with a preferably large parameter γ for the target space of f ). The range
of the parameter α defining the regularity of the initial value is then determined
by (1.2e). The parameter q > 1 in (1.2d) and (1.3) measures the growth of the
nonlinearity f with respect to the Eξ-terms (while Eβ-terms can be absorbed into
the constant c(R)).

Of course, well-posedness of quasilinear and even fully nonlinear equations is
well-established, see e.g. [4, 7, 13, 14, 18, 25–27, 30–33] for the former and e.g.
[1, 11, 15–17, 28, 29] for the latter problems. In particular, a general result on
existence of solutions to (1.1) is stated in [7, theorem 12.1] (and established in [4],
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Well-posedness of quasilinear parabolic equations 3

see also [30]) for the case that the nonlinearities A and f are defined and Lipschitz
continuous on the same set Oβ . More precisely, it is proven therein that if

(A, f) ∈ C1−(Oβ ,H(E1, E0)× Eγ

)
, u0 ∈ Oα , 0 < γ 6 β < α < 1,

(which is a special case of (1.2) taking q =1 and ξ = β < α), then problem (1.1)
has a unique maximal strong solution

u = u(·;u0) ∈ C1((0, t+(u0)), E0) ∩ C((0, t+(u0)), E1) ∩ C([0, t+(u0)), Oα)

∩ Cα−θ
(
[0, t+(u0)), Eθ

)
for θ ∈ [0, α]. Moreover, the mapping (t, u0) 7→ u(t;u0) is a semiflow on Oα, and
therefore t+(u0) = ∞ if the corresponding orbit is relatively compact in Oα.

Herein we shall prove with theorem 1.1 below a similar result to [7, theorem 12.1]
(see also [4]) for problem (1.1), but under the more general assumptions (1.2). In
particular, theorem 1.1 addresses the new case when β < α < ξ in (1.2). Note that
then Eξ ↪→ Eα ↪→ Eβ and hence, the semilinear part f, being defined on Oξ, needs
not be defined on the phase space Eα and requires possibly more regularity than
the quasilinear part A. It is worth emphasizing that also for this case we establish
that problem (1.1) induces a semiflow on Oα so that relatively compact orbits in Oα

are global. The global existence criterion can thus be stated in weaker norms than
e.g. in [7].

For the proof, we rely on regularizing effects for quasilinear parabolic equations
and work in time-weighted spaces Cµ((0, T ], Eξ) of continuous maps v : (0, T ] → Eξ

satisfying limt→0 t
µ‖v(t)‖ξ = 0, where T > 0 and µ > (ξ − α)+. Given x ∈ R, we

set x+ := max{0, x}.
Time-weighted spaces were used previously for quasilinear evolution problems

in the context of maximal regularity in [11, 14] and later in [20, 23, 32, 34]. In
particular, well-posedness of (1.1) is established in [23] in time-weighted Lp-spaces
assuming that f satisfies (in the simplest case) (1.3) along with inequality (1.2e)
for γ=0 in the scale of real interpolation spaces and assuming that the opera-
tor A(u) has the property of maximal Lp-regularity for u ∈ Oα (see [33, 34] for an
improvement with equality in (1.2e) under an additional structural condition on
the Banach spaces E 0 and E 1). Furthermore, we refer to [24] for a result in the
same spirit based on the concept of continuous maximal regularity in time-weighted
spaces and assuming (1.3) with inequality (1.2e) in the scale of continuous inter-
polation spaces. Theorem 1.1 below is a comparable result outside the setting of
maximal regularity and for arbitrary (admissible) interpolation functors under the
more general version (1.2d) of (1.3).

Finally, we point out that, in order to impose weaker conditions on the initial
values, time-weighted spaces Cµ(0, T ], E) (with suitable Banach spaces E ) were
used for concrete semilinear problems (see (1.6) below) with bilinear right-hand
sides (i.e. q =2 in (1.3)) even before [9, 10, 37] and recently [22]. Theorem 1.2
below provides a general result for this case, thereby sharpening the result for the
quasilinear problem.
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Our first main result is theorem 1.1 and establishes the well-posedness of the
quasilinear evolution problem (1.1) restricted to the assumptions (1.2).

Theorem 1.1 Suppose (1.2).

(i) (Existence) Given any u0 ∈ Oα, the Cauchy problem (1.1) possesses a
maximal strong solution

u(·;u0) ∈ C1
(
(0, t+(u0)), E0

)
∩ C

(
(0, t+(u0)), E1

)
∩ C

(
[0, t+(u0)), Oα

)
with t+(u0) ∈ (0,∞]. Moreover,

u(·;u0) ∈ Cmin{α−θ, (1−µq)+}([0, T ], Eθ

)
∩ Cµ

(
(0, T ], Eξ

)
for all T < t+(u0), where θ ∈ [0, α] and µ > (ξ − α)+.

(ii) (Uniqueness) If

ũ ∈ C1
(
(0, T ], E0

)
∩ C

(
(0, T ], E1

)
∩ Cϑ

(
[0, T ], Oβ

)
∩ Cν

(
(0, T ], Eξ

)
is a solution to (1.1) for some T> 0, ϑ ∈ (0, 1), and ν > 0 with

qν < min{1, 1 + γ − α},

then T < t+(u0) and ũ = u(·;u0) on [0, T ].
(iii) (Continuous dependence) The map (t, u0) 7→ u(t;u0) is a semiflow on Oα.
(iv) (Global existence) If the orbit u([0, t+(u0));u0) is relatively compact in Oα,

then t+(u0) = ∞.
(v) (Blow-up criterion) Let u0 ∈ Oα be such that t+(u0) < ∞.

(a) If u(·;u0) : [0, t+(u0)) → Eα is uniformly continuous, then

lim
t↗t+(u0)

distEα

(
u(t;u0), ∂Oα

)
= 0. (1.4)

(b) If E1 is compactly embedded in E0, then

lim
t↗t+(u0)

‖u(t;u0)‖θ = ∞ or lim
t↗t+(u0)

distEβ

(
u([0, t];u0), ∂Oβ

)
= 0

(1.5)
for each θ ∈ (β, 1) with (ξ − θ)q < min{1, 1 + γ − θ}.

Criterion (iv) yields global existence when the orbit is relatively compact in Eα.
In particular, if E 1 embeds compactly in E 0, then a priori estimates on the solution
in Eα are sufficient for global existence as noted in condition (1.5) (in contrast e.g. to
[7] where estimates in Eξ would be needed for the same conclusion).

The proof of theorem 1.1 relies on a classical fixed point argument. However, the
technical details do not seem to be completely straightforward due to the singularity
of t 7→ f(u(t)) at t =0 which has to be monitored carefully.
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Semilinear parabolic problems

Of course, the result for the quasilinear case remains true for semilinear parabolic
equations

u′ = Au+ f(u) , t > 0 , u(0) = u0,

or, more generally, for parabolic evolution equations

u′ = A(t)u+ f(u) , t > 0 , u(0) = u0, (1.6)

with time-dependent operators A = A(t). In this setting theorem 1.1 can be sharp-
ened though. We present with theorem 1.2 below a result for the particular case
that f is defined on the whole interpolation space Eξ. More precisely, let

A ∈ Cρ(R+,H(E1, E0)) (1.7a)

for some ρ> 0 and let

0 6 α 6 ξ 6 1 , 0 6 γ < 1 , (γ, ξ) 6= (0, 1) ,

q > 1 , (ξ − α)q < min{1, 1 + γ − α}.
(1.7b)

Assume that the map f : Eξ → Eγ is locally Lipschitz continuous in the sense that
for each R> 0 there is a constant c(R) > 0 such that

‖f(w)− f(v)‖γ
6 c(R)

[
1 + ‖w‖q−1

ξ + ‖v‖q−1
ξ

][(
1 + ‖w‖ξ + ‖v‖ξ

)
‖w − v‖α + ‖w − v‖ξ

] (1.7c)

for all w, v ∈ Eξ ∩ B̄Eα(0, R).
It is worth pointing out that we may choose the phase space of the evolution as

well as the target space of the semilinearity f as E 0 (that is, we may set α = γ = 0)
and that the nonlinearity f (u) need not be defined on the phase space Eα; see
also remark 2.2 below for more details. The well-posedness result regarding the
semilinear problem (1.6) under assumption (1.7) reads as follows:

Theorem 1.2 Suppose (1.7).

(i) (Existence) Given any u0 ∈ Eα, the Cauchy problem (1.6) possesses a
maximal strong solution

u(·;u0) ∈ C1
(
(0, t+(u0)), E0

)
∩ C

(
(0, t+(u0)), E1

)
∩ C

(
[0, t+(u0)), Eα

)
with t+(u0) ∈ (0,∞]. Moreover,

u(·;u0) ∈ Cmin{α−θ, (1−µq)+}([0, T ], Eθ

)
∩ Cµ

(
(0, T ], Eξ

)
for all θ ∈ [0, α], µ > ξ − α, and T < t+(u0).

(ii) (Blow-up criterion) If u0 ∈ Eα is such that t+(u0) < ∞, then

lim sup
t↗t+(u0)

‖u(t;u0)‖α = ∞. (1.8)
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(iii) (Uniqueness) If

ũ ∈ C1
(
(0, T ], E0

)
∩ C

(
(0, T ], E1

)
∩ C

(
[0, T ], Eα

)
∩ Cν

(
(0, T ], Eξ

)
is a solution to (1.6) for some T> 0 and ν > 0 with qν < min{1, 1+γ−α},
then T < t+(u0) and ũ = u(·;u0) on [0, T ].

Moreover, if A(t) = A ∈ H(E1, E0) for all t > 0, then:

(iv) (Continuous dependence) The map (t, u0) 7→ u(t;u0) is a semiflow on Eα.
(v) (Global existence) If the orbit u([0, t+(u0));u0) is relatively compact in Eα,

then t+(u0) = ∞.

Note that an priori bound in Eα already ensures that the solution is globally
defined even in the case of a non-compact embedding E1 ↪→ E0.

The proof of theorem 1.1 is presented in §2, while the proof of theorem 1.2 is
established in §3. To prepare applications of these results we state some auxiliary
results in §4. In the subsequent §5 and §6 we will then provide some applications
of theorems 1.1 and 1.2 to certain chemotaxis systems featuring cross-diffusion
terms, in particular with focus on the global existence criterion.

2. Proof of theorem 1.1

The proof of theorem 1.1 is based on proposition 2.1 below. Before we address the
latter result, let us first recall some basic facts used in the proofs.

Preliminaries

Let T > 0, µ ∈ R, and consider a Banach space E. We denote by Cµ((0, T ], E) the
Banach space of all functions u ∈ C((0, T ], E) such that tµu(t) → 0 in E as t → 0,
equipped with the norm

u 7→ ‖u‖Cµ((0,T ],E) := sup {tµ ‖u(t)‖E : t ∈ (0, T ]} .

Note that

Cµ((0, T ], E) ↪→ Cν((0, T ], E) , µ 6 ν. (2.1)

Given ω> 0 and κ > 1, we denote by H(E1, E0;κ, ω) the class of all bounded
operators A ∈ L(E1, E0) such that ω−A is an isomorphism from E 1 onto E 0 and

1

κ
6

‖(µ−A)z‖0
|µ| ‖z‖0 + ‖z‖1

6 κ , Reµ > ω , z ∈ E1 \ {0}.

Then

H(E1, E0) =
⋃

ω>0 , κ>1

H(E1, E0;κ, ω).

For time-dependent operators A ∈ Cρ(I,H(E1, E0)) with ρ ∈ (0, 1) there exists a
unique parabolic evolution operator UA(t, s), 0 6 s 6 t < sup I, in the sense of
[8, II. section 2].
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Well-posedness of quasilinear parabolic equations 7

Based on this, we may reformulate the quasilinear Cauchy problem (1.1) as a
fixed point equation of the form

u(t) = UA(u)(t, 0)u
0 +

∫ t

0

UA(u)(t, τ)f(u(τ)) dτ , t > 0, (2.2)

see the proof below of proposition 2.1.

Proposition 2.1. Suppose (1.2). Let Sα ⊂ Oα be a compact subset of Eα. Then,
there exist a neighbourhood Qα of Sα in Oα and T := T (Sα) > 0 such that, for
each u0 ∈ Qα, the problem (1.1) has a strong solution

u = u(·;u0) ∈ C1
(
(0, T ], E0

)
∩ C

(
(0, T ], E1

)
∩ C

(
[0, T ], Oα

)
∩ Cmin{α−θ, (1−µq)+}([0, T ], Eθ

)
∩ Cµ

(
(0, T ], Eξ

) (2.3)

for any θ ∈ [0, α] and µ > (ξ−α)+. Moreover, there is a constant c0 := c0(Sα) > 0
such that

‖u(t;u0)− u(t;u1)‖α 6 c0‖u0 − u1‖α , 0 6 t 6 T , u0, u1 ∈ Qα.

Finally, if

ũ ∈ C1((0, T ], E0) ∩ C((0, T ], E1) ∩ Cϑ([0, T ], Oβ) ∩ Cν

(
(0, T ], Eξ

)
(2.4)

with ϑ ∈ (0, 1) and 0 6 qν < min{1, 1 + γ − α} is a solution to problem (1.1)
satsfying ũ(0) = u0 ∈ Qα, then ũ = u(·;u0).

Proof. We devise the proof into several steps.

The fixed point formulation. Since Sα ⊂ Oα is compact in Eα and since Eα embeds
continuously into Eβ , we find a constant δ > 0 such that distEβ

(Sα, ∂Oβ) > 2δ > 0.

Moreover, due to (1.2a) and [2, II. proposition 6.4], A is uniformly Lipschitz
continuous on some neighbourhood of Sα, hence there are ε> 0 and L> 0 such
that

B̄Eβ
(Sα, 2ε) ⊂ BEβ

(Sα, δ) ⊂ Oβ

and

‖A(x)−A(y)‖L(E1,E0)
6 L‖x− y‖β , x, y ∈ B̄Eβ

(Sα, 2ε). (2.5)

The compactness of A(Sα) in H(E1, E0) implies according to [8, I. corollary 1.3.2]
that there are κ > 1 and ω> 0 such that (making ε> 0 smaller, if necessary)

A(x) ∈ H(E1, E0;κ, ω) , x ∈ B̄Eβ
(Sα, 2ε). (2.6)

Recalling (1.2e) and (2.1), we may choose α0 ∈ (β, α) if α < ξ respectively
put α0 := ξ if α > ξ, choose γ0 ∈ (0, γ), and assume that µ satisfies

ξ − α0 < µ < min

{
1

q
,
1 + γ0 − α

q

}
. (2.7)
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8 B.V. Matioc and C. Walker

Fix ρ ∈ (0,min{α− β, 1− µq}). Given T ∈ (0, 1) (chosen small enough as specified
later on), define a closed subset of C([0, T ], Eβ) by

VT :=

{
v ∈ C([0, T ], Eβ) :

‖v(t)− v(s)‖β 6 |t− s|ρ and v(t) ∈ B̄Eβ
(Sα, 2ε)

for all 0 6 s, t 6 T

}
.

Hence, if v ∈ VT , then (2.6) ensures

A(v(t)) ∈ H(E1, E0;κ, ω) , t ∈ [0, T ], (2.8a)

while (2.5) implies

A(v) ∈ Cρ
(
[0, T ],L(E1, E0)

)
with sup

06s<t6T

‖A(v(t))−A(v(s))‖L(E1,E0)

(t− s)ρ
6 L.

(2.8b)
For each v ∈ VT , the evolution operator

UA(v)(t, s) , 0 6 s 6 t 6 T,

is thus well-defined and (2.8) guarantees that we are in a position to use the
results of [8, II. section 5]. In particular, due to [8, II.lemma 5.1.3] there exists
c = c(Sα) > 0 such that

‖UA(v)(t, s)‖L(Eθ)
+ (t− s)θ−ϑ0 ‖UA(v)(t, s)‖L(Eϑ,Eθ)

6 c , 0 6 s 6 t 6 T, (2.9)

for 0 6 ϑ0 6 ϑ 6 θ 6 1 with ϑ0 < ϑ if 0 < ϑ < θ < 1. In the following, c = c(Sα)
denotes positive constants depending only on Sα and α, β, γ, ξ, µ, α0, γ0, ε, δ, but
neither on v ∈ VT nor on T ∈ (0, 1).

We introduce the complete metric space

WT := VT ∩ B̄Cµ((0,T ],Eξ)
(0, 1)

equipped with the metric

dWT
(u, v) := ‖u− v‖C([0,T ],Eβ) + ‖u− v‖Cµ((0,T ],Eξ)

, u, v ∈ WT .

Let u, v ∈ WT . Note that u(t) ∈ B̄Eβ
(Sα, 2ε) ⊂ Oβ for t ∈ [0, T ], while u(t) ∈ Eξ

for t ∈ (0, T ]. In particular, u(t) ∈ Oξ for t ∈ (0, T ]. Moreover, there is c = c(Sα) > 0
such that ‖u(t)‖β 6 c for t ∈ [0, T ] and ‖u(t)‖ξ 6 t−µ for t ∈ (0, T ]. Fixing v0 ∈ Oξ

arbitrarily, we deduce from (1.2d) that

‖f(u(t))‖γ 6 ‖f(u(t))− f(v0)‖γ + ‖f(v0)‖γ 6 ct−µq , t ∈ (0, T ], (2.10)

for some constant c = c(Sα) > 0. Also note that, for t ∈ (0, T ],

‖f(u(t))− f(v(t))‖γ 6 ct−µq‖u(t)− v(t)‖β + ct−µ(q−1)‖u(t)− v(t)‖ξ, (2.11)

where again c = c(Sα) > 0. Set

Qα := BEα(Sα, ε/(1 + eα,β)) ⊂ Oα,
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Well-posedness of quasilinear parabolic equations 9

where eα,β > 0 is the norm of the embedding Eα ↪→ Eβ . Given u0 ∈ Qα, define

F (u)(t) := UA(u)(t, 0)u
0 +

∫ t

0

UA(u)(t, τ)f(u(τ)) dτ , t ∈ [0, T ] , u ∈ WT .

(2.12)
We shall prove that F : WT → WT is a contraction for T = T (Sα) ∈ (0, 1) small
enough. To this end, particular attention has to be paid to the singularity of the
function t 7→ f(u(t)) at t =0 when studying the function F (u).

Continuity in Eβ. To prove the continuity in Eβ we note that, for 0 6 s < t 6 T ,
u ∈ WT , and θ ∈ [0, α],

‖F (u)(t)− F (u)(s)‖θ 6 ‖UA(u)(t, 0)u
0 − UA(u)(s, 0)u

0‖θ

+

∫ s

0

‖UA(u)(t, τ)− UA(u)(s, τ)‖L(Eγ,Eθ)
‖f(u(τ))‖γ dτ

+

∫ t

s

‖UA(u)(t, τ)‖L(Eγ,Eθ)
‖f(u(τ))‖γ dτ =: I1 + I2 + I3.

(2.13a)

We first note from (2.8) and [8, II. theorem 5.3.1] (with f =0 therein) that there
exists c = c(Sα) > 0 with

I1 6 c(t− s)α−θ‖u0‖α. (2.13b)

Moreover, since

‖UA(u)(t, s)− 1‖L(Eα,Eθ)
6 c(t− s)α−θ,

due to [8, II. theorem 5.3.1] and (2.8), we use (2.9) and (2.10) to derive

I2 6
∫ s

0

‖UA(u)(t, s)− 1‖L(Eα,Eθ)
‖UA(u)(s, τ)‖L(Eγ,Eα)‖f(u(τ))‖γ dτ

6 c(t− s)α−θ max
{∫ s

0

(s− τ)γ0−ατ−µq dτ,

∫ s

0

τ−µq dτ
}

6 c max{T 1+γ0−α−µq, T 1−µq} (t− s)α−θ, (2.13c)

since ∫ s

0

(s− τ)γ0−ατ−µq dτ = s1+γ0−α−µq

∫ 1

0

(1− τ)γ0−ατ−µq dτ

6 T 1+γ0−α−µqB(1 + γ0 − α, 1− µq),

where B denotes the Beta function. Using again (2.9) with (2.10), we obtain
similarly

I3 6 cmax
{∫ t

s

(t− τ)γ0−θ τ−µq dτ,

∫ t

s

τ−µq dτ
}

6 cmax
{
(t− s)1+γ0−α−µq(t− s)α−θ, (t− s)1−µq

}
. (2.13d)
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Due to (2.7) and ρ ∈ (0,min{α − β, 1 − µq}), we see from (2.13) with θ = β that
we may choose the constant T = T (Sα) ∈ (0, 1) small enough to get

‖F (u)(t)− F (u)(s)‖β 6 (t− s)ρ , 0 6 s 6 t 6 T, (2.14)

and, since F (u)(0) = u0,

‖F (u)(t)− u0‖β 6 T ρ 6 ε , 0 6 t 6 T.

In particular, we infer from u0 ∈ Qα = BEα(Sα, ε/(1 + eα,β)) that

F (u)(t) ∈ B̄Eβ
(Sα, 2ε) , 0 6 t 6 T, (2.15)

hence F (u) ∈ VT .

Continuity in Eξ. We now prove that F (u) ∈ C((0, T ], E1), which in particular
implies F (u) ∈ C((0, T ], Eξ). To this end we fix ε ∈ (0, T ) and set uε(t) := u(t+ ε)
for t ∈ [0, T − ε]. Then, in view of (2.2) we have uε ∈ C([0, T − ε], Eξ) and (1.2d)
entails that f(uε) ∈ C([0, T − ε], Eγ). If

UA(uε)(t, s) = UA(u)(t+ ε, s+ ε) , 0 6 s 6 t 6 T − ε,

denotes the evolution operator associated with A(uε), we infer from the definition
of F (u) that

F (u)(t+ ε) = UA(uε)(t, 0)F (u)(ε) +

∫ t

0

UA(uε)(t, s)f(uε(s)) ds , t ∈ [0, T − ε].

(2.16)
Applying [8, II. theorem 1.2.2, II. remarks 2.1.2 (e)], yields

F (u)(ε+ ·) ∈ C
(
(0, T − ε], E1

)
∩ C1

(
(0, T − ε], E0

)
for all ε ∈ (0, T ), hence

F (u) ∈ C
(
(0, T ], E1

)
∩ C1

(
(0, T ], E0

)
. (2.17)

Similarly, we derive from (2.9), (2.10), and the definition of α0 that

‖F (u)(t)‖ξ 6 ‖UA(u)(t, 0)‖L(Eα,Eξ)
‖u0‖α +

∫ t

0

‖UA(u)(t, τ)‖L(Eγ,Eξ)
‖f(u(τ))‖γ dτ

6 c
(
tα0−ξ +max

{
t1+γ0−ξ−µq, t1−µq

})
,

for t ∈ (0, T ], hence

tµ‖F (u)(t)‖ξ 6 c
(
tα0−ξ+µ +max

{
t1+γ0−ξ−µ(q−1), t1−µq}

)
, t ∈ (0, T ]. (2.18)

Owing to (2.7) (noticing that ξ + µ(q − 1) < µq + α < 1 + γ0) we may make the
constant T = T (Sα) ∈ (0, 1) smaller, if necessary, to obtain

‖F (u)‖Cµ((0,T ],Eξ)
6 1. (2.19)
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Well-posedness of quasilinear parabolic equations 11

It now follows from the relations (2.14), (2.15), and (2.19) that F : WT → WT

provided that T = T (Sα) ∈ (0, 1) is small enough.

The contraction property. It remains to show that F is a contraction. To this end,
let u, v ∈ WT and observe from [8, II. lemma 5.1.4], (2.8), and (2.5) that there is a
constant c = c(Sα) > 0 such that, for 0 6 τ < t 6 T ,

(t− τ)ϑ−η‖UA(u)(t, τ)− UA(v)(t, τ)‖L(Eη,Eϑ) 6 c ‖u− v‖C([0,T ],Eβ), (2.20)

provided that 0 6 ϑ < 1 and 0 < η 6 1. Moreover, in view of (2.11), we have

‖f(u(t))− f(v(t))‖γ 6 c t−µq dWT
(u, v) , t ∈ (0, T ]. (2.21)

Letting θ ∈ {β, α, ξ}, we deduce from (2.9), (2.10), (2.20), and (2.21) that

‖F (u)(t)− F (v)(t)‖θ 6 ‖UA(u)(t, 0)− UA(v)(t, 0)‖L(Eα,Eθ)
‖u0‖α

+

∫ t

0

‖UA(u)(t, τ)− UA(v)(t, τ)‖L(Eγ,Eθ)
‖f(v(τ))‖γ dτ

+

∫ t

0

‖UA(u)(t, τ)‖L(Eγ,Eθ)
‖f(u(τ))− f(v(τ))‖γ dτ

6 c ‖u− v‖C([0,T ],Eβ)

(
‖u0‖αtα−θ + t1+γ−θ−µq

)
+ c dWT

(u, v) max
{
t1+γ0−θ−µq, t1−µq} (2.22)

for all t ∈ (0, T ]. Taking θ = β and θ = ξ in (2.22) implies that

dWT

(
F (u), F (v)

)
6 c

(
Tα−β + T 1+γ0−β−µq + T 1−µq + Tµ+α−ξ + T 1+γ0−ξ−µ(q−1)

)
dWT

(u, v).

Owing to (1.2e) and (2.7), we may make T = T (Sα) ∈ (0, 1) smaller, if necessary,
to obtain that

dWT
(F (u), F (v)) 6

1

2
dWT

(u, v) , u, v ∈ WT .

This shows that F : WT → WT is a contraction for T = T (Sα) ∈ (0, 1) small
enough and thus has a unique fixed point u = u(·;u0) ∈ WT according to Banach’s
fixed point theorem.

Since the (Hölder) continuity property u ∈ Cmin{α−θ,1−µq}([0, T ], Eθ

)
is estab-

lished in (2.13) for θ ∈ [0, α), respectively in (2.13) and (2.17) for θ = α, it follows
from (2.17) that u enjoys the regularity properties (2.3) for µ as chosen in (2.7)
(and, in view of (2.1), also for larger values of µ). The arguments leading to (2.17)
imply also that u is a strong solution to (1.1). That the regularity properties (2.17)
hold for every µ > (ξ−α)+ may be shown by arguing in a similar manner as below
where the uniqueness claim is established.
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12 B.V. Matioc and C. Walker

Lipschitz continuity w.r.t. initial data and uniqueness. To establish the Lipschitz
continuity of the solution with respect to the initial values, let u0, u1 ∈ Qα. We
note for θ ∈ {β, α, ξ} and t ∈ (0, T ] that

‖u(t;u0)− u(t;u1)‖θ 6 ‖UA(u(·;u1))(t, 0)‖L(Eα,Eθ)
‖u0 − u1‖α

+ ‖F (u(·;u0))(t)− F (u(·;u1))(t)‖θ.

In view of (2.9), we get

‖UA(u(·;u1))(t, 0)‖L(Eα,Eθ)
6 c

{
1 , θ ∈ {β, α},
tα0−θ , θ = ξ,

while (2.22) yields

‖F (u(·;u0))(t)− F (u(·;u1))(t)‖θ
6 c‖u(·;u0)− u(·;u1)‖C([0,T ],Eβ)

(
tα−θ + t1+γ−θ−µq

)
+ c dWT

(u(·;u0), u(·;u1)) max
{
t1+γ0−θ−µq, t1−µq}.

Hence, taking first θ = β and θ = ξ and making T = T (Sα) ∈ (0, 1) smaller, if
necessary, we derive

dWT

(
u(·;u0), u(·;u1)

)
6 c ‖u0 − u1‖α,

and then, with θ = α, we deduce that indeed

‖u(t;u0)− u(t;u1)‖α 6 c0 ‖u0 − u1‖α , u0, u1 ∈ Qα,

for some constant c0 = c0(Sα) > 0.
Concerning the uniqueness claim, let ũ be a solution to (1.1) with initial

data u0 ∈ Qα with regularity stated in (2.4). In view of (2.1) we may assume
that q(ξ − α)+ < qν < min{1, 1 + γ − α}. Let u = u(·;u0). We choose

ρ̂ ∈
(
0,min{ρ, ϑ}

)
and µ̂ ∈

(
max{µ, ν}, 1 + γ − α

q

)
and note that, if T is sufficiently small, then both functions u and ũ belong to the
complete metric space WT (with (ρ, µ) replaced by (ρ̂, µ̂)). The uniqueness claim
follows now by arguing as in the first part of the proof where the existence of a
solution was established. �

Remark 2.2. An inspection of the proof of proposition 2.1 shows that the Hölder
continuity in time and the assumption α > β are only needed to ensure (2.8b)
while the assumption γ > 0 and ξ < 1 is only used when applying formula (2.20)
to derive (2.22). That is, these assumptions are required to handle the quasilinear
part and can thus be weakened for the semilinear problem (1.6); see the subsequent
proof of proposition 3.1.

https://doi.org/10.1017/prm.2024.88 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2024.88


Well-posedness of quasilinear parabolic equations 13

Proof of theorem 1.1

(i), (ii) Existence and uniqueness: Due to proposition 2.1, the Cauchy problem
(1.1) admits for each u0 ∈ Oα = Oβ∩Eα a unique local strong solution. By standard
arguments it can be extended to a maximal strong solution u(·;u0) on the maximal
interval of existence [0, t+(u0)). The regularity properties of u(·;u0) as stated in
part (i) of theorem 1.1 and the uniqueness claim stated in part (ii) also follow from
proposition 2.1.
(iii) Continuous dependence: Let u0 ∈ Oα and choose t0 ∈ (0, t+(u0)) arbi-
trarily. Fixing t∗ ∈ (t0, t

+(u0)), the set Sα := u([0, t∗];u
0) ⊂ Oα is compact. Thus,

we infer from proposition 2.1 that there exist ε = ε(Sα) > 0, T = T (Sα) > 0,
and c0 = c0(Sα) > 1 such that T < t+(u1) for any

u1 ∈ Qα = BEα(Sα, ε/(1 + eα,β)),

and

‖u(t;u1)− u(t;u2)‖α 6 c0‖u1 − u2‖α , 0 6 t 6 T , u1, u2 ∈ Qα. (2.23)

Given N > 1 with (N−1)T < t∗ 6 NT , we set ε0 := ε/((1+eα,β)c
N−1
0 ) and define

the open neighbourhood Vα := BEα(u
0, ε0) of u

0 in Qα. We then claim that there
is k0 > 1 with

(1) t∗ < t+(u1) for each u1 ∈ Vα,
(2) ‖u(t;u1)− u(t;u0)‖α 6 k0‖u1 − u0‖α for 0 6 t 6 t∗ and u1 ∈ Vα.

Indeed, let u1 ∈ Vα. For t∗ 6 T , this is exactly the above statement. If
otherwise T < t∗, then we have u(T ;u0) ∈ Sα and the estimate (see (2.23))

‖u(t;u1)− u(t;u0)‖α 6 c0‖u1 − u0‖α <
ε

1 + eα,β
, 0 6 t 6 T,

entails u(T ;u1) ∈ Qα. Thus T < t+(u(T ;ui)) for i = 0, 1, while the uniqueness of
solutions to (1.1) ensures that u(t;u(T ;ui)) = u(t + T ;ui), 0 6 t 6 T . Therefore,
it follows from (2.23) that

‖u(t+ T ;u1)− u(t+ T ;u0)‖α6 c0‖u(T ;u1)− u(T ;u0)‖α 6 c20‖u1 − u0‖α

for 0 6 t 6 T . Now, if N =2 we are done. Otherwise we proceed to derive (1) and (2)
after finitely many iterations. In particular, property (1) implies that (0, t∗) × Vα

is a neighbourhood of (t0, u
0) in

D = {(t, w) : 0 6 t < t+(w) , w ∈ Oα}.

This along with (2) implies the solution map defines a semiflow on Oα.
(iv) Global existence: Since the solution map defines a semiflow in Oα, it holds
that t+(u0) = ∞ whenever the orbit u([0, t+(u0));u0) is relatively compact on Oα.
This is part (iv) of theorem 1.1.
(v) Blow-up criterion: Let u0 ∈ Oα with t+(u0) < ∞. Assume now that the
solution u(·;u0) : [0, t+(u0)) → Eα is uniformly continuous but (1.4) was not
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true. Then, the limit limt↗t+(u0) u(t;u
0) exists in Oα, so that u([0, t+(u0));u0) is

relatively compact in Oα, which contradicts (iv) of theorem 1.1. This entails (a)
from theorem 1.1 (v).

As for part (b) of theorem 1.1 (v), let E 1 be compactly embedded in E 0. Assume
for contradiction that (1.5) was not true for some θ ∈ (β, 1) that satisfies (ξ−θ)q <
min{1, 1 + γ − θ}. Without loss of generality we may further assume that θ > α
(otherwise consider α0 ∈ (β, θ) with (ξ−α0)q < min{1, 1+γ−α0}). Since then Eθ

embeds compactly in Eα, we may find a sequence tn ↗ t+(u0) such that (u(tn))n
converges in Eα and its limit lies in Oα. Using proposition 2.1 with Sα defined as
the closure in Eα of the set {u(tn) : n ∈ N}, which is a compact subset of Oα, we
may extend the maximal solution. This is a contradiction. �

3. Proof of theorem 1.2

The proof of theorem 1.2 is similar to the proof of theorem 1.1 with some modifica-
tions which are necessary to adapt to the weaker assumptions on the nonlinearity f.
The analogue of proposition 2.1 reads as follows:

Proposition 3.1. Suppose (1.7) and let R> 0. Then, there exists T := T (R) > 0
such that, for each u0 ∈ Eα with ‖u0‖α 6 R, the problem (1.6) has a strong solution

u = u(·;u0) ∈ C1
(
(0, T ], E0

)
∩ C

(
(0, T ], E1

)
∩ C

(
[0, T ], Eα

)
∩ Cmin{α−θ, (1−µq)+}([0, T ], Eθ

)
∩ Cµ

(
(0, T ], Eξ

) (3.1)

for any θ ∈ [0, α] and µ > ξ−α. Moreover, there is a constant c0(R) > 0 such that

‖u(t;u0)− u(t;u1)‖α 6 c0(R) ‖u0 − u1‖α , 0 6 t 6 T , u0, u1 ∈ B̄Eα(0, R).
(3.2)

Finally, if

ũ ∈ C1
(
(0, T ], E0

)
∩ C

(
(0, T ], E1

)
∩ C

(
[0, T ], Eα

)
∩ Cν

(
(0, T ], Eξ

)
with ν > 0 and qν < min{1, 1 + γ − α}, is a solution to problem (1.6) which
satisfies ũ(0) = u0 ∈ B̄Eα(0, R), then ũ = u(·;u0).

Proof. (i) Let UA(t, s), 0 6 s 6 t, be the evolution operator associated with the
map A ∈ Cρ(R+,H(E1, E0)) and recall from [8, II. lemma 5.1.3] that there exists
a constant c> 0 such that

‖UA(t, s)‖L(Eθ)
+ (t− s)θ−ϑ0‖UA(t, s)‖L(Eϑ,Eθ)

6 c , 0 6 s 6 t 6 1, (3.3)

for 0 6 ϑ0 6 ϑ 6 θ 6 1 with ϑ0 < ϑ if 0 < ϑ < θ < 1. Recalling (1.7b) and (2.1),
we may choose a positive constant µ such that

ξ − α0 < µ < min

{
1

q
,
1 + γ0 − α

q

}
(3.4)

for appropriate α0 ∈ (0, α) if α> 0, respectively α0 := 0 if α=0 and, similarly,
with γ0 ∈ (0, γ) if γ > 0, respectively γ0 := 0 if γ=0.
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We then define for T ∈ (0, 1) the Banach space

WT := C([0, T ], Eα) ∩ Cµ((0, T ], Eξ).

Given u0 ∈ Eα with ‖u0‖α 6 R, we set

UAu
0 := [t 7→ UA(t, 0)u

0]

and deduce from [8, II. theorem 5.3.1], (3.3), and (3.4) that UAu
0 ∈ WT satsi-

fies ‖UAu
0‖WT

6 c(R) for some c(R) > 0. Consequently, if u ∈ B̄WT

(
UAu

0, 1
)
,

then

‖u(t)‖α + tµ‖u(t)‖ξ 6 c(R) , t ∈ (0, T ],

and it follows from (1.7c) that

‖f(u(t))‖γ 6 ‖f(u(t))− f(0)‖γ + ‖f(0)‖γ 6 c(R)t−µq , t ∈ (0, T ]. (3.5)

Also note for u, v ∈ B̄WT

(
UAu

0, 1
)
and t ∈ (0, T ] that

‖f(u(t))− f(v(t))‖γ 6 c(R)t−µq
(
‖u(t)− v(t)‖α + tµ‖u(t)− v(t)‖ξ

)
. (3.6)

Define now for u ∈ B̄WT

(
UAu

0, 1
)

F (u)(t) := UA(t, 0)u
0 +

∫ t

0

UA(t, τ)f(u(τ)) dτ , t ∈ [0, T ]. (3.7)

We claim that F : B̄WT

(
UAu

0, 1
)
→ B̄WT

(
UAu

0, 1
)
defines a contraction if the

constant T = T (R) ∈ (0, 1) is small enough.
(ii) Given u ∈ B̄WT

(
UAu

0, 1
)
we first note, as in the proof of proposition 2.1, that

uε := u(·+ ε) ∈ C([0, T − ε], Eξ) , f(uε) ∈ C([0, T − ε], E0),

for every ε ∈ (0, T ) so that [8, II. theorem 5.3.1] and (the analogue of) (2.16) yield

F (u) ∈ C
(
(0, T ], Eθ

)
, θ ∈ (0, 1). (3.8)

Analogously to (2.18) we may use (3.3)-(3.5) and (3.8) (noticing that (γ, ξ) 6= (0, 1))
to obtain F (u) ∈ Cµ((0, T ], Eξ) with

‖F (u)− UAu
0‖Cµ((0,T ],Eξ)

6
1

2
, (3.9)

provided that T = T (R) ∈ (0, 1) is sufficiently small. Moreover, analogously
to (2.13), we deduce that F (u) ∈ Cmin{α−θ,1−µq}([0, T ], Eθ

)
for all θ ∈ [0, α] and

∥∥F (u)− UAu
0
∥∥
C([0,T ],Eα)

6
1

2
, (3.10)

by making T = T (R) ∈ (0, 1) smaller, if necessary. Gathering (3.9) and (3.10)
we obtain that the mapping F : B̄WT

(
UAu

0, 1
)
→ B̄WT

(
UAu

0, 1
)
is well-defined
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for T = T (R) ∈ (0, 1) small enough. Furthermore, using (3.3), (3.6), and the
assumption (γ, ξ) 6= (0, 1), we may show analogously to (2.22) that

‖F (u)(t)− F (v)(t)‖θ 6 c(R) dWT
(u, v) max

{
t1+γ0−θ−µq, t1−µq} (3.11)

for t ∈ (0, T ], θ ∈ {α, ξ}, and u, v ∈ B̄WT

(
UAu

0, 1
)
. Recalling (3.4), we may

choose T = T (R) ∈ (0, 1) sufficiently small to ensure that F is a contraction.
Thus, F has a unique fixed point u = u(·;u0) ∈ B̄WT

(
UAu

0, 1
)
.

(iii) In order to show that u is a strong solution to (1.6) with regularity (3.1), we
handle the cases γ > 0 and γ=0 separately.

If γ > 0, then u ∈ C
(
(0, T ], E1

)
∩ C1

(
(0, T ], E0

)
follows as in (2.17) by com-

bining [8, II. theorem 1.2.2, II. remarks 2.1.2 (e)] and u is thus a strong
solution.

If γ=0, then ξ < 1 by assumption. We consider again the map uε := u(·+ ε)
for ε ∈ (0, T ) and note that uε ∈ C([0, T − ε], Eθ) for each θ ∈ (0, 1), see (3.8).
Taking θ ∈ (ξ, 1), we then have uε(0) ∈ Eθ and f(uε) ∈ C([0, T −ε], E0). The latter
properties, [8, II. theorem 5.3.1], and (the analogue of) (2.16) enable us to deduce
that uε ∈ Cθ−ξ([0, T − ε], Eξ). Along with the local Lipschsitz continuity prop-
erty (1.7c) we get f(uε) ∈ Cθ−ξ([0, T − ε], E0). Invoking now [8, II. theorem 1.2.1]
we deduce

uε ∈ C
(
(0, T − ε], E1

)
∩ C1

(
(0, T − ε], E0

)
for each ε ∈ (0, T ), hence u is a strong solution to (1.6) enjoying the regularity prop-
erties (3.1) (for the constant µ fixed in Step 1). That (3.1) holds for every µ > ξ − α
follows from the uniqueness property.
(iv) To establish the Lipschitz continuity with respect to the initial values,
let u0, u1 ∈ B̄Eα(0, R) and note for θ ∈ {α, ξ} and t ∈ (0, T ] that

‖u(t;u0)− u(t;u1)‖θ 6 ‖UA(t, 0)‖L(Eα,Eθ)
‖u0 − u1‖α

+ ‖F (u(·;u0))(t)− F (u(·;u1))(t)‖θ.

Hence, taking θ = α and θ = ξ and using (3.3) and (3.11), we may make the
constant T = T (R) ∈ (0, 1) smaller, if necessary, to deduce that

‖u(t;u0)− u(t;u1)‖α 6 c0(R) ‖u0 − u1‖α , u0, u1 ∈ B̄Eα(0, R) , t ∈ [0, T ],

for some constant c0(R) > 0.
(v) The uniqueness assertion is derived as in proposition 2.1. �

The proof of theorem 1.2 now follows easily:

Proof of theorem 1.2

The existence and uniqueness of a maximal strong solution to the Cauchy prob-
lem (1.6) follows by standard arguments from proposition 3.1. Since T = T (R) > 0
in proposition 3.1 depends only on R, the blow-up criterion (1.8) readily follows
when t+(u0) < ∞. Moreover, if A(t) = A ∈ H(E1, E0) for t > 0, then (3.2) implies
as in the proof of theorem 1.1 that the map (t, u0) 7→ u(t;u0) is a semiflow on Eα.
This then also ensures global existence for relatively compact orbits. �
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4. Basic preliminaries

In this section, we collect some general results which will be used in the applications
presented in §5 and §6. By W s

p (Ω) and Hs
p(Ω) for s ∈ R we denote the Sobolev-

Slobodeckii spaces and the Bessel potential spaces, respectively [7, 35].

4.1. An auxiliary lemma

The following auxiliary lemma about Nemitskii operators is in the spirit of [3,
proposition 15.4] (see also [36, lemma 2.7]) and may be useful in certain applications
when verifying assumption (1.2d) (see e.g. §6).

Lemma 4.1. Let n, d ∈ N∗ and let Ω be an open subset of Rn. Consider a
function g ∈ C1(Rd,R) with

|∇g(r)−∇g(s)| 6 c
(
1 + |r|q−1 + |s|q−1

)
|r − s| , r, s ∈ Rd, (4.1)

for some constants q > 1 and c> 0. Let p ∈ [1,∞) and µ ∈ (0, 1).
Then g(w) ∈ Wµ

p (Ω) for every w ∈ Wµ
p (Ω,Rd) ∩ L∞(Ω,Rd). Moreover, there is

a constant K> 0 such that for all w1, w2 ∈ Wµ
p (Ω,Rd) ∩ L∞(Ω,Rd) we have

‖g(w1)− g(w2)‖Wµ
p

6 K
(
1 + ‖w1‖q∞ + ‖w2‖q∞

)
‖w1 − w2‖Wµ

p

+K
(
1 + ‖w1‖q−1

∞ + ‖w2‖q−1
∞
)(
‖w1‖Wµ

p
+ ‖w2‖Wµ

p

)
‖w1 − w2‖∞.

Proof. Note that (4.1) implies

|∇g(r)| 6 c2
(
1 + |r|q

)
, r ∈ Rd. (4.2)

Let w1, w2 ∈ Wµ
p (Ω,Rd)∩L∞(Ω,Rd). It then follows from the fundamental theorem

of calculus, (4.1), and (4.2) that, for x, y ∈ Ω,

∣∣(g(w1(x))− g(w2(x))
)
−
(
g(w1(y))− g(w2(y))

)∣∣
6
∣∣w1(x)− w2(x)− w1(y) + w2(y)

∣∣ ∫ 1

0

∣∣∇g
(
w1(x) + τ [w1(x)− w2(x)]

)∣∣dτ
+
∣∣w1(y)− w2(y)

∣∣
×
∫ 1

0

∣∣∇g
(
w1(x) + τ [w1(x)− w2(x)]

)
−∇g

(
w1(y) + τ [w1(y)− w2(y)]

)∣∣ dτ
6 c3

(
1 + ‖w1‖q∞ + ‖w2‖q∞

) ∣∣w1(x)− w2(x)− w1(y) + w2(y)
∣∣

+ c3
(
1 + ‖w1‖q−1

∞ + ‖w2‖q−1
∞
)
‖w1 − w2‖∞

(
|w1(x)− w1(y)|+

∣∣w2(x)− w2(y)
∣∣).
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The latter estimate together with (4.2) leads to

‖g(w1)− g(w2)‖pWµ
p

6 ‖g(w1)− g(w2)‖pLp

+

∫
Ω×Ω

∣∣(g(w1(x))− g(w2(x))
)
−
(
g(w1(y))− g(w2(y))

)∣∣p
|x− y|n+µp

d(x, y)

6 c4
(
1 + ‖w1‖q∞ + ‖w2‖q∞

)p‖w1 − w2‖pWµ
p

+ c4
(
1 + ‖w1‖q−1

∞ + ‖w2‖q−1
∞
)p (‖w1‖Wµ

p
+ ‖w2‖Wµ

p

)p ‖w1 − w2‖p∞

as claimed. �

4.2. Functional analytic setting for applications

We provide the underlying functional analytic setting for the applications in the
next section. In order to include Dirichlet and Neumann boundary conditions on
an open, bounded, smooth subset Ω of Rn with n ∈ N∗, we fix δ ∈ {0, 1} and define

Bu := u on ∂Ω if δ = 0 , Bu := ∂νu on ∂Ω if δ = 1,

that is, δ=0 refers to Dirichlet boundary conditions and δ=1 refers to Neumann
boundary conditions. For a fixed p ∈ (1,∞) we introduce

F0 := Lp(Ω) , F1 := W 2
p,B(Ω) = H2

p,B(Ω) = {v ∈ H2
p (Ω) : Bv = 0on ∂Ω},

and

B0 := ∆B ∈ H
(
W 2

p,B(Ω), Lp(Ω)
)
,

cf. e.g. [7, §4], where ∆B denotes the Laplace operator with the boundary conditions
introduced above. Let {

(Fθ, Bθ) : −1 6 θ < ∞
}

be the interpolation–extrapolation scale generated by (F0, B0) and the complex
interpolation functor [·, ·]θ (see [7, §6] and [8, §V.1]). That is,

Bθ ∈ H(F1+θ, Fθ) , −1 6 θ < ∞, (4.3)

and, for 2θ 6= −1− δ + 1/p, we have (see [7, theorem 7.1; equation (7.5)]1.)

Fθ
.
= H2θ

p,B(Ω) :=

{
{v ∈ H2θ

p (Ω) : Bv = 0on∂Ω} , δ + 1
p < 2θ < 2 + δ + 1

p ,

H2θ
p (Ω) , −2 + 1

p + δ < 2θ < δ + 1
p .

(4.4)

1.In fact, this is stated in [7] for −2 + 1
p
+ δ < 2θ 6 2. Invoking then fact that (1 − ∆B)

−1 ∈
L(H2θ−2

p (Ω), H2θ
p (Ω)) for 2 < 2θ < 2 + δ + 1/p, see [35, theorem 5.5.1], we obtain the full range

in (4.4).
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Also note from [7, remarks 6.1 (d)] (since ∆B −1 has bounded imaginary powers
as follows e.g. from [8, III. examples 4.7.3 (d)]) the reiteration property

[Fα, Fβ ]θ
.
= F(1−θ)α+θβ (4.5)

and from [7, equations (5.2)-(5.6)] the embeddings

Hs
p(Ω) ↪→ W τ

p (Ω) ↪→ Ht
p(Ω) , t < τ < s. (4.6)

In the following, we use the letter D and N to indicate Dirichlet respectively
Neumann boundary conditions (instead of B).

Remark 4.2. The reason for working in the Bessel potential scale Hs
p,B(Ω) is that

it is stable under complex interpolation, see (4.4)-(4.5). However, using the almost
reiteration property [8, I. remarks 2.11.2] (instead of (4.5)) and (4.6), one may work
just as well in the Sobolev scale W s

p,B(Ω).

Finally, we recall a useful tool on pointwise multiplication:

Proposition 4.3. Let Ω be an open, bounded, smooth subset of Rn. Let m > 2 be
an integer and let p, pj ∈ [1,∞) and s, sj ∈ (0,∞) for 1 6 j 6 m be real numbers
satisfying s < min{sj} along with 1/p 6

∑m
j=1 1/pj and

s− n

p
<


∑

sj<
n
pj

(sj −
n

pj
) if min

16j6m

{
sj −

n

pj

}
< 0 ,

min
16j6m

{
sj −

n

pj

}
otherwise.

Then pointwise multiplication

m∏
j=1

H
sj
pj (Ω) −→ Hs

p(Ω)

is continuous.

Proof. Proposition 4.3 is a consequence of the more general result stated in
[6, theorem 4.1] (see also remarks 4.2 (d) therein) and the embeddings (4.6) (notic-
ing that the Sobolev spaces W s

p (Ω) coincide, for s ∈ (0,∞) \ N, with the Besov
spaces Bs

p,p(Ω)). �

5. Applications of theorem 1.2 to chemotaxis systems

We illustrate the findings of our abstract result from theorem 1.2 for the semilinear
case in the context of two chemotaxis systems, see (5.1) and (5.7). Exploiting the
fact that we may choose ξ > α in theorem 1.2, we prove local well-posedness for
these chemotaxis systems in spaces of low regularity and obtain in this way quite
general global existence criteria.

In the following, let Ω be an open, bounded, smooth subset of Rn with n ∈ N∗.
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5.1. Parabolic-parabolic equations

To begin with, we consider the cross-diffusion system

∂tu = div
(
∇u− u∇v) + g(x, u, v) , t > 0 , x ∈ Ω , (5.1a)

∂tv = ∆v + u− v , t > 0 , x ∈ Ω, (5.1b)

where the nonlinearity g is assumed to be of polynomial form

g(x, u, v) =
M∑
`=1

c`(x)u
m`vk` (5.1c)

with m`, k`, M ∈ N and sufficiently smooth functions c` (in fact, c` ∈ Hr
p(Ω)

with r > n/p). The evolution equations are subject to the initial conditions

u(0, x) = u0(x) , v(0, x) = v0(x) , x ∈ Ω, (5.1d)

and the boundary conditions

∂νu = ∂νv = 0 on ∂Ω. (5.1e)

Even though (5.1) has a natural quasilinear structure, we may derive its well-
posedness from theorem 1.2 by formulating (5.1) as a semilinear evolution problem
with different regularity and integrability assumptions for the variables u and v.
The advantage of this approach compared to the quasilinear theory is discussed
in remark 5.2 below. We also refer to [12, theorem 1] where the existence of
local weak solutions to (5.1) for initial data u0 ∈ Lp(Ω) and v0 ∈ H1

p (Ω) with
p>n is established in the particular case g =0 and n =2. In fact, it is pointed
out in [12, remarks] that one may weaken the restriction on u0 and only assume
that u0 ∈ Lp/2(Ω). As shown in the subsequent theorem 5.1, this is possible even
in our setting of strong solutions and a function g containing at most quadratic
nonlinearities in u, that is max{m1, . . . , m`} 6 2. In particular, in the physically
relevant dimensions n ∈ {1, 2, 3}, we prove that already a priori estimates for u
in L2(Ω) would guarantee that the strong solution is globally defined. In the case
when max{m1, . . . , m`} > 3, the nonlinearity g enforces more restrictive conditions
on p, see remark 5.2 (a).

Theorem 5.1 Let max{m1, . . . , m`} 6 2, choose p ∈ (1,∞) such that p > n/2,
and let q ∈ (n,∞) satisfy

n

p
− n

q
< 1.
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Then, the evolution problem (5.1) generates a semiflow on Lp(Ω) × H1
q (Ω). In

particular, for each (u0, v0) ∈ Lp(Ω)×H1
q (Ω), the Cauchy problem (5.1) possesses

a maximal strong solution

(u, v) ∈ C
(
[0, t+), Lp(Ω)×H1

q (Ω)
)

with regularity properties stated in (5.5) below. Moreover, if (u, v) is not globally
defined, that is, if t+ < ∞, then

lim sup
t↗t+

‖u(t)‖Lp = ∞.

Before providing the proof of theorem 5.1 we note:

Remarks 5.2. (a) Theorem 5.1 remains true if m := max{m1, . . . , m`} > 3 for
the particular choice p = q > (m − 1)n. The proof of this result is similar to that
of theorem 5.1 and therefore omitted.

(b) In order to allow for quite general initial data, we shall consider the
equation (5.1a) in a Bessel potential space of negative order. Nevertheless, a sub-
sequent bootstrapping argument shows that (u, v) ∈ C∞((0, t+)× Ω̄,R2) provided
that c` ∈ C∞(Ω̄) for 1 6 ` 6 M .

(c) We emphasize that it is not at all clear whether the choice

(u0, v0) ∈ Lp(Ω)×H1
q (Ω)

for the initial data in theorem 5.1 is possible when using the quasilinear parabolic
theory in [7] instead of theorem 1.2, even if g =0 and p = q > n. Indeed, consid-
ering the evolution problem (5.1) in the ambient space H2σ

p,N (Ω) × H2τ
p,N (Ω), the

term div
(
∇u− u∇v) in (5.1a) can be handled in several ways, either quasilinear

A1(w)z := ∆z1 − div
(
z1∇v) , A2(w)z := ∆z1 − div

(
u∇z2),

for w = (u, v) and z = (z1, z2) ∈ dom(Ai(w)), or semilinear

A3z := ∆z1 with f(w) := div
(
u∇v)

for z = (z1, z2) ∈ dom(A3). One then minimally requires that 2σ, 2τ > −1 + 1/p
(to identify the extrapolation scale). In order to achieve A1(w)z ∈ H2σ

p,N (Ω), one

needs z1∇v ∈ H2σ+1
p (Ω), hence v ∈ H2σ+2

p (Ω) with 2σ + 2 > 1, so that a gen-

eral v0 ∈ H1
p (Ω) is not possible when using [7]. Similarly, A2(w)z ∈ H2σ

p,N (Ω)

requires u∇z2 ∈ H2σ+1
p (Ω) and hence u ∈ H2σ+1

p (Ω) with 2σ+1 > 0 so that it seems

impossible to take u0 ∈ Lp(Ω). Finally, in order to have f(w) ∈ H2σ
p,N (Ω), one needs

u∇v ∈ H2σ+1
p (Ω) with 2σ + 1 > 0, and hence neither u0 ∈ Lp(Ω) nor v0 ∈ H1

p (Ω)
seems possible.

We now establish the proof of theorem 5.1.
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Proof of theorem 5.1. Let ε be such that

0 < 2ε < min
{
1− 1

p
, 1− n

q
, 1− n

p
+

n

q

}
and define

E0 := H−2ε
p,N (Ω)×H1−2ε

q,N (Ω) , E1 := H2−2ε
p,N (Ω)×H3−2ε

q,N (Ω), (5.2)

so that

Eθ = H−2ε+2θ
p,N (Ω)×H1−2ε+2θ

q,N (Ω) , 2θ ∈ [0, 2] \ {1 + 1/p+ 2ε , 1/q + 2ε}.

Set

0 < γ :=
ε

3
< α := ε < ξ =

1 + ε

2
< 1.

It follows that

2(ξ − α) < min {1, 1 + γ − α} (5.3)

and, recalling (4.4)-(4.5), we have Eα = Lp(Ω)×H1
q (Ω) and

Eξ = H1−ε
p,N (Ω)×H2−ε

q,N (Ω) ↪→ Eα ↪→ Eγ = H
−4ε/3
p,N (Ω)×H

1−4ε/3
q,N (Ω).

Since H2−2ε
p,N (Ω) ↪→ H1−2ε

q,N (Ω), we obtain from [8, I. theorem 1.6.1] and (4.3)-(4.4)
that

A :=

(
∆ 0

1 ∆− 1

)
∈ H(E1, E0),

where the symbol ∆ in the diagonal entries of A stands for (different) extrapolated
versions of ∆B with B = N , see (4.3), that depend on ε. Defining f := f1+ f2 with

f1(w) :=
(
− div

(
u∇v), 0

)
and f2(w) :=

( M∑
`=1

c`(x)u
m`vk` , 0

)
for w := (u, v), we may thus recast (5.1) as a semilinear parabolic Cauchy problem

w′ = Aw + f(w) , t > 0 , w(0) = w0 := (u0, v0).

We next show that f : Eξ → Eγ is well-defined and that, given R> 0, there is a
constant c(R) > 0 such that

‖f(w)− f(w̄)‖Eγ

6 c(R)
[
1 + ‖w‖Eξ

+ ‖w̄‖Eξ

][(
1 + ‖w‖Eξ

+ ‖w̄‖Eξ

)
‖w − w̄‖Eα + ‖w − w̄‖Eξ

]
(5.4)
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for all w, w̄ ∈ Eξ with ‖w‖Eα , ‖w̄‖Eα 6 R. To this end we estimate, for each
w ∈ Eξ with ‖w‖Eα 6 R,

‖f1(w)‖
H

−4ε/3
p,N

6 c‖u∇v‖
H

1−4ε/3
p,N

6 c‖u‖
H1−ε
p,N

‖v‖
H2−ε
q,N

6 c‖w‖2Eξ
,

where the continuity of the multiplication

H1−ε
p,N (Ω) •H1−ε

q,N (Ω) −→ H
1−4ε/3
p,N (Ω)

is used in the second step of the estimate (note that 1−ε > n/q), see proposition 4.3.
Moreover, since H2−ε

q,N (Ω) is an algebra with respect to the pointwise multiplication,
max{m1, . . . , m`} 6 2, and since the multiplication

H1−ε
p,N (Ω) •H1−ε

p,N (Ω) −→ Lp(Ω)

is continuous according to proposition 4.3, we have (assuming that c` ∈ Hr
p(Ω)

with r > n/p)

‖f2(w)‖
H

−4ε/3
p,N

6 c‖f2(w)‖Lp 6 c(R)(1 + ‖u‖Lp + ‖u‖2Lp) 6 c(R)(1 + ‖w‖2Eξ
).

This proves that f : Eξ → Eγ is well-defined. Arguing as above, it is straightforward
to show now that the local Lipschitz continuity property (5.4) is satisfied. We are
thus in position to apply theorem 1.2 to deduce that the evolution problem (5.1)
generates a semiflow in Eα = Lp(Ω) × H1

q (Ω). In particular, for each w0 ∈ Eα,
there exists a maximal strong solution

w = (u, v) ∈ C1
(
(0, t+(w0)), E0

)
∩ C

(
(0, t+(w0)), E1

)
∩ C

(
[0, t+(w0)), Eα

)
(5.5)

to (5.1), with E 0 and E 1 defined in (5.2).
Let w = (u, v) ∈ C([0, t+), Eα) be a maximal solution to (5.1) with finite maximal

existence time t+ = t+(w0) < ∞. We then have

lim sup
t↗t+

‖w(t)‖Eα = lim sup
t↗t+

‖(u(t), v(t))‖Lp×H1
q
= ∞. (5.6)

Assume that u is bounded in Lp(Ω). We may also assume w0 ∈ E1,
hence v0 ∈ H2

q,N (Ω) ↪→ H2−2ε
p,N (Ω). It then follows from (5.1b) that v is bounded

in H2−2ε
p,N (Ω), hence also in H1

q,N (Ω) due to the embedding H2−2ε
p,N (Ω) ↪→ H1

q,N (Ω).
Consequently, (5.6) is equivalent to

lim sup
t↗t+

‖u(t)‖Lp = ∞.

This proves the claim. �
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5.2. A degenerate chemotaxis system

We consider the quasilinear evolution problem

∂tu = div(∇u− u∇w) , t > 0 , x ∈ Ω , (5.7a)

∂tv = u− v , t > 0 , x ∈ Ω , (5.7b)

∂tw = ∆w + v − w , t > 0 , x ∈ Ω , (5.7c)

subject to the initial conditions

u(0, x) = u0(x) , v(0, x) = v0(x) , w(0, x) = w0(x) , x ∈ Ω, (5.7d)

and the boundary conditions

∂νu = ∂νw = 0 on ∂Ω. (5.7e)

This particular chemotaxis system is investigated in [21] (see also [5] for a general
strategy to handle this type of problems). Although equations (5.7a) and (5.7c) are
coupled through highest order terms, we proceed as in the previous §5.1 and con-
sider different regularities and integrability properties for the variables u, v, and w
to reformulate (5.7) as a semilinear parabolic evolution problem. An application of
theorem 1.2 enables us to impose rather low regularities on the initial data and to
derive sharp global existence criteria.

Theorem 5.3 Let q ∈ (max{1, n− 1},∞) and 1 < p 6 q with

n

p
− n

q
< 1. (5.8)

Let s, τ ∈ R satisfy

s ∈
(
max

{
−1 +

1

p
, −1 +

n

q

}
,
1

q

)
and

τ ∈
(
max

{
n

p
,
n+ 1

p
− n

q

}
, s+ 2

)
\
{
1 +

1

p

}
.

https://doi.org/10.1017/prm.2024.88 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2024.88


Well-posedness of quasilinear parabolic equations 25

Then (5.7) generates a semiflow on Hs
p,N (Ω)×Hτ

p (Ω)×Hs+1
q,N (Ω). In particular, for

each initial value (u0, v0, w0) ∈ Hs
p,N (Ω)×Hτ

p (Ω)×Hs+1
q,N (Ω), the Cauchy problem

(5.7) possesses a maximal strong solution

(u, v, w) ∈ C
(
[0, t+),Hs

p,N (Ω)×Hτ
p (Ω)×Hs+1

q,N (Ω)
)

with regularity properties stated in (5.12). Moreover, if (u, v, w) is not globally
defined, then

lim sup
t↗t+

‖u(t)‖Hs
p
= ∞. (5.9)

Before establishing the proof of theorem 5.3, we note:

Remark 5.4. If q >n and p ∈ (1, q] satisfy the condition (5.8), then one may
choose s =0 (and an arbitrary τ ∈

(
max{n/p, (n+ 1)/p− n/q}, 2

)
\ {1 + 1/p} to

obtain a semiflow on Lp(Ω)×Hτ
p (Ω)×H1

q (Ω). In this case, solutions are global
provided

sup
t∈[0,t+)∩[0,T ]

‖u(t)‖Lp < ∞ for each T > 0.

If q = 2p > n, one may choose s =0 and τ ∈
(
max{n/p, (n+2)/(2p)}, 2

)
. Hence,

a priori estimates for u in L2(Ω) ensure that the strong solution is globally defined
in the physically relevant dimensions n ∈ {1, 2, 3}. For such estimates see [21].

We now establish theorem 5.3.

Proof of theorem 5.3. The assumptions on s and τ along with (5.8) imply that we
can choose a number a such that

max
{
τ − 2 , −1 + n/q , −1 + 1/p

}
< a < min

{
τ − 1− n/p+ n/q , s

}
,

that is, a ∈
(
max{−1 + n/q,−1 + 1/p}, s

)
and

a+ 1 +
n

p
− n

q
< τ < a+ 2. (5.10)

Set

Eθ := Ha+2θ
p,N (Ω)×Hτ

p (Ω)×Ha+1+2θ
q,N (Ω) , 2θ ∈ [0, 2] \ {1/q − a , 1 + 1/p− a} .

(5.11)

We note that the middle component is independent of θ and that all spaces belong
to the scale of (4.4). We then have Eθ = [E0, E1]θ. Set

2α := s− a ∈ (0, 1) \ {1/q − a , 1 + 1/p− a} , γ := 0,

and choose

2ξ ∈ (1, 1 + α) \ {1/q − a, 1 + 1/p− a} .
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Note that 0 = γ < α < ξ < 1. Since Ha+2
p,N (Ω) ↪→ Hτ

p (Ω) ↪→ Ha+1
q,N (Ω) due to (5.10),

we obtain from [8, I. theorem 1.3.1] and (4.3)-(4.4) that

A :=

∆ 0 0

0 −1 0

0 0 ∆− 1

+

0 0 0

1 0 0

0 1 0

 ∈ H(E1, E0),

where ∆ stands again for (different) extrapolated versions of ∆B with B = N ,
see (4.3). Setting

f(z) :=
(
− div(u∇w), 0, 0

)
, z = (u, v, w),

we may thus recast (5.7) as the semilinear autonomous parabolic Cauchy problem

z′ = Az + f(z) , t > 0 , z(0) = z0 := (u0, v0, w0),

in E 0. Since a + 2ξ > a + 1 > n/q, we derive continuity of the pointwise
multiplication

Ha+2ξ
p (Ω) •Ha+2ξ

q (Ω) ↪→ Ha+1
p (Ω),

and therefore

‖div
(
u∇w

)
‖Ha

p
6 c‖u∇w‖

Ha+1
p

6 c‖u‖
H

a+2ξ
p

‖w‖
H

a+1+2ξ
q

, z = (u, v, w) ∈ Eξ.

We thus have

‖f(z1)− f(z2)‖E0
6 c
(
‖z1‖Eξ

+ ‖z2‖Eξ

)
‖z1 − z2‖Eξ

, z1, z2 ∈ Eξ,

hence f : Eξ → E0 satisfies (1.7c) (with q =2 therein). Since 2ξ < 1 + α, also
assumption (1.7b) is satisfied and we infer from theorem 1.2 that (5.7) generates a
semiflow on

Eα = Hs
p,N (Ω)×Hτ

p (Ω)×Hs+1
q,N (Ω).

In particular, for each z0 = (u0, v0, w0) ∈ Hs
p,N (Ω)×Hτ

p (Ω)×Hs+1
q,N (Ω) there is

a unique maximal strong solution

z = (u, v, w) ∈ C1
(
[0, t+), E0

)
∩ C

(
(0, t+), E1

)
∩ C

(
[0, t+), Eα

)
, (5.12)

to (5.7), see (5.11) for the definition of E 0 and E 1. Moreover, if t+ < ∞, then

lim sup
t↗t+

‖(u(t), v(t), w(t))‖
Hs
p×Hτ

p×Hs+1
q

= ∞. (5.13)

Finally, consider a maximal solution z = (u, v, w) on the maximal existence
interval J := [0, t+) such that t+ < ∞ and

‖u(t)‖Hs
p
6 c0 < ∞ , t ∈ J.
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We may assume without loss of generality that u0 ∈ Ha+2
p,N (Ω) and w0 ∈ Hs+2

p,N (Ω)
(as s−a < 1). Observing that τ > s, we infer from the bound on u and (5.7b) that

‖v(t)‖Hs
p
6 c1 < ∞ , t ∈ J.

In turn, since s > a and w0 ∈ Hs+2
p,N (Ω), we have w ∈ BUCϑ

(
J,Hs+2−2ρ

p,N (Ω)
)
for

some ρ > ϑ > 0 with

2ρ < min
{
s− a, 1− n

p
+

n

q

}
from the latter estimate, equation (5.7c), and [8, II. theorem 5.3.1]. In view of the
embedding Hs+2−2ρ

p,N (Ω) ↪→ Hs+1
q,N (Ω) we get

‖w(t)‖
Hs+1
q

6 c2 < ∞ , t ∈ J.

Moroever, since a+ 2 > τ > n/p, the pointwise multiplication

Hτ
p,N (Ω) •Hs−2ρ+1

p,N (Ω) ↪→ Ha+1
p,N (Ω)

is continuous and Ha+2
p,N (Ω) ↪→ Hτ

p,N (Ω). Setting

B(t)y := ∆Ny − div
(
y∇w(t)

)
, y ∈ Ha+2

p,N (Ω) , t ∈ J,

we may now deduce from [8, I. theorem 1.3.1, I.Corollary 1.3.2] that

B ∈ BUCϑ
(
J,L(Ha+2

p,N (Ω),Ha
p,N (Ω))

)
satisfies B(t) ∈ H(Ha+2

p,N (Ω),Ha
p,N (Ω);κ, ω), t ∈ J , for some κ > 1 and ω> 0.

Noticing that

u′(t) = B(t)u(t) , t ∈ J , u(0) = u0,

according to (5.7a), we conclude from [8, II. theorem 5.4.1] that

‖u(t)‖
Ha+2
p,N

6 c3 , t ∈ J.

Invoking again (5.7b) and recalling that a+ 2 > τ , we finally obtain that

‖(u(t), v(t), w(t))‖
Hs
p×Hτ

p×Hs+1
q

6 c4 , t ∈ J,

for some constant c4 < ∞, in contradiction to (5.13). This ensures the global
existence criterion (5.9). �
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6. Application to chemotaxis systems with density-suppressed motility

We consider a model for autonomous periodic stripe pattern formation (see [19]
and the literature therein)

∂tu = ∆(uχ(v)) + ug(m) , t > 0 , x ∈ Ω , (6.1a)

∂tv = ∆v + u− v , t > 0 , x ∈ Ω, (6.1b)

∂tm = ∆m− ug(m) , t > 0 , x ∈ Ω, (6.1c)

subject to the initial conditions

u(0, x) = u0(x) , v(0, x) = v0(x) , m(0, x) = m0(x) , x ∈ Ω, (6.1d)

and the boundary conditions

∂ν(uχ(v)) = ∂νv = ∂νm = 0 on ∂Ω. (6.1e)

The following theorem 6.1 is a consequence of theorem 1.1 and establishes the
existence and uniqueness of strong solutions only assuming u0 ∈ Lp(Ω) with p > 2n
(in fact, as shown in the proof, even less is required), which does not seem to be
derivable from [7] directly. In the proof of theorem 6.1, we take full advantage of
the fact that we may choose ξ > α (in this context we actually have ξ − α > 1/2).
The global existence criterion (6.3) thus simplifies the one obtained in [19] for this
system being based on a priori L∞-estimates for u.

Theorem 6.1 Let p ∈ (2n,∞), g ∈ C2−(R), and χ ∈ C3−(R) with χ(r) > χ0 > 0
for r ∈ R. Let further ε ∈ (0, 1/p) and κ> 0 satisfy

2n

p
< 2κ < 1− 5ε,

and set

σ̄ := −1 +
n

p
+ 5ε , κ̄ := 2κ+ 4ε , τ̄ :=

n

p
+ 4ε.

Then (6.1) generates a semiflow on H σ̄
p,N (Ω)×H κ̄

p,N (Ω)×H τ̄
p,N (Ω). In particular,

for each initial value (u0, v0,m0) ∈ H σ̄
p,N (Ω) × H κ̄

p,N (Ω) × H τ̄
p,N (Ω), the Cauchy

problem (6.1) possesses a maximal strong solution

(u, v,m) ∈ C
(
[0, t+),H σ̄

p,N (Ω)×H κ̄
p,N (Ω)×H τ̄

p,N (Ω)
)

with regularity properties stated in (6.14). Moreover, if (u, v,m) is a maximal
solution such that t+ < ∞, then

lim sup
t↗t+

‖(u(t),m(t))‖Lp×H1
p
= ∞. (6.2)
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In fact, if g > 0 and (u0, v0,m0) ∈ Lp(Ω) × H1
p,N (Ω) × H1

p (Ω) are non-negative,

then t+ < ∞ implies

lim sup
t↗t+

‖u(t)‖Lp
= ∞. (6.3)

Before establishing the proof of theorem 6.1 we note:

Remark 6.2. The parameters are chosen such that Lp(Ω) × H1
p (Ω) × H1

p (Ω) is
contained in the space H σ̄

p,N (Ω)×H κ̄
p,N (Ω)×H τ̄

p,N (Ω) of initial data.

We now present the proof of theorem 6.1.

Proof of theorem 6.1. For w = (u, v,m) and w0 = (u0, v0,m0) we may recast (6.1)
as a quasilinear Cauchy problem

w′ = A(w)w + f(w) , t > 0 , w(0) = w0, (6.4)

by formally setting

A(w) :=
[
(z1, z2, z3) 7→

(
div
(
χ(v)∇z1

)
, (∆− 1)z2 + z1,∆z3

]
(6.5)

and

f(w) :=
(
div
(
uχ′(v)∇v

)
+ ug(m), 0,−ug(m)

)
(6.6)

on suitable spaces which we introduce now. To this end, we set

2σ := −1 +
n

p
+ ε , α := 2ε , 2τ :=

n

p
,

and define

Eθ := H2σ+2θ
p,N (Ω)×H2κ+2θ

p,N (Ω)×H2τ+2θ
p,N (Ω) , θ ∈ [0, 1], (6.7)

and note from (4.4)-(4.5), since 2σ ∈ (−1+ 1/p, 0) and 2κ+2, 2τ +2 ∈ (2, 3), that

Eθ = [E0, E1]θ = H2σ+2θ
p,N (Ω)×H2κ+2θ

p,N (Ω)×H2τ+2θ
p,N (Ω) , θ ∈ [0, 1] \ Σ,

where

Σ :=
{1
2

(
1 +

1

p
− 2σ

)
,
1

2

(
1 +

1

p
− 2κ

)
,
1

2

(
1 +

1

p
− 2τ

)}
.

We further set

γ := ε , β :=
3ε

2
, ξ :=

1

2
+

9ε

8
,

and note that 0 < γ < β < α < ξ < 1 and γ, β, α, ξ 6∈ Σ. We choose a constant κ′

such that 2κ > 2κ′ > 2n/p and note that, since

2κ′ + 2β − n

p
>

n

p
+ 3ε =: ρ ∈ (0, 1),
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we have H2κ′+2β
p (Ω) ↪→ Cρ(Ω̄). Moreover, lemma 4.1 and (4.6) imply

[v 7→ χ(v)] ∈ C1−(H2κ+2β
p (Ω),H2κ′+2β

p (Ω)
)
.

Noticing that H2σ+1
p,N (Ω) is an algebra with respect to pointwise multiplication

and 2κ′ + 2β > 2σ + 1, we now infer from [7, theorem 8.5]2. that for

A1(v)z1 := div
(
χ(v)∇z1

)
we have

A1 ∈ C1−(H2κ+2β
p (Ω),H

(
H2σ+2

p,N (Ω),H2σ
p,N (Ω)

))
. (6.8)

Now, we obtain from (6.8), (4.3)-(4.4) together with

H2σ+2
p,N (Ω) ↪→ H1

p,N (Ω) ↪→ H2κ
p,N (Ω),

and a standard perturbation argument for the second component that, with A
defined in (6.5), [

w 7→ A(w)
]
∈ C1−(Eβ ,H(E1, E0)

)
. (6.9)

As for the nonlinear part f, we first note from proposition 4.3 that the pointwise
multiplication

H2σ+2ξ
p (Ω) •H2κ′+2β

p (Ω) •H2κ+2ξ−1
p (Ω) −→ H2σ+2γ+1

p (Ω) (6.10)

is continuous since 2ξ > 2γ + 1, 2σ + 2γ + 1 = n/p+ 3ε > n/p, and

2κ′ + 2β = 2κ′ + 3ε >
2n

p
+ 3ε >

n

p
+ 3ε, 2κ+ 2ξ − 1 >

2n

p
+ 2ε >

n

p
+ 3ε.

Consider in the following w = (u, v,m) ∈ Eξ with ‖w‖Eβ
6 R. Since

[h 7→ χ′(h)] ∈ C1−(H2κ+2β
p (Ω),H2κ′+2β

p (Ω)
)

is bounded on bounded sets according to lemma 4.1 and (4.6), we deduce from (6.10)
that ∥∥div(uχ′(v)∇v

)∥∥
H

2σ+2γ
p

6 c(R)‖u‖
H

2σ+2ξ
p

‖v‖
H

2κ+2ξ
p

. (6.11)

Noticing that also the pointwise multiplication

H2σ+2ξ
p (Ω) •H2τ+γ+β

p (Ω) −→ H2τ+2γ
p (Ω) ↪→ H2σ+2γ

p (Ω)

2.Set 2ᾱ := 2β̄ := 2σ + 2 = 1+ n/p+ ε. Then 1 6 2ᾱ 6 2, 2− 2ᾱ 6 2β̄ 6 2ᾱ and 2β̄ 6= 1+ 1/p.

The assumptions on χ ensure that (A1(v), N) ∈ Eᾱ(Ω) for each given v ∈ H2κ+2β
p,N (Ω) (in the

notation of [7]) since χ(v) ∈ Cρ(Ω̄) with ρ > 2ᾱ− 1 > 0. Applying [7, theorem 8.5], we indeed get
A1(v) ∈ H

(
H2σ+2

p,N (Ω), H2σ
p,N (Ω)

)
.
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is continuous, since 2τ > 2σ, 2τ + γ + β > 2τ + 2γ > n/p, and

2σ + 2ξ >
n

p
+ 2ε = 2τ + 2γ,

and the mapping

[m 7→ g(m)] ∈ C1−(H2τ+2β
p (Ω),H2τ+γ+β

p (Ω)
)

is bounded on bounded sets (see again lemma 4.1 and (4.6)), we derive that

‖ug(m)‖
H

2σ+2γ
p

6 c‖ug(m)‖
H

2τ+2γ
p

6 c(R)‖u‖
H

2σ+2ξ
p

. (6.12)

It then follows from (6.11)-(6.12) and the definition of f in (6.6) that

‖f(w)− f(w̄)‖Eγ

6 c(R)
[
1 + ‖w‖Eξ

+ ‖w̄‖Eξ

][(
‖w‖Eξ

+ ‖w̄‖Eξ

)
‖w − w̄‖Eβ

+ ‖w − w̄‖Eξ

] (6.13)

for w, w̄ ∈ Eξ with ‖w‖Eβ
, ‖w̄‖Eβ

6 R.

Setting q = 2, it follows that the assumptions of theorem 1.1 are fulfilled in the
context of the quasilinear evolution problem (6.4). Consequently, the solution map
associated with (6.4) defines a semiflow on

Eα = H2σ+2α
p,N (Ω)×H2κ+2α

p,N (Ω)×H2τ+2α
p,N (Ω) = H σ̄

p,N (Ω)×H κ̄
p,N (Ω)×H τ̄

p,N (Ω).

In particular, for each w0 ∈ Eα, there exists a unique maximal strong solution

w = (u, v,m) ∈ C1
(
(0, t+(w0)), E0

)
∩ C

(
(0, t+(w0)), E1

)
∩ C

(
[0, t+(w0)), Eα

)
(6.14)

to (6.1), see (6.7) for the definition of E 0 and E 1. Noticing that

Lp(Ω)×H1
p (Ω)×H1

p (Ω) ↪→ Eα

since σ̄ < 0 and κ̄, τ̄ < 1, we thus have

lim
t↗t+

‖(u(t), v(t),m(t))‖Lp×H1
p×H1

p
= ∞ (6.15)

for any maximal strong solution w = (u, v,m) to (6.1) on J = [0, t+) with t+ < ∞.
We may assume that w0 ∈ H1

p,N (Ω)×H2
p,N (Ω)×H2

p,N (Ω). Then, if ‖u(t)‖Lp 6 c0
for t ∈ J , we have ‖v(t)‖H1

p
6 c1 for t ∈ J according to (6.1c), so that (6.15)

reduces to (6.2).
Finally, assume that g > 0 and let (u0, v0,m0) ∈ Lp(Ω) × H1

p,N (Ω) × H1
p (Ω)

satisfy u0, v0,m0 > 0 a.e. in Ω. The comparison principle (together with a den-
sity argument and the semiflow property) yields u(t), v(t),m(t) > 0 a.e. in Ω for
all t ∈ J . We may assume, via a bootstrapping argument, that the initial values
belong to H3

p,N (Ω). Using again the comparison principle together with (6.1c) we

get ‖m(t)‖∞ 6 ‖m0‖∞ for all t ∈ J . In particular, we obtain that ‖g(m(t))‖∞ 6 c2

https://doi.org/10.1017/prm.2024.88 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2024.88


32 B.V. Matioc and C. Walker

for t ∈ J . Assume now that t+ < ∞ and ‖u(t)‖Lp 6 c0 for t ∈ J . Then
‖u(t)g(m(t))‖Lp 6 c3 for t ∈ J and hence ‖m(t)‖H1

p
6 c4 for t ∈ J due to (6.1c),

in contradiction to (6.2). Consequently, we obtain (6.3) if t+ < ∞. �
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parabolique. Ann. Mat. Pura Appl. (4) 120 (1979), 329–396.

[17] G. Da Prato and A. Lunardi. Stability, instability and center manifold theorem for fully
nonlinear autonomous parabolic equations in Banach space. Arch. Rational Mech. Anal.
101 (1988), 115–141.

[18] D. Guidetti. Convergence to a stationary state and stability for solutions of quasilinear
parabolic equations. Ann. Mat. Pura Appl. (4) 151 (1988), 331–358.
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