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Summary

Diallel mating is a frequently used design for estimating the additive and dominance genetic
(polygenic) effects involved in quantitative traits observed in the half- and full-sib progenies
generated in plant breeding programmes. Gibbs sampling has been used for making statistical
inferences for a mixed-inheritance model (MIM) that includes both major genes and polygenes.
However, using this approach it has not been possible to incorporate the genetic properties of major
genes with the additive and dominance polygenic effects in a diallel mating population. A parent
block Gibbs sampling method was developed in this study to make statistical inferences about the
major gene and polygenic effects on quantitative traits for progenies derived from a half-diallel
mating design. Using simulated data sets with different major and polygenic effects, the proposed
method accurately estimated the major and polygenic effects of quantitative traits, and possible
genotypes of parents and progenies. The impact of specifying different prior distributions was
examined and was found to have little effect on inference on the posterior distribution. This
approach was applied to an experimental data set of Loblolly pine (Pinus taeda L.) derived from a
6-parent half-diallel mating. The result indicated that there might be a recessive major gene affecting

height growth in this diallel population.

1. Introduction

In the classic quantitative genetic method, traits are
assumed to be controlled by polygenes, i.e. many
genes, with each gene having a small effect on a
quantitative trait. With advances in molecular tech-
nology and computational statistics, there is strong
evidence that some quantitative traits may be con-
trolled by a number of genes that have relatively large
effects on phenotype. For example, major genes or
quantitative trait loci (QTL) have been found in Dro-
sophila (Long et al., 1995), domestic animals (Piper
& Shrimpton, 1989), rice (Jiang et al., 1994) and
tree species (Wilcox et al., 1996; Kaya et al., 1999;
Remington & O’Malley, 2000). A mixed-inheritance
model (MIM) that includes a major gene together
with polygenes, instead of strictly polygenes, has
been developed for analysing some quantitative traits
(Elston & Stewart, 1971 ; Kinghorn et al., 1994; Janss
et al., 1997; Zeng & Li, 2003).
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Several statistical approaches have been developed
for the detection of major genes for quantitative traits
using phenotypic data. Methods based on analysis of
variance have been used to infer the number of major
loci contributing to growth variation of interspecific
aspen hybrids (Li & Wu, 1996; Wu & Li, 1999, 2000).
Several statistical methods using simple non-para-
metric tests for departure from normality have been
used for detecting major gene segregation, but not for
estimating major gene effects (Mérat, 1968; Fain,
1978; Karlin & Williams, 1981; Lynch & Walsh,
1998; Zeng & Li, 2003). Other approaches based on
maximum likelihood and Bayesian inference have
been developed for the MIM to detect major genes
affecting quantitative traits in animal (Hoeschele,
1988 ; Knott et al., 1991; Janss et al., 1997; Lund &
Jensen, 1999), crop (Wang et al., 2001) and tree
species (Wu et al., 2001). Most of these methods
are based on either a multiple-generation pedigree,
a progeny population derived from either a nested
mating design (in the case of animal breeding) or a
factorial mating design (in the case of tree hybrids).
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To our knowledge, however, no statistical methods
have been developed for a progeny population de-
rived from a diallel mating design.

Diallel mating is one of the most commonly used
designs in plant and tree breeding programmes (Hal-
lauer & Miranda, 1981; Zobel & Talbert, 1984). In a
diallel design parents are crossed either as male or
female with other parents in a single group (Griffing,
1956). A half-diallel design is the diallel mating with-
out self and reciprocal crosses where both half-sib
and full-sib progenies are produced for each parent.
Diallel mating yields two levels of polygenic effects:
the general combining ability (GCA) of parents due to
additive polygenic effects, and the specific combining
ability (SCA) of crosses due to dominant polygenic
effects. The unique feature of diallel mating, the
model for an observation having two main effects, has
made it difficult to analyse with standard statistical
programs for even polygenetic effects (Xiang & Li,
2001). Thus, it has been difficult to incorporate gen-
etic properties of major genes with the two levels of
polygenic effects in a MIM for analysing diallel data.
Because of high-dimensional marginalization of the
joint density over the unknown single genotype and
polygenic effects, it is practically impossible to maxi-
mize the likelihood function associated with such a
model using analytical and/or numerical techniques
(Le Roy et al., 1989; Knott et al., 1991). For animal
breeding, the Gibbs sampling algorithm has been
found to be reasonably effective in making inference
for a MIM in a nested mating design, in which parents
can be either male or female but not both (Janss et al.,
1997). Such analyses were primarily based on the half-
sib relationships of parents (male or female) and their
progenies. In the case of tree-breeding programmes,
diallel progenies are usually planted at several lo-
cations or site types to determine their growth potential
under different environments. The potentially large
environmental variation and genotype by environ-
mental interaction, relative to animal breeding, may
affect the statistical power for major gene detection
(McKeand et al., 1997). Although the Bayesian ap-
proach may have potential for major gene detection,
its usefulness for MIM analysis of diallel data with the
two types of polygenic effects and the heterogeneous
environmental variance is unknown.

In this study, we developed and evaluated a Bayesian
approach, using a parent blocking Gibbs sampling,
to make inferences about major genes and polygenic
effects (GCA and SCA) that control quantitative traits
for a progeny population derived from a half-diallel
mating design without self and reciprocal crossings.
Computer simulations were done to examine the ef-
fects of different prior distributions and design matrix,
either full-ranked or non-full-ranked, on the proposed
statistical method. A case study with one half-diallel
progeny population of Loblolly pine (Pinus taeda L.)
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was used to detect a major gene for height growth and
to illustrate the application of the method.

2. The mixed-inheritance model

A mixed-inheritance model (MIM) is adopted in this
study for the diallel analysis, in which phenotypes are
assumed to be influenced by a single major gene and
by polygenic effects. A half-diallel mating design, with
n, parents selected from a base population under
Hardy—Weinberg and linkage equilibrium (Falconer
& Mackay, 1996), and ny,(n,—1)/2=n, full-sib fam-
ilies, is used. Each full-sib family is tested at several
sites, in a randomized complete block design with
several trees per full-sib family within each block, and
several blocks within each site. The statistical model
for a MIM can be written as a mixed linear model:

Y=Xnu+Zu+WLm+e. (1)

The notations for this diallel model are listed in
Table 1. Unlike MIM for an animal population, there
is no incidence matrix Z for the major gene effect,
because data Y are only the phenotypic observations
of progenies in a tree population, rather than pro-
genies plus parents as in an animal population. By
assuming e to be normally distributed N(0, ¢21) and
giving location and scale parameters, the vector of
data Y is also normally distributed as:

Y |p,u,W,m, 0> ~ N(Xu+ Zu+WLm, o’I).

The single major gene under the traditional genetic
model of one gene with two alleles (Falconer &
Mackay, 1996) is assumed to be a bi-allelic (4; and
A,), autosomal locus with Mendelian transmission
probabilities, such that each progeny has one of the
three possible genotypes: A,4,, A1A; and A,A, with
genetic effects a, d, and —a respectively. For progeny,
k (k=1,...,n), the genotype is represented as a random
vector wy, (1,0,0), (0,1,0) and (0,0, 1) correspond to
the three possible genotypes of 4,4, A;4, and 4,4,
respectively. Given the two parent genotypes W,y
and W), the genotype distribution of progeny k is
denoted as p(Wx | Wpi(x), Wpaiy)- This distribution de-
scribes the probability of alleles constituting genotype
w, being transmitted from parents with genotypes
Wi and Wy when segregation of allele follows
Mendelian transmission probabilities. Because of the
conditionally independent structure of the genotypes,
the joint genotype distribution of progenies can be
written as:

POW W)= T pWic | Worar Wpaa) ©)
k,

=1

where w, are the genotypes of n, parents. The parent
genotypes are sampled from a base population in
Hardy—Weinberg equilibrium (Falconer & Mackay,
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Table 1. Definitions of the notation used in the mixed-inheritance model
Notation Definition
Y A (nx 1) vector of n progeny observations
n The overall mean, equal to u. It can be extended to a (¢ x 1) vector of ¢ fixed non-genetic effects,
e.g. site effect and block within-site effect
X A (n x 1) vector with value 1 for the overall mean for all progenies
u A (gx1) vector of ¢ random polygenic effects, u’'=(g’,s"), including n, GCAs (g) and n; SCAs (s)
g ={g,i=1,...,n,}, n, GCAs, are assumed to be mutually independent normal distributions,
1 e.gloi~ N(O ogzl)
o GCA polygemc variance due to additive polygenic effects
S s'={s,j=1,...,ng}, n,, SCAs, are assumed to be mutually independent normal distributions, i.e. s | 02 ~N(0, 03I)
o? SCA polygenic variance due to dominance polygenic effects
V4 A (n x ¢g) incidence matrix of GCA and SCA for all progenies
m A (2 x 1) vector of major gene effects, m'=(a, d)
a Additive major genotypic effect
d Dominance major genotypic effect
1 0
L L= [ 0 1 } , a (3 x2) indicator matrix of the major gene effects for major genotypes
-1 0
W An unknown (n x 3) random incidence matrix of major genotypes at the single locus for n progenies
W, A (1 x 3) row vector to form the rows of W.w;=(1,0,0), w,=(0, 1,0) and w3=(0,0, 1), T taking values
1, 2 and 3 respectively to represent the major genotypes 4,4,, A;4, and A,A,
e A (nx 1) vector of iid errors. e is assumed to be N(0, ¢2I)
o2 Residual variance

N represents the multivariate normal distribution.

1996). This is a reasonable assumption because indi-
vidual trees serving as parents are usually selected
randomly from natural populations. Given the
favourable allele frequency in the base population
f=p(A4,), the probability distribution of the genotype
of parent i is assumed to be p(w,;|f), which follows
Hardy—Weinberg proportions. As parents are sam-
pled independently, their joint genotype distribution
can be written as:

n,

P, 1) =T pWil ). 3)

In order to fully specify the Bayesian model, normal
priors are assigned to the overall mean p =u, and major
gene effects m'=(a,d), i.e. u~N(0,k%), a~N(0,k3)
and d~ N(0, k%), where k%, i=1, 2 and 3 are the hyper-

p(u,m,u, W,w,.f,0%,0%,0% | Y)

parameters of the prior distribution. In the simulation
and real data analysis we used k;=4, i=1,2,3. Vari-
ance components, oz, 0: and o2 are assumed to arise
independently from conjugate inverted gamma dis-
tributions (/G), i.e. 02 ~IG(yy, 1), 03 ~IG(y2, v5), and
02~ IG(ys, v3), where y; and v; are hyper-parameters.
For our application, we used y,=2, and v,=(y;— 1)
* 0;, i=1, 2 and 3 for 6, =0, 0, =6, and 63 =06, where
6; are obtained from a preliminary study using fre-
quency distribution method. The conjugate Beta prior
is used for the allele frequency, i.e. p(f)~pB(aspB)),
where a,and B are prior distribution parameters. We
have chosen a,=f,=1 to express prior ignorance.

The joint posterior density of all unknowns, given
the data Y, is proportional to the product of the like-
lihood function and the prior densities:

o< p(Y | w,m,u, W, 09)p(0)p(g | o)p(s | 0)p(0)p(0)pmp(@)p(d)p(W | w)p(w, | p(f)

x (0%) exp{

X exp{

g i=1

LI T e

55 (Y—Xu—Zu—WLm)(y —Xp—Zu— WLm)}(oZ) %“)exp{ 0}( oHF

3/1

Zé }(02) (““)eXp{ }

1 1 n
X exp{ 2/(2#2} exp{ - 2k2a2} exp{ - Zlczdz} Hp(wk =W, | Woii0)» Wpate)
1 2 k=1

x TLptwu=we | 72— P
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In order to study the effects of the prior on the meth-
od’s behaviour with this data structure, improper flat
priors are used for the overall mean u, and major gene
effect @ and d, besides normal priors. The prior for any
o? is always inverted gamma.

3. Gibbs sampling
(1) Parent blocking

In order to make statistical inferences about un-
knowns, the marginal posterior distributions for the
model parameters are of interest, but it appears to be
almost impossible to obtain such marginals for our
model. In analytical approaches, the study of mar-
ginal densities would require integration and/or sum-
mation. Often such marginalizations are not feasible
to compute or even express in closed form for a high-
dimensional model such as MIM, as in (4), but this
difficulty can be circumvented by means of simu-
lation-based methods. The Gibbs sampler is based on
sampling random varieties from a Markov chain with
its stationary distribution as the posterior distri-
bution, and the sampling from the Markov chain
used to perform the high-dimensional Monte Carlo
integration (Gelfand & Smith, 1990; Brooks, 1998).
Samples are obtained from the full conditional dis-
tributions, which form the transition probabilities of
the Markov chain. Each time a full conditional dis-
tribution 1is visited, it is used to sample the corre-
sponding parameter, while other parameters are
considered to be fixed, and then the realized value is
substituted into the full conditional distribution of all
other parameters.

To improve the mixing and hence the speed of con-
vergence, it is possible to sample several parameters
simultaneously, called a ‘block’, from their joint
conditional distribution instead of updating all par-
ameters univariately. As long as all parameters are
updated, the new Markov chain will still have (4) as
the density of its stationary distribution. Unlike an
animal population where data Y include parents and
their offspring, and usually span several generations,
in a tree population we consider only the progeny
observations in the data Y with just two generations.
The sire block strategy (Janss et al., 1997) has worked
well for animal populations. Since in a diallel mating
design one tree served as a male as well as a female, we
modified ‘a sire blocking’ into ‘a parent blocking’. In
a parent blocking, the genotypes of a parent and its
half-sib offspring are treated as a block and updated
simultaneously. Consequently, in each cycle the
genotype of every offspring is updated twice instead of
once as each offspring has two parents. Given the
work of Liu et al. (1994) and Roberts & Sahu (1997),
it seemed to us that the block Gibbs sampler would
mix faster than the ordinary one-at-a-time version
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that updates each component sequentially. Blocking
is generally effective when the elements within the
block are highly correlated compared with the corre-
lation between blocks.

(i) Full conditional distributions

Full conditional distributions are derived from the
joint posterior distribution (4). For notational con-
venience, the MIM can be rewritten as: Y=H0 +e,
where H=[X:WL:Z] is a (n X p) matrix, and 0'=
(w,m'u)=(u,a,d,g,s)=(0,,0,....0,) is a (px]1)
parameter vector.

In order to implement the ‘parent blocking’, an
exact calculation of the joint conditional distribution
of a parent and all its offspring is required. The joint
conditional distribution for parent i is:

p(wpia wi(l)a' (XX} wf(}’lf) | W*f(l)) wfpfa Ba_fa ago U?, aia Y)

where n; denotes the number of offspring of parent i,
and the offspring are indexed by i(1),i(2),..., i(n;), or
simply i(/), where /=1,..., n;. By definition, this dis-
tribution is proportional to

p(wpi | Wfi(l)’ wfpia O’f; o.zs 0%’ 0‘37 Y)

*p(W,'(l), oo Wity | W,,'([), Wy, 0,/, O'Z,, 0'5, 0'3, Y)

The first term is the genotypic distribution of the
parent i, marginalized with respect to the genotypes of
its offspring. The second term is the joint distribution
of offspring genotypes conditional on the parents’
genotypes. To calculate the genotype distribution of
parent 7, the three possible genotypes of all offspring
must be summed after weighting each genotype by its
relative probability. The final marginalized full con-
ditional distribution for the major genotype of the
parent 7 is:

p(wpisz ‘ Wfi(l)y wfpia 07](; 0;, 0?5 Gi: Y)

3
o pWr=wr /)% T] D Wi =wy [ Wy =wr, W,2)

kei(l) b=1

X p(y | Wi =wp) (52)

where y,=y,—u—2Z;u is called the adjusted record,
Z, are the kth rows of the matrices Z, and w,, has the
same notation as wz. The penetrance function (or
weight) is:

- |
PPk | Wi =Wp) CXP{— ﬁ(yk _WkLm)Z}-

The probabilities here are given up to a constant of
proportionality and must be normalized to ensure that

3
ZP(Wpisz)= L.
T=1
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For the genotypes of offspring, the marginalized
full conditional distributions are the same as the usual
full conditional distributions found by extracting
from (4) the term in which wy, k € i(/), is present. i.e.

pWe=wr|W_i,w_,,0.f,0% 0%, 0,Y)

o P(Wie =Wr | Wiy Wpa(i) * (Vi |[Wie =Wr). (5b)

The full conditionals for allele frequency, location
parameters and variance components are obtained by
extracting the relevant terms from the joint posterior
density in (4) (for details see Zeng, 2000).

(ii1) Updating scheme

The algorithm based on parent block updating is sum-
marized as the following:

I. Initiate W, w,, 0, 002 and o} with some
reasonable starting values.

II. Sample major genotypes Wy, i=1,...,1,, W,
k=1,...,n from full conditional distributions,
(5a) and (5b), by parent blocking. The updating
scheme is to: (1) update parent 1 and its off-
spring, W, plus w,), in one block, with

wl[g,..., wg,]lp known; (2) update parent 2 and its

offspring w,, plus w,s;, in one block, with

whirl wi whl known; (3) update parent n,

and its offspring, w,, plus w,, ), in one block

",
with wh, w[’“{f known; each offspring

n,—1
updates twice in gfa'ch )cycle. The parents may be
updated in any order. In fact, it is possible to
update in random order in each iteration.

III. Sample allele frequency f, location parameters 6,
and variance components o2, o> and % from the
full conditional distribution.

IV. Repeat II-III, these steps constituting one iter-
ation.

4. SIMULATION
(1) Data generation process

To evaluate the procedure with this data structure,
simulated data with both major gene and polygenic
components were generated for this study. A 6-parent
half-diallel mating design with 4 test sites and 6 blocks
per site is used to simulate phenotypic observations,
although the site effects and block within-site effects
are both set to zero. Six parents are chosen randomly
from a base population in which the major gene and
polygenic parameters are defined. There are 15 full-sib
families, 6 progenies per family per block per test site,
and a total of 2160 progenies across 4 test sites.

For all progenies, phenotypic observations are
simulated according to model (1). The polygenic effect
(Zu) includes G; + G,+ S, where G; and G, are GCA
effects for 2 parents with prior distribution N(0, ¢2),
and S'is an SCA effect with prior distribution N(0, ¢%).
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Two genetic parameters —the narrow-sense herita-
bility of polygenic inheritance /*=403/0, (where o},
is the total phenotypic variance), and the ratio of
dominance to additive genetic variance of polygenic
inheritance, r=o0}/0; —are used to calibrate these
polygenic quantities (Huber et al., 1992).

The major genotypes of parents and progenies are
simulated according to (3) and (2). The major gene
variance component is calculated as: o%,=o0%+
0g=2f(1 =1 =2f)d+al +[2f(1 —f)dP’. The total
phenotypic variance is o3=0%+ 205+ 02+ 02=10.
The relationship between polygenic effects and major
gene effects is assumed to be additive. For our simu-
lation, the parameters are set to h2=0-2, r=0-5,
a=10, d=0-0 and f=0-2. The realized favourable
allele frequency ( /) is 0-167. The major genotypes of
the 6 parents are AyA,y, AyAs, AsAy, A1As, A1 A, and
AjA,. The effect of the single gene in this case is to be
detected and estimated.

(1) Effects of prior distribution, initial value
and design matrix

For the overall mean (u), the additive major gene
effect (@) and the dominance major gene effect (d), the
priors p(u), p(a) and p(d) are chosen as a flat distri-
bution, and are proportional to a constant, or chosen
as a normal distribution, and have N(0, K*), where
K=41is used in the analysis. Both uniform and normal
priors are used in the model, respectively, to see the
effect of priors on posterior inference.

The design matrix for the random polygenic effects
(GCAs and SCAs) can be either full rank by putting
constraints > /%, g;=0, Z;“lejzo, or singular. Both
design matrices are used to test its effect on the
Markov chain Monte Carlo (MCMC) method, es-
pecially its convergence.

Initial values of GCA, SCA and variance com-
ponents, 0%, 0%, 02, are obtained from the traditional
genetic model analysis (without major gene effect).
These estimates are used as initial values for the
Markov chain. For the major gene, the ranges for a, d
and fare [0-0, 1-0], [0-0, 0-5] and [0-1, 0-5], respectively
(Table 2). The genotypes of parents are generated by
f, assuming that parents are all from a base popu-
lation with Hardy—Weinberg and linkage equilibrium.
Given the parents’ genotypes, major genotypes of pro-
genies are generated by following the Mendelian trans-
mission probabilities of allele segregation. These
multiple independent parallel runs of Gibbs sampler
can be used as a diagnostic tool to examine the mixing
property of MCMC. For each case, two independent
chains, with 40 000 iterations each, are run.

(iii) Convergence diagnostics

Bayesian Output Analysis (BOA version 0.5.0)
(Smith, 2000) is used to analyse these outputs. The
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Table 2. The six combinations of initial values
(NO—-NY5) for each of three combinations of prior and
design matrix : uniform priors for a, d and . with
singular design matrix, normal priors for a, d, and n
with singular design matrix, and normal priors for a,
and w with full-rank design matrix to test the effect of
prior, initial value, and design matrix on the mixed
inheritance model (MIM) using a blocking Gibbs
sampling

Initial value

Case/parameter a d f

NO (true values) 1-0 0-0 0-2
N1 0-0 0-0 0-1
N2 0-25 0-25 0-2
N3 0-5 0-0 0-3
N4 0-75 05 0-4
NS5 1-0 0-0 0-5

In the MIM, the polygene background set up was narrow-
sense heritability of polygenic inheritance 4#2=0-2, the ratio
of dominance to additive genetic variance of polygenic in-
heritance r=0-5, and the major gene effect was simulated by
2a, d, and f

Gelman and Rubin Shrink Factors (Gelman &
Rubin, 1992) plot is used to determine the burn-in
time as well as the convergence. The autocorrelation
plot is then used to determine the length of thinning
lag in order to obtain a relatively independent sample
for the final analysis. Brooks, Gelman and Rubin’s
corrected scale reduction factors (for multiple chains)
and Raftery and Lewis’s dependence factors (for a
single chain) are also used to diagnose the conver-
gence of MCMC chains (Brooks & Roberts, 1998). As
a rule of thumb, if the 0-975 quantile of corrected scale
reduction factors is less than 1-2, the sample may be
considered to have arisen from the stationary distri-
bution. For a single chain, dependence factors greater
than 5-0 often indicates convergence failure and a
need to reparameterize the model. Trace plots are
used as indicators of mixing and convergence of
chains.

In the Gibbs chain, the additive major gene effect
(a) may be positive as well as negative. The sign of a
is relevant, i.e. the favourable allele is 4; when a is
positive and A, when «a is negative. From the Gibbs
samples, we are interested in the absolute value of a.
For consistency, we change the frequency of the
favourable allele ( /) to 1 —fwhen a is changed from a
negative to a positive value.

5. Results

When the design matrix was singular, both uniform
prior and normal prior provided good frequentist
coverage estimates, except for the fact that o} esti-
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mates were lower than expected from simulations
(Table 3). The Gelman and Rubin plot for a set of
initial values (as in N1) indicated that the burn-in
iteration was about 25000 iterations (see Fig. 1). The
corrected scale reduction factors were approximately
1-0, and Raftery dependence factors were found to be
much less than 5-0. Posterior densities of six genetic
parameters — a, d, f, 02, 03 and 0% — for a different set
of initial values (as in N1) are listed in Fig. 2. These
numerical diagnostic summaries (Table 4, Fig. 1) in-
dicated that the chains mix well and there was no sev-
ere problem with MCMC convergence. We also
found that the prior and initial values did not have
any effects on the Gibbs sampler under the singular
design matrix.

When the design matrix was chosen to be of
full rank, each individual chain converged with the
Raftery dependence factors less than 5-0. The par-
ameter estimates from the five different initial value
sets NO, N1, N2, N4 and N5 showed good precision.
For the set of initial values N3, however, the estimates
of major gene genotype for the sixth parent, as well
as the corresponding genetic parameters, were not
correct (see Table 3). As a result, the 0-975 quantile of
corrected scale reduction factors for parameters d, f
and o were 1-28, 129 and 2-87 respectively (see
Table 4). This may indicate a possible mixing problem
for the N3 set due to the combination of full-rank
design matrix with this data structure. To avoid this
possibility, a normal prior with a singular design ma-
trix was chosen as a model for the further analysis of
our case study.

6. A case study

The blocking Gibbs sampling method was applied
to a progeny data set derived from a 6-parent, half-
diallel mating of Loblolly pine by the North Carolina
State University Tree Improvement Program (Li et al.,
1999). Similar to the simulated data, 15 full-sib fam-
ilies from the diallel mating were planted at 4 different
sites with 6 blocks each. Tree heights of progenies at
age 6 years were the quantitative trait for this analysis.
First, a linear model was fitted to adjust the fixed ef-
fects of site and block within site from phenotypic
observations. The residuals were used as the pheno-
typic observation vector Y. Initial values for GCA,
SCA and variance components were all taken from
the estimates from a traditional polygenic model
without the major gene. The prior distributions for u,
a and d were normal ~N(0, K?) with K=4. The hyper-
parameters for allele frequency f were a,=1 and
Br=1. A singular design matrix was chosen for the
analysis.

The results for two independent chains, with dif-
ferent sets of initial values for a, d and f, were very
close to each other using 240 000 iterations (Table 5).
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Table 3. Estimated means, and standard deviations of posterior densities for six genetic parameters (a, d, f, 0%, o3, 02), and genotype estimates of six parents
(P1—Pg) for testing the effects of prior distribution, initial value and design matrix on the mixed inheritance model

Parameters: a d f o2 o o2 P, P, Py P, Py P
True values 1-0 0-0 0-167 0-595 0-034 0-017 AyAs  AyAs AyAs AyA, Ay Ay AsxA,
Uniform prior
NO 1-03+0-12¢ —0-07+0-12  02124+0-102  0:613+£0:027  0-0174+0-012  0-013+0-008 A4,  Asdy,  Asdy  Aydy  A1As A4,
N1 1-04+0-12 —0-:08+0-12  0-2154+0-103  0-613+0:027  0-017+0-011 001340007 A4,  AxAs  AxAy  A1Ay  A1dy, AsA,
N2 1:03+0-12 —0:07+0-13  02154+0-106  0:612+0:028  0-018+0-014  0:013+0:007 A4,  Asdy,  Aydy,  A1ds  A1As A4,
N3 1-02+0-13 —0:06+0-13  0-2124+0-104  0614+0-028  0:017+0-:010  0-013+0-008  A,4,  AyAy  AsAy  A1dy,  A1Ay  AyA,
N4 1:03+0-11 —0-07+0-12  02154+0-107  0-612+0:027  0-016+0-011 0-:013+0:008  Aydy Ay Asds  A1ds  A1As AxA,
NS 1-024+0-12 —0-:07+0-12 021240106  0-614+0:028  0-017+0-011 0-0134+0-008  Ay4,  AxAy  AyAy  A1Ay  A1Ay AsA,
Normal prior
NO 1-04+0-12 —0-:08+0-12  0-2174+0-108  0-613+0:028  0-017+0-011 001340007  Ay4,  AxAs  AxAy  A1Ay A1dy AsA,
N1 1:03+0-13 —0-07+0-13  0215+0-105  0-613+0:028  0-017+0-012  0-013+0-007 A4,  Asdy  Aydy,  A1dys  A1As A4,
N2 1-044+0-12 —0-:08+0-13  0-2124+0-104  0612+0-028  0:017+0-:010  0-:013+0-008  A,4y  AyAs  AsAy  A1dy  A1Ay  AsA,
N3 1:01+0-13 —0-05+0-13  0216+0-107  0-614+0:027  0-017+0-011 0-:013+0:007  Aydy  AxdAs  Asds  A1ds A1y AsA,
N4 1-03+£0-12 —0-:07+0-12  0-2154+0-105  0613+0:026  0-017+0-011 0-0134+0-008 A4,  AxAs  AxAy  A1Ay  A1dy AsA,
N5 1:04+0-11 —0-084+0-11 0-214+0-107  0-611+0-028  0-017+0:028  0-013+0-008  Aydy;  AxdAs  AxAs  A1ds A1y AsA,
Normal prior with full-rank design matrices
NO 1:02+0-11 —007+0-12  02124+0-106  0-:615+0:028  0-0154+0-010  0-012+0:006 A4,  Aydy,  Aydy,  Aydys  A1As A4,
N1 1:02+0-13 —0-:074+0-13 021540106  0-616+0-027  0-016+0-011 001240007  Ay4,  AxAy  AsAy  A1Ay A1Ay AsA,
N2 1:03+0-11 —0-084+0-12  0214+0-108  0:614+0:028  0-0154+0-010  0:012+0:007 A4,  Asdy,  AyAdy,  A1As  A1As A4,
N3 0-95+0-10 —020+007  0-:354+0-123  0:634+0:033  0:-100+0:067  0-:009+0-006  A,Ay  AyAy  AyAs  A1A,  A1Ay A1A
N4 1:02+0-14 —0:06+0-14  0216+0-141 0-:615+0-105  0-0154+0-010  0:012+0:007 A4,  Aydy,  AyAdy,  Aydy  A1As A4,
N5 1-01+£0-12 —0-054+0-13  0-216+0-106  0-614+0-106  0-015+0-009  0-:012+0-006  A,Ay  AyAs  AsAy A1y A1As  AyA,
MC error? 0-006 0-006 0-002 0-0006 0-0003 0-0002

In the MIM model, the polygene background set up was h*=0-2, r=0-5, and the major gene effect was simulated by 2a =20, d=0-0 and f=0-2 (actual value is 0-167). There were

six runs, NO to N5, for each of three cases.
¢ Mean + standard deviation of the parameter estimate from the Gibbs sample with lag=>5.

b There is one MC error for each chain. Because the values for each parameter are so close, only an average value is listed here.
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Fig. 1. Gelman and Rubin shrink factor plots of six genetic parameters (a, d, f, 0%, 0z, 03) of the initial value set N1 for
normal prior for a, d and f with singular design matrix for testing the effects of prior distribution, initial values, and design

matrix on the mixed-inheritance model.

The 0-975 quantile of corrected scale reduction factors
for parameters was less than 1-2. The percentage of
major gene effects was estimated as 17 % of the total
phenotypic variance. The estimated major genotype
of parent 2 was A,A,, while that of the others was
AsA,. The additive effect of the major gene was ax2-3
and the dominance effect was d~ —2-3. That is, 4,4,
had a~23, A;4, had d~ —23 and A,4, had
a~ —2-3. The results indicated that there might be a
detectable recessive major gene controlling the height
growth of Loblolly pine in this diallel population,
although the effect of the major gene is small com-
pared with the polygenic effects, explaining about
17% of total phenotypic variance. High estimated
GCA values also indicated that the polygenic com-
ponent was more important for height growth of
Loblolly pine at age 6 years. Given the limitations of
the experimental design and relatively small effect
of the major gene, the major genotypes may not be
accurate in this case study. Furthermore, the validity
of the model assumptions and possible interaction of
polygenic and major gene effects may make this
genotype interpretation difficult.

https://doi.org/10.1017/5S0016672304006718 Published online by Cambridge University Press

7. Discussion

The Bayesian approach with parent-blocking Gibbs
sampling has been shown to be effective in this study
for analysing data from a half-diallel mating design
using a mixed-inheritance model. The method can be
used successfully to detect major gene segregation,
estimate major gene effects and putative genotypes of
a major gene for parents and progenies, as well as
polygenic parameters of a quantitative trait. To our
knowledge, this is the first statistical approach that
incorporates the polygenic effects of GCA and SCA
with a major gene in the MIM for a diallel mating
design. The results from this model have provided a
better understanding of mixed inheritance of quanti-
tative traits in diallel populations, particularly for tree
breeding.

Although major-gene genotypes detected are
putative, based on the statistical inference, this infor-
mation of segregation could be valuable for identify-
ing parents with major genes affecting quantitative
traits. The proposed method is based on the existing
half-diallel mating design, and hence it can be used
to analyse actual progeny test data for breeding
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Fig. 2. Posterior densities of six genetic parameters (a, d, f, 0%, 0, o) of the initial value set N1 for normal prior for a, d
and u with singular design matrix were used for the mixed-inheritance model. The horizontal dots are the Gibbs sample

values for the parameter.

purposes. By systematically screening progeny test
data with this method, putative major genes, geno-
types of parents and progenies, and their probabilities
can be estimated. This is in addition to the polygenic
effects of GCA and SCA, and other variance com-
ponent estimates from the traditional analysis. The
detectable major gene and putative genotypes would
be valuable for selecting materials in an active breed-
ing programme. By combining the GCA and SCA
estimates and possible major genotypes, suitable
combinations of parents or progenies can be chosen
to provide maximum genetic gains for a breeding
programme.

The putative genotypes of major genes identified
with this method could also be valuable for molecular
mapping experiments by providing a mapping popu-
lation with a high probability of segregation for the
quantitative traits. This should improve the effective-
ness of searches for quantitative trait loci in the lab-
oratory and reduce the experimental costs of such a
search. Often no quantitative trait loci can be detected
due to inadequate segregation in the experimental
population. Our analytical approach can thus be first
used to identify parents or families that are most
likely segregating for a quantitative trait before fur-
ther molecular mapping and linkage analysis are

https://doi.org/10.1017/5S0016672304006718 Published online by Cambridge University Press

pursued. The detection of major genes using statistical
approaches and confirmation of the presence of a
major gene using genetic markers are very important
for designing more effective breeding strategies and
would make breeding for quantitative traits much
more efficient.

One problem with the traditional maximum likeli-
hood approach is that it is not feasible to obtain
maximum likelihood estimators either by maximizing
the likelihood of incomplete data directly or by using
an iterative algorithm such as EM. By adopting a
Bayesian framework for the segregation analysis, we
avoided the necessity of performing such an optimi-
zation. In addition, estimates of the parameters are
based on finite sample posterior distribution and thus
avoid the use of asymptotic approximation using
Fisher information. The marginal Bayesian esti-
mators take into account the uncertainty of a single
parameter that is due to the uncertainty in all other
parameters in the model. Thus, it can take into ac-
count all model uncertainty based on finite samples.
Model selection methods based on theoretical criteria
such as AIC and BIC can be used to choose models
with different numbers of major genes.

Usually, a full-rank design matrix makes the
Markov chain converge quicker (Gilks & Roberts,
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Table 4. Convergence diagnostics of the six parameters, a, d, f, o2, 0, 02, for testing the effects of prior

distribution, initial value and design matrix on the mixed inheritance model

Parameters: a d f o oy o>
Uniform prior
CS reduction factor®
Est 1-00 1-00 1-00 1-00 1-00 1-00
0-975 1-01 1-01 1-00 1-00 1-00 1-00
Raftery dependent factor”
NO 12:2 (1-7)¢ 3:0 (1-5) 1-0 11 11 1-0
N1 9-8 (2-0) 5:4 (1-7) 1-0 1-3 1-1 1-1
N2 10-4 (1-7) 49 (1:3) 1-0 1-3 1-0 12
N3 5:0 (1-7) 5:5(1-5) 10 12 1-0 10
N4 8:2(33) 63 (2:6) 1-0 12 1-2 1-0
N5 6-2 (1-5) 5-8 (1°1) 1-0 12 1-0 12
Normal prior
CS reduction factor
Est 1-00 1-00 1-00 1-00 1-00 1-00
0-975 1-01 1-01 1-00 1-00 1-00 1-00
Raftery dependent factor
NO 13-0 (3:1) 87 (2+0) 11 1-3 1-0 12
N1 136 (2-2) 7:6 (1-5) 1-1 1-3 I-1 12
N2 19:9 (4-3) 7-1(1-5) 1-0 1-0 1-2 1-0
N3 4-4 (1-3) 46 (1-5) 12 12 1-0 I-1
N4 49 (1-2) 82 (1-8) 11 11 1-1 12
N5 5:4(1:3) 46 (1-5) 10 1-3 1-3 1-1
Normal prior with full-rank design matrices
CS reduction factor
Est 1-04 I-11 112 1-04 1-98 1-03
0975 1-09 1-28 129 111 2:87 1-08
Raftery dependent factor
NO 52 (1-5) 57 (1-3) 1-0 11 1-0 1-0
N1 64 (1-7) 49 (1-3) 10 2-0 12 12
N2 59 (1-5) 47 (1:3) 1-1 12 1-2 12
N3 9:-1(2-2) 32 (1:3) 10 1-3 2:6 1-0
N4 31-1 (59) 62 (1:3) 1-0 13 1-2 I-1
NS 8:0 (1:7) 7-4 (3-3) 1-1 12 1-2 1-2

In the MIM model, the polygene background set up was h*=0-2, r=0-5, and the major gene effect was simulated by 2a=2-0,

d=0-0 and f=0-2 (actual value is 0-167). There were six runs, NO to N5, for each of three cases.
¢ CS reduction factor: corrected score reduction factor.
b Raftery dependent factor is calculated under quantile =0-025, accuracy = + 0-05 and probability =0-9.

¢ The dependent factor in parentheses was calculated by using lag =30, instead of lag=>5 in the regular base because of strong

autocorrelation.

Table 5. Estimated means and standard deviations of posterior densities for seven genetic parameters (a, d, f, o2

2

0%, 02, On,), and general combining ability (GCA) (g1—ge) and major gene genotypes of six parents (P—Ps) for the
diallel from Bayesian-based segregation analysis. There were two independent runs: chain 1 and chain 2

Genotype: P, P, P P, Py Py

Chain 1 AsAy (0:95)% A1A45 (0:90)  A,A4, (0:86)  AyA, (0:84)  Ay;A4, (0:97) A4, (0:91)

Chain 2 AyAy (097)  A1A5 (0:86) A4, (0-82)  AyA, (0-80)  AyA, (1:0) A4, (0-93)

GCA: 1 283 g3 24 g g6

Chain 1 1-30+0-81> —0-88+0-64 0-:03+0:69 —045+0-67 0-66+0:67 —0-27+0-75

Chain 2 1-:534+092 —091+062 —0:054+0-71 —0-4840-68 0844076 —0-264+-0-76
Parameter: a d f o o o? oz,

Chain 1 2294065 —231+1-05 0-3340-16 696+025 0964092 1-41+090 2:184+1-50
Chain 2 2:17+0-65 —2-25+0-78 0-374+0-17  691+027 1-124+1:09 1-29+092 2:-16 +1-41

o Oulop
1247 0-175
12:60 0-171

¢ Probability of this genotype.
b The estimated mean +standard deviation from the Gibbs samples with lag=>5.

https://doi.org/10.1017/5S0016672304006718 Published online by Cambridge University Press


https://doi.org/10.1017/S0016672304006718

Gibbs sampling for major gene detection in a diallel mating

1996). In this study, the combination of the method,
data structure and full-rank setting may limit the
movement of chains by chance. Consequently, the
wrong parent genotypes may be identified even
though the chain may mix well and converge for other
genetic parameters. Smooth posterior density is not
always an indicator of convergence as studied by
Wang et al. (1994), especially when dealing with the
discrete genotypes in the unknown parameter space.
Gelfand & Sahu (1998) have shown that mixing im-
proved as unidentified parameters were specified in an
increasingly flat prior.

Efficiency of Gibbs sampling depends on the mixing
property of the Markov chain, which in turn is de-
termined by the parameterization used in the model
and the sampling scheme applied. From the consistent
results of multiple chains and convergence tests, we
conclude that the chains have mixed well for parent
block sampling of genotypes. However, if the size of
the progeny population is small and/or the major gene
effect is small, mixing may become a problem even
with the parent block sampling. If additional mol-
ecular marker information is included in the model or
the overall mean u in the model is extended to a vector
by including other non-genetic parameters, such as
site effects and block within-site effects, the mixing
problem may be worse. One possible way to avoid
this is to use the hybrid Markov chain embedding
a Hasting or Metropolis updating step in the basic
Gibbs sampling scheme, as used in pedigree analysis
(Tierney, 1994). Another way would be to use a
Metropolis jumping kernel to make transition be-
tween communicating classes (Lin, 1995). A Bayesian
network is also an alternative solution (Lund &
Jensen, 1999).

Although only one major gene with two alleles was
considered in this study, this method can be extended
to more general situations by considering 27, alleles
and/or two or more major genes. When multiple
alleles and genes are involved in the model, many
important issues such as Hardy—Weinberg dis-
equilibrium (among alleles for one gene), linkage
disequilibrium (association among genes) and epista-
sis (non-allelic interaction) should be examined. In
these cases, model selection can be adopted by means
of the Bayes Factor (Kass & Raftery, 1998), or by
means of a predictive loss approach (Gelfand &
Ghosh, 1998).
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