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Abstract
The path planning and obstacle-crossing motion planning of cable trench inspection robots are essential for achiev-
ing automated inspection. To improve path planning efficiency and obstacle navigation in complex environments, an
enhanced global path planning algorithm based on the A∗ algorithm has been developed, combined with an improved
Dynamic Window Approach (DWA) for local path planning. For unavoidable obstacles, a specific obstacle-crossing
motion planning strategy has been formulated. The enhanced A∗ algorithm improves efficiency and safety through
adaptive neighborhood expansion and the elimination of redundant path points. The improved DWA algorithm
enables real-time dynamic obstacle avoidance in local path planning. The simulation results on a 20 × 20 grid map
indicate that the improved A∗ algorithm reduces the number of nodes by 58.4% and shortens the path length by
6.1% compared to the traditional A∗ algorithm, demonstrating significant advantages over other conventional path
planning algorithms. In the simulation experiments integrating global and local path planning, the enhanced A∗

algorithm combined with the improved DWA algorithm reduces the path length by 3.2% on the 20 × 20 grid map
compared to the integration with the traditional DWA algorithm. On the 30 × 30 grid maps with different obstacle
configurations, the path lengths are reduced by 3.5% and 3.6%, respectively. In the obstacle-crossing experiments,
the robot successfully overcame obstacles of 10 cm and 20 cm in height. The proposed path planning algorithm and
obstacle-crossing motion planning strategy hold substantial application potential in complex environments, offering
reliable technical support for cable trench inspection robots.

1. Introduction
Cable trenches are critical components of the power transmission system [1]. To ensure the safe oper-
ation of the power grid, regular inspection and maintenance of cable trenches are essential. Currently,
these inspections are primarily performed manually, which is labor-intensive and challenging due to
the potential presence of toxic and hazardous gases within the trenches [2]. This not only complicates
manual inspection but also poses significant safety risks.

Replacing manual inspection with robots can significantly improve the quality and efficiency of
inspections [3, 4], aligning with future development trends. Given the complex environment of cable
trenches, robots must be equipped with mechanical arms capable of interacting with cables or equip-
ment within the trenches and must possess strong obstacle-crossing capabilities. In our previous work,
we designed a tracked inspection robot for cable trenches, equipped with a six-degree-of-freedom
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mechanical arm and high climbing and obstacle-crossing performance [5]. Additionally, to achieve auto-
mated and intelligent inspection, the robot must possess robust path planning and trajectory tracking
capabilities [6].

Robot path planning includes both global and local path planning. Common algorithms for global
path planning include bio-inspired algorithms, sampling-based algorithms, and grid-based search algo-
rithms [7]. Bio-inspired algorithms are inspired by animal self-organization behavior, natural evolution,
and biological neural systems [8], such as genetic algorithms (GAs) [9] and ant colony algorithms [10].
These are suitable for solving and optimizing complex problems but are limited by slow processing
speeds and susceptibility to local optima [11, 12]. Sampling-based algorithms, like the well-known
Rapidly-exploring Random Tree (RRT) algorithm [13], iteratively add random nodes to draw edges and
use collision detection to validate edge effectiveness, performing well in high-dimensional configuration
spaces. However, traditional RRT algorithms face limitations such as slow convergence and fluctuating
path quality [14]. Grid-based search algorithms, typically represented by A∗ [15], offer advantages in
real-time performance and optimization [16]. O. A. R. Abdul Wahhab et al. [17] employed three opti-
mization algorithms, including A∗, to address the issues of obstacle avoidance and minimizing path
length in path planning, achieving promising results. Building on the minimum cost equation of the A∗

algorithm, Liu et al. [18] further enhanced the fitness function of the Improved Gray Wolf Optimization
algorithm. This resulted in a fast iterative path planning method tailored for parking lots. To enhance
the performance of the A∗ algorithm, many researchers have proposed improvements. Wang et al. [19]
introduced distance expansion from obstacles, bidirectional search, and smoothing processes to increase
search efficiency, reduce redundant path points, and decrease path turns. Li et al. [20] introduced a bidi-
rectional search strategy with weighted heuristic functions using exponential decay and incorporated
path node filtering, improving search efficiency, reducing redundant nodes, and minimizing turning
angles. To address the issues of excessive node searches and low computational efficiency in end-effector
path planning for robotic arms using the traditional A∗ algorithm, Tang et al. [21] proposed an improved
A∗ algorithm. This method incorporates a novel node search strategy and local path optimization tech-
nique, significantly reducing the number of searched nodes and enhancing search efficiency. Further
considering robot motion constraints, Chen et al. [22] guided hybrid A∗ for secondary path planning,
optimizing the algorithm path, eliminating redundant nodes, and ensuring safe and smooth robot move-
ment. However, the standard A∗ algorithm often encounters difficulties when dealing with dynamic
obstacles and may generate suboptimal paths in certain environments.

Common methods for local path planning include the Artificial Potential Field (APF) [23, 24] and
Dynamic Window Approach (DWA) algorithms. The APF algorithm is prone to local optima and oscil-
lations, insufficiently considers dynamic constraints, and handles dynamic obstacles poorly. The DWA
algorithm samples the current environment, including robot speed, motion parameters, and position.
Although the DWA algorithm is capable of handling dynamic obstacles, it may become trapped in local
optima and has limitations in generating smooth paths. To improve the performance of the DWA algo-
rithm, many researchers have proposed enhancements. Kobayashi et al. [25] combined DWA with a
virtual manipulator (VM) to create DWV, generating path candidates using variable speeds adjusted by
the VM and predicted positions of static and dynamic obstacles. Sun et al. [26] optimized the evalu-
ation function’s sub-functions using fuzzy control logic by dynamically modifying weight coefficients
and selecting critical points on the global path as key sub-targets in the local motion planning phase,
reducing planning time and shortening the planned path length. Dobrevski et al. [27] utilized neural
networks to model the motion trajectories of dynamic obstacles and predict corresponding adjustments
to the DWA weights, thereby enabling safe local navigation for robots in dynamic environments.

Building upon prior research [5], this study further optimizes robot path planning by developing an
enhanced integrated global and local path planning algorithm based on traditional A∗ and DWA methods.
Compared to traditional algorithms, the enhanced A∗ algorithm improves the smoothness of the robot’s
path and accelerates global exploration efficiency, while the optimized DWA enhances the robot’s ability
to avoid both static and dynamic obstacles in local environments. The integration of these two algorithms
results in significant improvements in planning efficiency, safety, and path smoothness. Additionally, a

https://doi.org/10.1017/S0263574724001930 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574724001930


Robotica 3

Figure 1. Cable trench inspection robot.

robot obstacle-crossing motion planning strategy is devised specifically for convex obstacle scenarios
where avoidance is not feasible. Simulation and experimental results demonstrate that the proposed
robot path planning algorithm reduces path length and enhances both path search efficiency and path
smoothness compared to other common algorithms. The obstacle-crossing motion planning strategy
effectively guides the robot in overcoming convex obstacles.

2. Robot path planning and obstacle-crossing strategy
2.1. Cable trench inspection robot
The path planning algorithm and obstacle-crossing motion planning strategy designed in this paper are
applied to the cable trench inspection robot, as shown in Fig. 1. The robot features a structure comprising
a six-degree-of-freedom robotic arm and a quadrupedal six-track walking mechanism. It is equipped
with sensors including a 32-line laser radar and integrated infrared and visible light cameras. Detailed
design parameters of the robot and its control system can be found in our previous work [5].

2.2. Improved global path planning algorithm based on A∗

Automated inspection in cable trenches requires robots to autonomously plan a safe and efficient path
on a predefined grid map to reach their destinations. The A∗ algorithm provides advantages in search
efficiency and path length optimization. Traditional A∗ integrates optimal path search principles from
Dijkstra algorithm with heuristic strategies akin to greedy algorithms [28]. Equation (1) defines the
evaluation function used to estimate the anticipated total distance from the starting node to the target
node, guiding the search toward nodes closer to the projected goal.

F(n) = G(n) + H(n) (1)

In this context, F(n) represents the estimated total cost from the initial node through node n to the
target node; G(n) is the actual cost from the initial node to node n; and H(n) is the heuristic estimate cost
from node n to the target node, typically calculated using Euclidean distance, Manhattan distance, or
Chebyshev distance. The traditional A∗ algorithm is constrained by its inherent algorithmic nature and
the discrete nature of grid-based maps, resulting in planned paths that may include unnecessary turns
and risks approaching obstacles diagonally. To address the inefficiencies, lack of smoothness, and safety
concerns in traditional A∗ path planning, this study optimizes the traditional A∗ algorithm based on its
evaluation function as follows.
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Figure 2. Optimizing child node selection using artificial potential fields.

2.2.1. Adaptive neighborhood expansion
To accommodate the uneven distribution of obstacles in the environment and enhance the accuracy
of shortest path estimation, we introduce the concept of adaptive “step size.” This approach involves
dynamically adjusting the obstacle probability P to effectively manage the complexity of the current
map environment.

P is defined as the proportion of obstacle grid units in the local environment formed by the current
point and the target point. Assuming N is the number of obstacle grid units in this local environment, with
current coordinates (xcur, ycur) and goal coordinates (xgoal, ygoal), the expression for obstacle probability P
is presented in Eq. (2).

P = N

(|xcur − xgoal| + 1) × (|ycur − ygoal| + 1)
(2)

Based on obstacle probability P, dynamically adjust the node neighborhood expansion method, and
search step size: in densely populated obstacle areas, employ a conservative neighborhood expansion
strategy to decrease the search step size and minimize collision risks; in sparsely populated obstacle
areas, employ a more aggressive neighborhood expansion strategy to increase the search step size and
enhance search speed.

2.2.2. Optimization of evaluation function
The search performance of the traditional A∗ algorithm is influenced by the heuristic function H(n),
where varying weights of H(n) may increase the planned path length [29]. By incorporating obstacle
probability P into F(n), dynamically adjusting the weight of H(n) based on obstacle probability, we
adapt the A∗ search process accordingly. The enhanced evaluation function is presented in Eq. (3).

F(n) = G(n) + (
1 − ln(P)

)
H(n) (3)

When obstacles are scarce, lowering obstacle probability P increases the weight of H(n), thereby
accelerating the A∗ algorithm’s search process. Conversely, in densely populated obstacle areas, rais-
ing obstacle probability P decreases the weight of H(n), improving the accuracy of the A∗ algorithm’s
search. Integrating obstacle probability P for search preference adjustment enhances the efficiency and
adaptability of the A∗ algorithm across diverse map environments.

2.2.3. Optimization of child node selection
During the A∗ algorithm’s search process, it is critical to avoid paths that diagonally traverse through
obstacle vertices, as this increases collision risks. Therefore, it is essential to evaluate the spatial rela-
tionship between child nodes and obstacles during their generation to prevent paths from diagonally
crossing obstacle vertices.

The specific improvement in child node selection is depicted in Fig. 2. When encountering obstacles
along the search path, an obstacle repulsive field, inspired by the artificial potential field method, is intro-
duced. This mechanism causes nodes approaching obstacles to experience repulsive forces, prompting
the algorithm to reevaluate and adjust path nodes, thereby ensuring the discovery of safer paths.
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Figure 3. Extracting key points of the path.

Figure 4. Removing redundant points from the path.

2.2.4. Path smoothing
Paths generated by traditional A∗ algorithms often lack optimality and include multiple turning points,
which can hinder actual robot movement. Therefore, additional path smoothing is necessary. This pro-
cess involves extracting key path points and eliminating redundant path segments to improve the overall
smoothness of the planned path, thereby reducing energy consumption during robot motion.

The specific process of extracting key points from the path is illustrated in Fig. 3: Suppose the
initial path planned by the A∗ algorithm is Qstart − Q1 − Q2 − Q3 − Q4 − Q5 − Q6 − Q7 − Q8 − Qgoal.
This process involves removing intermediate points along the straight segments of the path, retain-
ing only the starting point, path turning points, and the endpoint. This results in a streamlined path
such as Qstart − Q3 − Q4 − Q5 − Q7 − Qgoal. This approach significantly reduces pauses in robot motion,
stabilizes movement, and prevents excessive acceleration and deceleration that could lead to impact
loads.

The specific process of removing redundant path points is depicted in Fig. 4: Starting from the initial
point, the path following the extraction of key points is evaluated. It checks whether there are obstacles
between Qstart and Q4. If no obstacles exist, Q4 is removed. The process continues to evaluate whether
obstacles exist between Qstart and Q5. If obstacles are present, this node is retained as an intermediate
point, and the search continues from this node as the new starting point to find the next intermediate node
until reaching the endpoint. This iterative process results in a streamlined path such as Qstart − Q5 − Qgoal,
effectively reducing the path length.

2.3. Improved local path planning algorithm based on DWA
Global path planning provides the robot with a path to the target point in a static map. However, the
environment in cable trenches may change, potentially obstructing previously accessible paths with
obstacles. Therefore, enhancing the robot’s capability for local path planning is crucial. This paper
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improves upon the traditional DWA algorithm to achieve effective local path planning for the robot. The
principle of traditional DWA [30] involves sampling multiple sets of velocities (ν, ω) at a specific reso-
lution in velocity space and simulating the trajectories of these velocities over a specified time period.
After obtaining feasible trajectories, these trajectories are evaluated using the scoring function in Eq. (4),
and the optimal trajectory corresponding to (ν, ω) is selected to drive the robot’s motion.

G(ν, ω) = σ (α · heading(ν, ω) + β · dist(ν, ω) + γ · velocity(ν, ω)) (4)

Here, heading(ν, ω) = 180◦ − |θda| represents the heading evaluation function. θda denotes the robot’s
orientation angle, which is the angle between the direction of motion and the line connecting the robot’s
geometric center to the target point. The distance function dist(ν, ω) = √

(xpred − xobs)2 + (ypred − yobs)2

serves as a safety metric, indicating the distance between the predicted path endpoint and the nearest
obstacle, where (xpred, ypred) are the coordinates of the predicted path endpoint and (xobs, yobs) are the coor-
dinates of the nearest obstacle. The velocity function velocity(ν, ω) = ν represents the speed, indicating
the linear velocity of the robot in the current sampling space. σ , α, β, and γ are weight coefficients that
influence the overall effectiveness of the algorithm.

To prevent discontinuities caused by a single function dominating the overall evaluation function, it
is necessary to normalize the evaluation function as shown in Eq. (5).

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

headingnormal(m) = heading(m)∑n
i=1 heading(m)

distnormal(m) = dist(m)∑n
i=1 dist(m)

velocitynormal(m) = velocity(m)∑n
i=1 velocity(m)

(5)

where n represents the number of velocity and angular velocity combinations that satisfy the constraints
and m denotes the current path being evaluated.

Although the DWA algorithm achieves path planning by selecting the optimal velocity combinations,
it may fall into local optima and is highly dependent on the choice of evaluation function weights. To
improve path smoothness, reduce robot impacts, and minimize energy consumption, the path length
constraints, as shown in Eq. (6), are integrated into the evaluation function.

DIST(ν, ω) =
√(

ypred − ystart

)2 + (
xpred − xstart

)2

−
√

(ycur − ystart)
2 + (xcur − xstart)

2

(6)

where (xcur, ycur) denotes the current coordinates of the robot’s position.
Introducing the DIST(ν, ω) function accelerates the robot’s search speed toward the target point,

thereby shortening the path length. Therefore, by incorporating path length constraints, the evaluation
function of the DWA algorithm can be enhanced as shown in Eq. (7).

G(ν, ω) = σ (α · heading(ν, ω) + β · dist(ν, ω)

+ γ · velocity(ν, ω) + δ · DIST(ν, ω))
(7)

2.4. Obstacle-crossing motion planning for the robot
Path planning algorithms enable the automated operation of robots. However, when encountering convex
obstacles that cannot be avoided along the path, the robot must cross them to continue its inspection tasks.
Obstacles of different heights require different strategies for crossing actions. This paper categorizes
obstacles into three height classes and develops corresponding crossing strategies, detailed in Table I.
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Table I. Obstacle classification and obstacle-crossing strategies.

Obstacle classification Obstacle-crossing strategies
h < hmax/2 Strategy 1
hmax/2 < h < hmax Strategy 2
h > hmax Unable to pass through

Figure 5. Obstacle-crossing motion planning for strategy 1.

In Table I, h represents the height of obstacles, and hmax denotes the maximum obstacle height the
robot can traverse. According to the analysis and testing documented in [5], the maximum obstacle
height hmax that the robot designed in this study can traverse is 300 mm.

This paper is based on the principle of smooth obstacle-crossing, aiming to maintain stable variation
of the robot’s center of mass during the obstacle-crossing process.

When h < hmax/2, strategy 1 is employed for obstacle-crossing motion planning, with specific steps
detailed in Fig. 5. The process unfolds as follows:

(a) The robot halts its forward movement at an appropriate distance from the vertical face of the
obstacle.

(b) Lower the front flipper until its end rests on the edge of the convex surface, simultaneously
pressing down the rear flipper to maintain ground contact.

(c) Further lower the front flipper to elevate the robot until the lower edge of the front flipper’s track
is level.

(d) Proceed by advancing until the robot’s front wheels are positioned on the edge of the convex
surface, then stop.

(e) Lower the front flipper to maintain contact with the ground, reducing the risk of the robot tipping
as its center of gravity crosses the vertical face of the convex surface.

(f) Continue moving forward until the robot’s center of gravity completely crosses the convex
surface and then stop.
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Figure 6. Obstacle-crossing motion planning for strategy 2.

(g) Raise the front flipper to level the robot, ensuring full ground contact with its tracks while
pressing down the rear flipper.

(h) Finally, continue forward motion until no longer suspended, retracting both front and rear flippers
to complete the obstacle-crossing action.

When hmax/2 < h < hmax, strategy 2 is employed for obstacle-crossing motion planning, with specific
steps detailed in Fig. 6:

(a) The robot halts its forward movement at an appropriate distance from the vertical face of the
convex surface.

(b) Lower the front flipper until its end rests on the edge of the convex surface, while simultaneously
lowering the rear flipper to maintain ground contact.

(c) Continue lowering the front flipper to lift the robot until the lower edge of the front flipper’s track
is level with the robot.

(d) Lower the rear flipper to further lift the robot, ensuring it remains perpendicular to the ground,
achieving a greater obstacle-crossing height.

(e) The robot then advances until its front wheels are on the edge of the convex obstacle, then stops.
(f) Lower the front flipper to maintain contact with the ground, minimizing the risk of the robot

tipping as its center of gravity crosses the vertical face of the convex surface.
(g) Continue forward until the robot’s center of gravity completely crosses the convex surface, then

stop.
(h) Lift the front flipper to level the robot, ensuring full ground contact with its tracks.
(i) Finally, continue forward while retracting both front and rear flippers to complete the obstacle-

crossing action.
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Figure 7. Path planning using improved A∗ compared to traditional A∗.

3. Simulation and experimental testing
To evaluate the effectiveness of the improved robot path planning algorithm and obstacle-crossing
motion planning strategy proposed in this paper, simulations of the path planning algorithm and
experimental tests of the robot’s obstacle-crossing maneuvers were conducted.

3.1. Simulation of global path planning based on A∗ algorithm
Initially, a 20 × 20 grid map is constructed, where red squares represent obstacles and white squares
denote navigable areas for the robot. The complexity of the obstacle distribution on this map is designed
to reflect the real working environment of a robot at the interface between cable trenches and substa-
tions, making the simulation results applicable to real-world scenarios. On this map, the improved A∗
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Table II. Performance comparison between traditional A∗ algorithm and improved A∗

algorithm proposed in this paper.

A∗ The improved Percentage
Comparison items algorithm A∗ algorithm reduction
The number of nodes 202 84 58.4%
The length of the path(grids) 30.3848 28.5241 6.1%
The number of turns 4 2 50%
Total degree of turns(◦) 180 81.0578 55.0%

algorithm proposed in this paper is compared with the traditional A∗ algorithm for path planning. The
simulation results are depicted in Fig. 7, where the red dot denotes the starting position, the green dot
denotes the target position, and the solid blue line illustrates the globally planned path by the algorithm.

We compared the performance of the path planning algorithms across four aspects: the number of
nodes, path length, number of turns, and total degree of turns. The results are presented in Table II.

Table II shows that the improved A∗ algorithm in this paper exhibits significant improvements over the
traditional A∗ algorithm in terms of node count, path length, number of turns, and degree. Specifically,
the node count has been reduced by 58%, the path length has been shortened by 6.1%, the number of
turns decreased by 50%, and the total degree of turns reduced by 55%. To further validate the perfor-
mance of the improved A∗ algorithm proposed in this study, simulations were conducted to compare its
results with those of other algorithms such as Ant Colony Optimization (ACO), ACO combined with
GA (ACO + GA), Sparrow Search Algorithm (SSA), and Improved Sparrow Search Algorithm (ISSA),
as depicted in Fig. 8. Performance comparison of path planning algorithms is shown in Table III.

From Table III, it is evident that the improved A∗ algorithm presented in this study exhibits the shortest
search time among the five tested algorithms, reducing the search duration by 97% compared to the ISSA
algorithm, which had the shortest search time among the other methods. Additionally, the path length is
reduced by 0.8% compared to ISSA. This demonstrates that the enhanced A∗ algorithm developed in this
study possesses superior search efficiency. Although the search path length of the improved A∗ algorithm
is approximately 1% longer than that of ACO + GA, its search time is significantly shorter. Therefore,
the proposed improved A∗ algorithm demonstrates excellent performance and holds substantial practical
value.

3.2. Simulation of integrated global and local path planning
To enhance the robot’s navigation through cable trenches and its resilience to disturbances, we utilize a
fusion algorithm that integrates the improved A∗ algorithm with enhanced DWA for path planning. The
fusion algorithm is implemented by first employing the improved A∗ algorithm to discover an initial path.
Subsequently, the nodes from this path serve as critical waypoints for real-time dynamic obstacle avoid-
ance using the enhanced DWA algorithm. The improved DWA algorithm utilizes the robot’s perceived
surrounding information along with its kinematic and dynamic models to plan the robot’s path within
a local range, thereby enabling it to effectively avoid dynamic obstacles. Consequently, the simulation
experiments conducted in this study are based on the assumption that the robot can accurately acquire
environmental information. In the subsequent simulation experiments, the robot’s maximum speed is set
to 1 m/s, the maximum angular velocity is set to 0.23 rad/s, the acceleration is set to 0.1 m/s2, the angu-
lar acceleration is set to 0.57 rad/s2, the velocity resolution is set to 0.03 m/s, and the angular velocity
resolution is set to 0.0175 rad/s.

To validate the effectiveness of the path planning approach based on the improved A∗ algorithm
and enhanced DWA algorithm, we conducted fusion path planning simulations on three different grid
maps: map1, a 20 × 20 grid with simple obstacles; map2, a 30 × 30 grid with complex obstacles; and
map3, which features a different obstacle configuration from map2. In these maps, red squares represent
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Table III. Comparison of simulation results from multiple algorithms.

Algorithm Search duration(s) The length of the path(grids)
ACO 3.114 33.2174
ACO + GA 13.085 28.2372
SSA 1.062 29.1789
ISSA 0.904 28.7602
The improved A∗ algorithm 0.025 28.5241
Comparison of the improved A∗ and ISSA Reduced by 97% Reduced by 0.8%

Figure 8. Path planning results of ACO, ACO + GA, SSA, and ISSA algorithms.

known obstacles, white squares denote navigable areas, gray squares indicate unknown static obstacles,
and yellow squares represent dynamic obstacles. The complexity of the obstacle distribution on these
maps is slightly higher than that of the robot’s actual working environment at the interface between
cable trenches and substations, making the test results applicable to real-world robot scenarios. Each of
the three maps was tested using both the improved A∗ algorithm combined with traditional DWA and the
improved A∗ algorithm combined with the enhanced DWA. In the enhanced DWA, the coefficients for
the heading evaluation function, obstacle distance evaluation function, and current velocity evaluation
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Figure 9. Integrated global and local path planning.
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Table IV. Length comparison of integrated global and local path planning.

Map1 size : Map2 size : Map3 size :
Algorithm 20 × 20 (grids) 30 × 30 (grids) 30 × 30 (grids)
Improved A∗ and traditional DWA 28.9792 44.1697 44.4365
Improved A∗ and improved DWA 28.0476 42.6296 42.8380
Percentage reduction in path length 3.2% 3.5% 3.6%

Figure 10. Experimental validation of robot obstacle-crossing motion planning strategies.

function were set to 0.25, 0.14, and 0.23, respectively, with the prediction time set to 3 s. Additionally,
the minimum safe distance between the robot and obstacles was set to 0.65 m. The simulation results
are shown in Fig. 9, where the globally planned path is represented by a blue dashed line, the robot’s
actual trajectory by a blue solid line, and the trajectories of obstacles by red solid lines. The fusion
path planning algorithms were evaluated based on the length of the final planned path, with the results
detailed in Table IV.

From the simulation results presented in Table IV, it is evident that our improved A∗ algorithm, when
integrated with the enhanced DWA algorithm, reduces the robot’s path length by 3.2% in the 20 × 20
obstacle map (map1) compared to integration with the traditional DWA algorithm. Additionally, in the
30 × 30 obstacle maps (map2 and map3) with different obstacle configurations, the path lengths are
reduced by 3.5% and 3.6%, respectively. The simulation results across different map sizes and vary-
ing obstacle configurations demonstrate the superior global and local path planning capabilities of our
improved A∗ algorithm when combined with the enhanced DWA algorithm.

3.3. Experimental validation of robot obstacle-crossing motion planning strategies
To validate the obstacle-crossing motion planning strategies proposed in this paper, as depicted in
Fig. 10, the robot was operated by trained personnel to test obstacle crossing over convex obstacles of
heights 10 cm and 20 cm. Strategy 1 was employed for overcoming the 10 cm obstacles, while strategy 2
was applied for the 20 cm obstacles.

During the obstacle-crossing process, the robot’s pitch angle θ1 and the absolute displacement (x, y, z)
of a target ball (placed above the robot’s rear axle with the ground as the xy-plane) were real-time
collected using IMU and a laser tracker. The relationship between the robot’s pitch angle θ1 and the
z-direction displacement over time is illustrated in Fig. 11.

From Fig. 11, it can be observed that the robot successfully navigates 10 cm and 20 cm convex obsta-
cles using strategy 1 and strategy 2, respectively. This demonstrates that the obstacle-crossing motion
planning strategies designed in this study meet the robot’s obstacle-crossing requirements, suitable for
assisting in the automated inspection of cable trenches. Additionally, Fig. 11(b) reveals that during the
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Figure 11. Experimental results of robot obstacle-crossing motion planning strategies.

traversal of a 20 cm obstacle, despite efforts by the operator to maintain smooth obstacle-crossing, the
robot’s pitch angle tends to increase with the height of the convex obstacle.

4. Conclusion
To address the challenges of automated inspection for cable trench inspection robots, we have researched
and designed an integrated global and local path planning algorithm, along with obstacle-crossing
motion strategies. First, we enhanced the traditional A∗ algorithm to achieve global path planning.
Compared to the traditional A∗ algorithm, the improved A∗ algorithm reduces the number of search
nodes by 58% and the path length by 6.1% in complex obstacle environments, while also minimizing
the number of turns and turning angles. Second, we integrated an improved DWA for dynamic obstacle
avoidance. Simulation tests confirmed the superiority of this integrated algorithm. Results indicate that
the improved A∗ algorithm combined with the enhanced DWA reduces path lengths by 3.2%, 3.5%,
and 3.6% on the 20 × 20 grid map and two 30 × 30 grid maps with different obstacle configurations,
respectively, compared to integration with the traditional DWA. This integrated algorithm significantly
enhances the efficiency of robot navigation. Furthermore, to tackle the challenges posed by convex
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obstacles during real inspections, we proposed practical scenario-based obstacle-crossing motion plan-
ning strategies. Experimental tests on convex obstacles of 10 cm and 20 cm in height confirmed the
robot’s ability to successfully cross these obstacles, demonstrating the effectiveness and feasibility of
the proposed strategies.

Future research will focus on optimizing the robot’s path planning algorithm performance, particu-
larly in environments with varying terrain and dynamic obstacles. The research outcomes are expected to
be applicable to industrial inspection in complex environments, such as oil refineries, cable trenches, or
urban infrastructure where obstacles and challenging terrain are common. Integrating the path planning
algorithm and obstacle-crossing motion planning strategies into the robot’s autonomous control system
will enhance its adaptability and operational efficiency in these scenarios. Additionally, to facilitate the
deployment of the algorithm on the robot, future work will incorporate advanced sensing technologies,
such as LiDAR and 3D vision systems, to enable more accurate obstacle detection and path planning.
Finally, further research will explore the application of these strategies in dynamic environments, par-
ticularly in scenarios where multiple obstacles may move unpredictably, thereby enhancing the robot’s
autonomy and flexibility.
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