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SUMMARY

We developed an individual-based (IB) model to explore the stochastic attributes of state

transitions, the heterogeneity of the individual interactions, and the impact of different network

structure choices on the poliovirus transmission process in the context of understanding the

dynamics of outbreaks. We used a previously published differential equation-based model

to develop the IB model and inputs. To explore the impact of different types of networks,

we implemented a total of 26 variations of six different network structures in the IB model.

We found that the choice of network structure plays a critical role in the model estimates of cases

and the dynamics of outbreaks. This study provides insights about the potential use of an IB

model to support policy analyses related to managing the risks of polioviruses and shows the

importance of assumptions about network structure.
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INTRODUCTION

Global efforts to eradicate wild polioviruses continue,

with types 1 and 3 wild polioviruses remaining en-

demic in four countries (Nigeria, India, Afghanistan,

Pakistan) and causing fewer than 2000 global cases of

paralytic polio annually [1]. While wild polioviruses

circulate in these areas, the rest of the world must

continue to keep polio vaccination levels very high [2],

due to the risk of outbreaks in susceptible people

in polio-free countries. In addition, post-eradication

policy planning must anticipate that outbreaks (de-

fined as one or more cases of paralytic polio) will

occur after the successful disruption of wild poliovirus

transmission [3, 4], largely due to the risks of circu-

lating vaccine-derived polioviruses (cVDPVs) [5].

Most people infected with poliovirus do not show any

symptoms, which necessitates modelling the trans-

mission of infections [5], but about 1/200 susceptible

people becomes paralysed from a wild poliovirus

infection [6–8]. The costs of outbreaks include both

health costs experienced by paralysed individuals plus

the impacts on their families, and the financial costs

associated with treating patients and responding to the

outbreak with vaccine campaigns to reduce trans-

mission [9–11]. Two vaccines provide protection from

disease (paralytic poliomyelitis), but incomplete pro-

tection from infection: live oral poliovirus vaccine

(OPV) and inactivated poliovirus vaccine (IPV). OPV

represents the vaccine of choice for the Global Polio
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Eradication Initiative because of its low cost, ease of

administration, induction of mucosal immunity, and

ability to provide secondary protection (i.e. spread

to contacts). However, OPV can cause vaccine-

associated paralytic polio in rare cases and lead to

outbreaks with cVDPVs in populations with large

numbers of susceptibles, and consequently following

the successful eradication of wild polioviruses global

health leaders plan to eliminate the use of OPV [12].

Minimizing the risks of outbreaks will require co-

ordination of OPV cessation, creation of a global

vaccine stockpile, and development of specific plans

for outbreak response [13, 14]. Many countries will

also consider switching from OPV to IPV because it

carries no risk of vaccine-associated polio paralysis,

but IPV represents a relatively expensive choice and

its ability to prevent poliovirus transmission in some

settings (notably low-income areas with relatively

poor hygiene and inadequate health systems) remains

uncertain [3, 4].

Previous work by two of the authors (R.D.T. and

K.T.) developed a differential equation-based (DEB)

model [9] to explore the dynamics of poliovirus

infection outbreaks and response strategies [15].

This model yields useful insights, but we recognize

the opportunity to address different questions using

a stochastic, individual-based (IB) (or agent-based)

modelling approach that explicitly considers the

network structure of individuals and the stochastic

interactions between individuals.

Previous studies identified the selection of the

network structures as a critical assumption [16–22],

and show that DEB and IB models can yield different

insights, in part due to the differences in their

abilities to capture network structures and population

heterogeneity [22]. In contrast to the assumption

of homogenous mixing in DEB models, IB models

typically require a network structure that governs the

interactions of individuals. Analysts must identify

links between individuals (nodes in the network)

that specify ‘who acquires infection from whom’

(WAIFW) to mimic the interaction patterns of in-

dividuals in a real population [23, 24].

We identified five major theoretical network struc-

tures in the literature : fully connected, random [25],

small-world [26], scale-free [27], and all-in-range

(local) [28]. Figure 1 provides a graphical represen-

tation of example networks from each category. The

literature also includes examples of empirical net-

works, which seek to closely mimic individual contact

(a) Fully connected

(d) All-in-range (e) Small-world

(b) Random (c) Scale-free

Rad
ius

Rad
ius

Fig. 1. Examples of the five different theoretical network structures, with each network including 20 individuals (nodes)
(n=20) and each node connecting to six other nodes on average (K=6). The initial layouts of nodes in the networks shown in

panels (a)–(c) appear as a ring, but the reasonable representation of the initial structure for the networks shown in panels
(d)–(e) require random distribution of nodes. The network obtained in panel (e) results from rewiring the network in panel (d)
as described in the text.
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patterns determined through: (1) contact tracing of

individuals [29, 30], or (2) capturing physical locations

(mixing-sites) in which individuals spend time with

others (e.g. schools, workplaces, recreation centres,

shopping malls) that determine interactions based on

emerging co-location patterns [31].

Despite the importance of network structure, IB

models remain limited with respect to the available

information about WAIFW in real populations [32].

Consequently, identifying the critical network par-

ameters that influence outbreak dynamics is essential

to develop appropriate IB models to address policy

questions and guide data collection [24, 33]. This

study describes our efforts to develop an IB model to

characterize poliovirus outbreaks at the level of in-

teractions among individuals and explore the impacts

of network choices. The IB model explicitly captures

immunity states and transition rates similar to those

developed earlier [9], but focuses on stochastic at-

tributes of state transitions and the impact of different

network structures on the transmission process.

METHODS

We developed an IB model for a hypothetical out-

break in a low-income country setting, corresponding

to the prospectively modelled outbreak in Figure 2 of

Duintjer Tebbens et al. [9]. The model assumes com-

plete eradication of wild polioviruses and starts the

outbreak with a single poliovirus introduction 5 years

after cessation of all polio vaccinations. We explored

multiple different network structures, including the

five theoretical networks shown in Figure 1 and sev-

eral empirical mixing-site networks. Figure 2 shows

the basic structure of the immunity states from the

DEB model [9] and individual state transitions in our

IB model for poliovirus infections. The 13 different

states modelled capture infectible people (top row),

people with latent infections (second row), infected

people (third row), and removed people (bottom

row). The model captures four different types of

immunity: (1) ‘ fully susceptibles ’ – never exposed to

live or killed poliovirus, (2) ‘recent live ’ partially

infectibles – individuals recently infected with live

poliovirus, (3) ‘historic live ’ partially infectibles –

individuals historically, but not recently, infected with

live poliovirus, and (4) ‘IPV’ – individuals never in-

fected with live poliovirus but vaccinated with IPV [9].

Although not shown in Figure 2, the DEB and IB

models also include 25 different age groups [9], which

influences the network patterns in mixing-site settings.

We define inputs to the IB model with a fully con-

nected network parallel to the DEB model and keep

the same basic reproduction number (R0) across both

models (see Appendix, available online). To model

transmissions at the individual level rather than at the

population level in the DEB model, we disaggregate

the concept of R0 into separate inputs for contact rate

(C) and infectivity (i) of a contact (i.e. the probability

of a contact leading to infection). Specifically, we start

with the equation R0=C * I * d for each type of in-

fectious and infectible person, using d as the average

duration of infectiousness for ‘fully susceptible ’ in-

dividuals, and we calculate i based on an assumed

Infectible_FullySusceptible

Latent_FullySusceptible

Infectible_RecentLive

Latent_RecentLive

Infectible_HistoricLive

Latent_HistoricLive

Infectible_IPV

Latent_IPV

Infected_FullySusceptible Infected_RecentLive Infected_HistoricLive Infected_IPV

Removed

Fig. 2. Immunity and infectiousness states based on [9] along with possible transitions in the IB model.
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value of C=5 contacts per day and the values of

R0 and d in the DEB model [9]. The choice of C does

not impact R0 as long as i adjusts to C. We confirmed

that we obtained the expected R0 in the simulations

by calculating the average number of individuals

directly infected by a single infectious individual in-

troduced in a fully susceptible population (see online

Appendix).

Consistent with the DEB model [9], which begins

with a population immunity profile that distributes

members in the population to appropriate initial im-

munity states, the IB model begins by assigning each

individual to an initial state as susceptible or partially

infectible. The initial population immunity profile

follows the projected age distribution for low-income

countries and places all children aged <5 years in the

‘ infectible-fully susceptible ’ state given the assump-

tion of cessation of all polio vaccination 5 years prior

to the outbreak [9]. We assigned members of the

population aged >5 years to the ‘ infectible-historic

live ’ or ‘ infectible-fully susceptible ’ state according

to assumptions about the historical OPV vaccination

rates [9]. Given the assumed lack of IPV or OPV use

prior to the outbreak, none of the individuals start in

the ‘ infectible-IPV’ or ‘ infectible-recent live ’ states.

We compared the transmission dynamics across all

five of the major theoretical network categories from

the literature and three empirical mixing-site net-

works. The top part of Table 1 describes the con-

struction rules applied to create the theoretical

networks, and the bottom part provides the assump-

tions used to create three mixing-site networks, which

reflect possible scenarios to bring individuals into

contact at identifiable locations (e.g. home, work,

school). Although modelling real population inter-

actions using mixing-sites requires significant data

and detailed information about types of contacts

leading to infection [34], we determined that in the

absence of specific data we could still learn about how

mixing-site networks function by considering the

scenarios in Table 1. We chose to model two basic

types of empirical mixing-site networks: one that

focuses on workplaces and schools as hubs of trans-

mission within a large population (mixing-sites 1 and 2)

and one that focuses on modeling the population as

a collection of villages from which individuals connect

periodically (mixing-site 3). While the selection of

network type and model inputs may lead to different

results and infinitely many options exist for develop-

ing empirical network strucutres, we focused our

analysis on demonstrating the differences between a

range of typical empirical and theoretical networks.

In order to explore networks consistently, we used the

same total number of individuals (nodes, agents) (N),

and the same average number of connections per

individual (K) when comparing networks that use K

as an input. However, recognizing the uncertainty

in network parameters, we repeated comparisons for

three different values of K. Table 2 summarizes the

specific input values used for the networks.

Each simulation of the IB model begins by creating

a population ofN=100 000 individuals. The IB model

distributes the individuals into their age and initial

immunity groups and then sets up the chosen network

structure to connect individuals using a construction

rule. During the simulation births occur and suscep-

tible newborns enter the network with connections

created by applying the same construction rule used

to create the initial network, with the net effect of

increasing the potential number of people who could

become infected to >100 000. Consistent with the

original model designed for outbreaks of short dur-

ation [9], this model ignores deaths. Thus, the net-

work is dynamic in the sense that new individuals get

added and wired to the rest of the population, but the

existing connections do not change dynamically (e.g.

because of self-quarantine).

We introduce the first, randomly selected, infec-

tious individual (patient zero) into the population at

time zero of each simulation to initialize the infection

process. The outbreak may die out if the patient is

removed before infecting others. However, an out-

break occurs in the population when the imported

poliovirus establishes effective transmission in in-

dividuals (presumably primarily via the faecal–oral

route and possibly to some extent via the oral–oral

route [35]) and infects enough people to cause at least

one paralytic case [9]. Infection depends on the exist-

ence of connections between infectious and infectible

individuals in the network and the contact rate (C).

Not every contact between an infected individual and

an infectible individual leads to infection, and the

probability of infection following contact (i) depends

on the individual’s immunity state.

We performed repeated analyses for three different

average numbers of connections per individual

(K=10, 50, 100) to explore a range given limited

knowledge about how contacts lead to poliovirus

transmission. We also explored all five of the theor-

etical networks in the top part of Table 1, and for the

small-world network, we explored the impact of three

different values for the probability of random rewiring
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of the local links (P=0.01, 0.05, 0.1), which makes a

total of seven simulated theoretical networks. We

note that the random, small-world(s), and all-in-range

networks represent a continuum of different levels of

clustering and average distances between nodes. The

clustering and distances decrease as we increase P,

because a small-world network with P=1 yields a

random network, while setting P=0 yields an all-in-

range network. To facilitate some comparison be-

tween the seven simulated theoretical networks and

the three simulated mixing-site networks, we selected

the number of co-workers per workplace (W) and

students per class (S) such that time-weighted average

connections per person (K) remain the same as the

value used for other network settings, noting that

K does not exist for the fully connected and mixing-

site 3 networks. We used the same contact rate (C)

for all networks, except for mixing-site 2, for which

we used twice the contact rate for home than that for

schools and workplaces to explore the impact of

Table 1. Summary of model inputs for an individual-based model that differ from those used for the differential

equation-based (DEB) model [9] via different types of social contact networks

Network Construction rule Notes

Theoretical networks

Fully connected Connect every node to every other node (K does not
apply)

Structure consistent with the assumption of
homogeneous mixing and represents a discrete,
stochastic equivalent of the DEB model

Random Randomly select K*N/2 of the N(N – 1)/2 possible
links in N nodes, leading to a Poisson degree
distribution (the distribution for the number of

links per node) with mean K [25]

Not very realistic for most human interaction
patterns given the low clustering of contacts,
but one of the earlies and most commonly used

networks
Scale-free Select K initial nodes with K*K/2 randomly assigned

links in them, then add new nodes to the network

(untilN nodes are reached), each withK/2 links to be
connected to previous nodes based on a preferential
attachment, such that the probability of connecting
to a node is proportional to the number of existing

links to that node [27] (the degree distribution of
connections follows a power law (P(k=x)yxM)

Relatively small number of highly connected
individuals and many individuals with limited

connections, such that the average distance
between individuals is fairly small

All-in-range Randomly assign people to locations on a square

grid, then assign contacts locally (i.e. limited to local
geographical neighbours within a given radius), and
select the radius of interaction to obtain an average

number of connections equal to K

Realistic structure when intimate interaction

is required for diffusion and the nodes
cannot move

Small-world Begin with the all-in-range network, and then with
probability P, detach each link from one end and
rewire it to a random other node in the population

(with duplicate links not allowed)

High clustering and small average distance
between individuals [26]

Empirical networks

Mixing-site 1 Assumes (1) all individuals link to an average of six others in their households between 5 pm and 9 am,

(2) all children aged between 3 and 15 years and two-thirds of adults (i.e. o16 years) go to a randomly
selected workplace or school between 9 am and 5 pm, where they are connected with W co-workers or
S classmates, respectively, (3) all other individuals (i.e. very young children and one-third of adults)

remain connected at home between 9 am and 5 pm, (4) same contact rate (C) applies for homes,
workplaces, and schools

Mixing-site 2 Same as mixing-site 1, except assumes contact rate at home (Ch) twice the rate used for workplace or

school (Cw), with the overall expected number of contacts in the population (C) kept the same as other
networks by adjusting Ch and Cw

Mixing-site 3 Assumes (1) 100 different villages, each with 1000 villagers (randomly selected), (2) individuals spend their
time in their isolated villages, except for half a day per week when subgroups of them attend one of ten

randomly selected community centres (e.g. a market or place of worship) and interact with people from
other villages, (3) the subgroup mixing in the community centre includes children aged between 3 and
15 years and two-thirds of adults (o16 years) (similar to mixing-site 1)
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differential contact intensity indifferent locationswhile

also maintaining the same R0, as noted in Table 2.

We projected the trajectory of potential polio out-

breaks and we compared the results across different

network and model inputs using the AnyLogicTM (XJ

Technologies, Russia) simulation environment. We

recorded an outbreak upon detection of the first

paralytic case, which occurs stochastically in about

1/200 infections of ‘ fully susceptible ’ individuals [9].

We tracked the trajectory of the outbreak until it

finished (i.e. no latent or infected individuals remain

in the population) or until day 2000, whichever comes

first. Each simulation started with construction of a

new network consisting of 100 000 initial individuals,

and a randomly selected patient zero. Due to the

stochastic nature of the simulations, we ran 100 sim-

ulations for each of the 10 simulated networks for

three different values of K (for networks that include

K) for a total of 26 combinations (i.e. the fully con-

nected and mixing-site 3 networks do not include K).

During the simulation, we captured the following

metrics :

. Die-out fraction (dimensionless). The fraction of

simulations that do not lead to an outbreak, defined

as detection of a paralytic case.

. Detection day (day). The day that the first paralytic

case occurs.

. Peak time (day). The day with the highest number

of infections observed within the duration of

poliovirus diffusion.

. Epidemic duration (day). The time it takes for the

outbreak to end (i.e. the time until no latent or in-

fectious individual remains), which we record as

>2000 days if transmission continued beyond the

maximum simulation length.

. Number of infections (number of people). The

cumulative number of people who become infected

and get removed (recover or die from the infection)

at the end of the simulation.

Table 2. Summary of model inputs for the IB model that differ from those used for the DEB model [9] for the

different networks structures described in Table 1

Model input (units), abbreviation Value Notes

Total population (people), N 100 000 Number of individuals

Daily number of contacts per individual (people/
day), C

5 Assumed value used to calculate the rate of sending
the infection message for a given R0 (see text)

Average connections per individual (connections/

individual), K

10, 50, 100

Random rewire probability of small- world network
(dimensionless), P

0.1, 0.05, 0.01

Power law input for scale-free network, M 2.6
Age of adulthood (yr) 16
Age of school entry (yr) 4

Proportion of children aged <4 years in the
population (proportion)

0.07 These children stay at home in mixing-sites 1 and 2

Proportion of students in the population (proportion) 0.26
Proportion of working adults in the population

(proportion)

0.45 Two-third of adults work during daytime for

mixing-sites 1 and 2
Proportion of adults staying at home in the
population (proportion)

0.22 One-third of adults not working

Number of students per school (people/place) For mixing-sites 1 and 2, correspond to:
S1 51 K=10
S2 345 K=50

S3 711 K=100

Number of co-workers per workplace (people/place) For mixing-sites 1 and 2, correspond to:
W1 17 K=10
W2 115 K=50
W3 237 K=100

Contact rate at home (people/day), Ch 6.4 For mixing-site 2
Contact rate at workplace or school (people/day), Cw 3.2 For mixing-site 2
Number of community meeting places (places) 100 For mixing-site 3
People per village (people) 1000 For mixing-site 3
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. Number of paralytic cases (number of people). The

total number of paralytic cases accumulated by the

end of the simulation.

. Peak infections (number of people). The number of

people infected at the peak time.

If the event captured by the first metric occurs (i.e. the

transmission of infection dies out and does not lead

to an outbreak), then the remaining metrics do not

provide interesting or meaningful information, and

consequently we report their results for only the sub-

sets of 100 simulations that did not die out. For these

metrics we found statistically robust means with the

sample of 100 simulations. We performed 1000 simu-

lations to characterize the die-out fraction results to

obtain more statistically robust estimates.

RESULTS

Table 3 reports the results of the fraction of ‘die-out ’

cases for different network structures and numbers of

connections per individual (K) based on 1000 simu-

lations. One of the significant advantages of IBmodels

compared to a DEB model emerges simply from the

ability to characterize the stochastic possibility of die-

out. For example, although the comparable DEB

model with the relativley high R0 of 13 predicts an

outbreak, the IB model with a fully connected net-

work dies out by chance about 15% of the time, be-

cause the infection does not go beyond the first (few)

patient(s) who get removed before infecting a larger

population.

Table 3 shows some differences in die-out behavior

as a function of the type of theoretical network

structure and number of connections (K). The ran-

dom network for K=50 and K=100 behaves simi-

larly to the fully connected network because relatively

low clustering (i.e. neighbours of the same individual

are not that likely to be connected to each other) leads

to quick propagation of infection throughout the

network, reducing the chance of die-out compared

to a highly clustered population. However, with fewer

connections per individual (K=10) we observe a

larger die-out fraction (y21%), because the Poisson

distribution of K implies a relatively large fraction of

individuals with very few connections and thus a

relatively lower probability of pushing the virus be-

yond patient zero. Notably, if patient zero is one of

the relatively poorly connected individuals, then the

outbreak is more likely to die out. For the scale-fee

network, we see a relatively small die-out fraction

(y10–13%), which indicates that the few ‘hubs ’ of

highly connected individuals serve as relatively effec-

tive spreaders, because they connect most people in

the population with small distance between indi-

viduals. Thus, although the fixed number of connec-

tions (K) requires the existence of many individuals

with relatively few connections to average out the

hubs (for all three values of K), in most cases patient

zero infects a hub directly, and then the hubs infect

each other and much of the rest of the population

fairly quickly. The all-in-range network behaviour

depends heavily on K. With K=10, only a small

number of outbreaks occurred in the 1000 simu-

lations, given the highly localized nature of inter-

actions, which implies that nearly all of the infections

died out prior to causing a paralytic case. Individuals

in the all-in-range network share many connections

with their neighbours, which lessens the impact of

infection of two connected people since they probably

Table 3. Results of 1000 simulations of the fraction

of ‘die-out ’ cases (dimensionless) for 26 combinations

of different network structures and numbers of

connections between individuals (K)

K Network Mean 95% CI

n.a. Fully connected 0.14 0.12–0.17

10 Random 0.21 0.18–0.24
50 Random 0.16 0.14–0.17
100 Random 0.17 0.14–0.19

10 Scale-free 0.12 0.10–0.14
50 Scale-free 0.12 0.09–0.15
100 Scale-free 0.12 0.10–0.14
10 All-in-range 0.98 0.97–1.00

50 All-in-range 0.17 0.14–0.19
100 All-in-range 0.18 0.15–0.21
10 Small-world (P=0.01) 0.27 0.24–0.30

50 Small-world (P=0.01) 0.13 0.11–0.15
100 Small-world (P=0.01) 0.15 0.12–0.17
10 Small-world (P=0.05) 0.16 0.14–0.17

50 Small-world (P=0.05) 0.16 0.14–0.18
100 Small-world (P=0.05) 0.12 0.09–0.15
10 Small-world (P=0.10) 0.16 0.15–0.18

50 Small-world (P=0.10) 0.14 0.12–0.15
100 Small-world (P=0.10) 0.13 0.10–0.15
10 Mixing-site 1 0.46 0.42–0.46
50 Mixing-site 1 0.44 0.40–0.48

100 Mixing-site 1 0.43 0.40–0.46
10 Mixing-site 2 0.44 0.41–0.46
50 Mixing-site 2 0.43 0.40–0.45

100 Mixing-site 2 0.45 0.40–0.50
n.a. Mixing-site 3 0.20 0.18–0.22

n.a., Not applicable.
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share many contacts, and this overlap reduces their

ability to transmit the virus to new people. However,

as K increases, the all-in-range network goes through

a phase shift, in which the larger radius of interaction

makes the progression of virus viable and die-out

drops to y18%. For the small-world network, we

generally see low die-out fractions (i.e. 12–16%), be-

cause long-range connections seed the virus in mul-

tiple locations and therefore reduce die-out. However,

for the small-world network with P=0.01 and K=10,

we see the same type of phase shift as occurred with

the all-in-range network with K=10, which appears

consistent with previous observations of such a phase

transition [26].

For mixing-sites 1 and 2, which move individuals

between home and work or school, we observed a

significant increase in the fraction of simulations that

die out (i.e. 40–50%) compared to what we found for

most of the theoretical networks (i.e. 12–19%, with

the notable exceptions of the results of the random,

all-in-range, and small-world networks with K=10).

We believe that this may occur because: (1) most

contacts happen in highly clustered family units,

which limits transmission beyond the family in the

relatively fewer contacts between infectious members

of the household and their co-workers/schoolmates,

and (2) one-third of adults and young children stay at

home, which reduces opportunities for transmission.

The young age of fully susceptibles (with relatively

higher infectivity) further increases the importance of

the mixing-site dynamics. In contrast, the contact

pattern in mixing-site 3, which is independent of K,

shows a much lower die-out fraction (y20%). For

mixing-site 3, people connect to each other across

1000-member villages, in which the virus can spread

with no restriction if the virus gets transmitted during

the limited weekly mixing time at community centres

(e.g. markets or places of worship).

Table 4 shows the results for the metrics that pro-

vide insights about the nature of the simulated out-

breaks that do not die out, and Figure 3a provides a

visual representation of the outbreak dynamics by

showing the number of infected fully susceptibles as a

function of time. The detection day of the first para-

lytic case provides an indication of the speed of

the transmission of infections in ‘fully susceptible ’

individuals under different network structures. The

peak day provides an indication of the overall speed

of transmission in the whole population. The out-

break duration provides insight about how quickly

the infection passes through the entire population,

and indicates whether the outbreak could continue for

>2000 days absent intervention. The total number of

infections serves as an indicator of the impact of the

network on the extent to which infection spreads

through the population. The peak infections allow us

to see the maximum numbers of people infected sim-

ultaneously, which reflects the maximum intensity of

the transmission of infection under the different types

of network structures. The last column of Table 4

provides the estimated number of paralytic cases,

which would typically represent the only observable

outcome, and Figure 3b shows large differences in the

accumulation of these cases over time for various

network structures.

Table 4 shows some important differences in the

outbreaks depending on the assumptions about the

network. In contrast to the stochastic variation that

we observed related to die-out fractions (Table 3), we

observed negligible stochastic variation across for the

outbreak metrics in Table 4 relative to the number

of significant figures supported by the model, and

consequently Table 4 reports only the robust mean

values for these metrics. On average, the outbreaks

that occur with the fully connected network take

off relatively quickly (e.g. detection day=82, peak

time=133, compared to detection day=78, peak

time=128 for the DEB model [9]). At its peak, the

typical outbreak with the fully connected network

involves >18000 infected individuals and the rapid

spread of infection limits the overall duration of the

epidemic to 585 days on average, with >95% of the

population becoming infected and an average of

82 paralytic cases. The results with the random net-

work show similar behaviour, although the average

outbreak occurs relatively later (detection day=123),

proceeds more slowly (peak time=178), and leads to

fewer numbers of infected individuals (74% of the

population becomes infected) and paralytic cases (64).

For the scale-free network, we see a very fast take-off

for the outbreak, which increases the peak infections

and reduces the duration of the outbreak. As noted

above, patient zero typically infects a hub directly or

with one degree of separation in the scale-free net-

work, which leads to rapid infection of all of the hubs,

which then infect most of the population. However,

the existence of some poorly connected individuals

means that the outbreak fails to reach all of the in-

dividuals, such that between 72–84% of the popu-

lation becomes infected, depending on K. Higher K

values appear to speed up the outbreak slightly, but

do not have a large impact because enough hubs
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exist with K=10 to start and support widespread

transmission. For the all-in-range network, the out-

break depends heavily on K, with essentially no out-

breaks for K=10, and relatively slow outbreaks for

K=50 and K=100 that move through the population

in a wave-like progression from the location of patient

zero outwards. Given the slower diffusion with

K=50, this setting leads to larger peak time, detection

date, and duration than does the setting with K=100.

Notably, slower diffusion actually increases the total

number of infections because it extends the epidemic

to affect more newborn babies over time. For the

small-world network, we generally observe high

numbers of infections, except for the network with

mainly local connections for K=10 and P=0.01. We

observe the highest numbers of infections and para-

lytic cases for the all-in-range network with K=50,

100 with outbreaks that continue beyond 2000 days in

most cases, because the slow transmission that results

from largely local links (see the large peak time)

essentially matches the speed of entry of fully suscep-

tible newborns.

For mixing-sites 1 and 2, the outbreaks that take-

off appear relatively insensitive to K and C. For these

mixing-site networks, we see a slow outbreak (e.g.

later detection day and peak times than most other

network types) that affects the majority of the popu-

lation before ending after about 700–770 days.

Shifting the weight of the contacts more towards

homes (mixing-site 2) leads to slightly higher numbers

of infections and faster outbreaks, presumably be-

cause household links act as a bottleneck on trans-

mission for mixing-site 1. By increasing the relative

speed of transmission in the home for mixing-site 2,

the one-third of household members who do not mix

outside of the home become more prone to infection.

In contrast to mixing-sites 1 and 2, the contact pattern

in mixing-site 3 allows infection to spread through the

Table 4. Results of 100 simulations for outbreak metrics for 26 combinations of different networks and values

of K based on the subsets of simulations in which outbreaks did not die out (robust simulation mean, in units

indicated for each metric)

K Network
Detection
day (day)

Peak
time (day)

Duration
(day)

Infection
(1000s of people)

Peak infections
(1000s of people)

Paralytic cases
(people)

n.a. Fully connected 82 133 585 95 19 82

10 Random 123 198 580 74 10 64
50 Random 92 145 541 92 17 77
100 Random 90 142 562 93 18 79
10 Scale-free 67 116 471 72 15 74

50 Scale-free 57 99 456 82 18 80
100 Scale-free 58 99 463 84 19 79
10 All-in-range* n.a. n.a. n.a. n.a. n.a. n.a.

50 All-in-range 214 1068 1808 99 1.8 104
100 All-in-range 160 688 1304 98 3 99
10 Small-world (P=0.01) 471 1499 1921 11 0.36 28

50 Small-world (P=0.01) 100 238 >2000 97 10 113
100 Small-world (P=0.01) 78 190 >2000 105 12 143
10 Small-world (P=0.05) 202 417 1932 62 4 80
50 Small-world (P=0.05) 87 172 >2000 99 14 120

100 Small-world (P=0.05) 73 152 >2000 105 15 140
10 Small-world (P=0.10) 142 284 1901 76 6 98
50 Small-world (P=0.10) 82 154 >2000 102 15 132

100 Small-world (P=0.10) 72 139 >2000 106 16 143
10 Mixing-site 1 165 283 729 57 6 56
50 Mixing-site 1 159 258 709 59 6 59

100 Mixing-site 1 157 253 699 59 7 58
10 Mixing-site 2 170 284 769 63 6 63
50 Mixing-site 2 163 265 808 66 7 64

100 Mixing-site 2 154 251 764 66 7 63
n.a. Mixing-site 3 105 178 637 86 14 83

n.a., Not applicable.
* No outbreaks observed in 100 simulations.
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whole population, only slightly slower than the fully

connected network, with the majority of people be-

coming infected at the end of the outbreak, which

occurs within a few months.

DISCUSSION

Previous research demonstrates the importance of

structural and model input assumptions for other

diseases [36, 37], but this paper presents the first IB

model for polio outbreaks. By developing this model,

we created the opportunity to both represent the

stochastic nature of polio outbreaks and consider

the impact of different network structures to model

heterogeneous human interactions. With realistic

network structures, IB models may show behaviours

that differ significantly from the parallel DEB models,

and offer opportunities to characterize interventions

that target specific types of individuals or parts of

networks. We anticipate that IB models could play a

valuable role in evaulating different polio outbreak

response strategies, such as comparing mass vacci-

nation and ring vaccination options.

Despite the potential uses of IB models, our results

suggest important considerations. The computation

time, which includes both network set-up and trans-

mission dynamics, increases significantly with popu-

lation size. Notably, the scale-free network we

modelled required about 30 min per simulation just

to set up the network on an Intel CoreTM 2 CUP 6400
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Fig. 3. Visual representation of the behaviour of outbreaks for eight selected simulated networks as a function of time :
(a) number of infections occurring in fully susceptible people as a function of time, and (b) accumulated number of paralytic
cases as a function of time.
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@ 2.13 GHz desktop. The computation times for

transmission simulation and data recording scale

approximately linearly with population size. Thus,

simulating very large populations (e.g. millions of

individuals) would require specialized computer clus-

ters, although improved hardware and algorithms

continue to reduce computational barriers [32, 34, 38].

The necessity of conducting comprehensive sensitivity

analyses to characterize the impacts of uncertain as-

sumptions adds another dimension of computational

time. However, sensitivity analyses reveal critical in-

sights and help analysts address the false certainty and

precision projected through the use of detailed IB

models [39], and our analyses suggest that the level

of stochastic uncertainty may differ across outcome

metrics. We note that the closed-source nature of the

AnyLogic modelling tool makes it difficult to evaluate

the impact of software algorithms and programming

choices that could affect the results. We do not believe

that choosing a different software program would

change the insights that we obtained here related to

our comparisons between networks, but we mention

this as a limitation because we only compared our

results to the previous DEB model and we did not

compare results between open and closed-source

software tools.

Our analysis of various options for network struc-

tures, which underlie all IB models, highlights the

importance of choices related to both model structure

and inputs. Previous studies indicate that scale-free

and small-world networks might make the most sense

for infections transmitted through individual-to-

individual networks, like sexually transmitted diseases

[40, 41]. In contrast, mixing-site networks may pro-

vide a better representation for airborne diseases such

as flu [24, 31, 42]. For poliovirus infections, we expect

that using mixing-sites may also offer the best strat-

egy, but even with a limited set of scenarios for these

we found potentially large differences in the behav-

iour of outbreaks. In this regard, we expect that im-

provement of IB models for polioviruses will require

a more detailed understanding of the processes that

create WAIFW patterns in specific populations of

interest, and that additional insights about the relative

importance of faecal–oral vs. oral–oral transmission

pathways may also help to influence choices about

network structures and contact rates both within and

between mixing-sites. Epidemiological investigations

could provide important insights that would signifi-

cantly improve our ability to model outbreaks. As

long as live polioviruses continue to circulate, the

opportunity exists to better characterize the role of

potential mixing-sites in poliovirus transmission in

low-income countries, including markets, schools,

places of worship, sewage, rivers, and workplaces.

The role of migrant populations also represents an

important consideration, and data on population

movement in countries of highest concern for polio-

virus transmission could provide significant insights

with respect to developing appropriate networks.

While polioviruses can spread over long distances

[43], the relative frequency of short-distance to long-

distance poliovirus infectious contacts remains un-

known and requires further investigation.

Several observations also suggest the need for

additional development of the IB model. First, we

observed persistent transmission as a result of a re-

introduction in small-world networks, which suggests

the need to include age-dependent mortality rates and

waning of immunity. Second, if we seek to use the

model to evaluate specific outbreak response strat-

egies, then we would need to use serotype-specific

model inputs and explicitly characterize the trans-

mission and evolution of OPV viruses to address

questions related to the development of cVDPVs.

Thus, although this work suggests that IB modelling

offers an important opportunity to better characterize

the actual dynamics of the spread of infection, using

IB models appropriately for polio outbreaks will de-

pend on obtaining high-quality information about the

nature of polioviruses, immunity, and social inter-

actions.

NOTE

Supplementary material accompanies this paper on

the Journal’s website (http://journals.cambridge.org/

hyg).
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