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Abstract. The problem of the global stability of rotating magnetized thin disks is considered.
The appropriate boundary value problem (BVP) of the linearized MHD equations is solved
by employing the WKB approximation to describe the dynamical development of an initial
perturbation. The eigenfrequencies as well as eigenfunctions are explicitly obtained and are
verified numerically. The importance of considering the initial value problem (IVP) as well
as the question of global stability for finite systems is emphasized and discussed in detail.
It is further shown that thin enough disks are stable (global stability) but as their thickness
grows increasing number of unstable modes participate in the solution of the IVP. However it
is demonstrated that due to the localization of the initial perturbation the growth time of the
instability may be significantly longer than the calculated inverse growth rate of the individual
unstable eigenfunctions.
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We consider geometrically thin disks and weak magnetic fields VA < cs where VA =
Bz/

√
4πρ0 is the Alfvén velocity and cs is the isothermal sound velocity. In order to model

the finite thickness of the disk the following profile ρ(r, z) = ρ0(r) exp(−z2) is assumed for
the density (the disk is assumed to be isothermal). It is assumed that the typical length
scale for the variation of the physical quantities in the radial direction is much longer than
that in the vertical direction. For that reason the disk model incorporates the vertical
stratification while the radial structure of the disk ignored excepting of the velocity
shear. Thus, due to the independence of the perturbations on the radial direction r is
merely a parameter. It should be noted however that in the classical works of Velikhov
(1959), Chandrasekhar (1960), and Balbus & Hawley (1991), an infinite cylinder has
been considered and the effects of the boundary conditions as well as vertical structure
of the disk were neglected. Therefore, in those works, naturally, the thickness of the disk
does not play any role and consequently cannot influence the extent of the domains of
instability.

To perform the stability analysis of such stratified disks the common practice of taking
the Laplace transform for arbitrary initial conditions (IC), consequently reducing the set
of linear equations describing dynamical system to the single inhomogeneous ordinary
differential equation (ODE), and solving the latter subject to certain boundary conditions
(BC), is employed [see for example the well-known work of Landau (1946)].

The BC of the considered problem are obtained due to the requirement that at z →
±∞, where ρ → 0 and Bz = const, the energy flux of the perturbation is finite.

The solution of such problems is facilitated by obtaining the natural frequencies of the
bounded system ωn for which the state vector of the linearized dynamical system may
be written as un(z, t) = An (z)e−iωn t , where An (z) are the eigenfunctions of the BVP
subjected to specific BC. See also Sano & Miyama (1999), Coppi & Coppi (2001), Coppi &
Keyes (2003).
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Figure 1. Left panel. Growth rate Γ vs plasma beta parameter for the first five eigenfunctions
(n = 0, .., 4). Right panel. Axial standing wave number of the most unstable mode as a function
of the plasma beta.

The full solution of the dynamical evolution in time of a localized Gaussian wave packet
using such techniques has been examined recently by Liverts & Mond 2008.

We summarize our results as follows.
• It has been shown analytically and numerically that in the case of sufficiently thin

disk in the sense of the disk thickness cs/Ω and the Alfvén length VA/Ω ratio which are
defined also by the plasma beta 2c2

s/V 2
A (β < β∗ Fig. 1), there is no instability at all

and the disk is globally stable. It is instructive to note that the importance of studying
the influence of the finite size of the system on its stability has been demonstrated by
Budker (1956), Sturrock (1958) who reported that the size of system plays a stabilizing
role for the two stream instability. If the disk is thin enough, then the localized initial
perturbations do not grow in time, they just move back and forth with the local Alfvén
velocity (Liverts & Mond 2008).
• If the thickness of the disk increases (β > β∗ Fig. 1,left panel) so does the number of

unstable modes. Asymptotic estimation reveals that n∗ (Fig. 1,right panel) is proportional
to

√
β. This implies that the wavelength of the most unstable mode is of the order of

h/n∗ ∼ VA/Ω (where h is the thickness of the disk).
• Considering the boundary effects may have a large impact on the design of laboratory

experiments (Couette flows) to model MRI. See Noguchi et al. (2002), Rüdiger et al.
(2006), Ji et al. (2006).
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