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1. Introduction

Let G be a locally compact group with left invariant Haar measure .
Let H be a closed subgroup of G and K a compact subgroup of G. Let R
be the equivalence relation in G defined by (a, b) € R if and only if ¢ = kbh
for some % in K and k in H. We call E = G/R the double coset space of
G modulo K and H. Denote by « the canonical mapping of G onto E. It
can be shown that E is a locally compact space and « is continuous and open.
Let N be the normalizer of K in G, i.e.

N = {geG:gK = Kg}.
There is a naturally defined mapping n: NX E — E given by

7(n, a(g)) = na(g) = a(ng).
It can be verified that x is well-defined, continuous and open, and that
(N, E, @) is a transformation group.
A positive Radon measure » on E is said to be relatively invariant if
» is not identically zero and if

[ Hn)dv(z) = x(n) [ f(@)dv(x)

for every positive continuous function f with compact support and for every
#n e€N. The function g occurring in this definition is called the modular
function of v; it is necessarily a real character on N, i.e., a continuous
homomorphism of N into the multiplicative group of positive real numbers.
A relatively invariant measure is said to be invariant if its modular function
is identically 1.

In this paper we shall prove that a necessary and sufficient condition
Jor the existence of an invariant measure on E is that there exists a non-zero
positive Radon measure B on G such that

[ Hne)ap(e) = [ Fe)aBle)

and
[ Hew)aple) = o(r) [ F(e)aple)
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for all continuous function | with compact support and all neN, he H (8
denotes the modular function of a left invariant Haar measure on H).
For the special case where K is the identity group and hence E is the homo-
geneous space G[H, a condition was given by A. Weil (see [5] or Theorem
4.5). Our result is a generalization of his. We shall also give conditions for a
relatively invariant measure on E to exist in various special cases. We
take E. Hewitt and R. A. Ross [2] as our basic reference on Haar measures
and group algebras.

The author wishes to express his cordial thanks to C. Ionescu Tulcea
for many helpful discussions and suggestions.

2. Preliminaries

Let m be a left invariant Haar measure on G with modular function 4.
Let x4 be a left invariant Haar measure on H with modular function §
and let A be the Haar measure on K. Since N is a closed subgroup of G,
it also has a left invariant Haar measure which we denote by w; the modular
function of w is denoted by 6. For a locally compact space Z, the symbol
A" (Z) will be used to denote the set of all positive continuous functions
on Z with compact support. For f e #°(G) and g, € G, f, (g) = /(g:¢) and

11(g) = f(eer")-
LeEMMA 2.1, If & s a real character on K, then & is identically 1.

ProorF. Since £ is a continuous homomorphism, £(K) is a compact
subgroup of the multiplicative group of positive real numbers. The assertion
follows from the fact that the latter group has no non-trivial compact
subgroup.

Lemma 2.2. [f(k)aA(R) = [ {(nkn~1)dA(k) for all fe X (K) and neN.
Proor. Consider the positive Radon measure 4, on K defined by
Aa(f) = [ Hoskn—1)an(k).
For every e K we have
Aalf) = [ fu(nkn=)da(k) = [ Fembn~t)dA(R);
replacing & by n~'#-1xnk in the above integral we obtain
La(f) = [ Hukn=1dA(k) = A0 (9)-

Thus 4,, is a left invariant Haar measure on K. Since 4, (1) = [ dA(k) = A(1),
we conclude that 4, = 4.

https://doi.org/10.1017/51446788700028524 Published online by Cambridge University Press


https://doi.org/10.1017/S1446788700028524

{31 Invariant measures on double coset spaces 497

LEMMA 2.3. There is a well-defined mapping from A (G) into A (E)

given by
f~T where J(x(e)) = [ [ 1(keh)a(E)du(h).

This mapping has the following properties:

1) f1+fz=_fl+f2;

(2) r=20=rf=1f;

(3) 4t ¢s onto;

(4) 1t commutes with the operation by N, i.e., f, = (f), for all neN.

Proor. It is easy to see that

a(g) = (') = [[ f(kgh)dkah = [[ t(kg'h)dkdh;

hence the mapping f— f is well-defined. The assertions (1) and (2) are
obvious. Let us now prove (3). Let F e ) (E). There exists a compact
subset D of G such that «(D) == Supp F. Let fe £ (G) be such that
f(@) > 0 for all d e D. Define a function f, on G by

he)=1{ Fla@) if fle(g) #0,

0 it flx(g)) = 0.

Since fla(g)) > 0 for gea! (Supp F) and F(x(g)) =0 for ge G—a?
Supp F), which is an open set in G, we see that f, € #°(G). Clearly f, = F.
Thus (3) is proved.

Finally the assertion (4) is obtained by direct computations:

Juwle) = [ f Hnkgh)dkah = [ [ {(nkn—ngh)dkdh = | [ Hengh)aran
= fla(ng)) = f(na(®)) = (f)a(x(g))-

THEOREM 2.1. If v is a positive Radon measure on E, then the positive
Radon measure % on G defined by

(%) [ Heds(e) = [ F)dr(@)

has the following properties:
(@) [fule)ds(e) = [f(e)ds(e)  jor all fe A (G), keK;
(@) [Pe)dse) = 8(h) [ He)ds(e) for all fe A (G), heH.

Conversely, if a positive Radon measure 5 on G has the properties (i')
and (ii), then the equation (*) defines a positive Radon measure » on E.
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PROOF. Suppose v is a positive Radon measure on E, then the # defined
by (*) is clearly a positive Radon measure on G. Since f; = f, # satisfies (i’).
Since f* = (k)f, # also satisfies (ii).

Suppose now that # is a positive Radon measure on G satisfying (i')
and (ii). To show (*) defines a positive Radon measure on E all we have to
do is to show the following implication:

F=0=[f@)as(e) =o.

Suppose f = 0. Let f' € #'(G) be such that ' = 1 on « (Supp /). We have,
from

| [ Hkgh)dkan = o,
that

0 = [[[ #(e)f(keh)drands(g)
= [[[ ' eh ™)1 (ke)d (h)akands (g) (replace g by gh~ and use (ii))
= [[[ #(en)t(ke)ahdnas (g)
= [[[r&em(e)akandse)  (replace g by kg and use (i)
= [[[ # (keh)t(g)ahanas )
= [F(a(e)t(e)d5(e)
= [ He)as(e).

This completes the proof.

3. Various conditions

We observe first that the equation (*) in Section 2 establishes a one
to one correspondence between Radon measures on E and a subset of
Radon measures on G. The measures on G corresponding to relatively
invariant measures on E are given by the following theorem.

THEOREM 3.1. v 4s relatively invariant with modular function y if and
only if ¥ has the following propertics:

G)  [7ale)ds(e) = x(m) [ He)ds(g) for all fe H'(G), neN;
@) [e)sle) = (k) [ He)dslg) tor all fe X (G), heH.
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ProoF. If » is relatively invariant with modular function %, then #
satisfies (ii). This follows directly from Theorem 2.1. Since the mapping
f — f commutes with the operation by N, we have

3(fa) = v(fa) = #((N)a) = 2 ()2 () = 2(m)3(f).
Thus # also satisfies (i).
Conversely, if # satisfies (i) and (ii), then since y(k) = 1 for all ke K,
# satisfies (i’) and (ii) of Section 2. Therefore it makes sense to talk about ».
Since
y((F)) = »(Fa) = 3(fn) = x@)3() = 2(m)(F).
» is relatively invariant with modular function .

Remark 3.1. The condition stated in the Introduction follows from
Theorem 3.1.

Remark 3.2. The study of relatively invariant measures on E may be
reduced to the study of positive Radon measures on G which satisfy (i)
and (ii).

THEOREM 3.2. If A(h) = 8(h) for all h € H, then there exists an invariant
measure v on E with Supp » = E.

Proor. If A(h) = 3(h) for all b € H, then the Haar measure m satisfies
(i) and (i) with y = 1. Therefore m = # where » is an invariant measure
on E. Since Suppm = G, Suppv = E.

COROLLARY 3.1. If G is unimodular and if H is discrete, then there exists
an invariant measure v on E with Suppv = E,

COROLLARY 3.2. If H is compact, then there exists an invariant measure
v on E with Suppy = E

THEOREM 3.3. If & is a real character on G such that A(h) = E(h)S(h)
for all h € H, then there exists a relatively invariant measure v on E such that
Supp v = E and &|y ts the modular function of ».

ProoF. Let 7 = &1+ m, i.e.,

[Heranle) = [ He)e(g)im(e),

Since

[ @ @)am(e) = [ 1. ()6 ()2 (ng)dm(g) = () [ H(&)E(@)am (g)

and

[ P @)am(e) = [ Pe)e™ e (h)am(g)
= 1WA [ 1e)e g)am(g) = 8(h) [ F(g)e(g)am e),
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# satisfies (i) and (ii). Therefore » is a relatively invariant measure on E
with modular function £|y. Since Supp» = G, Supp % = E.

THEOREM 3.4. If the modular function & on H can be extended to a real
character on G, then there exisls a relatively invariant measure v on E with
Supp » = E.

ProoF. If £ is a real character on G such that &z = 6, then 4/¢ is
a real character on G and A(k) = A/&(h)é(h) for all & e H. The conclusion
then follows from Theorem 3.3.

4. Special cases

THEOREM 4.1. Suppose N is not locally negligible. If v is a relatively
invariant measure on E with modular function y such that Supp v n a(N) # 0,
then Supp » D a(N) and A(t) = x(t)o(t) for all teN n H.

Proor. We note first that N not locally negligible is equivalent to N
open in G. Thus the restriction m|y of m to N is left invariant and is not
0. Hence 6 = A|y and we may assume o = m|y. Also since N is open every
f e X (N) may be regarded as a function in J°(G), so that the mapping
f— f introduced in Section 2 gives a mapping from X (N) into ) (E).
We remark that the image of this mapping contains X (E, a(N)), i.e.,
the subset of X" (E) consisting of all functions in % (E) with support con-
tained in (). In fact, if F e X' (E, «(N)), then in the proof of Lemma 2.3,
the compact set D can be taken in N. Hence we may suppose the f has
support contained in N. It follows that the f, is in 2" (V). Therefore F = f,.

Define a positive Radon measure o’ on N by

o'(f) = »(f), f e A ().

The above remark together with the fact that Supp » n (V) # @ implies
that o’ £ 0. Now

o' (f.) = v(fa) = v((F)a) = x(0)»(f) = x(n)o’ ().

Hence
o' (2fs) = 2(e N0’ (1) .) = 2 ) x (M)’ (2f) = o' (xf)-

Thus f— w'(xf) is left invariant. By multiplying a positive constant if
necessary, we may therefore assume that y- o’ = w.
For any te N n H, we have
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8() [ mdoo(n) = [ Fm)derm) = [ av(a(e)) [[ (xr*) (kgh)dkdh
= [ar(x(@) [[ 2()(xt)*(hem)ahan
= () [ dv(x(e)) [ [ 8(0)(xt) (gh)akdh
= 2)8() [ dv(x(e) [ [ (xf) (keh)dhd
= 2(08(0) [ t(n)dos(m).

Hence 6(t) = x(¢)6(2). Since A(t) = 6(t) we obtain A(t) = x{t)é(¢).
Since for any point z in Supp » n «{N), we have Nz = «(N}), the
assertion Supp » D a(N) follows from the fact that v is relatively invariant.

THEOREM 4.2. If N is not locally negligible and if H C N, then a necessary
and sufficient condition for the existence of a relatively imvariant measure v
on E with modular function y is that there exist a positive Radon measure v,
on a(N) and a positive Radon measure vy on E—a(N) such that

1) at least one of v, and vy is not identically zero;
2) if v, # O, then v, is relatively invariant with y as its modular function;
3) ey = » and Y| p_ay) = V-

Proor. Since HCN, a(G—N) = E—«(N). Hence E is a disjoint
union of «(NV) and «(G—N) where both subsets are locally compact. Since
a(NXa(N)) = «(N) and =x(Nx(E—a(N))) = E—«(N), we have two
transformation groups (N, «(N), #;) and (N, E—a(N), z,) where #; and =,
are restrictions of =. The verification of our theorem is then straight forward.

THEOREM 4.3. Suﬁpose H CN. If v is a relatively invariant measure on
E with modular funicion y such that v|,py # O, then 6(h) = x(h)8(h) for all
he H. Conversely if y is a real character on N such that 6(h) = x(h)(h)
for all h e H, then there exists a relatively invariant measure v on E with x
as its modular function such that vl # 0.

Proor. Suppose » is a relatively invariant measure on E with modular
function x such that »; = »|,y, # 0. Since H C N, we can define a positive
Radon measure ' on N by

@' (1) = [ dn(am) [[ f(knb)arR)duih),  fe o (N).

Then a process similar to the one used in the proof of Theorem 4.1 shows
that y - @' is a left invariant Haar measure on N and that 8(k) = x(4)d(h)
for all he H.

Suppose now that g is a real character on N such that 8(h) = x(h)d(h)
for all A e H. Since H CN, it can be verified that {cf. Theorem 2.1)
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F=0= [{mzndwm) =0, feX(G).

Hence f— »(f) = [f(#)x(n')dw(n) defines a positive Radon measure
on E. Itis clear from the definition of » that » is not identically 0 and that
Y| g_a@y = 0. Hence #|,y, # 0. The fact that » is relatively invariant with
% as its modular function is obtained by

(1)) = »(f) = [ Hem)x(n=)dw(n) = () [ Fem)z((tm))deo ()
= (&) [ 1) g do (n) = 1 (t)2(]).

CoROLLARY 4.1. Suppose H CN and let & be a real character on G. If
A(h) = E(h)d(h) for all he H, then A(h) = O(h) for all he H.

Proor. By Theorem 3.3, there exists a relatively invariant measure »
on E such that Suppv = E and &|y is the modular function of ». By
Theorem 4.3, 0(h) = &£(h)6(#) for all he H. Therefore A(h) = 6(h) for
all he H.

THEOREM 4.4. Suppose H CN. If there exists a relatively invariant
measure v on E with v,y # 0, then & can be extended to a real character
on N. Conversely, if & can be extended to a real character on N, then there
exists a relatively tnvariant measure on E.

PRrOOF. Suppose » is a relatively invariant measure on E with »|,y, # 0.
Let y be the modular function of ». Then 6/y is a real character on N whose
restriction to H is, by Theorem 3.4, .

Suppose now that x is a real character on N such that y|g = 8. Then
6(h) = 0]x(h)6(h) for all A e H; hence it follows from Theorem 4.3 that
there exists a relatively invariant measure on E.

THEOREM 4.5. (A. Weil) If K is an invariant subgroup of G, then the
following statemenis are true:

(1) If v is a relatively invariant measure on E with modular function y,
then A(h) = x(h)6(h) for all h e H. If v’ is also a relatively invariant measure
on E with the same modular function y, then v' = ry for some positive number r.

(2) If x is a real character on G such that A(h) = x(h)8(h) for all he H,
then there exists a relatively invariant measure on E with y as its modular
function.

(3) Every relatively invariant measure on E has support the whole space E.

Proor. Since K is invariant, N = G. Hence N is not locally negligible
and H CN. Thus all previous results are applicable. Hence the theorem.

THEOREM 4.6. If H is an invariant subgroup ot N, then there exists an
invariant measure on E.
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Proor. Consider the homogeneous space N/H. Since H is invariant
N/H is actually a group. It is evident that the left invariant Haar measure
on N/H is an invariant measure on N/H. Hence by Theorem 4.5, 6 (k) = 8(h)
for all ke H. The conclusion then follows from Theorem 4.3.

TuEOREM 4.7. If H is an invariant subgroup of G, then there exists an
invariant measure on E.

Proor. Using a similar argument as in the proof of Theorem 4.6, we
obtain A(h) = (k) for all 2e H. Theorem 3.2 can then be applied to
complete the proof.

5. Some further remarks

In this last section we point out how an invariant measure on E
induces an action of L}*(N) on L?(E) and to investigate a related operator
problem. We also discuss the case when H is compact.

Let » be an invariant measure on E. Then a mapping similar to the
ordinary group algebra convolution can be defined on LY(N, ) X L?(E, »)
to L?(E,»), (p = 1), namely, for feL}(N) and §j e L?(E) the function
f*j on E is defined by

i) = [ im)i(v1a)do ).
It can be checked that (f, ) — f*f is a bilinear mapping of L}(N) x L?(E)
into L?(E); in fact we have ||f*f]|, < |If|lll{lI, for all (f,7) e L*(N)x L*(E).

For every jeL?(E) the mapping T;:f— f*§ is a bounded linear
transformation of L!(N) into L?(E). Since

i) = [ 1ol v t@)da(n) = [ f)i (5’ @)oo () = (1)),

we see that the operator T, commutes with the operation by N. Thus the
set {T,:7eL?(E)} constitutes a subset of the set of all bounded linear
transformations of L(N) into L?(E) commuting with the operation by N.
The latter set is characterized by the theorem below:

THEOREM 5.1. A bounded linear transformation T of LY(N) into L*(E)
(1 £ p < ©) commules with the operation by N if and only if f* Th = T (f*b)
for all f, b in L1(N).

Proor. For any yelL%E) where 1/p41/g=1, the mapping
f = [ (Tf)ydv is a bounded linear functional on L!(N). Hence there exists
ze L®(N}) such that

fa (Thydy = |, frdo.
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Now
[ T(*2) @y @)ar(@) = [, o)z ) ()
“foNf(” wt(1)2 (" )doo (0" )dew (m)
= Lsz (1) T s ()y () v (x)dew (n),
and

[z *TO) @)y (@)dv () = [, [, 1) (T) (r22)y (@)oo (m)dv ().

By comparing these two expressions we see that T commutes with the
operation by N if and only if T(f*b) = f*Tb. The proof is completed.

Finally suppose H is compact. Then the canonical mapping o : G — E
is proper, i.e., the inverse image a—1(4) of every compact subset 4 of E
is a compact subset of G. We therefore have a one-to-one mapping from
2 (E) into A" (G) given by

i(f)=Foa

The positive Radon measure m* on E defined by
m(f) = m(a(f)) = [ Fa(e))dm(e)

is clearly an invariant measure on E. In fact, m* is nothing else but the
invariant measure » obtained in Corollary 3.2.
For each z € E let m, be the positive Radon measure on E X E defined
by
my(u) = fu(a(g), x(g1t))dm(g), where tea ().

Note that if s € x=1(z), then s = kth for some ke K, he H and we have

w(a(g), alg2s))dm(e) = [u(ale), alg " hth))dm(g)
= [ w(a(ke), alg2th))am(g) = [u(a(e), alg1))dm(g).

Hence m, is well-defined.
In terms of the measures m, a multiplication on o (E) can be defined
by the formula below:

F*3@) = mo(f ® ) = [ F)b@)dma(y. 2)

Itis not hard to verify that we can extend our considerations from ¢ (E)
to L1(E, m*). Then the above defined multiplication together with the other
operations defines an algebra structure on LY(E, m*). Under the norm
defined by m*, LY(E, m*) is actually a Banach algebra. The idea of the
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above considerations is from C. Ionescu Tulcea [4]. We remark that if G
is unimodular and if H is taken to be K, then an involution can be introduced
in LY(E). An example of a generalized convolution algebra can be obtained
in this way. For the notion of a generalized convolution algebra we refer
the reader to [3] and [4]; for this particular example see [4].
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