INVARIANT MEASURES ON DOUBLE COSET SPACES

TENG-SUN LIU

(Received 26 March 1965)

1. Introduction

Let G be a locally compact group with left invariant Haar measure m. Let H be a closed subgroup of G and K a compact subgroup of G. Let R be the equivalence relation in G defined by $(a, b) \in R$ if and only if a = kbh for some k in K and h in H. We call E = G/R the double coset space of G modulo K and H. Denote by α the canonical mapping of G onto G. It can be shown that G is a locally compact space and G is continuous and open. Let G be the normalizer of G in G, i.e.

$$N = \{g \in G : gK = Kg\}.$$

There is a naturally defined mapping $\pi: N \times E \to E$ given by

$$\pi(n, \alpha(g)) = n\alpha(g) = \alpha(ng).$$

It can be verified that π is well-defined, continuous and open, and that (N, E, π) is a transformation group.

A positive Radon measure v on E is said to be relatively invariant if v is not identically zero and if

$$\int f(nx)d\nu(x) = \chi(n) \int f(x)d\nu(x)$$

for every positive continuous function f with compact support and for every $n \in N$. The function χ occurring in this definition is called the *modular function* of v; it is necessarily a real character on N, i.e., a continuous homomorphism of N into the multiplicative group of positive real numbers. A relatively invariant measure is said to be *invariant* if its modular function is identically 1.

In this paper we shall prove that a necessary and sufficient condition for the existence of an invariant measure on E is that there exists a non-zero positive Radon measure β on G such that

$$\int f(ng)d\beta(g) = \int f(g)d\beta(g)$$

and

$$\int f(gh^{-1})d\beta(g) = \delta(h) \int f(g)d\beta(g)$$

for all continuous function f with compact support and all $n \in \mathbb{N}$, $h \in H$ (δ denotes the modular function of a left invariant Haar measure on H). For the special case where K is the identity group and hence E is the homogeneous space G/H, a condition was given by A. Weil (see [5] or Theorem 4.5). Our result is a generalization of his. We shall also give conditions for a relatively invariant measure on E to exist in various special cases. We take E. Hewitt and E. A. Ross [2] as our basic reference on Haar measures and group algebras.

The author wishes to express his cordial thanks to C. Ionescu Tulcea for many helpful discussions and suggestions.

2. Preliminaries

Let m be a left invariant Haar measure on G with modular function Δ . Let μ be a left invariant Haar measure on H with modular function δ and let λ be the Haar measure on K. Since N is a closed subgroup of G, it also has a left invariant Haar measure which we denote by ω ; the modular function of ω is denoted by θ . For a locally compact space Z, the symbol $\mathcal{K}(Z)$ will be used to denote the set of all positive continuous functions on Z with compact support. For $f \in \mathcal{K}(G)$ and $g_1 \in G$, $f_{g_1}(g) = f(g_1g)$ and $f^{g_1}(g) = f(gg_1^{-1})$.

LEMMA 2.1. If ξ is a real character on K, then ξ is identically 1.

PROOF. Since ξ is a continuous homomorphism, $\xi(K)$ is a compact subgroup of the multiplicative group of positive real numbers. The assertion follows from the fact that the latter group has no non-trivial compact subgroup.

LEMMA 2.2. $\int f(k)d\lambda(k) = \int f(nkn^{-1})d\lambda(k)$ for all $f \in \mathcal{K}(K)$ and $n \in N$.

PROOF. Consider the positive Radon measure λ_n on K defined by

$$\lambda_n(t) = \int f(nkn^{-1})d\lambda(k).$$

For every $t \in K$ we have

$$\lambda_n(f_t) = \int f_t(nkn^{-1})d\lambda(k) = \int f(tnkn^{-1})d\lambda(k);$$

replacing k by $n^{-1}t^{-1}nk$ in the above integral we obtain

$$\lambda_n(f_t) = \int f(nkn^{-1})d\lambda(k) = \lambda_n(f).$$

Thus λ_n is a left invariant Haar measure on K. Since $\lambda_n(1) = \int d\lambda(k) = \lambda(1)$, we conclude that $\lambda_n = \lambda$.

Lemma 2.3. There is a well-defined mapping from $\mathcal{K}(G)$ into $\mathcal{K}(E)$ given by

$$f \to \bar{f}$$
 where $\bar{f}(\alpha(g)) = \iint f(kgh)d\lambda(k)d\mu(h)$.

This mapping has the following properties:

- (1) $\overline{f_1+f_2} = \overline{f_1}+\overline{f_2};$
- (2) $r \ge 0 \Rightarrow \overline{rf} = rf$;
- (3) it is onto;
- (4) it commutes with the operation by N, i.e., $\bar{f}_n = (\bar{f})_n$ for all $n \in \mathbb{N}$.

PROOF. It is easy to see that

$$\alpha(g) = \alpha(g') \Rightarrow \iint f(kgh)dkdh = \iint f(kg'h)dkdh;$$

hence the mapping $f \to \overline{f}$ is well-defined. The assertions (1) and (2) are obvious. Let us now prove (3). Let $F \in \mathcal{K}(E)$. There exists a compact subset D of G such that $\alpha(D) = \text{Supp } F$. Let $f \in \mathcal{K}(G)$ be such that f(d) > 0 for all $d \in D$. Define a function f_1 on G by

$$f_1(g) = \begin{cases} \frac{f(g)F(\alpha(g))}{f(\alpha(g))} & \text{if } f(\alpha(g)) \neq 0, \\ 0 & \text{if } f(\alpha(g)) = 0. \end{cases}$$

Since $f(\alpha(g)) > 0$ for $g \in \alpha^{-1}$ (Supp F) and $F(\alpha(g)) = 0$ for $g \in G - \alpha^{-1}$ Supp F), which is an open set in G, we see that $f_1 \in \mathcal{K}(G)$. Clearly $f_1 = F$. Thus (3) is proved.

Finally the assertion (4) is obtained by direct computations:

$$\bar{f}_n(\alpha(g)) = \iint f(nkgh)dkdh = \iint f(nkn^{-1}ngh)dkdh = \iint f(kngh)dkdh
= \bar{f}(\alpha(ng)) = \bar{f}(n\alpha(g)) = (\bar{f})_n(\alpha(g)).$$

Theorem 2.1. If ν is a positive Radon measure on E, then the positive Radon measure $\bar{\nu}$ on G defined by

(*)
$$\int f(g)d\hat{\nu}(g) = \int \bar{f}(x)d\nu(x)$$

has the following properties:

(i')
$$\int f_k(g)d\bar{v}(g) = \int f(g)d\bar{v}(g)$$
 for all $f \in \mathcal{K}(G)$, $k \in K$;

(ii)
$$\int f^h(g)d\bar{v}(g) = \delta(h) \int f(g)d\bar{v}(g)$$
 for all $f \in \mathcal{K}(G)$, $h \in H$.

Conversely, if a positive Radon measure \bar{v} on G has the properties (i') and (ii), then the equation (*) defines a positive Radon measure v on E.

PROOF. Suppose v is a positive Radon measure on E, then the \tilde{v} defined by (*) is clearly a positive Radon measure on G. Since $\tilde{f}_k = \tilde{f}$, \tilde{v} satisfies (i'). Since $\tilde{f}^k = \delta(h)\tilde{f}$, \tilde{v} also satisfies (ii).

Suppose now that \bar{v} is a positive Radon measure on G satisfying (i') and (ii). To show (*) defines a positive Radon measure on E all we have to do is to show the following implication:

$$f = 0 \Rightarrow \int f(g)d\tilde{v}(g) = 0.$$

Suppose $\overline{f} = 0$. Let $f' \in \mathcal{K}(G)$ be such that $\overline{f'} = 1$ on α (Supp f). We have, from

$$\iint f(kgh)dkdh = 0,$$

that

$$0 = \iiint f'(g)f(kgh)dkdhd\bar{v}(g)$$

$$= \iiint f'(gh^{-1})f(kg)\delta(h^{-1})dkdhd\bar{v}(g) \quad (replace g by gh^{-1} and use (ii))$$

$$= \iiint f'(gh)f(kg)dkdhd\bar{v}(g)$$

$$= \iiint f'(k^{-1}gh)f(g)dkdhd\bar{v}(g) \quad (replace g by k^{-1}g and use (i'))$$

$$= \iiint f'(kgh)f(g)dkdhd\bar{v}(g)$$

$$= \int f'(\alpha(g))f(g)d\bar{v}(g)$$

$$= \int f(g)d\bar{v}(g).$$

This completes the proof.

3. Various conditions

We observe first that the equation (*) in Section 2 establishes a one to one correspondence between Radon measures on E and a subset of Radon measures on E. The measures on E corresponding to relatively invariant measures on E are given by the following theorem.

THEOREM 3.1. ν is relatively invariant with modular function χ if and only if $\bar{\nu}$ has the following properties:

(i)
$$\int f_n(g)d\bar{\nu}(g) = \chi(n) \int f(g)d\bar{\nu}(g)$$
 for all $f \in \mathcal{K}(G)$, $n \in N$;

(ii)
$$\int f^h(g)d\bar{\nu}(g) = \delta(h) \int f(g)d\bar{\nu}(g)$$
 for all $f \in \mathcal{K}(G)$, $h \in H$.

PROOF. If ν is relatively invariant with modular function χ , then $\bar{\nu}$ satisfies (ii). This follows directly from Theorem 2.1. Since the mapping $f \to \bar{f}$ commutes with the operation by N, we have

$$\bar{\nu}(f_n) = \nu(\overline{f_n}) = \nu((\bar{f})_n) = \chi(n)\nu(\bar{f}) = \chi(n)\bar{\nu}(f).$$

Thus \vec{v} also satisfies (i).

Conversely, if $\bar{\nu}$ satisfies (i) and (ii), then since $\chi(k) = 1$ for all $k \in K$, $\bar{\nu}$ satisfies (i') and (ii) of Section 2. Therefore it makes sense to talk about ν . Since

$$\nu((\bar{f})_n) = \nu(\bar{f}_n) = \bar{\nu}(f_n) = \chi(n)\bar{\nu}(f) = \chi(n)\nu(\bar{f}),$$

 ν is relatively invariant with modular function χ .

Remark 3.1. The condition stated in the Introduction follows from Theorem 3.1.

Remark 3.2. The study of relatively invariant measures on E may be reduced to the study of positive Radon measures on G which satisfy (i) and (ii).

THEOREM 3.2. If $\Delta(h) = \delta(h)$ for all $h \in H$, then there exists an invariant measure ν on E with Supp $\nu = E$.

PROOF. If $\Delta(h) = \delta(h)$ for all $h \in H$, then the Haar measure m satisfies (ii) and (i) with $\chi = 1$. Therefore $m = \bar{\nu}$ where ν is an invariant measure on E. Since Supp m = G, Supp $\nu = E$.

COROLLARY 3.1. If G is unimodular and if H is discrete, then there exists an invariant measure ν on E with Supp $\nu = E$.

COROLLARY 3.2. If H is compact, then there exists an invariant measure v on E with Supp v = E.

THEOREM 3.3. If ξ is a real character on G such that $\Delta(h) = \xi(h)\delta(h)$ for all $h \in H$, then there exists a relatively invariant measure v on E such that Supp v = E and $\xi|_N$ is the modular function of v.

PROOF. Let $\bar{v} = \xi^{-1} \cdot m$, i.e.,

$$\int f(g)d\bar{\nu}(g) = \int f(g)\xi^{-1}(g)dm(g),$$

Since

$$\int f_n(g)\xi^{-1}(g)dm(g) = \int f_n(g)\xi^{-1}(n^{-1})\xi^{-1}(ng)dm(g) = \xi(n)\int f(g)\xi^{-1}(g)dm(g)$$
 and

$$\int f^{h}(g)\xi^{-1}(g)dm(g) = \int f^{h}(g)\xi^{-1h}(g)\xi^{-1}(h)dm(g)
= \xi^{-1}(h)\Delta(h) \int f(g)\xi^{-1}(g)dm(g) = \delta(h) \int f(g)\xi^{-1}(g)dm(g),$$

 $\tilde{\nu}$ satisfies (i) and (ii). Therefore ν is a relatively invariant measure on E with modular function $\xi|_{N}$. Since Supp $\nu = G$, Supp $\tilde{\nu} = E$.

Theorem 3.4. If the modular function δ on H can be extended to a real character on G, then there exists a relatively invariant measure ν on E with $\operatorname{Supp} \nu = E$.

PROOF. If ξ is a real character on G such that $\xi|_H = \delta$, then Δ/ξ is a real character on G and $\Delta(h) = \Delta/\xi(h)\delta(h)$ for all $h \in H$. The conclusion then follows from Theorem 3.3.

4. Special cases

THEOREM 4.1. Suppose N is not locally negligible. If v is a relatively invariant measure on E with modular function χ such that Supp $v \cap \alpha(N) \neq \emptyset$, then Supp $v \supset \alpha(N)$ and $\Delta(t) = \chi(t)\delta(t)$ for all $t \in N \cap H$.

PROOF. We note first that N not locally negligible is equivalent to N open in G. Thus the restriction $m|_N$ of m to N is left invariant and is not 0. Hence $\theta = \Delta|_N$ and we may assume $\omega = m|_N$. Also since N is open every $f \in \mathcal{K}(N)$ may be regarded as a function in $\mathcal{K}(G)$, so that the mapping $f \to f$ introduced in Section 2 gives a mapping from $\mathcal{K}(N)$ into $\mathcal{K}(E)$. We remark that the image of this mapping contains $\mathcal{K}(E, \alpha(N))$, i.e., the subset of $\mathcal{K}(E)$ consisting of all functions in $\mathcal{K}(E)$ with support contained in $\alpha(N)$. In fact, if $F \in \mathcal{K}(E, \alpha(N))$, then in the proof of Lemma 2.3, the compact set D can be taken in N. Hence we may suppose the f has support contained in N. It follows that the f_1 is in $\mathcal{K}(N)$. Therefore $F = f_1$.

Define a positive Radon measure ω' on N by

$$\omega'(f) = \nu(\bar{f}), f \in \mathcal{K}(N).$$

The above remark together with the fact that Supp $\nu \cap \alpha(N) \neq \emptyset$ implies that $\omega' \neq 0$. Now

$$\omega'(f_n) = \nu(\overline{f_n}) = \nu((\overline{f})_n) = \chi(n)\nu(\overline{f}) = \chi(n)\omega'(f).$$

Hence

$$\omega'(\chi f_n) = \chi(n^{-1})\omega'((\chi f)_n) = \chi(n^{-1})\chi(n)\omega'(\chi f) = \omega'(\chi f).$$

Thus $f \to \omega'(\chi f)$ is left invariant. By multiplying a positive constant if necessary, we may therefore assume that $\chi \cdot \omega' = \omega$.

For any $t \in N \cap H$, we have

$$\theta(t) \int f(n)d\omega(n) = \int f^{\dagger}(n)d\omega(n) = \int d\nu(\alpha(g)) \int \int (\chi f^{\dagger})(kgh)dkdh$$

$$= \int d\nu(\alpha(g)) \int \int \chi(t)(\chi f)^{\dagger}(kgh)dkdh$$

$$= \chi(t) \int d\nu(\alpha(g)) \int \int \delta(t)(\chi f)(kgh)dkdh$$

$$= \chi(t)\delta(t) \int d\nu(\alpha(g)) \int \int (\chi f)(kgh)dkdh$$

$$= \chi(t)\delta(t) \int f(n)d\omega(n).$$

Hence $\theta(t) = \chi(t)\delta(t)$. Since $\Delta(t) = \theta(t)$ we obtain $\Delta(t) = \chi(t)\delta(t)$.

Since for any point x in Supp $v \cap \alpha(N)$, we have $Nx = \alpha(N)$, the assertion Supp $v \supset \alpha(N)$ follows from the fact that v is relatively invariant.

THEOREM 4.2. If N is not locally negligible and if $H \subset N$, then a necessary and sufficient condition for the existence of a relatively invariant measure v on E with modular function χ is that there exist a positive Radon measure v_1 on $\alpha(N)$ and a positive Radon measure v_2 on $E-\alpha(N)$ such that

- 1) at least one of v_1 and v_2 is not identically zero;
- 2) if $v_i \neq 0$, then v_i is relatively invariant with χ as its modular function;
- 3) $v|_{\alpha(N)} = v_1 \text{ and } v|_{E-\alpha(N)} = v_2.$

PROOF. Since $H \subset N$, $\alpha(G-N) = E-\alpha(N)$. Hence E is a disjoint union of $\alpha(N)$ and $\alpha(G-N)$ where both subsets are locally compact. Since $\pi(N \times \alpha(N)) = \alpha(N)$ and $\pi(N \times (E-\alpha(N))) = E-\alpha(N)$, we have two transformation groups $(N, \alpha(N), \pi_1)$ and $(N, E-\alpha(N), \pi_2)$ where π_1 and π_2 are restrictions of π . The verification of our theorem is then straight forward.

THEOREM 4.3. Suppose $H \subset N$. If v is a relatively invariant measure on E with modular function χ such that $v|_{\alpha(N)} \neq 0$, then $\theta(h) = \chi(h)\delta(h)$ for all $h \in H$. Conversely if χ is a real character on N such that $\theta(h) = \chi(h)\delta(h)$ for all $h \in H$, then there exists a relatively invariant measure v on E with χ as its modular function such that $v|_{\alpha(N)} \neq 0$.

Proof. Suppose ν is a relatively invariant measure on E with modular function χ such that $\nu_1 = \nu|_{\alpha(N)} \neq 0$. Since $H \subset N$, we can define a positive Radon measure ω' on N by

$$\omega'(t) = \int d\nu_1(\alpha(n)) \iint f(knh)d\lambda(k)d\mu(h), \qquad f \in \mathcal{K}(N).$$

Then a process similar to the one used in the proof of Theorem 4.1 shows that $\chi \cdot \omega'$ is a left invariant Haar measure on N and that $\theta(h) = \chi(h)\delta(h)$ for all $h \in H$.

Suppose now that χ is a real character on N such that $\theta(h) = \chi(h)\delta(h)$ for all $h \in H$. Since $H \subset N$, it can be verified that (cf. Theorem 2.1)

$$f = 0 \Rightarrow \int f(n)\chi(n^{-1})d\omega(n) = 0, \quad f \in \mathcal{K}(G).$$

Hence $f \to \nu(f) = \int f(n)\chi(n^{-1})d\omega(n)$ defines a positive Radon measure on E. It is clear from the definition of ν that ν is not identically 0 and that $\nu|_{E-\alpha(N)} = 0$. Hence $\nu|_{\alpha(N)} \neq 0$. The fact that ν is relatively invariant with χ as its modular function is obtained by

$$v((\bar{f})_t) = v(\bar{f}_t) = \int f(tn)\chi(n^{-1})d\omega(n) = \chi(t)\int f(tn)\chi((tn)^{-1})d\omega(n)$$

= $\chi(t)\int f(n)\chi(n^{-1})d\omega(n) = \chi(t)v(\bar{f}).$

COROLLARY 4.1. Suppose $H \subset N$ and let ξ be a real character on G. If $\Delta(h) = \xi(h)\delta(h)$ for all $h \in H$, then $\Delta(h) = \theta(h)$ for all $h \in H$.

PROOF. By Theorem 3.3, there exists a relatively invariant measure ν on E such that Supp $\nu = E$ and $\xi|_N$ is the modular function of ν . By Theorem 4.3, $\theta(h) = \xi(h)\delta(h)$ for all $h \in H$. Therefore $\Delta(h) = \theta(h)$ for all $h \in H$.

THEOREM 4.4. Suppose $H \subset N$. If there exists a relatively invariant measure ν on E with $\nu|_{\alpha(N)} \neq 0$, then δ can be extended to a real character on N. Conversely, if δ can be extended to a real character on N, then there exists a relatively invariant measure on E.

PROOF. Suppose ν is a relatively invariant measure on E with $\nu|_{\alpha(N)} \neq 0$. Let χ be the modular function of ν . Then θ/χ is a real character on N whose restriction to H is, by Theorem 3.4, δ .

Suppose now that χ is a real character on N such that $\chi|_H = \delta$. Then $\theta(h) = \theta/\chi(h)\delta(h)$ for all $h \in H$; hence it follows from Theorem 4.3 that there exists a relatively invariant measure on E.

THEOREM 4.5. (A. Weil) If K is an invariant subgroup of G, then the following statements are true:

- (1) If v is a relatively invariant measure on E with modular function χ , then $\Delta(h) = \chi(h)\delta(h)$ for all $h \in H$. If v' is also a relatively invariant measure on E with the same modular function χ , then v' = rv for some positive number r.
- (2) If χ is a real character on G such that $\Delta(h) = \chi(h)\delta(h)$ for all $h \in H$, then there exists a relatively invariant measure on E with χ as its modular function.
 - (3) Every relatively invariant measure on E has support the whole space E.

PROOF. Since K is invariant, N = G. Hence N is not locally negligible and $H \subset N$. Thus all previous results are applicable. Hence the theorem.

THEOREM 4.6. If H is an invariant subgroup of N, then there exists an invariant measure on E.

PROOF. Consider the homogeneous space N/H. Since H is invariant N/H is actually a group. It is evident that the left invariant Haar measure on N/H is an invariant measure on N/H. Hence by Theorem 4.5, $\theta(h) = \delta(h)$ for all $h \in H$. The conclusion then follows from Theorem 4.3.

THEOREM 4.7. If H is an invariant subgroup of G, then there exists an invariant measure on E.

PROOF. Using a similar argument as in the proof of Theorem 4.6, we obtain $\Delta(h) = \delta(h)$ for all $h \in H$. Theorem 3.2 can then be applied to complete the proof.

5. Some further remarks

In this last section we point out how an invariant measure on E induces an action of $L^1(N)$ on $L^p(E)$ and to investigate a related operator problem. We also discuss the case when H is compact.

Let ν be an invariant measure on E. Then a mapping similar to the ordinary group algebra convolution can be defined on $L^1(N,\omega)\times L^p(E,\nu)$ to $L^p(E,\nu)$, $(p\geq 1)$, namely, for $f\in L^1(N)$ and $j\in L^p(E)$ the function f^*j on E is defined by

$$f^*j(x) = \int f(n)j(n^{-1}x)d\omega(n).$$

It can be checked that $(f, j) \to f^*j$ is a bilinear mapping of $L^1(N) \times L^p(E)$ into $L^p(E)$; in fact we have $||f^*j||_p \le ||f||_1 ||f||_p$ for all $(f, j) \in L^1(N) \times L^p(E)$.

For every $j \in L^p(E)$ the mapping $T_j: f \to f^*j$ is a bounded linear transformation of $L^1(N)$ into $L^p(E)$. Since

$$f_{n'}^*j(n) = \int f(n'n)j(n^{-1}x)d\omega(n) = \int f(n)j(n^{-1}n'x)d\omega(n) = (f^*j)_{n'}(x),$$

we see that the operator T_j commutes with the operation by N. Thus the set $\{T_j: j \in L^p(E)\}$ constitutes a subset of the set of all bounded linear transformations of $L^1(N)$ into $L^p(E)$ commuting with the operation by N. The latter set is characterized by the theorem below:

THEOREM 5.1. A bounded linear transformation T of $L^1(N)$ into $L^p(E)$ $(1 \le p < \infty)$ commutes with the operation by N if and only if $f^*Tb = T(f^*b)$ for all f, g in $L^1(N)$.

PROOF. For any $y \in L^q(E)$ where 1/p+1/q=1, the mapping $f \to \int (Tf)yd\nu$ is a bounded linear functional on $L^1(N)$. Hence there exists $z \in L^\infty(N)$ such that

$$\int_{E} (Tf)ydv = \int_{N} fzd\omega.$$

Now

$$\int_{E} T(f^*b)(x)y(x)d\nu(x) = \int_{N} f^*b(n')z(n')d\omega(n')$$

$$= \int_{N} \int_{N} f(n)b_{n-1}(n')z(n')d\omega(n')d\omega(n)$$

$$= \int_{N} \int_{E} f(n)Tb_{n-1}(x)y(x)d\nu(x)d\omega(n),$$

and

$$\int_{E} (f^*Tb)(x)y(x)dv(x) = \int_{E} \int_{N} f(n)(Tb)(n^{-1}x)y(x)d\omega(n)dv(x).$$

By comparing these two expressions we see that T commutes with the operation by N if and only if $T(f^*b) = f^*Tb$. The proof is completed.

Finally suppose H is compact. Then the canonical mapping $\alpha: G \to E$ is proper, i.e., the inverse image $\alpha^{-1}(A)$ of every compact subset A of E is a compact subset of G. We therefore have a one-to-one mapping from $\mathcal{K}(E)$ into $\mathcal{K}(G)$ given by

$$\bar{\alpha}(\bar{f}) = \bar{f} \circ \alpha.$$

The positive Radon measure m^{α} on E defined by

$$m^{\alpha}(\bar{f}) = m(\bar{\alpha}(\bar{f})) = \int \bar{f}(\alpha(g))dm(g)$$

is clearly an invariant measure on E. In fact, m^{α} is nothing else but the invariant measure ν obtained in Corollary 3.2.

For each $x \in E$ let m_x be the positive Radon measure on $E \times E$ defined by

$$m_{\alpha}(u) = \int u(\alpha(g), \alpha(g^{-1}t))dm(g)$$
, where $t \in \alpha^{-1}(x)$.

Note that if $s \in \alpha^{-1}(x)$, then s = kth for some $k \in K$, $h \in H$ and we have

$$u(\alpha(g), \alpha(g^{-1}s))dm(g) = \int u(\alpha(g), \alpha(g^{-1}kth))dm(g)$$

=
$$\int u(\alpha(kg), \alpha(g^{-1}th))dm(g) = \int u(\alpha(g), \alpha(g^{-1}t))dm(g).$$

Hence m_x is well-defined.

In terms of the measures m_a a multiplication on $\mathcal{K}(E)$ can be defined by the formula below:

$$\bar{f}^*\bar{p}(x) = m_x(\bar{f} \otimes \bar{p}) = \int \bar{f}(y)\bar{p}(z)dm_x(y,z).$$

It is not hard to verify that we can extend our considerations from $\mathcal{K}(E)$ to $L^1(E, m^{\alpha})$. Then the above defined multiplication together with the other operations defines an algebra structure on $L^1(E, m^{\alpha})$. Under the norm defined by m^{α} , $L^1(E, m^{\alpha})$ is actually a Banach algebra. The idea of the

above considerations is from C. Ionescu Tulcea [4]. We remark that if G is unimodular and if H is taken to be K, then an involution can be introduced in $L^1(E)$. An example of a generalized convolution algebra can be obtained in this way. For the notion of a generalized convolution algebra we refer the reader to [3] and [4]; for this particular example see [4].

References

- [1] N. Bourbaki, Eléments de Mathématique, Intégration, Chaps. I-IV, Hermann, Paris (1952-57).
- [2] E. Hewitt and K. A. Ross, Abstract harmonic analysis, part I, Springer, Berlin (1963).
- [3] C. Ionescu Tulcea and A. B. Simon, Spectral representations and unbounded convolution operators, Proc. Nat. Acad. Sci. U.S.A., 45 (1959) 1765-67.
- [4] C. Ionescu Tulcea, Generalized convolution algebras (unpublished manuscript).
- [5] A. Weil, L'intégration dans les groupes topologiques et ses applications, Paris, 1938.

University of Pennsylvania and University of Massachusetts