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Theoretical results of frequentist model averaging mainly focus on asymptotic

optimality and asymptotic distribution of the model averaging estimator. However,

even for basic least squares model averaging, many theoretical problems have not

been well addressed yet. This article discusses asymptotic properties of a class of

least squares model averaging methods with nested candidate models that includes

the Mallows model averaging (MMA) of Hansen (2007, Econometrica 75, 1175–

1189) as a special case. Two scenarios are considered: (i) all candidate models are

under-fitted; and (ii) the true model is included in the candidate models. We find

that in the first scenario, the least squares model averaging method asymptotically

assigns weight one to the largest candidate model and the resulting model averaging

estimator is asymptotically normal. In the second scenario with a slightly special

weight space, if the penalty factor in the weight selection criterion is diverging with

certain order, the model averaging estimator is asymptotically optimal by putting

weight one to the true model. However, MMA with fixed model dimensions is not

asymptotically optimal since it puts nonnegligible weights to over-fitted models. The

theoretical results are clearly summarized with their restrictions, and some critical

implications are discussed. Monte Carlo simulations confirm our theoretical results.

1. INTRODUCTION

Model averaging has attracted much attention from researchers in the past two

decades as it has become a powerful forecasting tool in areas such as econometrics,

social sciences, and medical studies. Without putting all our inferential eggs in
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one unevenly woven basket (Longford, 2005), model averaging combines results

from different candidate models with effective weights to achieve better prediction

results than a singly selected model. The model weights are selected either from

a Bayesian perspective (see Hoeting et al., 1999 for a literature review) or from

a frequentist perspective (Buckland, Burnham, and Augustin, 1997; Yang, 2001,

2003; Hjort andClaeskens, 2003a; Leung andBarron, 2006; Hansen, 2007; Hansen

and Racine, 2012, amongmany others). In this article, we focus only on frequentist

model averaging.

A substantial amount of frequentist model averaging methods have been pro-

posed over the years. In the framework of parametric models, we have, for

example, Mallows model averaging (MMA; Hansen, 2007), optimal mean squared

error averaging (Liang et al., 2011), jackknife model averaging (JMA; Hansen

and Racine, 2012), heteroskedasticity-robust Cp (Liu and Okui, 2013), optimal

model averaging for linear mixed-effects models (Zhang, Zou, and Liang, 2014),

multinomial and ordered logit models (Wan, Zhang, and Wang, 2014), Kullback–

Leibler model averaging (Zhang, Zou, and Carroll, 2015), optimal model aver-

aging for generalized linear models and generalized linear mixed-effects models

(Zhang et al., 2016), model averaging for covariance matrix estimation (Zheng

et al., 2017), and model averaging for high-dimensional data (Ando and Li, 2014,

2017; Zhang et al., 2020). There are also many semiparametric model averaging

methods (see, for example, Zhang and Liang, 2011; Li, Linton, and Lu, 2015;

Kitagawa and Muris, 2016; Li et al., 2018a, 2018b; Zhang and Wang, 2019; Zhu

et al., 2019; Fang, Li, and Xia, 2020).

Theoretical results of frequentist model averaging mainly focus on asymptotic

optimality and asymptotic distribution of the model averaging estimator. Hansen

(2007) showed the asymptotic optimality ofMMA, which means that the quadratic

error obtained by MMA is asymptotically equivalent to the error of infeasible

optimal weight vector. Most of the aforementioned model averaging methods

prove the asymptotic optimality following Hansen (2007). However, on the other

hand, theoretical results for the asymptotic distribution of the model averaging

estimator are very limited in the literature. These asymptotic properties are not

only critical to the inference after model averaging (Zhang and Liu, 2019), but

also build a foundation for the study of choosing appropriate model averaging

procedures. Some work has been done (Hjort and Claeskens, 2003a; Zhang and

Liang, 2011; Hansen, 2014; Liu, 2015) in a local asymptotic framework where the

regression coefficients are in a local n−1/2 neighborhood of zero and n is the sample

size. But there has been a discussion about the realism of the local asymptotic

framework (Raftery and Zheng, 2003; Hjort and Claeskens, 2003b). Under the

fixed parameter framework, the existing results most focus on model averaging

for linear models. Two different scenarios are usually discussed in the literature:

(i) all candidate models are under-fitted; and (ii) the true model is included in the

candidate models.

In the first scenario in which all candidate models are under-fitted, Hansen

(2007),Wan, Zhang, and Zou (2010), Hansen andRacine (2012), and Zhang (2021)
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showed the asymptotic optimality of MMA and JMA. Zhang et al. (2020)

considered a weight selection criterion defined in (2) of Section 2 and showed the

asymptotic optimality when the penalty factor φn = log(n). Fang and Liu (2020)

discussed the limit of selected weight with nonnested candidate models. But the

result is only applicable to a discrete weight set and fixed model dimensions.

Liao et al. (2019) studied the convergence of the selected weight of a model

averaging method for vector autoregressive models, and it includes MMA as a

special case. Other than these, no asymptotic results for the limiting distribution

of the model averaging estimator were presented in this scenario. Peng and Yang

(2021) discussed a key question concerning whenmodel averaging can outperform

model selection. In the second scenario in which the true model is included in

the candidate models, Zhang (2015) showed that MMA and JMA estimators are√
n-consistent. Zhang and Liu (2019) further showed that both MMA and JMA

estimators asymptotically assign zero weight to the under-fitted models, andMMA

and JMAweights of true and over-fittedmodels are asymptotically random.Hence,

the asymptotic distributions of MMA and JMA estimators are nonstandard. Zhang

et al. (2020) showed that the model averaging method asymptotically assigns

weight one to the true model when φn = log(n). So the asymptotic distribution of

the model averaging estimator is the same as the least-squares estimator of the true

model. However, theoretical results of asymptotic optimality in this scenario were

not available. The above results hold with more or less restrictions due to technical

difficulties. We summarize some key results with their restrictions clearly marked

in Table 1. Note that φn = 2 means MMA.

Obviously, many theoretical problems of least squares model averaging have

not been well addressed yet even for nested candidate models. Several critical

questions still need to be answered:

(Q1) What is the asymptotic behavior of the selected weight and asymptotic

distribution of the model averaging estimator in Scenario 1?

(Q2) How is the asymptotic optimality in Scenario 1 achieved?

(Q3) Is the least squares model averaging asymptotically optimal in Scenario 2?

If yes, how is the optimality achieved? If no, what is the reason for it?

(Q4) Which φn is better, 2 or log(n)?

The aim of this paper is to answer these questions to a certain extent and fill

in the theoretical gap in the literature. In Section 2, we introduce a class of least

squares model averaging methods which includes MMA as a special case. The

main theoretical results are presented in Section 3. In the first scenario in which all

candidate models are under-fitted, we show that the least squares model averaging

method asymptotically assigns weight one to the largest candidate model and

the resulting model averaging estimator is asymptotically normal. In the second

scenario in which the true model is included in the candidate models, we show

that if the penalty factor φn in the weight selection criterion (2) is diverging with

certain order and a slightly special weight space is considered, the model averaging

estimator is asymptotically optimal by putting weight one to the true model.
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Table 1. Some key existing theoretical results for least squares model averaging
estimator.

Scenario 1: All candidate models are under-fitted

φn Asy. optimality ŵ β̂(ŵ)

2 Yes

Hansen (2007)⋆,†

Wan, Zhang, and Zou

(2010) Zhang (2021)

‖ŵ−w0‖ →p 0

Liao et al. (2019)⋆

ŵMn →p 1

Fang and Liu (2020)†,◦

log(n) Yes

Zhang et al. (2020)⋆

Scenario 2: The true model is included in the candidate models

Asy. optimality ŵ β̂(ŵ)

2 ŵu = Op(1/n)

ŵo 9p 0

Zhang and Liu (2019)⋆,◦

Nonstandard

distribution⋆,◦

log(n) ŵu = Op(log(n)kM0+1/n)

P(
∑
ŵo = 0) → 1

Zhang et al. (2020)⋆

Asymptotically

normal⋆

Notes: φn is given in (2); ŵ: the selected weight; β̂(ŵ): the model averaging estimator;w0: the optimal
weight minimizing the expected quadratic error; ŵMn : selected weight for the largest candidate model;
ŵu: selected weight for an under-fitted model; ŵo: selected weight for an over-fitted model; kM0+1:
model dimension for the true model. ⋆: nested candidate models; ‡: discrete weight set Hn(N); ◦:
fixed model dimensions.

However, MMA with fixed model dimensions is not asymptotically optimal.

We also provide some insights for the asymptotic distribution of the selected

weight of MMA in this scenario. Section 4 examines the theoretical results by

Monte Carlo simulations. Section 5 concludes the paper with some remarks. All

the proofs are included in Appendixes A–G.

2. LEAST SQUARES MODEL AVERAGING

For i= 1, . . . ,n, let yi be a scalar response and xi = (xi1, . . . ,xipn)
′ be a pn×1 vector

of covariates associated with yi. We consider a homoskedastic linear regression

model

yi = µi+ ei =
pn∑

j=1

βjxij+ ei, (1)

where the random errors ei are independent and identically distributed with mean

0 and variance σ 2 and βj is an unknown regression coefficient for the jth covariate.

Note that pn < n, but it can be diverging, that is, it can increase when the sample

size n increases.
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We assume that only the first Kn ≤ pn covariates are available for model fitting.

Consider a sequence of nested candidate models Mm, m = 1, . . . ,Mn, where the

mth model uses the first km elements of xi and 0 < k1 < · · · < kMn = Kn. Both Kn
and Mn can be diverging. Denote Am = {1, . . . ,km} and A = {1, . . . ,Kn}.

For the mth model, let Xm be the n× km design matrix with ijth element xij
and βm = (β1, . . . ,βkm)′ be the regression coefficient vector. The least-squares

estimator is β̂m = (X′
mXm)−1X′

my, where y= (y1, . . . ,yn)
′ is the vector of response.

Then the estimator of µ = (µ1, . . . ,µn)
′ is µ̂m = Xmβ̂m = Xm(X′

mXm)−1X′
my =

Pmy. The sum of squared error is am = ‖y− µ̂m‖2 = y′(In −Pm)y, where In is an

n×n identity matrix.

Let wm be the weight corresponding to the mth candidate model and w =
(w1, . . . ,wMn)

′ be a weight vector belonging to the weight setHn = {w ∈ [0,1]Mn :∑Mn
m=1wm = 1}. The least squares averaging estimator of β = (β1, . . . ,βKn)

′ is

β̂(w) =
Mn∑

m=1

wm

(
β̂m

0

)
,

where 0 is a (Kn−km)×1 vector of 0. DenoteX=XMn . The averaging estimator of

µ is µ̂(w) = Xβ̂(w) =
∑Mn

m=1wmµ̂m =
∑M

m=1wmPmy = P(w)y. The model weight

w is selected by minimizing the criterion

Gn(w) = ‖(In−P(w))y‖2 +φnσ̂
2w′K, (2)

where σ̂ 2 = aMn/(n−Kn) is an estimator of σ 2,K= (k1, . . . ,kMn)
′, and the penalty

factor φn is a positive number which may depend on n. Note that this criterion was

introduced by Zhang et al. (2020). When φn = 2, (2) is the Mallows criterion of

Hansen (2007). Although the theoretical results will be derived for a general φn,

we are mainly interested in φn = 2 and φn = log(n). Note that the weight selection

criterion (2) is similar to the generalized information criterion (GICφn ; Shao, 1997)

in the area of model selection. Denote

ŵ = arg min
w∈Hn

Gn(w) (3)

as the selected weight. Then β̂(ŵ) is the model averaging estimator that is of

interest.

For each weight vector w, we define the quadratic error as Ln(w) = ‖µ −
µ̂(w)‖2. Asymptotic optimality of the least squares model averaging is defined

as

Ln(ŵ)

infw∈Hn Ln(w)
→p 1.

Our target is to understand the asymptotic optimality and asymptotic distribution

of ŵ and β̂(ŵ) in two scenarios:

Scenario 1: At least one βj is nonzero for j > Kn. So all the candidate models

are under-fitted.
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Scenario 2: There exists an M0 such that (βj : j ∈ AM0+1 \ AM0
)′ 6= 0 and

βj = 0 for all the j > kM0+1. So the first M0 candidate models are under-fitted,

the (M0 +1)th model is defined as the “true” model, and all the other models are

over-fitted. Assume that there exists at least one over-fitted model. Note that M0

can be diverging.

3. THEORETICAL RESULTS

The full n× pn design matrix Xp is considered to be nonrandom and full rank.

The results in this article are also valid in the almost sure sense when the Xp is

random, provided that the required conditions involving Xp hold almost surely.

All the limiting processes are with respect to n→ ∞. Let Xc be the n× (pn−Kn)

design matrix for the pn −Kn covariates that are not included in the candidate

models so that Xp = (X,Xc) and µ = Xβ +Xcβc, where βc = (βKn+1, . . . ,βpn)
′.

3.1. Asymptotic Distribution with Under-Fitted Candidate Models

In this subsection, we explore the asymptotic behavior of ŵ and asymptotic

distribution of β̂(ŵ) in Scenario 1 in which all the candidate models are under-

fitted. Denote β∗ = (β∗
1, . . . ,β

∗
Kn

)′ = E(β̂Mn
) = β + (X′X)−1X′Xcβc. We assume

the following conditions.

Condition (C1): P(d1 ≤ σ̂ 2/σ 2 ≤ d2) → 1 where d1 and d2 are two positive

constants.

Condition (C2): λmin(n
−1X′X) ≥ κ1 for a positive constant κ1, where λmin

denotes the minimum eigenvalue.

Condition (C3):
∑

j∈A\AMn−1
β∗2
j ≥ cτn

−τ for positive constants cτ and τ .

Conditions (C1) and (C2) are commonly used for theoretical results with

diverging number of parameters (Zou and Zhang, 2009; Zhang et al., 2020). Note

that Condition (C1) does not require that σ̂ 2 is consistent and thus is easily satisfied.

Condition (C3) indicates that the largest model and the second-largest model are

separable, but the difference could converge to 0.

Theorem 1. In Scenario 1, if Conditions (C1)–(C3) are satisfied and Kn/n
1−τ →

0, then, for any m<Mn, we have

ŵm = Op

(
φnKn

n1−τ

)
.

So if φnKnMn/n
1−τ → 0, we have ŵMn →p 1.

Theorem 1 shows that ŵ asymptotically puts all the weights to the largest model

when all the nested candidate models are under-fitted. Based on this result, we can

develop the asymptotical distribution of β̂(ŵ), which intuitively should be the same
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as the asymptotical distribution of β̂Mn
. One more condition from Zou and Zhang

(2009) is needed to establish the asymptotic normality of β̂Mn
and β̂(ŵ).

Condition (C4): (i) There exists a positive constant κ2 such that λmax(n
−1X′X) ≤

κ2, where λmax denotes the maximum eigenvalue; (ii) n−1max1≤i≤n
∑Kn

j=1 x
2
ij→0;

(iii) E(|ei|2+ς ) < ∞ for a positive constant ς ; and (iv) log(Kn)/ log(n) → ν for a

constant ν ∈ [0,1).

Theorem 2. In Scenario 1, if Conditions (C1)–(C4) are satisfied and φnKnMn/

n
1
2
−τ → 0, then

α′(X′
X)

1
2
{
β̂(ŵ)−β∗} →d N(0,σ 2),

where α is a vector of norm 1.

In Scenario 1, Hansen (2007), Wan, Zhang, and Zou (2010), Zhang et al. (2020),

and Zhang (2021) showed the asymptotic optimality of ŵwhen φn = 2 and log(n).

To understand how the asymptotic optimality is achieved, we need to answer one

question: Is it possible that a weighted combination of the candidate models has an

even smaller quadratic error than the largest model? Denotew0
m = (0, . . . ,1, . . . ,0)′

as a weight vector putting all weights on the mth model, and let

w∗ = (w∗
1, . . . ,w

∗
Mn

)′ = arg min
w∈Hn

Ln(w) = arg min
w∈Hn

‖µ− µ̂(w)‖2

be the infeasible optimal weight. The following theorem tells us that the answer is

asymptotically “No” in two perspectives. One more commonly used condition is

needed.

Condition (C5): ‖µ‖2 = O(n).

Theorem 3. In Scenario 1, if Conditions (C2), (C3), and (C5) are satisfied and

Kn/n
1−2τ → 0, then we have:

(1) For any non-random weight vector w 6= w
0
Mn
, P(Ln(w) > Ln(w

0
Mn

)) → 1.

(2)‖w∗ −w
0
Mn

‖ →p 0, i.e., w
∗
Mn

→p 1.

By Theorems 1 and 3, we are able to show the asymptotic optimality of ŵ

in Corollary 1 below in a different way from the literature. Two more regular

conditions are needed.

Condition (C6): λmin{n−1X′
c(In−PMn)Xc} ≥ κ3 for a positive constant κ3.

Condition (C7): ‖βc‖2 ≥ dτn
−τ for a positive constant dτ and τ from Condition

(C3).

Corollary 1. In Scenario 1, assume that Conditions (C1)–(C3) and (C5) are

satisfied.

(1) If φnKnMn/n
1−τ → 0 and Kn/n

1−2τ → 0, then ‖ŵ−w
∗‖ →p 0.
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(2) If Conditions (C6) and (C7) are also satisfied, φnKnMn/n
1−2τ → 0, and

Kn/n
1−6τ → 0, then 1− ŵMn = op(n

−τ ), 1−w∗
Mn

= op(n
−τ ), and

Ln(ŵ)

infw∈Hn Ln(w)
=

Ln(ŵ)

Ln(w∗)
→p 1,

i.e., ŵ is asymptotically optimal in Scenario 1.

When all the nested candidate models are under-fitted, Theorems 1 and 3 and

Corollary 1 reveal that both model averaging procedures with φn = 2 or log(n)

achieve asymptotic optimality by pushing all the weights to the largest candidate

model, which has the minimum quadratic error among all the weighted candidate

models. This conclusion holds even when both the difference between the largest

two models and the difference between the largest model and the true model

converge to 0 with a negative exponential order as long as the number of candidate

models does not diverge too fast.

3.2. Asymptotic Optimality When True Model Is Included

In this subsection, we explore the asymptotic optimality of ŵ in Scenario 2 in

which the truemodel is included in the candidate models. Note that in this scenario,

βc = 0 and β∗ = β. We need to modify Conditions (C2) and (C3) to the following

ones, and one more Condition (C8) is assumed for Scenario 2.

Condition (C2’): λmin(n
−1X′

M0+1XM0+1) ≥ κ0 for a positive constant κ0.

Condition (C3’):
∑

j∈AM0+1\AM0
β2
j ≥ cτ0n

−τ0 for positive constants cτ0 and τ0.

Condition (C8): aM0+1 > am for any m>M0 +1 in Scenario 2.

Since aM0+1 ≥ am, form>M0+1, Condition (C8) simply requires aM0+1 6= am,

which is to make sure that the over-fitted models are distinguishable from the true

model in terms of sum of squared error. It is satisfied if the projection of y on

the column space of Xm is not the same as the projection on the column space of

XM0+1, which is usually true.

Theorem 4. In Scenario 2, if Conditions (C2’), (C3’), (C5), and (C8) are

satisfied and Kn/n
1−2τ0 → 0, then for any nonrandom weight vector w 6= w

0
M0+1,

we have

P(Ln(w) > Ln(w
0
M0+1)) → 1.

Theorem 4 tells us that the true model has the minimum quadratic error among

all the weighted candidate models in Scenario 2. In this scenario, Zhang et al.

(2020) showed that the weight of the true model will go to 1 in probability when

φn = log(n). Then intuitively ŵ should be asymptotically optimal. On the other

hand, when φn = 2, Zhang and Liu (2019) showed that the weights of over-fitted

models do not go to 0 when the model dimensions are fixed. Hence, the ŵ should
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not be asymptotically optimal. The following theorem rigorously proves the results

if we restrict the weight space to

Hδ
n =



w ∈ Hn :

∑

m<M0+1

wm = 0 or
∑

m<M0+1

wm ≥ δn−τ0



,

where δ is a positive constant which can be arbitrarily small and τ0 is from Con-

dition (C3’). Note that Hδ
n contains the discrete weight space Hn(N) considered

by Hansen (2007) as long as δ is small enough or n is large and it goes toHn as n

goes to infinity.

For notation convenience, we still use ŵ and w∗ to denote arg minw∈Hδ
n
Gn(w)

and arg minw∈Hδ
n
Ln(w), respectively.

Lemma 1. In Scenario 2, if Conditions (C2’), (C3’), (C5), and (C8) are satisfied

and Kn/n
1−6τ0 → 0, we have P(w∗ = w

0
M0+1) → 1.

Theorem 5. In Scenario 2, assume that Conditions (C1), (C2’), (C3’), (C5), and

(C8) are satisfied and Kn/n
1−6τ0 → 0. Then maxm<M0+1 ŵm = Op

(φnkM0+1

n1−τ0

)
and

maxm>M0+1 ŵm = Op

(
Kn
φn

)
. Furthermore, we have:

(1) If φn → ∞ and φ2
nk

3
M0+1M

2
0/n

1−2τ0 → 0, then

Ln(ŵ)

inf
w∈Hδ

n
Ln(w)

=
Ln(ŵ)

Ln(w∗)
→p 1.

(2) If φn = 2 and φ2
nk

2
M0+1KnM

2
0/n

1−2τ0 → 0, then as long as
∑

m>M0+1

ŵ2
m( e

′
Pme

e′PM0+1e
−1) 9p 0, we have

Ln(ŵ)

inf
w∈Hδ

n
Ln(w)

=
Ln(ŵ)

Ln(w∗)
9p 1.

When φn = log(n), Theorem 5 shows that the least squares model averaging is

asymptotically optimal by putting all the weights to the true model as long as the

model dimensions do not diverge too fast.

When φn = 2, the condition
∑

m>M0+1 ŵ
2
m

(
e′Pme

e′PM0+1e
− 1

)
9p 0 is generally not

established. However, in the special case that the model dimensions are fixed,

we have τ0 = 0 and maxm<M0+1 ŵm = Op

(φnkM0+1

n1−τ0

)
= Op(n

−1), which is the

conclusion in Theorem 1 of Zhang and Liu (2019). If we assume n−1X′
pXp → Q

and n−1/2X′
pe →d Z ∼ N(0,�) with positive definite matrices Q and �, then

e′Pme
e′PM0+1e

9p 1 is easy to check, and similar to Theorem 2 of Zhang and Liu

(2019), we have {ŵm,m ≥ M0 + 1} converge to a nondegenerate random weight

vector in distribution. Then
∑

m>M0+1 ŵ
2
m

(
e′Pme

e′PM0+1e
− 1

)
does not converge to 0

in probability. More discussion is provided below. So Theorem 5 actually shows
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that MMA (φn = 2) is not asymptotically optimal in Scenario 2 with fixed model

dimensions because it puts nonnegligible weights to over-fitted models. Note that

this conclusion does not contradict the asymptotic optimality of MMA established

in Hansen (2007) since a different scenario is considered here.

When φn = 2 and the model dimensions are fixed, denote M =Mn and p= pn.

Zhang and Liu (2019) showed that

(ŵM0+1, . . . ,ŵM)′ →d λ̃ = arg min
λ∈L

λ′Ŵλ,

where L =
{
λ ∈ [0,1]M−M0 :

∑M−M0
m=1 λm = 1

}
, Ŵ is an (M − M0) × (M −

M0) matrix with the (m,l)th element Ŵml = 2σ 2kM0+m − Z′Vmax{m,l}Z, Vm =
5′
M0+m(5M0+mQ5′

M0+m)−15M0+m, and 5m = (Ikm,0km×(p−km)). This is a very

nice result, but the λ̃ is hard to understand. Here, we provide a nearly explicit

form of λ̃ in a special case of Q = Ip. Actually, when Q = Ip, Vm is a p by p

matrix that only the (i,i)th (i≤ kM0+m) elements are 1 and the others are 0. Denote

Z= (Z1, . . . ,Zp)
′. Then Z′VmZ= Z2

1 +·· ·+Z2
kM0+m

. By ignoring the terms without

λ, we have

λ′Ŵλ ∝ 2σ 2

M−M0∑

m=1

kM0+mλm+
kM0+2∑

m=kM0+1+1

Z2
mλ2

1 +
kM0+3∑

m=kM0+2+1

Z2
m(λ1 +λ2)

2

+·· ·+
kM∑

m=kM−1+1

Z2
m(λ1 +·· ·+λM−M0−1)

2

∝
kM0+2∑

m=kM0+1+1

Z2
mλ2

1−2(kM0+2−kM0+1)σ
2λ1

+
kM0+3∑

m=kM0+2+1

Z2
m(λ1+λ2)

2−2(kM0+3−kM0+2)σ
2(λ1+λ2)

+·· ·+
kM∑

m=kM−1+1

Z2
m(λ1 +·· ·+λM−M0−1)

2−2(kM−kM−1)σ
2(λ1 +·· ·+λM−M0−1).

If we release the constraint that λm should be between 0 and 1, the above equality

is the sum of M−M0 −1 functions with free parameters λ1, λ1+λ2, . . ., λ1+·· ·+
λM−M0+1, respectively. Then we have

λ̃1 =
(kM0+2 − kM0+1)σ

2

∑kM0+2

m=kM0+1+1Z
2
m

,
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λ̃1 + λ̃2 =
(kM0+3 − kM0+2)σ

2

∑kM0+3

m=kM0+2+1Z
2
m

,

...

λ̃1 +·· ·+ λ̃M−M0−1 =
(kM − kM−1)σ

2

∑kM
m=kM−1+1Z

2
m

,

λ̃1 +·· ·+ λ̃M−M0−1 + λ̃M−M0
= 1.

If we further restrict λm to [0,1], the explicit form of λ̃ is hard to derive. But a clear

message is that P(̃λ1 < 1) > 0 since

P


 (kM0+2 − kM0+1)σ

2

∑kM0+2

m=kM0+1+1Z
2
m

<
(kM0+3 − kM0+2)σ

2

∑kM0+3

m=kM0+2+1Z
2
m

< · · · <
(kM − kM−1)σ

2

∑kM
m=kM−1+1Z

2
m

< 1


 > 0.

Note that λ̃1 is the limit of ŵM0+1 which is the selected weight of the true model.

So it indicates that least squares model averaging puts weight on the over-fitted

models with a positive probability when φn = 2 and the model dimensions are

fixed. In a simple case thatM−M0 = 2, i.e., there is one true model and one over-

fitted model,

λ̃1 = min





(kM0+2 − kM0+1)σ
2

∑kM0+2

m=kM0+1+1Z
2
m

,1



 and λ̃2 = 1− λ̃1.

Specifically, λ̃1 has a truncated inverse chi-square distribution if � = σ 2Ip. Note

that P(̃λ2 > 0) is positive.

3.3. Summary of the Theoretical Results

We summarize themain theoretical results in Table 2. The restrictions on the results

are clearly marked.

In Scenario 1 when all the candidate models are under-fitted, the least squares

model averaging with φn = 2 and log(n) both are asymptotically optimal by

pushing all the weights to the largest candidate model which asymptotically has the

smallest quadratic error among all the weightedmodels. And as wementioned, this

conclusion holds even when both the difference between the largest two models

and the difference between the largest model and the true model converge to 0

with a negative exponential order as long as the number of candidate models does

not diverge too fast. The model averaging estimator has the same asymptotical

distribution as the least-squares estimator of the largest candidate model, which is

normal. This answers Questions (Q1) and (Q2).

In Scenario 2 when the true model is included in the candidate models and

a slightly special weight space is considered, the least squares model averaging
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Table 2. Updated key theoretical results for least squares model averaging
estimator.

Scenario 1: All candidate models are under-fitted

φn Asy. optimality ŵ β̂(ŵ)

2 Yes

Hansen (2007)⋆,†

Wan, Zhang, and Zou

(2010)

Zhang (2021)

‖ŵ−w0‖ →p 0

Liao et al. (2019)⋆

ŵm = Op(
φnKn
n1−τ )⋆

m<Mn

ŵMn →p 1
⋆

Asymptotically

normal⋆

log(n) Yes

Zhang et al. (2020)⋆
‖ŵ−w∗‖ →p 0

⋆

Scenario 2: The true model is included in the candidate models

Asy. optimality ŵ β̂(ŵ)

2 No⋆,◦,⋄ ŵu = Op(1/n)

ŵo 9p 0

Zhang and Liu (2019)⋆,◦

Nonstandard

distribution⋆,◦

log(n) Yes⋆,⋄ ŵu = Op(log(n)kM0+1/n)

P(
∑
ŵo = 0) → 1

Zhang et al. (2020)⋆

Asymptotically

normal⋆

Notes: φn is given in (2); ŵ: the selected weight; β̂(ŵ): the model averaging estimator;w0: the optimal
weightminimizing the expected quadratic error;w∗: the optimal weightminimizing the quadratic error;
ŵMn : selected weight for the largest candidate model; ŵu: selected weight for an under-fitted model;
ŵo: selected weight for an over-fitted model; kM0+1: model dimension for the true model; Kn: model
dimension for the largest model; n−τ is the difference order between the largest candidate model and
other models or the truth; ⋆: nested models; †: discrete weight setHn(N); ◦: fixed model dimensions;
⋄: weight set Hδ

n.

methods with φn = 2 and log(n) have different asymptotic properties. When φn =
log(n), the least squares model averaging is asymptotically optimal by pushing

all the weights to the true model which asymptotically has the smallest quadratic

error among all the weighted models. The model averaging estimator has the same

asymptotic distribution as the least-squares estimator of the true model, which is

normal. When φn = 2 (MMA) and the model dimensions are fixed, asymptotic

optimality does not hold since the model averaging method puts weight on the

over-fitted models with a positive probability. The asymptotic distribution of the

selected weight of the true model is closely related to the truncated inverse chi-

square distribution. The model averaging estimator has a nonstandard asymptotic

distribution. This partially answers Question (Q3).

The asymptotic behaviors of least squares model averaging with φn = 2 and

φn = log(n) are very similar to the behaviors of Akaike information criterion

(Akaike, 1973, AIC) and Bayesian information criterion (Schwarz, 1978, BIC;
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Shao, 1997). In Scenario 1, AIC and BIC both select the largest model with

probability going to 1. In Scenario 2, AIC cannot distinguish the truemodel and the

over-fitted models, while BIC has model selection consistency, which means that

the probability of selecting the true model goes to 1.We expect that the comparison

of the finite-sample performances of φn = 2 to φn = log(n) should also be similar

to the comparison of AIC and BIC. In Scenario 1, model averaging with φn = 2

usually performs better than model averaging with φn = log(n). On the other hand,

φn = log(n) is usually preferred to φn = 2 in Scenario 2. However, with finite

samples, the performances of model averaging methods with φn = 2 and log(n)

depend onmany factors such as sample size, signal pattern, noise level, an so on. So

it is hard to tell which one is better, 2 or log(n), for a specific set of data. In the area

of model selection, we also have a similar dilemma in comparing the finite-sample

performances of AIC and BIC (Zhang and Yang, 2015). This partially answers

Question (Q4), and more discussion is provided in Section 5.

Remark. As suggested by the Editor, we make some cautionary mention for

the use of theoretical results above. These results are based on model (1), and

“true model” is regularly mentioned. However, as the aphorism “all models are

wrong, but some are useful”1 indicates, a “true model” may never exist because

of the complexity of the data generating process in practice and difficulties of

representing it in a probability space framework (Phillips, 2005). A related but

nonetheless vital concern for valid inference is the multiplicity problem of data

reuse or data snooping. We refer interested readers to Phillips (2005) and Leeb

and Pötscher (2005) for an insightful discussion that has deep significance for

applications.

4. SIMULATION STUDY

In this section, we conduct simulation studies to confirm the main theoretical

results in Section 3.3. For each i= 1, . . . ,n, we generate yi from

yi =
pn∑

j=1

βjxij+ ei,

where xi = (xi1, . . . ,xipn)
′ are independent and identically distributed as N(0,6)

with6jk = 0.5|j−k|, ei isN(0,1) and independent of xi, (β1, . . . ,βpn)
′ = cβ0, and c=√

R2

(1−R2)β ′
0
6β0

, so that R2 =Var
(∑pn

j=1βjxij
)
/Var(yi) represents the signal strength.

In Scenario 1, β0 = (1,1, . . . ,1)′ or a random permutation of (1,2, . . . ,pn)
′.

In Scenario 2, β0 = (β ′
01,0, . . . ,0)

′, where β01 is a kM0+1 × 1 vector that equals

(1,1, . . . ,1)′ or a random permutation of (1,2, . . . ,kM0+1)
′.

We consider n= 100,1,000,10,000, R2 = 0.3, 0.6, 0.9, pn = ⌈2n 1
2 ⌉, Kn = ⌈n 1

2 ⌉,
Mn = ⌈n 1

3 ⌉, and kM0+1 = ⌈2n 1
4 ⌉. The mth candidate model includes the first

1It is often attributed to Box (1976), but which has deeper historical origins.
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Table 3. Simulation results for Scenario 1.

Weight of the largest model Loss ratio to Ln(w
∗)

R2 n φn = 2 φn = log(n) w∗ φn = 2 φn = log(n) Ln(w
0
Mn

)

β0 is (1,1, . . . ,1)′

0.3 100 0.389 0.096 0.623 1.119 1.333 1.137

0.3 1,000 0.781 0.305 0.807 1.016 1.183 1.023

0.3 10,000 0.937 0.711 0.909 1.002 1.038 1.003

0.6 100 0.676 0.375 0.830 1.049 1.178 1.030

0.6 1,000 0.915 0.708 0.910 1.004 1.042 1.004

0.6 10,000 0.975 0.884 0.958 1.000 1.008 1.000

0.9 100 0.847 0.657 0.936 1.014 1.064 1.004

0.9 1,000 0.958 0.854 0.968 1.001 1.014 1.000

0.9 10,000 0.987 0.941 0.985 1.000 1.002 1.000

β0 is a random permutation of (1,2, . . . ,pn)
′

0.3 100 0.466 0.142 0.688 1.102 1.337 1.113

0.3 1,000 0.724 0.241 0.796 1.017 1.165 1.024

0.3 10,000 0.891 0.505 0.887 1.002 1.037 1.003

0.6 100 0.753 0.472 0.858 1.036 1.156 1.024

0.6 1,000 0.893 0.632 0.903 1.005 1.038 1.005

0.6 10,000 0.957 0.800 0.947 1.001 1.007 1.001

0.9 100 0.879 0.723 0.947 1.012 1.057 1.003

0.9 1,000 0.948 0.820 0.964 1.001 1.011 1.001

0.9 10,000 0.978 0.900 0.981 1.000 1.002 1.000

Kn − gap× (Mn −m) covariates, where gap = [Kn/Mn]. In Scenario 2, the “true

model” is defined as the smallest model that contains the first kM0+1 covariates. For

each scenario, there are 3×3×2= 18 parameter combinations. The simulation is

conducted for 500 replications.

We compare the performances of least squares model averaging methods with

φn = 2 and φn = log(n). The focus is on the weight limit and asymptotic optimality.

Table 3 reports the averages (more than 500 simulation replications) of ŵMn , w
∗
Mn
,

Ln(ŵ)/Ln(w
∗), and Ln(w

0
Mn

)/Ln(w
∗) for Scenario 1. Table 4 reports the averages

of ŵM0+1, w
∗
M0+1, Ln(ŵ)/Ln(w

∗), and Ln(w
0
M0+1)/Ln(w

∗) for Scenario 2.

The simulation results can be summarized as follows.

(1) In Scenario 1, whether φn = 2 or φn = log(n), the weight of the largest

candidate model keeps increasing as the sample size and approaches to 1 in most

cases. In some cases, the weights are still not that large even with n = 10,000.

For example, ŵMn = 0.505 when R2 = 0.3, n = 10,000, φn = log(n), and β0 is a
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Table 4. Simulation results for Scenario 2.

Weight of the true model Loss ratio to Ln(w
∗)

R2 n φn = 2 φn = log(n) w∗ φn = 2 φn = log(n) Ln(w
0
M0+1)

β0 is (1,1, . . . ,1,0, . . . ,0)′

0.3 100 0.251 0.089 0.525 1.641 2.169 1.643

0.3 1,000 0.498 0.224 0.783 1.366 1.744 1.243

0.3 10,000 0.745 0.967 0.981 1.177 1.061 1.037

0.6 100 0.494 0.318 0.779 1.548 1.911 1.400

0.6 1,000 0.694 0.706 0.898 1.305 1.388 1.180

0.6 10,000 0.751 0.991 0.990 1.174 1.040 1.034

0.9 100 0.791 0.839 0.921 1.383 1.415 1.283

0.9 1,000 0.765 0.951 0.962 1.269 1.158 1.143

0.9 10,000 0.752 0.998 0.996 1.172 1.033 1.032

β0 = (β ′
01,0, . . . ,0)

′, β01 is a random permutation of (1,2, . . . ,kM0+1)
′

0.3 100 0.301 0.134 0.619 1.680 2.160 1.660

0.3 1,000 0.617 0.535 0.865 1.343 1.540 1.199

0.3 10,000 0.751 0.983 0.987 1.174 1.047 1.035

0.6 100 0.586 0.461 0.821 1.568 1.829 1.439

0.6 1,000 0.715 0.864 0.934 1.304 1.232 1.157

0.6 10,000 0.753 0.995 0.993 1.172 1.036 1.033

0.9 100 0.795 0.882 0.931 1.424 1.373 1.326

0.9 1,000 0.747 0.976 0.975 1.282 1.131 1.131

0.9 10,000 0.754 0.999 0.997 1.170 1.032 1.032

random permutation. But if we increase the sample size to a larger number, the

weight will get closer to 1. The optimal w∗ also puts almost all the weights to the

largest candidate model as the sample size goes large. The loss ratios all converge

to 1 as expected, which confirms the asymptotic optimality of least squares model

averaging in Scenario 1.

(2) In Scenario 2, when φn = 2, the average weight of the true model stabilizes

near 0.75 as the sample size goes large. Actually, even if we keep increasing the

sample size, the average weight will not go to 1. Meanwhile, the weights of the

true model for φn = log(n) and the optimal weight w∗ both go to 1. A direct

consequence is that the loss ratios for φn = log(n) and the true model converge

to 1, indicating asymptotic optimality. But the loss ratio for φn = 2 stabilizes near

1.17, which means that MMA is not asymptotically optimal in this scenario.

(3) For the comparison between φn = 2 and φn = log(n), we can see that in

Scenario 1 φn = 2 generally performs better than φn = log(n) in terms of smaller
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loss ratio although they both have asymptotic optimality. The advantage is more

obvious when R2 is small and the sample size is small. This result is expected

since a larger penalty factor forces the weight to smaller models which usually have

larger errors.Moreover, as n goes large, ŵMn of φn = 2 is approaching 1much faster

than ŵMn of φn = log(n). In Scenario 2, φn = log(n) performs better than φn = 2

when the sample size is large (n = 10,000) and the power of asymptotic theory

is revealed. But when the sample size is small or moderate (n = 100 or 1,000),

in some situations, φn = log(n) outperforms φn = 2, and in some other situations,

φn = 2 outperforms φn = log(n). A typical trend is that φn = log(n) performs worse

thanφn = 2when the sample size is relatively small andφn = log(n) becomes better

in comparison with φn = 2 when the sample size goes large.

5. CONCLUDING REMARKS

In this article, we study the asymptotic behaviors of a class of least squares model

averaging estimators with nested candidate models. The asymptotic results depend

on the scenarios considered and the choice of the penalty factor φn in the weight

selection criterion. The model averaging methods with φn = 2 and φn = log(n)

have very similar asymptotic behaviors to the traditional model selection methods

AIC and BIC, respectively. Hence, in large samples, model averaging and model

selection are almost equivalent under the framework considered here, indicating

that model averaging may be more valuable with small sample sizes compared

to model selection. When the sample size becomes larger, the model selection

uncertainty gets lower and model averaging may have no real advantage. This

finding is consistent with the results from Yuan and Yang (2005) and Peng and

Yang (2021).

A critical problem in practice is how to choose the most appropriate penalty

factor φn in least squares model averaging methods. In Scenario 1 where all the

candidate models are under-fitted, φn = 2 is usually preferred. In Scenario 2

where the true model is included in the candidate models, φn = log(n) has better

theoretical results. However, with finite samples in practice, the performances of

model averaging methods with φn = 2 and log(n) depend on many factors such as

sample size, signal pattern, noise level, and so on. What is more complicated is

that we do not know which scenario is the truth. To deal with a similar dilemma

in model selection, Zhang and Yang (2015) proposed to apply cross validation

to choose between AIC and BIC. They showed that an adaptive selection by

cross validation between AIC and BIC on a sequence of linear models leads to

asymptotically optimal function estimation in both parametric and nonparametric

scenarios. We may also apply cross validation to choose between φn = 2 and

φn = log(n) in model averaging. The results established in this paper provide a

foundation for the theoretical exploration of this cross validation task.

There are several limitations of our results. First, we only consider a

homoskedastic error. With heteroskedastic errors, the Mallows-type criterion

considered here is not optimal. However, by applying a jackknife criterion (Hansen

https://doi.org/10.1017/S0266466622000032 Published online by Cambridge University Press

https://doi.org/10.1017/S0266466622000032


428 FANG FANG ET AL.

and Racine, 2012) plus an extra penalty term φnw
′K, we believe that similar results

will be obtained. Actually, Zhang and Liu (2019) have already considered such a

criterion and showed that it will force all the weights to the true model in Scenario

2 if φn = log(n). Second, the results are confined to nested models. It is desirable

to extend our results to the case of nonnested models, but it is quite challenging.

Previous work, such as Hansen (2014) and Zhang and Liu (2019), also mentioned

this challenge, but it seems not too many solutions are available so far. Third,

our last theoretical result relies on a sightly special weight set due to technical

difficulty. Developing asymptotic results without these limitations are important

topics for future research.

APPENDIX

Appendix A. Proof of Theorem 1

Let 8 be an Mn×Mn matrix with the mlth element 8ml = amax{m,l}. For nested candidate
models, we have (In−Pm)(In−Pl) = In−Pmax{m,l}. Then

Gn(w) = w′8w+φnσ̂
2w′K, for any w ∈ Hn.

For any m<Mn, define

w̃m=(ŵ1, . . . ,ŵm−1,0,ŵm+1, . . . ,ŵMn−1,ŵMn
+ ŵm)′= ŵ+(0, . . . ,0, − ŵm,0, . . . ,0,ŵm)′.

Then

0 ≤ Gn(w̃m)−Gn(ŵ)

= [(w̃m− ŵ)+2ŵ]′8(w̃m− ŵ)+φnσ̂
2(w̃m− ŵ)′K

= ŵ2m(am−aMn
)+2ŵm

Mn∑

l=1

ŵl(aMn
−amax{m,l})+φnσ̂

2ŵm(Kn− km)

≤ ŵ2m(am−aMn
)+2ŵ2m(aMn

−am)+φnσ̂
2ŵm(Kn− km)

= −ŵ2m(am−aMn
)+φnσ̂

2ŵm(Kn− km).

So when ŵm 6= 0, we have

ŵm ≤ (am−aMn
)−1φnσ̂

2(Kn− km). (A.1)

Note E{(β̂Mn
− β∗)′X′X(β̂Mn

− β∗)} = E{e′X(X′X)−1X′e} = σ 2tr{X(X′X)−1X′} =
σ 2Kn. So n−1(β̂Mn

− β∗)′X′X(β̂Mn
− β∗) = Op(Kn/n). Then, similar to the proof of

Lemma 2 of Zhang et al. (2020), we have

n−1(am−aMn
)

= n−1
{(

β̂m
0

)
− β̂Mn

}′
X′X

{(
β̂m
0

)
− β̂Mn

}

= n−1
{(

β̂m
0

)
−β∗ − (β̂Mn

−β∗)

}′
X′X

{(
β̂m
0

)
−β∗ − (β̂Mn

−β∗)

}
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≥
1

2
n−1

{(
β̂m
0

)
−β∗

}′
X′X

{(
β̂m
0

)
−β∗

}
−n−1(β̂Mn

−β∗)′X′X(β̂Mn
−β∗)

≥
1

2
λmin(n

−1X′X)

∥∥∥
(

β̂m
0

)
−β∗

∥∥∥
2
+Op(Kn/n)

≥
1

2
κ1 ×

∑

j∈A\AMn−1

β∗2
j +Op(Kn/n)

≥
1

2
κ1cτ n

−τ +Op(Kn/n)

=
1

2
κ1cτ n

−τ +op(n
−τ ). (A.2)

Combining (A.1), (A.2), and Condition (C1), we complete the proof of Theorem 1.

Appendix B. Proof of Theorem 2

Note that y = Xβ +Xcβc + e = Xβ∗ + (In −PMn
)Xcβc + e. So β̂Mn

= (X′X)−1X′y =
β∗ + (X′X)−1X′e and

α′(X′X)
1
2 (β̂Mn

−β∗) = α′(X′X)−
1
2X′e =

n∑

i=1

riei,

where ri = α′(X′X)−
1
2 x̃i and x̃

′
i is the ith row of X. It is easy to see that

n∑

i=1

r2i =
n∑

i=1

α′(X′X)−
1
2 x̃ix̃

′
i(X

′X)−
1
2 α = α′(X′X)−

1
2

n∑

i=1

x̃ix̃
′
i(X

′X)−
1
2 α

= α′(X′X)−
1
2 (X′X)(X′X)−

1
2 α = α′α = 1.

Following the proof of Theorem 3.3 of Zou and Zhang (2009), under Conditions (C2)

and (C4), Lyapunov’s condition for the central limit theorem can be established. Thus,

α′(X′X)
1
2 (β̂Mn

−β∗) →d N(0,σ 2). Form<Mn, by (A.14) of Zhang et al. (2020), we have

α′(X′X)
1
2

{(
β̂m
0

)
−β∗

}
= Op(n

1
2 ). Therefore, when φnKnMn/n

1
2−τ → 0, we have

α′(X′X)
1
2 {β̂(ŵ)−β∗}

=
Mn−1∑

m=1

ŵmα′(X′X)
1
2

{(
β̂m
0

)
−β∗

}
+ ŵMn

α′(X′X)
1
2 (β̂Mn

−β∗)

=Op

(φnKnMn

n
1
2−τ

)
+α′(X′X)

1
2 (β̂Mn

−β∗)(1+op(1)) →d N(0,σ 2).

Appendix C. Proof of Theorem 3

By direct calculation, we have

Ln(w) =
Mn∑

m=1

w2mam+2
∑

m<l

wmwlal+‖e‖2 −2

Mn∑

m=1

wme
′(In−Pm)y (A.3)
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and Ln(w
0
Mn

) = aMn
+‖e‖2 −2e′(In−PMn

)y. So

Ln(w)−Ln(w
0
Mn

) =
Mn∑

m=1

w2mam+2
∑

m<l

wmwlal−aMn
+An,1 +An,2 −An,3 −An,4,

where An,1 = 2
∑Mn

m=1wme
′Pmµ, An,2 = 2

∑Mn

m=1wme
′Pme, An,3 = 2e′PMn

µ, and An,4 =
2e′PMn

e.

For any ǫ > 0,

P

(
max

1≤m≤Mn

|e′Pmµ| > n1−τ ǫ

)

≤
Mn∑

m=1

P(|e′Pmµ| > n1−τ ǫ) ≤
Mn∑

m=1

n−2+2τ ǫ−2E{e′Pmµ}2

≤
Mn∑

m=1

n−2+2τ ǫ−2C‖Pmµ‖2 (A.4)

≤
Mn∑

m=1

n−2+2τ ǫ−2C‖µ‖2 = O

(
Mn

n1−2τ

)
≤ O

(
Kn

n1−2τ

)
→ 0,

where (A.4) holds by Theorem 2 of Whittle (1960) and C is a positive constant unrelated

to m and n. So max1≤m≤Mn
|e′Pmµ| = op(n

1−τ ). Since |An,1| ≤ 2
∑Mn

m=1wm|e′Pmµ| ≤
2
∑Mn

m=1wmmax1≤m≤Mn
|e′Pmµ| = 2max1≤m≤Mn

|e′Pmµ| = op(n
1−τ ), we haveAn,1/n=

op(n
−τ ). Similarly, An,3/n= op(n

−τ ). Moreover,

P

(
max

1≤m≤Mn

e′Pme > n1−τ ǫ

)
= P(e′PMn

e > n1−τ ǫ)

≤
E(e′PMn

e)

n1−τ ǫ
=

σ 2Kn

n1−τ ǫ
= O

(
Kn

n1−τ

)
→ 0.

So max1≤m≤Mn
e′Pme= op(n

1−τ ). Furthermore, we have An,2/n= op(n
−τ ) and An,4/n=

op(n
−τ ).

Denote ηn = n−1(β̂Mn
− β∗)′X′X(β̂Mn

− β∗) = Op(Kn/n). From (A.2), we have

n−1(am−aMn
) ≥ 1

2
κ1cτ n

−τ −ηn. So

n−1{Ln(w)−Ln(w
0
Mn

)}

=
Mn∑

m=1

w2m
am

n
+2

∑

m<l

wmwl
al

n
−
aMn

n
+op(n

−τ )

≥
Mn−1∑

m=1

w2m

(
aMn

n
+

1

2
κ1cτ n

−τ −ηn

)
+w2Mn

aMn

n
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+2
∑

m<l≤Mn−1

wmwl

(
aMn

n
+

1

2
κ1cτ n

−τ −ηn

)

+2
∑

m<Mn

wmwMn

aMn

n
−
aMn

n
+op(n

−τ )

=
Mn−1∑

m=1

w2m

(
1

2
κ1cτ n

−τ −ηn

)
+2

∑

m<l≤Mn−1

wmwl

(
1

2
κ1cτ n

−τ −ηn

)
+op(n

−τ )

=



Mn−1∑

m=1

wm



2(

1

2
κ1cτ n

−τ −ηn

)
+op(n

−τ )

= (1−wMn
)2

(
1

2
κ1cτ n

−τ −Op(Kn/n)

)
+op(n

−τ )

= n−τ

{
(1−wMn

)2
1

2
κ1cτ +op(1)

}
, (A.5)

which shows the first part of Theorem 3.

For the second part, we just need to show that P(1−w∗
Mn

> ǫ) → 0 for any given ǫ > 0.

Actually, when 1−w∗
Mn

> ǫ, following exactly the same arguments as above, we can show

that

0 ≥ n−1+τ {Ln(w∗)−Ln(w
0
Mn

)} ≥ (1−w∗
Mn

)2
1

2
κ1cτ +op(1) > ǫ2

1

2
κ1cτ +op(1).

So P(1−w∗
Mn

> ǫ) ≤ P(ǫ2 1
2
κ1cτ +op(1) ≤ 0) → 0.

Appendix D. Proof of Corollary 1

Under the assumed conditions, the first part is just a direct conclusion from Theorems 1 and

3. So we focus on the second part.

Note that

n−1Ln(w
0
Mn

) =
1

n
µ′(In−PMn

)µ+
1

n
e′PMn

e

= β ′
c

X′
c(In−PMn

)Xc

n
βc+op(n

−τ )

≥ λmin{n−1X′
c(In−PMn

)Xc}‖βc‖2 +op(n
−τ )

≥ κ3dτ n
−τ +op(n

−τ ).

So we just need to show that

n−1Ln(ŵ) = n−1Ln(w
0
Mn

)+op(n
−τ ) and n−1Ln(w

∗) = n−1Ln(w
0
Mn

)+op(n
−τ ).

We can write

Ln(ŵ) =
Mn∑

m=1

ŵ2m‖µ− µ̂m‖2 +2
∑

m<l

ŵmŵl < µ− µ̂m,µ− µ̂l > .
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In the proof of Theorem 3, we showed that max1≤m≤Mn
|e′Pmµ| = op(n

1−τ ) and

max1≤m≤Mn
e′Pme = op(n

1−τ ). So

max
m<l

|<µ− µ̂m,µ− µ̂l> −Ln(w
0
l )| = max

m<l
|e′Pmµ− e′Plµ+ e′Pme− e′Ple| = op(n

1−τ ).

Then

n−1Ln(ŵ)

=
Mn∑

m=1

ŵ2m
Ln(w

0
m)

n
+2

∑

m<l

ŵmŵl
Ln(w

0
l )

n
+op(n

−τ )

=
∑

m<Mn

ŵ2m
Ln(w

0
m)

n
+ŵ2Mn

Ln(w
0
Mn

)

n
+2

∑

m<l<Mn

ŵmŵl
Ln(w

0
l )

n

+2
∑

m<Mn

ŵmŵMn

Ln(w
0
Mn

)

n
+op(n−τ )

:=Bn,1 +Bn,2 +Bn,3 +Bn,4 +op(n
−τ ).

Note that when φnKnMn/n
1−2τ → 0, we have 1− ŵMn

=
∑

m<Mn
ŵm =Op

(
φnKnMn

n1−τ

)
=

op(n
−τ ) by Theorem 1. So

Bn,1 +Bn,3 ≤


 ∑

m<Mn

ŵm



2

max
m<Mn

Ln(w
0
m)

n

= (1− ŵMn
)2 max
m<Mn

{
1

n
µ′(In−Pm)µ+

1

n
e′Pme

}

≤ (1− ŵMn
)2

(
‖µ‖2

n
+ max
m<Mn

1

n
e′Pme

)

= op(n
−2τ ){O(1)+op(n

−τ )} = op(n
−2τ ),

and

Bn,2 +Bn,4 =


ŵ2Mn

+2
∑

m<Mn

ŵmŵMn


n−1Ln(w

0
Mn

)

= ŵMn
(2− ŵMn

)n−1Ln(w
0
Mn

)

= (1+op(n
−τ ))n−1Ln(w

0
Mn

).

Furthermore, notice that

n−1Ln(w
0
Mn

) =
1

n
µ′(In−PMn

)µ+op(n
−τ )≤

‖µ‖2

n
+op(n

−τ ) = Op(1).

Then we have n−1Ln(ŵ) = n−1Ln(w
0
Mn

)+op(n
−τ ).

When Kn/n
1−6τ → 0, by similar arguments to the proof of Theorem 3, we can show that

max1≤m≤Mn
|e′Pmµ| = op(n

1−3τ ) andmax1≤m≤Mn
|e′Pme| = op(n

1−3τ ). Then, similar to
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(A.5), we can show that

n−1{Ln(w∗)−Ln(w
0
Mn

)} ≥ (1−w∗
Mn

)2
(
1

2
κ1cτ n

−τ −Op(Kn/n)

)
+op(n

−3τ ).

For any given ǫ > 0, when 1−w∗
Mn

> n−τ ǫ, we have

0 ≥ n−1{Ln(w∗)−Ln(w
0
Mn

)} ≥ n−2τ ǫ2
(
1

2
κ1cτ n

−τ −Op(Kn/n)

)
+op(n

−3τ )

=
1

2
ǫ2κ1cτ n

−3τ +op(n
−3τ ).

So P(1−w∗
Mn

> n−τ ǫ) ≤ P( 1
2
ǫ2κ1cτ + op(1) ≤ 0) → 0, i.e., 1−w∗

Mn
= op(n

−τ ). Then,

following exactly the same proof as n−1Ln(ŵ) = n−1Ln(w
0
Mn

) + op(n
−τ ), we can show

that n−1Ln(w
∗) = n−1Ln(w

0
Mn

)+op(n
−τ ) and finish the proof.

Appendix E. Proof of Theorem 4

Denote ζn = n−1(β̂M0+1 − βM0+1)
′X′
M0+1XM0+1(β̂M0+1 − βM0+1) = Op(kM0+1/n).

Under Conditions (C2’) and (C3’), similar to (A.2), we can show that

n−1(am−aM0+1) ≥
1

2
κ0cτ0n

−τ0 − ζn when m<M0 +1. (A.6)

When Kn/n
1−2τ0 → 0, similar to Theorem 3, we can show that max1≤m≤Mn

|e′Pmµ| =
op(n

1−τ0) and max1≤m≤Mn
e′Pme = op(n

1−τ0).

Denote w̃ = (w̃1, . . . ,w̃Mn
)′ = (0, . . . ,0,

∑M0+1
m=1 wm,wM0+2, . . . ,wMn

)′. Then, by (A.3),
we have

n−1{Ln(w)−Ln(w̃)}

=
Mn∑

m=1

w2m
am

n
+2

∑

m<l

wmwl
al

n
−

Mn∑

m=1

w̃2m
am

n
−2

∑

m<l

w̃mw̃l
al

n
+op(n

−τ0)

=
∑

m≤M0+1

w2m
am

n
−



M0+1∑

m=1

wm



2
aM0+1

n

+2
∑

m<l<M0+1

wmwl
al

n
+2wM0+1


 ∑

m<M0+1

wm


aM0+1

n
+op(n−τ0)

≥
∑

m<M0+1

w2m

(
aM0+1

n
+

1

2
κ0cτ0n

−τ0 − ζn

)
+w2M0+1

aM0+1

n
−



M0+1∑

m=1

wm



2
aM0+1

n

+2
∑

m<l<M0+1

wmwl

(
aM0+1

n
+

1

2
κ0cτ0n

−τ0 − ζn

)

+2wM0+1


 ∑

m<M0+1

wm


 aM0+1

n
+op(n

−τ0)
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=


 ∑

m<M0+1

wm



2(

1

2
κ0cτ0n

−τ0 − ζn

)
+op(n

−τ0)

=


 ∑

m<M0+1

wm



2 (1

2
κ0cτ0n

−τ0 −Op(kM0+1/n)
)

+op(n
−τ0)

= n−τ0






 ∑

m<M0+1

wm



2

1

2
κ0cτ0 +op(1)




. (A.7)

On the other hand, for anyM0+1≤m< l, since modelm and l are correct models, we have

(In−Pm)µ = 0 and (In−Pl)µ = 0. Then

< Pmy−µ,Ply−µ > =< Pme− (In−Pm)µ,Ple− (In−Pl)µ >

=< Pme,Ple >= e′PmPle = e′Pme = Ln(w
0
m).

For any m>M0 +1, Ln(w
0
m) = ‖e‖2 −am > ‖e‖2 −aM0+1 = Ln(w

0
M0+1). So

Ln(w̃) = ‖
Mn∑

m=M0+1

w̃m(µ− µ̂m)‖2

=
Mn∑

m=M0+1

w̃2mLn(w
0
m)+2

∑

M0+1≤m<l≤Mn

w̃mw̃l < Pmy−µ,Ply−µ >

=
Mn∑

m=M0+1

w̃2mLn(w
0
m)+2

∑

M0+1≤m<l≤Mn

w̃mw̃lLn(w
0
m)

≥
Mn∑

m=M0+1

w̃2mLn(w
0
M0+1)+2

∑

M0+1≤m<l≤Mn

w̃mw̃lLn(w
0
M0+1)

=




Mn∑

m=M0+1

w̃m



2

Ln(w
0
M0+1)

= Ln(w
0
M0+1), (A.8)

where the equation holds if and only if w̃M0+1 = 1, i.e.,
∑M0+1

m=1 wm = 1.

For any w 6= w0
M0+1, if

∑
m<M0+1wm > 0, then by (A.7) and (A.8), we have

n−1+τ0 {Ln(w)−Ln(w
0
M0+1)} ≥ n−1+τ0 {Ln(w)−Ln(w̃)}

≥


 ∑

m<M0+1

wm



2

1

2
κ0cτ0 +op(1).
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Then

P(n−1+τ0 {Ln(w)−Ln(w
0
M0+1)} > 0) ≥ P





 ∑

m<M0+1

wm



2

1

2
κ0τ0 +op(1) > 0


 → 1,

i.e., P(Ln(w)−Ln(w
0
M0+1) > 0) → 1.

If
∑

m<M0+1wm = 0, then w = w̃ and
∑M0+1

m=1 wm 6= 1 since w 6= w0
M0+1. Then, by

(A.8), we have

Ln(w)−Ln(w
0
M0+1) = Ln(w̃)−Ln(w

0
M0+1) > 0.

Appendix F. Proof of Lemma 1

Denote w̃∗ = (0, . . . ,0,
∑M0+1

m=1 w∗
m,w∗

M0+2, . . . ,w
∗
Mn

)′ ∈ Hδ
n. When Kn/n

1−6τ0 → 0, by

similar arguments to the proof of Theorem 3, we can show that max1≤m≤Mn
|e′Pmµ| =

op(n
1−3τ0) and max1≤m≤Mn

|e′Pme| = op(n
1−3τ0). When

∑
m<M0+1w

∗
m ≥ δn−τ0 , similar

to (A.7), we can show that

0 ≥ n−1{Ln(w∗)−Ln(w̃
∗)} ≥


 ∑

m<M0+1

w∗
m



2

1

2
κ0cτ0n

−τ0 +op(n
−3τ0)

≥
1

2
δ2κ0cτ0n

−3τ0+op(n−3τ0).

So

P


 ∑

m<M0+1

w∗
m ≥ δn−τ0


 ≤ P

(
0 ≥

1

2
δ2κ0cτ0 +op(1)

)
→ 0.

Then, by the definition of Hδ
n, we have P(

∑
m<M0+1w

∗
m = 0) → 1.

When
∑

m<M0+1w
∗
m = 0, following the same arguments as (A.8), we have Ln(w

∗) ≥
Ln(w

0
M0+1), where the equation holds if and only if w

∗
M0+1 = 1. On the other hand, by the

definition of w∗, Ln(w∗) ≤ Ln(w
0
M0+1). So Ln(w

∗) = Ln(w
0
M0+1) and w

∗
M0+1 = 1. Then

P(w∗
M0+1 = 1) ≥ P


 ∑

m<M0+1

w∗
m = 0


 → 1,

i.e., P(w∗ = w0
M0+1) → 1.

Appendix G. Proof of Theorem 5

By Lemma 1, we have P(Ln(w
∗) = Ln(w

0
M0+1)) → 1. So we just need to consider whether

Ln(ŵ)/Ln(w
0
M0+1) converges to 1 in probability or not.

For any m<M0 +1, when ŵm 6= 0, similar to (A.1), we can show that

ŵm ≤ (am−aM0+1)
−1φnσ̂

2(kM0+1 − km).
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Then, by (A.6) and Condition (C1), we have

max
m<M0+1

ŵm = Op

(
φnkM0+1

n1−τ0

)
. (A.9)

For any m>M0 +1, define

w̃m = (ŵ1, . . . ,ŵM0
,ŵM0+1 + ŵm,ŵM0+2, . . . ,ŵm−1,0,ŵm+1, . . . ,ŵMn

)′

= ŵ+ (0, . . . ,0,ŵm,0, . . . ,0, − ŵm,0, . . . ,0)′.

Then

0 ≤ Gn(w̃m)−Gn(ŵ)

= [(w̃m− ŵ)+2ŵ]′8(w̃m− ŵ)+φnσ̂
2(w̃m− ŵ)′K

= ŵ2m(aM0+1 −am)+2ŵm

Mn∑

l=1

ŵl(amax{l,M0+1} −amax{l,m})+φnσ̂
2ŵm(kM0+1 − km)

= ŵ2m(aM0+1 −am)+2ŵm

M0+1∑

l=1

ŵl(aM0+1 −am)

+2ŵm

m−1∑

l=M0+2

ŵl(al−am)+φnσ̂
2ŵm(kM0+1 − km)

≤ ŵ2m(aM0+1 −am)+2ŵm

m−1∑

l=1

ŵl(aM0+1 −am)+φnσ̂
2ŵm(kM0+1 − km)

≤ ŵ2m(aM0+1 −am)+2ŵm(aM0+1 −am)+φnσ̂
2ŵm(kM0+1 − km).

So, when ŵm 6= 0, we have

ŵm ≤ (km− kM0+1)
−1σ̂−2φ−1

n (ŵ2m+2ŵm)(aM0+1 −am). (A.10)

Note that E((aM0+1 −aMn
)/(Kn− kM0+1)) = σ 2, so

aM0+1 −am

km− kM0+1
≤
aM0+1 −aMn

Kn− kM0+1
×

Kn− kM0+1

kM0+2 − kM0+1
= Op(Kn).

Then, by (A.10) and Condition (C1), we have

max
m>M0+1

ŵm = Op

(
Kn

φn

)
. (A.11)

Moreover, we have

max
m<M0+1

Ln(w
0
m) = max

m<M0+1
{µ′(In−Pm)µ+ e′Pme}

≤ ‖µ‖2 + max
1≤m≤Mn

e′Pme

= O(n)+op(n) = Op(n), (A.12)
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and

max
m≥M0+1

Ln(w
0
m) = max

m≥M0+1
e′Pme ≤ e′PMn

e = Op(Kn). (A.13)

(1) When φn → ∞, following Lemma 1 of Zhang et al. (2020), we can show that

P(
∑

m>M0+1 ŵm = 0) → 1. Then ŵM0+1 →p 1, and with probability going to 1, by (A.9)

and (A.11)–(A.13), we have

Ln(ŵ)

= ‖
∑

m≤M0+1

ŵm(µ− µ̂m)‖2

≤
∑
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ŵ2mLn(w
0
m)+2

∑
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ŵmŵl

√
Ln(w

0
m)Ln(w

0
l )

= ŵ2M0+1Ln(w
0
M0+1)+

∑
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ŵ2mLn(w
0
m)+2

∑

m<l<M0+1

ŵmŵl

√
Ln(w

0
m)Ln(w

0
l )

+2
∑
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ŵmŵM0+1

√
Ln(w

0
m)Ln(w

0
M0+1)

= ŵ2M0+1Ln(w
0
M0+1)+Op

(
φ2
nk

2
M0+1M0

n2−2τ0

)
Op(n)+Op

(
φ2
nk

2
M0+1M

2
0

n2−2τ0

)
Op(n)

+Op

(
φnkM0+1M0

n1−τ0

)
Op(

√
n)Op(

√
kM0+1)

= ŵ2M0+1Ln(w
0
M0+1)+Op

(
φ2
nk

2
M0+1M0

n1−2τ0

)
+Op

(
φ2
nk

2
M0+1M

2
0
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)
+Op

(
φnk

3/2
M0+1M0

n
1
2−τ0

)

= ŵ2M0+1Ln(w
0
M0+1)+op(1).

So, with probability going to 1,

1 ≤
Ln(ŵ)

infw∈Hδ
n
Ln(w)

=
Ln(ŵ)

Ln(w∗)
=

Ln(ŵ)

Ln(w
0
M0+1)

≤ ŵ2M0+1 +op(1) →p 1.

(2) When φn = 2,
∑

m≥M0+1 ŵm →p 1 and

Ln(ŵ) = ‖
Mn∑

m=1

ŵm(µ− µ̂m)‖2

= ‖
Mn∑

m=M0+1

ŵm(µ− µ̂m)‖2 +‖
∑

m<M0+1

ŵm(µ− µ̂m)‖2

+2 <
∑

m<M0+1

ŵm(µ− µ̂m),
∑

l≥M0+1

ŵl(µ− µ̂l) > ,
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where the second term is bounded by

∑

m<M0+1

ŵ2mLn(w
0
m)+2

∑

m<l<M0+1

ŵmŵl

√
Ln(w

0
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0
l )
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(
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2
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)
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(
φ2
nk

2
M0+1M

2
0

n2−2τ0

)
Op(n) = op(1),

and the third term is bounded by

2
∑
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∑

l≥M0+1
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√
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0
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0
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0
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So
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Then

Ln(ŵ)

Ln(w
0
M0+1)

= 1+op(1)+

∑Mn

m=M0+1

(
ŵ2m+2ŵm
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)
(aM0+1−am)+op(1)

Ln(w
0
M0+1)
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.

If Ln(ŵ)/ infw∈Hδ
n
Ln(w) →p 1, then by the fact thatP(infw∈Hδ

n
Ln(w) = Ln(w

0
M0+1)) → 1

and the above equality, we have
∑

m>M0+1 ŵ
2
m(aM0+1 −am)/Ln(w
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M0+1) →p 0. Note that

Ln(w
0
m) = ‖e‖2−am = e′Pme, for m≥M0+1. Therefore,

∑
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2
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→p 0.
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