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SKELETON C*-SUBALGEBRAS

HUAXIN LIN

ABSTRACT. We study skeleton C*-subalgebras of a given C*-algebra. We show that
if A is a unital (non-unital but ¢-unital) simple C*-algebra, M is any unital (nonuni-
tal) matroid C*-algebra, then A contains a skeleton C*-subalgebra B with a quotient
which is isomorphic to M. Other results for skeleton C*-subalgebras are also obtained.
Applications of these results to the structure of quasi-multipliers and perturbations of
C*-algebras are given.

1. Introduction. Matrix algebras M,, the C*-algebras of n X n matrices over C,
and X, the C*-algebra of compact operators on an infinite dimensional, separable Hilbert
space are often called elementary C*-algebras for the obvious reasons. Matroid
C*-algebras may be viewed as a generalization of elementary C*-algebras. Though non-
elementary matroid C*-algebras are quite different (they are antiliminal, for instance)
from elementary ones, they inherit many properties from elementary C*-algebras. They
are “matroid”. Next, of course, are (simple) AF C*-algebras. The class of AF C*-algebras
is one of the best understood classes of C*-algebras. They have a rich but managable
structure of projections and provide many interesting and important examples. The rea-
son that AF C*-algebras are better understood is that they are approximately finite di-
mensional and therefore “matrix-like”.

In [20] and [25], fundamental approximate identities were studied. For example,
S. Zhang ([25]) showed that every o-unital (non-unital) simple C*-algebra with real
rank zero has a fundamental approximate identity. The existence of such an approximate
identity provides some “matrix-like” structure inside the C*-algebra. For example, we
showed in [20] that a C*-algebra with fundamental approximate identity has a “skele-
ton” algebra with a quotient isomorphic to X. In this note we introduce formally the
concept of “skeleton”:

DEFINITION 1.1.  Let A be a C*-algebra. A C*-subalgebra B is called a skeleton C*-
subalgebra if the hereditary C*-subalgebra generated by B is A.

It should be noted that if A is unital, A has a skeleton C*-subalgebra which is isomor-
phic to C. Therefore, we do not search for a trivial skeleton but for a rich skeleton with
nice properties. We will show that if A is a o-unital (non-unital) simple C*-algebra then
for any unital (non-unital) matroid C*-algebra M, there is a skeleton C*-subalgebra B of
A such that B has a quotient which is isomorphic to . This shows that every o-unital
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simple C*-algebra has a “matrix-like” structure. For a simple C*-algebra A with real rank
zero, stable rank one and unperforated Ky(A), there is a simple AF skeleton B of A such
that Ko(A) = Ko(B) and for every projection p in A there is a projection ¢ in B such that
p ~ q (in the sense of Murray and von Neumann). Applications of these results are given
in Section 3.

1.2. LetA bea C*-algebra, a,b € A. We write (see [10]) a < b if there are x,y € A
suchthata = xby.Ifa,b € A, a < b, then, by [10, 1.7], there is z € A such that 7*z = a,
RS
72" € Her(b), the hereditary C*-algebra generated by b.

1.3. Givene > 0, letf, be the continuous function on R defined by
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1.4. Given z in A with polar decomposition (in A**) z = u|z| and e > 0 we know
from [10, 1.3] that uf.(|z|) is in A. For any x € Her(|z]),

l[ufel2)x — ux|] < [Ife(lzDx — x| — 0

as € — 0. Therefore, ux € A for any x € Her(|z|).
In fact the mapping ¢ defined by

p(x) = uxu*

is an isomorphism from Her(|z|) onto Her(|z*|) (see [10, 1.7]). If a,b € A,, we write
a ~g b if there is z € A such that 7*z = a, zz* = b.If a ~4 b, then there is a partial
isometry u € A**, where z = u|z| is the polar decomposition, such that the mapping ¢ =
uxu* is an isomorphism from Her(a) onto Her(b). Moreover, ifa’ € Her(a),,b’ € Her(b),
are such that p(a’) = ¥ then [u(d))"/*)[u(d)'/*]* = ¥ and [u(d)"/ ) [u(@)/?] = d.
Therefore, a’ ~4 b'. We write a<,b if there is ' € Her(b) such that a ~, b'. Clearly,

the relation < 4 is transitive and the relation “~4 ™ is an equivalence relation.

1.5. There is another relation “~7” introduced by G.K. Pedersen [20, 5.26]. (See
also [13] for the case of infinite sums.) If x,y € A,, we write x ~7 y if there are z; € A,
i =1,2,...,n,suchthatx = ¥, zjzi, y = ¥, zz;, and write x < y if there is

T
y € A, suchthatx ~7 ¥,y <y.If A has a trace 7, then 7 (x) = 7(y) if x ~7 y. (See [20,
5.26] or [13].)

1.6. We will use the notation P(A) for the Pedersen ideal of the C*-algebra A.
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2. Scaling Approximate Identities and Skeleton C*-subalgebras.

LEMMA2.1. Let A be a C*-algebra, a and b two positive elements in ‘P(A). Ife > 0
is such that f. (b) generates P(A) as an ideal, then there are ay,ay, . ..,a, € P(A), such
that

-

a=) a,aa< a3< - < f./5(b),
~T U ~NT T

0

ai

AN

sai, i=12,....,nanda; < 4f./2(b).

PROOF. There are x;,y; € A,i = 1,2,...,m such that

m

1 m m
a =2 xf i < 5 (S xf-O0F + 3010

i=1
We may write a < 37, r;, where 0 < r; < f(b). It follows from [22, 1.4.10] that there
arez; € Asuchthata = 37 | zfz;and z;zf < r;, i = 1,2,...,n. Therefore we may write,
by 1.4,

a=Y a;anda; ~4 b;, b; € Her(f.(b)), i=12,....n.

i=1

We will adjust the b;’s and a;’s so that

by < by <+ < by <[ /2(b),

a; ~r1 bi, a1 < ga;,

i= 2,3,...,nandal ~é bl.
We use inductiononn. If n = 2,a = aj+ay,a; ~¢ bi,and b; € Her(fg(b)), i=1,2.
Since
by < (fo2(b) — b2) + b2,
applying [22, 1.4.10] we obtain c1, ¢}, d;, d; such that ¢; ~y di, | ~¢ d}, by = c| +¢},
di <f.)5(b) — by, and d} < dy. Setb; = d; and b, = by +dy. Then b, < by < £, 5(b).
Since a; ~¢ by, there are 11, f; > Osuch thata; = t; + 7, 1) ~4 ¢), and £, ~4 c}. Set
ay =tiandd), = ay +t;. Then a = d| + d), a| ~y b}, d ~7 b).
Now assume that a = X1 | a;,
by b3 <--- < by < f.2(b),
ai~r b, @y <ga, i=3,4,...,n,
ay ~g byand by < f, /5(b).
Since by < (f./5(b) — by) + by, applying [22, 1.4.10] we obtain ¢,, ¢}, d,, d’, > 0 such

that
by =c, +c:1, Cp ~g dy, cﬁl ~g df,,

dy < f./2(b) = by, and d, < by,
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w = 0 such that
tht b, = a1ty ~g Gty ~g G Setay = 1, a, = ap + 1, Then a), ~r b, < f,/5(b),

n* n

d) ~y by < f.po(b), and a = &y + 1) 6+ (an + @}) and

Set b = d), b, = by +dy. Then b} < b, < f./,(b). There are t,, 7,

by <by<---<b,=b,+d, b <D,

Repeating this argument with a/,b] and b,_;, we get ) = tu_1 + 1, , taoy ~g dpy <
b,—b,_1, t;,Al ~e d,’,_l < bp_, tnwl;dnfl’d:,_l > 0. Set blll = d;,_], b;l_] = bp_1+dy_y,
al =1t,_,,d,_; = t,_1 +a,—1. Then

by < b,y < by < b, <f.)5(b),
by <by << by <B, <by < B,

n—-3
n
a=daj+Y. ai+(an1 +ta1)+(an+1,),
i=2
" 1! ! / / /
and a| ~y by, a,_; = an_1 + thy ~7 by, ay, ~g by,

Proceeding in this way, we can write

n
01=Zti,ti20,fi~¢ di<bipi—b, 2<i<n

i=1

(buet = fo)2(B)). 11 ~g dy < by, by =bi+d;, 2 <i<n Wehave

a:t1+2(a,~+t,-)andbf:b,~+d,~, 2<i<n.
i=2
Set b} = df; then
by < by < < b <[ ya(b)

andal = a;+1t; ~7 b},2 <i<n,d| ~y b).
This completes the proof. u

DEFINITION 2.2. Let A be ag-unital C*-algebraand { e, } be an approximate identity
for A. Denote e, — e, by g, (ep = 0). If there is a sequence of positive numbers { &, }
and a subsequence of positive integers { n(k)} such that

(@) fe(8neo) > &> Bn for n(k) < n < n(k+1),
(i) gnty < ¢8n forntk— 1) < n < n(k) and gnwy < ¢fer (&nik—1);
(iii) g,,(zk;l) 1 gyifn>nk—1)orn < n(2k — g),
(iv) gn(2k)(2n(2k~2)§i§n(k) gi) = (Snk—2)<i<n(ab 8i)8n2b) = &n(2k»
where k = 1,2,..., then we say that { e, } is a scaling approximate identity.

It should be noted that if { e, } is a fundamental approximate identity, then { e, } is a
scaling approximate identity.

https://doi.org/10.4153/CJM-1992-022-7 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1992-022-7

328 HUAXIN LIN

THEOREM 2.3. If A is a o -unital (non-unital) simple C*-algebra, then A contains a
scaling approximate identity.

PROOF. Let a be a strictly positive element of A. By taking a proper sequence of
continuous functions &,, we can construct (by taking e/, = h,(a)) an approximate identity
{ €.} such that for each n, there is 0 < a, < e, — €41 (€0 = 0), an(e, — €n—1) =
(en — en—1)ay = ay, ay # 0,and a, L e, — e, if n # m. Moreover, e, € P(A). Set
gn=¢€n—ey_1,bp=g,—a,,n=172,.... Applying Lemma 2.1, we obtain

b2 =nitrn2+...+rnm

such that 0 < rp 44 STfe.(al) < fe(81)s P2y < i and 73 () < ofe(an) < fo.(g1),
i=1,2,...,m2)—1,forsome 1 > ¢, > 0andry; #0,i=1,2,...,m(2).
We also obtain
ay = Nm@)+l + 0+ 2 m)ym'(2)

such that
0 < rymyriet < Pom@yei < Jfer(ram@)s
~T ~T

Pam@m @) < ¢ Famywis i=1,...,m'(2)—1,
P2 m@)sm'2) < ¢fer(Fam2))s

forsome 1 > e > 0, and ra i # 0, i = 1,2,...,m/(2).
Repeating this process, we get a sequence of nonzero positive elements as follows:

by =r31 + 130+ 413,03,

az = r3m@y+l +°° + 13 m3)em'(3)

bk =TI trp+cc+ Fikm(k) s

Ak = Temk)y+1 + 70 F Fom(k)+m' (k)

such that
vl < rei < szH(rkfl,m(kfl)+m’(kfl)),
~T ~T

T m(k) S oli- 1=1,2,...,mk)—1,
Tt < ofer (Pt m—1yemie-1))
for some 1 > ¢, > 0, and
Fom(ky+it1 ST Tkm(ky+i Sszg(rk,m(k)),
Pemome () < 6 Tkmoris 1= 1L,2,...,m'(k)—1,

Thmkysm' (k) < ¢ Sen(Femiy)
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for some 1 > ey > 0.
Now set

/ / /
ey =¢e,e =¢€ +nrn),e3=¢e +rn;+ny,

/ /
em2)l = € + 11+ +ram0) = e +by,

/
em@ys2 = € + by + 1 m2)41,

! / /
enQ)m(2)+l = €] + by + ooy + o F 1o m)em2) = € + by +ay = e,

m(k)

/ g
CLm+ A eyt () = Gh—1 ¥ 21 Tkn = €y +bi
o

o
€ emio+ 3 mmyemt 1 = €kt Bk F T
e“E” mnyentny) = ek | thet+ar = ek,

Take n(1) = 1, n(2) = 1 +m(2), n(3) = 1+mQ2)+n(2),...,n(2k) = 1 +m(2)+-- -+
mk—1),and n2k+1) = 1+mQ2)+---+mk — ) +m'(k— 1),k = 1,2,.... From the
construction one can check easily that { e, }, { n} and { e, } satisfy the conditions (i) to
(iv)in 2.2. =

THEOREM 2.4. Let A be a C*-algebra with a scaling approximate identity { e, }.
Then A has a skeleton C*-subalgebra B such that B has a quotient which is isomorphic

to X.

PROOF. We will keep the notation of 2.2. '
We first claim that there are g\’ > 0,1 <i<kandu,1 <i<k—1,k=1,2,...,

such that
M g(l) < (I) <k, gﬁcl) € Her(fizi (gn(Zi)),
(2) (uil))(ug)) g;:), ( (l)) ( g)) :fUZi(gn(Zi)),

where o = $6u, k=1,2,....
We will prove the claim by induction on k. Assume that the claim is true forall k' < k.
Since gnaus1y) < 6fere 1, (820), there is ul?) in A such that

(u,(i),) (uffi)l) = foun (gn(2<k+1))),
(”2]21)(“2?1) =gy € Her( €2 (g”(z")))'
Define u\), = u’u*,, 1 <i < k. Then
(s51)" (1) = (ui’?l)*(u(”) (") ().
= ( )fak(gn(2(k)))(uklj-)l)
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Since f;, (gn(Z(k))) is a unit for Hel‘(fgu (gn(Z(k))))’

(“2’21)*(”531 ) = forn (€nk+1)-

o _ (,,® @ ¢ _ (,, O\ KR [ D)*
8ia1 = (ukl+l><ukl+l) = (“kl )gk+l (“kl) )
1 <i < k; then gﬁi, € Her(fsﬁ(g,,(gi))). This completes the proof of the claim.
Let x:(7) denote the characteristic function of the set [0, e5]. Set pf{k_” = X«(8nk)

and pg) = ug)pg‘“')(ug))*. Then pg) are closed projections (with respect to A) in A**.

Set

Set ¢, = ¥, p;i); €, is also a closed projection in A**. Let B, be the C*-subalgebra
generated by {ug), €n, }, ..., By the C*-subalgebra generated by {Bk, u}(’?], €n(2(k+1)) —
e,,(Zk)}. Notice that €, commutes with en2¢+1)) — €n(2i) and u?, 1 <i<k. Itisaroutine
exercise that €, By is isomorphic to M (k > 2).

Now for fixed m, for k > m,

m

€n2m€k = €henm) = 2}%9

i=
So {e,,(g,,,) ej(} (k > m) is a decreasing sequence of closed projections in A*™*. So
{en(2m)e§c} converges strongly to a positive element g,, in A**. Hence ¢,, is an upper
semi-continuous function or the quasi-state space of A (see [20, 3.11]). By a standard
compactness argument, ¢,, # 0, and hence g,, is a nonzero projection in A*. Now { g, }
is an increasing sequence of projections, so g» ' ¢ for some nonzero projection g in
A**. Furthermore, ¢, — g strongly.

Since ¢, commutes with every element of B;, 2 < i < k, we conclude that g commutes
with every element of B;, 2 < i. It is routine to check that gB; is isomorphic to M, i>2.
Denote by B the C*-subalgebra generated by { B; : i = 2,3,... }; then g commutes with
every element of B. Thus there is *-homomorphism from B onto Bq. Moreover, one can
easily check that Bg is isomorphic to X. (]

LEMMA 2.5. Let A be a non-elementary simple C*-algebra and a be a nonzero pos-
itive positive element of P(A). Then for every k, there is a skeleton C*-subalgebra B of
Her(a) and a closed projection p in A** such that p commutes with each element in B and
such that pB is isomorphic to M;.

PROOF. Since A is simple, so also is Her(a). If sp(a) is finite, then Her(a) has an
identity e. There is a positive element b in Her(a) with infinitely many points in sp(b).
So sp(e + b) has infinitely many points. Since Her(e + b) = Her(a), we may assume
that sp(a) has infinitely many points. There are continuous functions hy, h, . .., b and
hi, H, ..., on sp(a) such that

k
(1 a <y ha),
i=1
2 Hi(a) L hj(a) ifj # i,

H(a)hi(a) = hi(a)h(a) = hi(a),
K@ = ||h@| =1, i=1,2,....k

3
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Repeated application of [10, 1.8] shows that there are nonzero elements b; € Ay, such
that
by>by>...> b
RS R~ RS
(see [10, 2.3]); we may assume that 0 < b} < 1, and that ||b]| = 1,i = 1,2,...,k. Take
by = b, and apply [10, 1.7] repeatedly; we obtain b; € Anay ||bill = 1, and z; € Her(a)
such that
Zzu=b,zzi=b, i=2,...,k
There are u; € Her(a) such that
uiu; = fi8(br),
ui; = fi5(b:)
(see 1.4),i=1,...,k
Let x, / 4(2) denote the characteristic function of [1 / 4,1].Setp; = x; / 4(b)and p =
k| pi. Then p is a closed projection in A**. It is easy to see that p commutes with h;(a),

i=1,2,...,k and commutes with u;,i = 1,...,k.
Let B denote the C*-subalgebra generated by

{hia), i=1,2,... .k us i=2,3,...,k}.

Then Ef.‘:, hi(a) > a. So B is a skeleton C*-subalgebra of Her(a). Moreover, p commutes
with each element of B. It is a routine exercise that pB is isomorphic to M. ]

THEOREM 2.6. Let A be a o -unital, non-unital, non-elementary simple C*-algebra.
Then for any non-unital matroid C*-algebra M, there is a skeleton C*-subalgebra B of
A such that B has a quotient isomorphic to M.

PROOF.  As in the proof of 2.3, there is an approximate identity { e, } for A satisfying
the following conditions:
(1) enem = ene, = ey, ifn > m;
(ii) there are a, in A such that 0 < a, < e, — e,_1(¢g = 0) and a,(e;, — em_1) =
(em — em—1)an = 0if m # n;

(iii) (en — ep—1)(em — em—1) = 0if [n —m| > 2 and ||e,|| = 1.

Suppose that

0<g)< A< gD< )<

is a sequence of integers such that M is the following inductive limit:
Savrry qryg Jar) qrg
W Moty = M) Mrzy — Myzy — -+ .

Here r(n) | g(n + 1), and f,,,, is the homomorphism consisting of adding n — m rows and
columns of zeros to each matrix in M, and gy = 1 ® 1,,ie.

0O x --- 0
gmn(x): . : )
00 -+ xl,,
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where p = 2. We set s(n) = g(r("T*)l), tn)=r(n)—qn)andg, = e, —e,_1,n=1,2,....
AsinLemma 2.5, there are d,'V, d,, ..., d,(1y" and up, us, . . ., ugq1) in Her(ay) such

that 0 < &V, |4V = 1,dV L &V ifi # j, and

(Dx (1 1
”i ) li ) f‘l/ (11( ))’
1 1)x 1

Moreover, if we take ¢) = ¥/ p{"), where p{"’ = x, /4(d,~(”), and B) the C*-subalgebra
generated by { gy, u;, = 2,3,...,q(1)}, then ¢, commutes with each element of B,
and €/ B, is isomorphic to M.

Repeated application of [10, 1.8] shows that there are elements d! € Her(a;s1), (i =
1,2,...,1‘(1)) such that

fl/z(dl(l)) i d z d Z i d:(l)

(see [10, 2.3]). As in the proof of Lemma 2.5, there are d;® € Her(aj,;) with d;*) > 0,
142 = 1,i=1,2,....01), dJ),, € Her(f,/4(d\®)) withd),,, <0, |3, [l = 1,

52) € A such that
(42 () = a ().
(4) ()" =),

and u

i=2,3,...,1(1)+ 1. Set
2 e .
“,(4;)(1) =y )ui(l)m, Jj=2,3,...,q(1),
PP =x1/4(d®), i=12,...,01)+1.
Then

(uﬁ”p(f))*( u§2>p<12)) =2,

() (22) =

i=2,3,...,(1)+1,and

(“J(‘Z)P(IZ))*(“J(‘Z)P(lz)) = (g 1)>+1)*(”ﬁ)ml))*(“j(i)r(l))(““ v )Pt = pi?
(”p?) (wp)" = PP <Py d = 1) + 2. (D),

(

where p](.z) are closed projections. Let ¢, = Ejr(zlf p; o e ()

?); then ¢! iy = PiZy€2 = Py s
J=t)+2,...,1(1),ére} = €jé), = Z;(=lt)(1)+2 pj(?) and ¢, commutes with each element of
B,, where B, is the C*-subalgebra generated by {Bl, ufz), i=1,2,...,0)+1, eq1)+1 —
er}. It is a routine exercise to check that 5B, is isomorphic to M,;). Moreover, €,B,
is isomorphic to M. If we identify €yB, with M, and €,B; with M), then the
isomorphism €| B; — €,¢|B; = ¢,B; gives the homomorphism f1)1) from M, into

. /.
M), and we may write €| B; me’sz.

We assume that there are C*-subalgebras B;, B, ..., By, ... satisfying the following:
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(1) By, is generated by { Boy—1, €5~ 15 4 0= 2,3,...,(n) + 1};
(2) there are d® >0, ||dV|| = 1,i= 1,2,...,t(n)+ 1, such that

™ e Her(aE;;]. Getai)s 1= 12,00,
435 € Her(f o),

(4 (1) = (),

(7)) = (),
i=2,3,.. . ,tn+1;

(3) if we set u‘z'”) = u" Duen L j = 2.3,...,q(n) and p*” = x, sa(d®), i =

j+1(n

1,2,...,t(n)+1,then

P P P1
@n)_Qm)\ (. (2n)_Qn\* _ _(2n)
(“i P )(”i b ) = Pi

(u§2n) (2n))*(u§2n) (2n)) — (2n)’

’

i=23,...,n+1,and

(u;2n )p(l2n)) (u](2n)p(12n)) p(12n)’

(2n) _(2n) (2n)_(2n) (2n)
(™pi™) (u”"p} ) =P
where p(z") pj(z';(zl)) are closed projections, j = t(n) +2,...,r(n), and p(lz") <
@n—1),
no rn) (2n) O
n
(4) if we set e/2n Z lpj " then eIZne,2n~1 = e/2n—leIZn z =tn)+1 p] " and eIZn com-

mutes with each element of By, €,Ba, is isomorphic to M,ny and €,,By,—1 =
€5,€5,—1Ban—1 is isomorphic to My();

(5) if we identify €),B>, with My, and €),_Ban—1 With My, the isomorphism
€y Ban—1 to €,,By, given by x — €, x (x € €),_,Bas—1) gives the homomor-
phism:

1 q(n)r(n)
Mz(u — M3

(6) By is generated by { By, u; @) = 2,3,...,s(n)};
(7) u™" € Her(f,/2(di®”)) i = 2,....,s(n), and there are

d,‘(2"+l) € Hel'(fl/z(dl(zn)))»
di(2n+l) >0, ”di(2n+l)” =1, di(2n+1) _Ldj(2n+1)’

i#j,i,j=1,2,...,s(n), such that

(u§2n+l))*( 2n+l)) :f/ (d (2n+1))
(u§2n+l))( (2n+1)) f/ (d (2n+l))
i=2,3,...,2(n);
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(8) if we set
(2n+1) 2n) (2n—1 .
uj+:'k+ Drmy = u("u] D =23 s(n),k=2,3,...,s(n),
2+ .
P = x1/a(di®), i= 1,2, 5(),

then
@n+l)_Q2n+D\* /. @n+l)_@n+)\ _ (2n+1)
(“i Dy ) (“i P ) =D
@n+l)_2n+1)\ [, Qn+l)_QreD\* _  (2n+l)
(”i Py )(“i P ) =P; >

)

i=2,3,...,s(n),and

(2n+1)_(2n+1) (2n+1) _(2n+l1) (2n+l1)

(O ) (" Ppi V) = pi?,

(2n+1)_(2n+1) (2n+l) (2n+1) (2n+1)

(1 Py )( Py ) =P
(2n+1)

j=sm)+1,...,q(n+ 1), where p are closed projections;

. ’ (2n+1) /A A | — /
(9) if we set 3,y = Ep; , then i1€n = €37€rne1 = €rni1s €ryeq COMMULES
with each element of By,.;. Moreover, €),,Bans1 is isomorphic to M1y and

€,,,1B2n 18 isomorphic to M.

(10) if we identify €}, Bon1 With My(ns1) and €}, B, With My, then the isomorphism
from €),B,, to €, By, given by x — €5, ,x,x € €},B,, gives the homomor-

phism:
/ 8ringn+1) 4
€Ban — €341 Bon.
If m = 2n, then, as in Lemma 2.5, there are dﬁ'””), df,""”) dﬁ;’g” and

u™b e Her(f, /2(d™)),

i =2,3,...,s(n), such that &V > 0, ||d™D|| = 1, d;™D L g™V ifi # j

and

(u(_m+1))*(u5m+1)) =f|/3(d|('"+l)),
(u§m+l))(u$m+l))* :fl/g(di(m+l))’
i=2,3,...,5b). Set B, equal to the C*-subalgebra generated by

(B u™V, i=2,3,...,s(m)}

and
P = xupa(d™h), i= 1,2, s(m),
U = uW™D, j=2,3,0 s(), k= 2,3,...,s5(n).
Then
(u§m+l)p(1m+l))*(ugm+1)p(lm+l)) — p(lm+l)’
(u§m+l)p(lm+1)) (u§m+l)p(lm+l)) — meﬂ),

https://doi.org/10.4153/CJM-1992-022-7 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1992-022-7

SKELETON C*-SUBALGEBRAS 335

i=2,3,...,s(n), and

(m+1) (m+1)\*/_ (m+1) (m+1)
(“j+<k—1)r<n)1’1 )(j+<k—1)r<n>1’1 )

— p(]m+l)(u;m+l))* (ug(m))* (ll;('"))(u;mﬂ))P(lmH)
— p(lm+l),

(m+1) (m+1) (m+1) (m+1)\*
(“j+<k—1mn>1’1 )(”j+(k—1>r(n>1’1 )
o (m), (m+]) _(m+1) _(m+]l)( (m+D)\*[ (m)\*
=wou P (“j )(“k )
— (m) (m+l)_(m+1) _(m+1)( (m+1)\*( (m)\*
Bl S 4 B (”j )(“k )
(m+1)

Pisk=1yrny

j=2,3,...,8(n),k=2,3,...,s(n), where P,('ml—)l)r(n) are closed projections. If

/ q(n+1) (m+1) / - /o /
wesete,,, = >, p; thene, e, = €. = €,,, and €, commutes

m

with each element in B,,,;. It is a routine exercise to check that e:n+le+1 18 1s0-
morphic to %(,,,,1). Moreover, if we define a map ¢ from €,,B,, onto €,,,Bn
by ¢(x) = €,,,x then the map is an isomorphism. If we identify ¢},,, By.1 With
My(n+1) and e}, B, with M), the map ¢ gives the homomorphism:

/ 8rmg(n+1) 4
€.Bn — €,.1Bm1.

If m = 2n — 1, repeated application of [10, 1.8] shows that there are elements d; €
Her(azj,_:: t(l.)+1+i), i=1,2,...,t(n), such that

fl/z(dﬁm)) 2 dy 2 dy 2> -
(see [10, 2.3]). As in the proof of Lemma 2.5, there are

di(m+1) € Her (azj{i:—l’ F)+1+i )’
dt(n)+1(m+l) € Her(fl/z(dl(’n)))’

dim™D >0, [|d™D|| = 1,i=1,2,...,tn) + 1, and u™" € A such that

(u§m+1)>*(u§m+l)) :fl/s(dl(mﬂ))
and
(u§m+l)> (uﬁmﬂ))* — ﬁ/g(di(m+]))’

i=23,...,tn+1.
Set
(m+l) __ (m) (m+1) ] — 2,3,

u;

vty = Wi Ui+ ..,q(n),

and
P = xia(d™Y), i= 12,0 + 1
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Then (m+1) _(m+1)\*(  (m+1) (m+1) (m+1)
m+ m+ m+ m+ _ (m+
(“i Py ) (”i P ) =Py

(u(m+l)p(lm+1))(u(m+l)p(lm+1))* _ p{m+1)’ i= 2, 3’ s t(n) +1.

1 14 1

Moreover,
(m+1) _(m+D)\*/ (m+1)_(m+1)
(j+r<n) 1 ) (j+t<n>P1 )

=) ) ) )
__ (m+])
=P

(Pt ) (™)

(m) (m+1)_ (m+1) (m+l)< (m+l))*(

_ (m))*
=W UgmyP1 P wmy+1) \%;

J
m+1 . 3 n
—_ pj(‘+t’(+n))’ J= 2, 3. ’q( )’

(m*1) are closed projections and pml) < ™. j=1,2,....q9n).

where p ki) =

JjHi(n)
1
Setel ., = Zj’(:"l) p](.”“” )- then

/ (m)y _ (m) s _ _(m+l) . __

€m1P; =D emii = Piwimy> J = 1,2,...,q(n),
/ / !l aL) (m+1)
€m+1€m = €mCms1 = Z pj

J=1(1)+1

and ¢}, commutes with each element in B, where B,.; is the C*-subalgebra gener-
ated by
(m+l) -
{Bm, ™", i=1,2,...,0(n)+1, ez;ﬂ,mﬂ—el}.

It is a routine exercise to check that e:n +1Bm+1 1s isomorphic to .‘M,(,,). Moreover, if we
define a map ¢ from é),B,, onto ¢€,,,,B, by ¢(x) = €,,,x then the map is an isomor-
phism. If we identify €, Bys1 With My, and €/, B,, with My, the map ¢ gives the

homomorphism:
Samrmy 4

e Bn—€ . Bni1.

For fixed n, {€,€,,} is a decreasing sequence of closed projections (m > n). So
{ €€, } converges strongly to a positive element g,, in A**. Hence g,, is an upper semi-
continuous function on the quasi-state space of A (see [20, 3.11]). By a standard com-
pactness argument, g,, # 0, and hence g,, is a nonzero projection in A**. Now { g} is
an increasing sequence of projections, and so ¢,, /" g for some nonzero projection g in
A**. Furthermore, €, — q strongly.

Since ¢}, commutes with every element in B;, 1 < i < m, we conclude that ¢ com-
mutes with every element of B,,. It is then easy to see that gB,, is isomorphic to €/,B,,.
If B denotes the C*-subalgebra generated by { B,,,m = 1,2,... ,m}, then g commutes
each element of B. So there is a homomorphism from B onto ¢gB. By the construction of
{Bn}, it is easily checked that gB is the norm closure of the following inductive limit:

Jary 8rhg2)
gBi—qB; —

Jar2) 8r2)43)
3 >

9B gBs —gqBs — - - - .
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Therefore gB is isomorphic to M. Since ¥}_, (k) — 00 as n — 00, and ey il €
B, B is a skeleton C*-subalgebra of A. This completes the proof. n
We also have the following:

THEOREM 2.7. Let A be a unital and non-elementary simple C*-algebra. Then for
any unital matroid C*-algebra M, there is a skeleton C*-subalgebra B of A such that B
has a quotient which is isomorphic to ‘M.

2.8. Realrank of a C*-algebrahas been defined by L. G. Brown and G. K. Pedersen
in [5]. A C*-algebra is said to have real rank zero if the invertible selfadjoint elements
are norm dense in A, . A C*-algebra has real rank zero if and only if the elements in A, ;.
with finite spectra are dense in A, , and if and only if A has (HP), i.e. every hereditary
C*-subalgebra of A has an approximate identity consisting of projections (see [5, 2.6]).
Trivial examples of C*-algebras with real rank zero are von Neumann algebras and AF
C*-algebras.

THEOREM 2.9. Let A be a separable C*-algebra with real rank zero and stable rank
one. If Ko(A) is unperforated, then there is a skeleton C*-subalgebra B of A such that B
is an AF C*-algebra with Ko(B) = Ko(A). Moreover, for every projection p in A, there is
a projection q in B such that p is equivalent (in the sense of Murray and von Neumann)
to q.

PROOF. K((A) is a countable, unperforated ordered group. It follows from [2, 6.5.1]
and [24, 1.6] that K((A) has the Riesz interpolation property (see [15, A3.1]). Therefore,
Ko(A) is a dimension group ([15, 3.1]). In other words,

Ko(A) = lim{Z", p,}.
Suppose that { e,} is an approximate identity for A consisting of projections. Set
pPL=e€, Pn=¢€ —e1, n=23...

If A is unital, we assume that p; = 1, p, = 0if n > 1. Without loss of generality, we
may assume that [p;] € Z and [p;] = (k(1),k(2),...,k(r1)), where k(i) is a nonzero
integer. Suppose that [¢;] = (1,0,...,0). Then [g;] < [p:]. Since A has cancellation
(see [2, 6.5.1]), p1 > qi (in the sense of Murray and von Neumann). Therefore there is

a projection q(l'; < p1 such that
g\ € [¢\'}]and [p1 — qi"}] = k(1) — 1,k(), ..., k(r0)).
Recursively, we can construct projections
;) <pi,
1 <j<k@),i=1,2,...,r(1), such that

qy) Lgifi#iorj#/,

i

(1) (1) (1
g, ~q;; and [¢{}] = (0,...,0,1,0,...,0).

https://doi.org/10.4153/CJM-1992-022-7 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1992-022-7

338 HUAXIN LIN

Moreover, 3;; q(-[.) = p;. Let v ) be partial isometries in A such that( “)) (Vij)) =
D and ()0 = . 2< <k, i=1.2.
It is routine to check that the C*-subalgebra B, generated by {v(l) 2 <j < k@),

i=1,2,...,r} is isomorphic to

Met) @ M) @ -+ © Migr,
and Ko(B;) = Z ™). We may assume that [e;] = [p; +p2] = [p1] + [p2] € Z and

[pl +P2] = (m(l)v m(2)’ B m(r2))~

Suppose that, in Z 2,
[ } (ki1 k21, - - - k1),1,0, ..., 0).

Repeating the above argument, we can construct projections qlz) < q(llf , 1 <j <
k(@), i =1,2,...,s(1), such that

2 2) :p . . B
a0 Lalifi# i orj#],

S
42 ~ ¢ and [¢?] = (0,...,0,1,0,...,0).

Let us do the same for each qf;.). If [p2 — p1] = (s(1),5(2),...,s(r7)) (some of s(i) may
be zero.) Let us add s(i) orthogonal but equivalent projections q(.z.) in (p2 —p1)AWP2 —p1)

for each i. Suppose that v( ) are partial isometries in A such that ( (2)) ( @ ) = ‘11(21) and

(vg)) (vfj)) qu) 2<j< < m(i),i = 1,2,.
The C*-subalgebra B, generated by {vfj) 2 S_] <m(i), i =1,2,...,n} is isomor-
phic to
Moncty D Moy D - - - D Moy,

By C By,
and Ky(By) = 7).

Continuing this way, we get a sequence of C*-subalgebras By C B, C --- C B, C
B, C ... such that

B, = M,,,(n)([) @ Mmm)(z) DD Mm(n)(,”)

for some integers m™(i),i = 1,2, ..., r,, Ko(B,) = Z, and the embedding: B, — B

gives a homomorphism:
Z(rn) Pn Zrml

Let B be the C*-subalgebra generated by { U2 B, } . Then B is an AF C*-algebra and
Ko(B) = 1im Z™. Since e, € B, B is a skeleton C*-subalgebra of A. If p is a projection

in A, we may assume that [p] € Z). Therefore there is ¢ € B, C B such that p is
equivalent to g (in the sense of Murray and von Neumann). u
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REMARK 2.10. Separable AF C*-algebras have real rank zero, stable rank one and
unperforated Ko(A). Theorem 2.9 shows that separable C*-algebras with real rank zero,
stable rank one and unperforated Ky(A) are somewhat similar to separable
AF C*-algebras. However, a recent result of M. D. Choi and G. A. Elliott ([7]) pro-
vides examples (namely, irrational rotation C*-algebras) of simple C*-algebras with real
rank zero, stable rank one and unperforated K((A) which are not approximate finite-
dimensional. (Note these simple C*-algebras have cancellation [23]. Hence, by [2, 6.5.7],
they have stable rank one.) The author would like to raise the following question:

Are separable nuclear (simple) C*-algebras with real rank zero, stable rank one,
unperforated Ky-groups and trivial K,-flows (see [26]) approximate finite dimen-
sional?

3. Applications.

3.1. LetA bea C*-algebra and denote by A** its enveloping von Neumann algebra. An
element x in A** is a multiplier if xa and ax are in A for all a in A, x is a left multiplier if
xa isin A for all a in A, x is a right multiplier if ax is in A for all a in A, and x is a quasi-
multiplier if axb is in A for all @ and b in A. We denote the collections of multipliers, left
multipliers, right multipliers and quasi-multipliers by M(A), LM(A), RM(A) and QM(A)
respectively. If B is a skeleton C*-subalgebra of A, then M(B) C M(A), LM(B) C LM(A),
RM(B) C RM(A) and QM(B) C QM(A) (see [19, 3.7]). (It should be noted that the above
inclusions do not hold if B is merely a C*-subalgebra of A.) Therefore the results in §2
may help us to determine the structure of M(A), LM(A), RM(A) and QM(A).

It is easy to see that LM(A) + RM(A) C QM(A). The question whether LM(A) +
RM(A) = QM(A) was raised in [1]. The problem has been studied in [4], [19], [20],
[21], among other articles. In this section we will give applications of the results in § 2
to this problem.

Recall that a C*-algebra is scattered if it is type I and has scattered spectrum A (see
[16]). Let X be a scattered topological space. Define Xjo; = X, X1; = X'\ {isolated point
of X} . If X{4 is defined for some ordinal number «, define Xq+1) = X\ { isolated points
in X} ; if 8 is a limit ordinal, define X{3) = Na<pX[a). We set A (X) = o, where « is the
least ordinal such that X, is discrete.

The following is a generalization of [19, Theorem 6.3] (see [20, Theorem 3] also).

THEOREM 3.2. Let A be a C*-algebra with a scaling approximate identity and B a
unital C*-algebra. Then QM(B®A) = LM(BRA)+RM(BRA) implies that B is scattered
and A (B) < oo.

PROOF. It follows from 2.4 that there is a skeleton C*-subalgebra A of A such that
there is a *-homomorphism from Ap onto &_. Thus B® Ay is a skeleton C*-subalgebra of
B ® A and there is a *-homomorphism ¢ such that p(B® Ag) = B® X. By [19, 3.1}, if
OM(BRA) = LM(BRA)+RM(BRA), then OM(BRAj) = LM(BRAp)+RM(B®Ay). It
follows from [19, 4.13] that if OM(B® K) = LM(B® K) + RM(B ® K), then, by [19, 6.3]
(note that the “only if” part of [19, 6.3] works for o-unital C*-algebras), B is scattered
and A (B) < o0. [
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THEOREM 3.3. Let A be a o-unital simple C*-algebra. Then QM(A) = LM(A) +
RM(A) if and only if A is elementary or A is unital.

PROOF. Only the “only if”” part needs a proof. Assume that A is non-unital and non-
elementary. Take a non-elementary stable matroid C*-algebra M . By Theorem 2.6, there
is a skeleton C*-subalgebra B of A such that B has a quotient which is isomorphic to M.
If OM(A) = LM(A) + RM(A), then, by [10, 3.1], QM(B) = LM(B) + RM(B). Therefore,
by (19, 4.3], OM(M) = LM(M) + RM(M). This contradicts Theorem 6.3 in [19], since
M is a stable matroid C*-algebra. .

THEOREM 3.4. Let A be a o-unital C*-algebra and B a o-unital, non-unital and
non-elementary simple C*-algebra. Then

OM(A ® B) # LM(A ® B) + RM(A ® B).

PROOF. Suppose that M is a non-elementary matroid C*-algebra. It follows from
Theorem 2.6 that there is a skeleton C*-subalgebra By of B such that By has a quotient
which is isomorphic to M ® K. Therefore A ® B has a skeleton C*-algebra A ® B with a
quotient isomorphic to A ® M ® K. The conclusion then follows from the proof of 3.3.

|}

32. L. G. Brown in [4] showed the connection between the problem of whether
OM(A) = LM(A)+RM(A) and the problem of perturbations of C*-algebras. Perturbations
of C*-algebras have been studied in several different ways (see [6], [8], [9], [17] and
[18]). One of them is to ask whether an almost isometric (|| ¢|| — 1 and ||¢|| — 1 are
small) complete order automorphism ¢ of a C*-algebra is close to an isometry.

THEOREM 3.6.  IfA is a 0 -unital, non-elementary simple C*-algebra without identity,
then there exists a sequence { p,} of complete order automorphisms of A such that

lim |l = 1,
n—o0
lim [l ']l = 1,
n—00

but
inf{||0 — ¢n|l :n=1,2,...,8 automorphisms of A} > 0.

PROOF. By Theorem 3.3, QM(A) # LM(A) + RM(A), and so Theorem 7 in [20]
applies. [

ADDED INPROOF. N. C. Phillips pointed out to us that there are examples of separa-
ble C*-algebras with real rank zero, stable rank one, unperforated K,-groups and trivial
K -flows but not nuclear and so not AF. Thanks to his remark, we now add the condition
of nuclearity to the original question in Remark 2.10.
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