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Abstract
Let C be a curve defined over a number field K and write g for the genus of C and J for the Jacobian of C. Let 𝑛 ≥ 2.
We say that an algebraic point 𝑃 ∈ 𝐶 (𝐾) has degree n if the extension 𝐾 (𝑃)/𝐾 has degree n. By the Galois group of
P we mean the Galois group of the Galois closure of 𝐾 (𝑃)/𝐾 which we identify as a transitive subgroup of 𝑆𝑛. We
say that P is primitive if its Galois group is primitive as a subgroup of 𝑆𝑛. We prove the following ‘single source’
theorem for primitive points. Suppose 𝑔 > (𝑛 − 1)2 if 𝑛 ≥ 3 and 𝑔 ≥ 3 if 𝑛 = 2. Suppose that either J is simple
or that 𝐽 (𝐾) is finite. Suppose C has infinitely many primitive degree n points. Then there is a degree n morphism
𝜑 : 𝐶 → P1 such that all but finitely many primitive degree n points correspond to fibres 𝜑−1 (𝛼) with 𝛼 ∈ P1 (𝐾).
We prove, moreover, under the same hypotheses, that if C has infinitely many degree n points with Galois group
𝑆𝑛 or 𝐴𝑛, then C has only finitely many degree n points of any other primitive Galois group.
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1. Introduction

Low degree points on curves have long been a subject of intensive study, both from a theoretical point-
of-view (e.g., [2], [31]) and algorithmically (e.g., [28]). Perhaps the most celebrated result in this subject
is Merel’s uniform boundedness theorem [23], which (thanks to a strengthening due to Oesterlé [10,
Section 6]) asserts that the only degree n points on the modular curve 𝑋1 (𝑝) (with p prime) are cuspidal,
for 𝑛 < 2 log3(

√
𝑝 − 1). A common theme in the subject is to seek a description of which curves can

have infinitely many points of a certain degree. For example, a famous theorem of Harris and Silverman
[16] asserts that if a curve C over a number field K, of genus ≥ 2, has infinitely many quadratic points,
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then it is either hyperelliptic or bielliptic. The strongest results to date on infinite families of low degree
points on curves are due to Smith and Vogt [29] and to Kadets and Vogt [20], whose works elucidate the
geometric origin of such families provided the degree is small compared to the genus. By comparison,
the question of which groups arise infinitely often as Galois groups of low degree points on a curve has
received very little attention; the only results we are aware of concern degrees 3 or 4 (e.g., [4], [5], [11],
[18], [19]). This paper is concerned with giving insights into this question for primitive groups. Before
we go further, we recall the notion of a primitive permutation group. Let G be a group acting on a finite
set Ω. We say the action is primitive if it is transitive and the only partitions of Ω that are G-stable are
{Ω} and {{𝜔} : 𝜔 ∈ Ω}. It is well-known that a 2-transitive group acts primitively (Lemma 2.1 below),
and thus, 𝑆𝑛 and 𝐴𝑛 are primitive groups (with their natural action on {1, 2, . . . , 𝑛}), for 𝑛 ≥ 1 and
𝑛 ≥ 3, respectively.

Let K be a perfect field and let 𝐾 denote a fixed algebraic closure of K. Write 𝐺𝐾 = Gal(𝐾/𝐾) for the
absolute Galois group of K. Let C be a curve defined over K (by which we mean a smooth projective and
geometrically irreducible variety defined over K having dimension 1). By a degree n point on 𝐶/𝐾 we
mean an algebraic point 𝑃 ∈ 𝐶 (𝐾) such that [𝐾 (𝑃) : 𝐾] = 𝑛. Equivalently, the orbit of P under the action
of𝐺𝐾 has size n. If the orbit of P is {𝑃1, . . . , 𝑃𝑛}, then we define the Galois group of P, which we denote
by Gal(𝑃/𝐾), to be the image of the natural permutation representation 𝐺𝐾 → Sym({𝑃1, . . . , 𝑃𝑛}).
Thus, we may identify Gal(𝑃/𝐾) (up to conjugation) as a transitive subgroup of the n-th symmetric
group 𝑆𝑛. The Galois group of P is also the Galois group of the Galois closure of 𝐾 (𝑃)/𝐾 . Following
[21], we say that the point P is primitive if Gal(𝑃/𝐾) acts primitively on {𝑃1, . . . , 𝑃𝑛}; this means that
the only partitions of the orbit Ω = {𝑃1, . . . , 𝑃𝑛} preserved by Gal(𝑃/𝐾) are {Ω} and the singletons
partition {{𝑃1}, . . . , {𝑃𝑛}}. We call a divisor D on C rational if it is supported on 𝐶 (𝐾) and stable
under the action of 𝐺𝐾 . Henceforth, all divisors considered are assumed to be rational. An effective
divisor D is said to be reducible if it admits a decomposition 𝐷 = 𝐷1 + 𝐷2, where 𝐷1 > 0, 𝐷2 > 0
and both are rational; otherwise, we say that D is irreducible. Thus, an irreducible divisor consists of
a single Galois orbit of algebraic points; an irreducible divisor of degree n is what many other authors
(e.g., [3], [20], [29], [31]) call a degree n closed point. We call an irreducible divisor primitive if it is
the Galois orbit of a primitive point.

Theorem 1.1. Let K be a number field. Let 𝐶/𝐾 be a curve of genus g, and write J for the Jacobian of
C. Let 𝑛 ≥ 2 and suppose {

𝑔 > (𝑛 − 1)2 if 𝑛 ≥ 3
𝑔 ≥ 3 if 𝑛 = 2.

(1.1)

Suppose that 𝐴(𝐾) is finite for every abelian subvariety 𝐴/𝐾 of J of dimension ≤ 𝑛/2. If C has infinitely
many primitive points of degree n, then there is a degree n morphism 𝜑 : 𝐶 → P1 defined over K such
that all but finitely many primitive degree n divisors are fibres 𝜑∗(𝛼) with 𝛼 ∈ P1 (𝐾).

We call Theorem 1.1 the “Single Source Theorem”, since, with finitely many exceptions, all primitive
degree n points come from a single source which is the morphism 𝜑 : 𝐶 → P1.

Theorem 1.2. Let K be a number field. Let 𝐶/𝐾 be a curve of genus g, and write J for the Jacobian of
C. Let 𝑛 ≥ 2 and suppose (1.1) holds. Suppose that 𝐴(𝐾) is finite for every abelian subvariety 𝐴/𝐾 of
J of dimension ≤ 𝑛/2. Suppose C has infinitely many degree n points with Galois group 𝑆𝑛 or 𝐴𝑛. Then
C has only finitely many degree n points with any primitive Galois group ≠ 𝐴𝑛, 𝑆𝑛.

The above results show that primitive points are severely constrained if their degree is sufficiently
small compared to the genus. If the degree is large compared to the genus, then the behaviour is very
different. Indeed, Derickx [9] has shown that if C is a smooth projective curve over a number field K
of genus g with 𝐶 (𝐾) ≠ ∅, then C has infinitely many primitive degree n points for every 𝑛 > 2𝑔. For
the intermediate range 𝑔 + 1 ≤ 𝑛 ≤ 2𝑔, the existence of a single primitive degree n point guarantees the
existence of infinitely many [21, Theorem 12].
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We point out that, in both Theorems 1.1 and 1.2, we may replace the assumption ‘𝐴(𝐾) is finite
for every abelian subvariety 𝐴/𝐾 of J of dimension ≤ 𝑛/2’ with the stronger (but more simply-stated)
assumption that ‘J is simple or 𝐽 (𝐾) is finite’. Later on, we give versions of both theorems where this
assumption is replaced by a weaker but more technical hypothesis (Theorems 5.1 and 7.1).

We mention two intermediate results that may be of independent interest.

Theorem 1.3. Let K be a perfect field. Let 𝑛 ≥ 2. Let C be a curve of genus g defined over K. Suppose

𝑔 >
(𝑛 − 1) (𝑛 − 2)

2
. (1.2)

Let D be a primitive degree n divisor on C. Then ℓ(𝐷) ≤ 2.

Here, 𝐿(𝐷) denotes the Riemann–Roch space associated to D, and ℓ(𝐷) denotes its dimension. We
believe that Theorem 1.3 is the first ever example of a relationship between the Galois group of a divisor
and its Riemann–Roch dimension.

Theorem 1.4. Let K be a perfect field. Let 𝐶/𝐾 be a curve of genus g. Let 𝑛 ≥ 2. Let 𝐷1, 𝐷2 be two
primitive degree n divisors on C with ℓ(𝐷1) = ℓ(𝐷2) = 2. Suppose

𝑔 > (𝑛 − 1)2. (1.3)

Then 𝐷1, 𝐷2 are linearly equivalent.

The paper is structured as follows. In Section 2, we review some standard results on primitive group
actions that are needed later in the paper. In Section 3, we prove Theorem 1.3: if ℓ(𝐷) ≥ 3 and D is
primitive, then we show that C is birational to a plane degree n curve which contradicts (1.2). In Section
4, we prove Theorem 1.4: if 𝐷1, 𝐷2 are inequivalent and primitive, then we show that C is birational
to an (𝑛, 𝑛)-curve on P1 × P1 contradicting (1.3). In Section 5, we show that Theorem 1.1 follows from
Theorems 1.3, 1.4 and a famous theorem of Faltings on rational points lying on subvarieties of abelian
varieties. The next two sections (Section 6 and Section 7) are devoted to deducing Theorem 1.2 from
Theorem 1.1. Indeed, Theorem 1.1 allows us to focus on the fibres of a single degree n morphism
𝜑 : 𝐶 → P1 defined over K. We show that this morphism has ‘generic Galois group’ 𝐴𝑛 or 𝑆𝑛, and to
prove Theorem 1.2, it will be enough to show that only finitely many fibres have primitive Galois groups
≠ 𝐴𝑛, 𝑆𝑛. The map 𝜑 is not in general a Galois cover, and we will need to consider the ‘geometrically
connected Galois closure’ �̃� → P1, which is defined over an extension L of K. We show, using the
simplicity of 𝐴𝑛, that either 𝐿 = 𝐾 or 𝐿/𝐾 is quadratic. The fibres 𝜑∗(𝛼), for 𝛼 ∈ P1 (𝐿), which have
any given Galois group H, give rise to L-points on some subcover 𝐷𝐻 /𝐿 of �̃�. The proof of Theorem
1.2 boils down to noting that all these 𝐷𝐻 have genus ≥ 2, thanks to a theorem of Guralnick and
Shareshian, and hence finitely many L-points by Faltings’ theorem.

2. Primitive group actions

In this section, we review some properties of primitive group actions. This is standard material (e.g.
[12]), and is included for the convenience of the reader. Let G be a group acting transitively on a finite
set Ω. Let P be a partition of Ω. We say that P is G-stable if 𝜎(𝑌 ) ∈ P for all 𝑌 ∈ P and all 𝜎 ∈ 𝐺. We
say that the action of G on Ω is primitive if the only G-stable partitions of Ω are the trivial ones: {Ω}
and {{𝜔} : 𝜔 ∈ Ω}. Here, is an equivalent formulation: the action of G on Ω is imprimitive if and only
if there is some 𝑌 ⊂ Ω such that 2 ≤ #𝑌 < #Ω, and for all 𝜎 ∈ 𝐺, either 𝜎(𝑌 ) = 𝑌 or 𝜎(𝑌 ) ∩ 𝑌 = ∅.

Lemma 2.1. Suppose the action of G on Ω is 2-transitive. Then the action is primitive.

Proof. Let Y be a subset of Ω with at least two elements and suppose that for all 𝜎 ∈ 𝐺, either 𝜎(𝑌 ) = 𝑌
or 𝜎(𝑌 ) ∩ 𝑌 = ∅. We want to show that 𝑌 = Ω. Let 𝑐 ∈ Ω; we want to show that 𝑐 ∈ 𝑌 . Let a, 𝑏 ∈ 𝑌 be
distinct. We may suppose 𝑐 ≠ 𝑎, b. As G is 2-transitive on Ω, there is some 𝜎 ∈ 𝐺 such that 𝜎(𝑎) = 𝑎
and 𝜎(𝑏) = 𝑐. As 𝑎 ∈ 𝑌 ∩ 𝜎(𝑌 ), we have 𝑌 = 𝜎(𝑌 ) and so 𝑐 ∈ 𝑌 . �
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It follows from Lemma 2.1 that 𝑆𝑛 is primitive for all n, and 𝐴𝑛 is primitive for 𝑛 ≥ 3.

Lemma 2.2. Suppose |Ω| ≥ 2. The action of G on Ω is primitive if and only if Stab(𝜔) is maximal for
any (and hence all) 𝜔 ∈ Ω.

Proof. As the action is transitive, any two point stabilizers are conjugate, and thus, if one is maximal,
then so are all of them. Let 𝜔 ∈ Ω. As |Ω| ≥ 2, the stabilizer Stab(𝜔) is a proper subgroup of G.
Suppose it is non-maximal, and let Stab(𝜔) � 𝐻 � 𝐺 be a subgroup. Let 𝑌 = 𝐻𝜔. Then

2 ≤ [𝐻 : Stab(𝜔)]︸�����������︷︷�����������︸
#𝑌

< [𝐺 : Stab(𝜔)] = #Ω. (2.1)

Suppose 𝜎 ∈ 𝐺 and 𝑌 ∩ 𝜎(𝑌 ) ≠ ∅. Then, there are ℎ1, ℎ2 ∈ 𝐻 such that ℎ1𝜔 = 𝜎ℎ2𝜔, and so
ℎ−1

1 𝜎ℎ2 ∈ Stab(𝜔) ⊂ 𝐻, so 𝜎 ∈ 𝐻, and hence, 𝜎(𝑌 ) = (𝜎𝐻)𝜔 = 𝐻𝜔 = 𝑌 . Therefore, the action is
imprimitive.

Conversely, suppose the action is imprimitive, so there is some 𝑌 ⊂ Ω satisfying 2 ≤ #𝑌 < #Ω, and
for all 𝜎 ∈ 𝐺, either 𝜎(𝑌 ) ∩ 𝑌 = ∅ or 𝜎(𝑌 ) = 𝑌 . Let 𝜔 ∈ 𝑌 and let

𝐻 = {𝜏 ∈ 𝐺 : 𝜏(𝑌 ) = 𝑌 } = {𝜏 ∈ 𝐺 : 𝜏(𝑌 ) ∩ 𝑌 ≠ ∅}.

If 𝜎 ∈ Stab(𝜔), then 𝜔 ∈ 𝑌 ∩ 𝜎(𝑌 ) so 𝜎(𝑌 ) = 𝑌 and so 𝜎 ∈ 𝐻. Hence, Stab(𝜔) ⊆ 𝐻. Moreover, as
H acts transitively on the elements of Y, we have [𝐻 : Stab(𝜔)] = #𝑌 , so (2.1) holds, and therefore,
Stab(𝜔) is non-maximal. �

Lemma 2.3. Suppose G acts primitively on Ω. Let N be a normal subgroup of G. Then N acts either
transitively or trivially on Ω.

Proof. We may suppose #Ω ≥ 2. Let 𝜔 ∈ Ω. By Lemma 2.2, the stabilizer Stab(𝜔) is maximal. Let

𝐻 = 𝑁 Stab(𝜔) = {𝑛𝑘 : 𝑛 ∈ 𝑁, 𝑘 ∈ Stab(𝜔)}.

As N is normal, H is a subgroup of G, and since Stab(𝜔) is maximal, 𝐻 = Stab(𝜔) or 𝐻 = 𝐺. Suppose
first that 𝐻 = 𝐺. Then Ω = 𝐺𝜔 = 𝐻𝜔 = 𝑁𝜔, so N acts transitively. Suppose instead that 𝐻 = Stab(𝜔).
Then 𝑁 ⊆ Stab(𝜔). As N is normal and all point stabilizers are conjugate, we see that N is contained
in all point stabilizers and so acts trivially. �

3. Primitivity and Riemann–Roch dimension

In this section, we prove Theorem 1.3. We assume basic knowledge of divisors and linear series as in,
for example, the standard text of Arbarello, Cornalba, Griffiths and Harris [1].

Lemma 3.1. Let K be a perfect field and let 𝐶/𝐾 be a curve. Let D be an irreducible divisor and let
𝑓 ∈ 𝐿(𝐷) be non-constant. Then div∞( 𝑓 ) = 𝐷, where div∞( 𝑓 ) denotes the divisor of poles of f.

Proof. As f is non-constant and belongs to 𝐿(𝐷), we have 0 < div∞( 𝑓 ) ≤ 𝐷. However, D is irreducible;
therefore, div∞( 𝑓 ) = 𝐷. �

Lemma 3.2. Let K be a perfect field and let 𝐶/𝐾 be a curve. Let D be a primitive divisor. Let 𝑓 ∈ 𝐿(𝐷)
be non-constant. Suppose there is a (possibly singular) curve 𝐶 ′/𝐾 , and rational maps 𝜑 : 𝐶 � 𝐶 ′

and 𝜓 : 𝐶 ′ � P1 defined over K such that 𝑓 = 𝜓 ◦ 𝜑. Then deg(𝜑) = 1 or deg(𝜓) = 1.

Proof. Since D is primitive, it is irreducible, and thus, div∞( 𝑓 ) = 𝐷 by Lemma 3.1.
Now let 𝜋 : 𝐶 ′′ → 𝐶 ′ be the normalization of 𝐶 ′. The map 𝜋 is birational, and we write 𝑢 = 𝜋−1 ◦ 𝜑,

and 𝑣 = 𝜓 ◦ 𝜋. As C and 𝐶 ′′ are proper, 𝑢 : 𝐶 → 𝐶 ′′ and 𝑣 : 𝐶 ′′ → P1 are morphisms defined over K.
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Consider the following commutative diagram:

𝐶 ′′

𝐶 𝐶 ′ P1

𝜋
𝑣𝑢

𝜑 𝜓

We note that 𝑓 = 𝜓 ◦ 𝜑 = 𝑣 ◦ 𝑢. In particular, 𝐷 = 𝑓 ∗(∞) = 𝑢∗(𝑣∗(∞)).
Write 𝑟 = deg(𝑢) and 𝑠 = deg(𝑣). Write 𝑣∗(∞) = 𝑄1 + · · · +𝑄𝑠 . Note that

{𝑢−1(𝑄𝑖) : 𝑖 ∈ {1, . . . , 𝑠}}

is a partition of the points in D, into s subsets of size r, that is Galois-stable. As D is primitive, either
𝑟 = 1 or 𝑠 = 1. However, 𝑟 = deg(𝜑) and 𝑠 = deg(𝜓), completing the proof. �

Proof of Theorem 1.3. Suppose ℓ(𝐷) ≥ 3. Then there are f, 𝑔 ∈ 𝐾 (𝐶) such that 1, f, g are linearly
independent elements of 𝐿(𝐷). Let V be the subspace of 𝐿(𝐷) spanned by 1, f, g, and consider the
corresponding linear system:

{𝐷 + div(ℎ) : ℎ ∈ 𝑉}. (3.1)

We claim that (3.1) is base-point free. Indeed, let 𝐷0 be the base locus of (3.1). Thus, 𝐷0 is a K-rational
divisor and 𝐷0 ≤ 𝐷. Since D is irreducible, either 𝐷0 = 0 or 𝐷0 = 𝐷. If 𝐷0 = 𝐷, then all elements of
the linear system (3.1) are equal to D, which makes all ℎ ∈ 𝑉 constant, giving a contradiction. Thus,
𝐷0 = 0, establishing our claim. We let

𝜑 : 𝐶
|𝑉 |
−−−→ P2, 𝜑 = [ 𝑓 : 𝑔 : 1],

and let 𝐶 ′ be the image of C in P2 under 𝜑, which is a geometrically irreducible curve defined over K,
but may be singular. We claim that [0 : 1 : 0] ∉ 𝐶 ′. Suppose [0 : 1 : 0] ∈ 𝐶 ′; thus, there is some point
𝑃 ∈ 𝐶 such that ( 𝑓 /𝑔) (𝑃) = (1/𝑔) (𝑃) = 0. However, by Lemma 3.1, we have div∞( 𝑓 ) = div∞(𝑔) = 𝐷.
Since (1/𝑔) (𝑃) = 0, we have ord𝑃 (𝐷) > 0. But then ord𝑃 ( 𝑓 ) = − ord𝑃 (𝐷) = ord𝑃 (𝑔), contradicting
( 𝑓 /𝑔) (𝑃) = 0 and establishing our claim.

Write

𝜓 : 𝐶 ′ → P1, 𝜓 [𝑥 : 𝑦 : 𝑧] = [𝑥 : 𝑧] .

We may interpret this as projection of the curve𝐶 ′ from the point [0 : 1 : 0] to the line ℓ = {[𝑥 : 0 : 𝑧] :
[𝑥 : 𝑧] ∈ P1}. For a suitably general point [𝑎 : 𝑏] ∈ P1, the pull-back 𝜓∗ [𝑎 : 𝑏] is the intersection of 𝐶 ′

with the line connecting [0 : 1 : 0] with [𝑎 : 0 : 𝑏]. Thus, deg(𝜓) is the degree of 𝐶 ′ as a plane curve.
We also denote by 𝜑 the morphism 𝐶 → 𝐶 ′. Then 𝜓 ◦ 𝜑 = 𝑓 . Applying Lemma 3.2 to 𝜓 ◦ 𝜑 = 𝑓

gives deg(𝜑) = 1 or deg(𝜓) = 1. However, if deg(𝜓) = 1, then 𝐶 ′ is a line which contradicts the linear
independence of 1, f, g. Thus, deg(𝜑) = 1, and so deg(𝜓) = deg( 𝑓 ) = deg(𝐷) = 𝑛 since div∞( 𝑓 ) = 𝐷.
In particular, the plane curve 𝐶 ′ has degree n. As deg(𝜑) = 1, the map 𝜑 : 𝐶 → 𝐶 ′ is birational. Hence,
the geometric genus of 𝐶 ′ is g. Since 𝐶 ′ has degree n, its arithmetic genus is (𝑛 − 1) (𝑛 − 2)/2. As the
geometric genus is bounded by the arithmetic genus, we have that 𝑔 ≤ (𝑛−1) (𝑛−2)/2. This contradicts
(1.2). �
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4. Proof of Theorem 1.4

As ℓ(𝐷𝑖) = 2, we may choose non-constant 𝑓𝑖 ∈ 𝐿(𝐷𝑖). Then div∞( 𝑓𝑖) = 𝐷𝑖 by Lemma 3.1, and in
particular, deg( 𝑓𝑖) = 𝑛. Let

𝜑 : 𝐶 → P1 × P1, 𝜑 = ( 𝑓1, 𝑓2),

and let 𝐶 ′ = 𝜑(𝐶). Then 𝐶 ′/𝐾 is an irreducible but possibly singular curve lying on P1 × P1; we also
denote the map𝐶 → 𝐶 ′ by 𝜑. Let 𝜋1, 𝜋2 : P1×P1 → P1 denote projection onto the first and second factor,
respectively. Let 𝜇𝑖 = 𝜋𝑖 |𝐶′ : 𝐶 ′ → P1. Then 𝑓𝑖 = 𝜇𝑖 ◦ 𝜑. By Lemma 3.2, there are two possibilities:

(I) either deg(𝜑) = 1 and deg(𝜇1) = deg(𝜇2) = 𝑛;
(II) or deg(𝜑) = 𝑛 and deg(𝜇1) = deg(𝜇2) = 1.

Suppose that (I) holds. Then 𝜑 is a birational map, and so C and 𝐶 ′ have the same geometric genus g.
Moreover, 𝐶 ′ is a curve of bidegree (𝑛, 𝑛) on P1 × P1 and therefore has arithmetic genus (𝑛 − 1)2 (see
[17, Exercise III.5.6]). Thus, 𝑔 ≤ (𝑛 − 1)2 giving a contradiction.

Therefore, (II) holds. Thus, 𝜇1, 𝜇2 are birational, and we have a commutative diagram of morphisms

𝐶

P1 𝐶 ′ P1

𝑓1 𝜑
𝑓2

𝜇1 𝜇2

Write 𝜇 = 𝜇2 ◦ 𝜇−1
1 . Then 𝜇 : P1 → P1 is an automorphism satisfying 𝑓2 = 𝜇 ◦ 𝑓1. Thus, 𝑓 ∗2 = 𝑓 ∗1 ◦ 𝜇∗ =

𝑓 ∗1 ◦ 𝜇−1. Let 𝛼 = 𝜇−1(0). Then

div( 𝑓2) = 𝑓 ∗2 (0) − 𝑓 ∗2 (∞) = 𝑓 ∗2 (0) − 𝐷2, div( 𝑓1 − 𝛼) = 𝑓 ∗1 (𝛼) − 𝑓 ∗1 (∞) = 𝑓 ∗2 (0) − 𝐷1.

Hence, 𝐷2 − 𝐷1 = div(( 𝑓1 − 𝛼)/ 𝑓2) establishing the theorem.

5. Proof of Theorem 1.1

Let C be a smooth projective and absolutely irreducible curve over a number field K, with genus 𝑔 ≥ 2,
and write J for its Jacobian. Let 𝑛 ≥ 1. We denote the n-th symmetric power of C by 𝐶 (𝑛) ; this is
defined as the quotient 𝐶 (𝑛) = 𝐶𝑛/𝑆𝑛, where 𝑆𝑛 is the n-th symmetric group acting naturally on the
n-th Cartesian power 𝐶𝑛 of C. Recall that 𝐶 (𝑛) (𝐾) can be identified with the set of effective degree n
divisors on C. Let 𝐷0 be a fixed rational divisor of degree n, and let

𝜄 : 𝐶 (𝑛) → 𝐽, 𝐷 ↦→ [𝐷 − 𝐷0] (5.1)

be the corresponding Abel–Jacobi map. Write 𝑊𝑛 (𝐶) = 𝑊0
𝑛 (𝐶) for the image of 𝐶 (𝑛) under 𝜄; this is

the degree n Brill–Noether locus [1, Section IV.3].
We now state a stronger, but more technical, version of Theorem 1.1.

Theorem 5.1. Let 𝑛 ≥ 2 and suppose (1.1) holds. Suppose 𝑊𝑛 (𝐶) does not contain the translate of an
abelian subvariety 𝐴/𝐾 of J of positive rank. If C has infinitely many primitive points of degree n, then
there is a degree n morphism 𝜑 : 𝐶 → P1 defined over K such that all but finitely many primitive degree
n divisors are fibres 𝜑∗(𝛼) with 𝛼 ∈ P1 (𝐾).

We point out that Derickx [8] has developed a powerful computational method that is often capable
of ruling out the existence of translates of abelian varieties within 𝑊𝑛 (𝐶), even when J has abelian
subvarieties of small dimension.
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We shall need the following theorem of Debarre and Fahlaoui [7, Corolllary 3.6].

Theorem 5.2 (Debarre and Fahlaoui). Suppose 𝑛 ≤ 𝑔 − 1. Let A be an abelian subvariety of J with a
translate contained in 𝑊𝑛 (𝐶). Then dim(𝐴) ≤ 𝑛/2.

Thanks to the theorem of Debarre and Fahlaoui, Theorem 5.1 immediately implies Theorem 1.1. It
is therefore enough to prove Theorem 5.1.

We shall also need the following famous theorem of Faltings [13] which establishes the Mordell–
Lang conjecture for subvarieties of Abelian varieties.

Theorem 5.3 (Faltings). Let B be an abelian variety defined over a number field K, and let 𝑉 ⊂ 𝐵 be a
subvariety defined over K. Then there is a finite number of abelian subvarieties 𝐵1, . . . , 𝐵𝑟 of B, defined
over K, and a finite number of points 𝑥1, . . . , 𝑥𝑟 ∈ 𝑉 (𝐾) such that the translates 𝑥𝑖 + 𝐵𝑖 are contained
in V, and, moreover, such that

𝑉 (𝐾) =
𝑟⋃
𝑖=1

𝑥𝑖 + 𝐵𝑖 (𝐾).

For the proof of Theorem 5.1, we shall need the following proposition.

Proposition 5.4. Let 𝑛 ≤ 𝑔 − 1. Suppose that 𝑊𝑛 (𝐶) does not contain the translate of an abelian
subvariety 𝐴/𝐾 of J of positive rank. Then there are a finite number of divisors 𝐷1, 𝐷2, . . . , 𝐷𝑚 ∈
𝐶 (𝑛) (Q) such that

𝐶 (𝑛) (𝐾) =
𝑚⋃
𝑖=1

|𝐷𝑖 |.

Here, |𝐷 | denotes the complete linear system corresponding to D:

|𝐷 | = {𝐷 + div( 𝑓 ) : 𝑓 ∈ 𝐿(𝐷)}.

Proposition 5.4 is an elementary and straightforward consequence of the aforementioned theorem of
Faltings; versions of the proposition have appeared elsewhere [2, Theorem 4.2], [14, Proposition 2],
[16, Theorem 2], [21, Proposition 18]. For the convenience of the reader, we give the proof.

Proof of Proposition 5.4. Recall our assumption that 𝑛 ≤ 𝑔 − 1. The Brill–Noether locus 𝑊𝑛 (𝐶) has
dimension n as it is birational to 𝐶 (𝑛) (see, for example, [24, Theorem 5.1]) and is therefore a proper
subvariety of J. We apply Faltings’ theorem to deduce that

𝑊𝑛 (𝐶) (𝐾) =
𝑟⋃
𝑖=1

𝑥𝑖 + 𝐵𝑖 (𝐾),

where 𝑥𝑖 ∈ 𝑊𝑛 (𝐾), and 𝐵𝑖/𝐾 are abelian subvarities of J such that the translates 𝑥𝑖 + 𝐵𝑖 are contained
in 𝑊𝑛 (𝐶). Thus, 𝐵𝑖 (𝐾) is finite by the assumption. Thus, 𝑊𝑛 (𝐶) (𝐾) is finite.

We note that 𝜄(𝐶 (𝑛) (𝐾)) is a subset of 𝑊𝑛 (𝐾) and hence must be finite. Choose 𝐷1, . . . , 𝐷𝑚 ∈
𝐶 (𝑛) (𝐾) such that 𝜄(𝐶 (𝑛) (𝐾)) = {𝜄(𝐷1), . . . , 𝜄(𝐷𝑚)}. Now let 𝐷 ∈ 𝐶 (𝑛) (𝐾). Then [𝐷 − 𝐷0] = 𝜄(𝐷) =
𝜄(𝐷𝑖) = [𝐷𝑖 − 𝐷] for some i, and therefore, 𝐷 ∼ 𝐷𝑖 , giving 𝐷 ∈ |𝐷𝑖 |. �

Proof of Theorem 5.1. Write 𝐶 (𝑛)
prim (𝐾) for the subset of 𝐶 (𝑛) (𝐾) consisting of primitive divisors. We

apply Proposition 5.4. Hence,

𝐶 (𝑛)
prim (𝐾) ⊆

𝑚⋃
𝑗=1

|𝐷 𝑗 | (5.2)
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for some effective degree n divisors 𝐷1, . . . , 𝐷𝑚. We may delete any |𝐷 𝑗 | from (5.2) that does not
contain any primitive divisor. Recall that 𝐷 ′ ∈ |𝐷 | if and only if |𝐷 ′ | = |𝐷 |. Hence, we may suppose that
𝐷1, . . . , 𝐷𝑚 are primitive. We now apply Theorem 1.3. This tells us that ℓ(𝐷𝑖) = 1 or 2 for 𝑖 = 1, . . . , 𝑚.
Moreover, Theorem 1.4 tells us that ℓ(𝐷) = 2 for at most one divisor D among 𝐷1, . . . , 𝐷𝑚. If ℓ(𝐷) = 1,
then |𝐷 | = {𝐷}. Since 𝐶 (𝑛)

prim (𝐾) is infinite, we deduce, after permuting the 𝐷𝑖 , that

𝐶 (𝑛)
prim(𝐾) ⊆ {𝐷1, . . . , 𝐷𝑚−1} ∪ |𝐷𝑚 |,

where ℓ(𝐷𝑚) = 2. Let 𝜑 ∈ 𝐿(𝐷𝑚) be a non-constant function, which we regard as a morphism
𝜑 : 𝐶 → P1 satisfying 𝜑∗(∞) = 𝐷𝑚. If 𝐷 ∈ |𝐷𝑚 |, and 𝐷 ≠ 𝐷𝑚, then 𝐷 = 𝐷𝑚 + div(𝜑 − 𝛼) for some
𝛼 ∈ 𝐾 , and so 𝐷 = 𝜑∗(𝛼). This completes the proof. �

6. Galois Theory and specializations

Let K be a number field. Let 𝜑 : 𝐶 → P1 be a morphism of curves defined over K. Note that
𝐾 (𝐶) ∩ 𝐾 = 𝐾 , as C is geometrically connected. We write Ram(𝜑) ⊂ 𝐶 for the set of ramification
points of C. The set of branch values for 𝜑 is

BV(𝜑) = {𝜑(𝑃) : 𝑃 ∈ Ram(𝜑)} ⊂ P1.

Let K be the Galois closure of the function field extension 𝐾 (𝐶)/𝐾 (P1) induced by 𝜑. Write
𝑛 = deg(𝜑). Then we may naturally identify 𝐺 ′ := Gal(K/𝐾 (P1)) with a transitive subgroup of 𝑆𝑛. In
what follows, when we speak of subgroups of 𝐺 ′ being transitive or primitive, it is with respect to the
action on {1, 2, . . . , 𝑛}.

Lemma 6.1. Let 𝛼 ∈ P1 (𝐾), and consider 𝛼 as a place of P1. Let P be a place of K above 𝛼. Then
𝐾 (P)/𝐾 is a Galois extension with Galois group isomorphic to the decomposition group

𝐺 ′
P = {𝜎 ∈ 𝐺 ′ : 𝜎(P) = P}.

Proof. For this, see [30, Theorem III.8.2]. However, we will sketch some of the ideas in the proof of
Lemma 6.2. �

Let 𝐿 = K ∩ 𝐾 , which is a finite Galois extension of K. Let 𝐺 = Gal(K/𝐿(P1)). Then we obtain an
exact sequence of Galois groups

1 → Gal(K/𝐿(P1))︸������������︷︷������������︸
𝐺

→ Gal(K/𝐾 (P1))︸������������︷︷������������︸
𝐺′

→ Gal(𝐿(P1)/𝐾 (P1))︸������������������︷︷������������������︸
�Gal(𝐿/𝐾 )

→ 1. (6.1)

We note that K/𝐿(P1) is regular in the sense that K ∩ 𝐿 = 𝐿. Therefore, K = 𝐿(�̃�), where �̃� is a
(geometrically connected) curve defined over L. The inclusions 𝐿(P1) ⊆ 𝐿(𝐶) ⊆ 𝐿(�̃�) correspond to
morphisms

�̃� → 𝐶
𝜑
−→ P1,

and we write 𝜇 : �̃� → P1 for the composition which is defined over L. We may naturally identify G
with automorphisms of the cover 𝜇.

Now let H be a subgroup of G. WriteK𝐻 for the subfield ofK fixed by H. The function field extension
K𝐻 /𝐿(P1) corresponds to a morphism of curves 𝜋𝐻 : 𝐷𝐻 → P1 defined over L, where 𝐿(𝐷𝐻 ) = K𝐻 .
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Note that we have the following commutative diagram of morphisms:

�̃�

𝐶 𝐷𝐻

P1

𝜂𝐻

𝜇

𝜑

𝜋𝐻

(6.2)

We note that BV(𝜇) = BV(𝜑) (see, for example, [30, Corollary III.8.4]). It follows that BV(𝜋𝐻 ) ⊆
BV(𝜑).

We shall use (6.2) to study fibres of the map 𝜑 with certain Galois group. The curve 𝐷𝐻 is important
to us because of the following standard result.

Lemma 6.2. Let P ∈ �̃� be an algebraic point with 𝜇(P) ∈ P1 (𝐿) − BV(𝜑). Write

𝐺P := {𝜎 ∈ 𝐺 : 𝜎(P) = P}

for the decomposition group of P . Let H be a subgroup of G, and suppose 𝐺P ⊆ 𝐻. Then 𝜂𝐻 (P) ∈
𝐷𝐻 (𝐿).

Proof. The lemma is implicit in most proofs of Hilbert’s Irreducibility Theorem (e.g., [27, Proposition
3.3.1]), but we give a proof as it helps make ideas precise. Note that P is unramified in 𝜇. SinceK/𝐿(P1)
is a Galois extension, the extension 𝐿(P)/𝐿 is Galois, and its Galois group can be identified with 𝐺P
in a natural way; see, for example, [30, Theorem 3.8.2]. We shall in fact need some of the details of this
identification, which we now sketch. Write

OP = { 𝑓 ∈ K : ordP ( 𝑓 ) ≥ 0}, 𝔪P = { 𝑓 ∈ K : ordP ( 𝑓 ) > 0}, (6.3)

for the valuation ring of P and its maximal ideal. Then 𝐿(P) may be identified with OP/𝔪P via the
well-defined map

OP/𝔪P → 𝐿(P), 𝑓 +𝔪P ↦→ 𝑓 (P).

Let 𝜎 ∈ 𝐺P , and let 𝑓 ∈ K. Then

ordP (𝜎( 𝑓 )) = ord𝜎−1 (P) ( 𝑓 ) = ordP ( 𝑓 ).

It follows that 𝜎(OP ) = OP and 𝜎(𝔪P ) = 𝔪P . Hence, 𝜎 ∈ 𝐺P induces a well-defined automorphism
of OP/𝔪P = 𝐿(P) given by 𝜎( 𝑓 + 𝔪P ) = 𝜎( 𝑓 ) + 𝔪P . Since 𝐿 ⊆ 𝐿(P1) which is fixed by G, the
automorphism on 𝐿(P) induced by 𝜎 fixes L. We have now constructed a homomorphism 𝐺P →
Aut(𝐿(P)/𝐿). It turns out [30, Theorem III.8.2], since K/𝐿(P1) is Galois, that 𝐿(P)/𝐿 is Galois, and
that the homomorphism constructed is in fact an isomorphism 𝐺P

∼−→ Gal(𝐿(P)/𝐿).
Now write 𝑅 = 𝜂𝐻 (P). We would like to show that 𝜂𝐻 (𝑅) ∈ 𝐷𝐻 (𝐿). It is enough to show that

𝑔(𝑅) ∈ 𝐿 for all 𝑔 ∈ O𝑅. However, 𝑔(𝑅) = 𝑓 (P), where 𝑓 = 𝜂∗𝐻 (𝑔) ∈ OP . Thus, we need to show
that 𝑓 (P) ∈ 𝐿. This is equivalent to showing that 𝜎( 𝑓 (P)) = 𝑓 (P) for all 𝜎 ∈ Gal(𝐿(P)/𝐿), which is
equivalent to showing that 𝜎( 𝑓 +𝔪P ) = 𝑓 +𝔪P for all 𝜎 ∈ 𝐺P . However, by the construction of the
function field of 𝐷𝐻 , we see that 𝜎( 𝑓 ) = 𝑓 for all 𝜎 ∈ 𝐻 ⊇ 𝐺P . This completes the proof. �

Lemma 6.3. Let 𝑃 ∈ 𝐶/𝐾 be a primitive degree n point, with 𝜑(𝑃) = 𝛼 ∈ P1(𝐾) −BV(𝜑), and suppose
𝑃 ∉ 𝐶 (𝐿). Let 𝑃1 = 𝑃, 𝑃2, . . . , 𝑃𝑛 be the Galois orbit of P, and let

𝜌 : Gal(𝐾/𝐾) → Sym({𝑃1, . . . , 𝑃𝑛})
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be the permutation representation obtained from the Galois action of Gal(𝐾/𝐾) on the orbit. Let
𝐼 = 𝜌(Gal(𝐾/𝐾)) and 𝐽 = 𝜌(Gal(𝐾/𝐿)); these are the Galois groups of P over K and L, respectively.
Then the following hold.

(i) J is a nontrivial normal subgroup of I and is a transitive subgroup of Sym({𝑃1, . . . , 𝑃𝑛}) � 𝑆𝑛.
(ii) Let P ∈ �̃� be above P. Then 𝐺P ⊆ 𝐺 is conjugate to J when both are regarded as subgroups of 𝑆𝑛.

(iii) There is some transitive subgroup H of G, conjugate to J in 𝑆𝑛, such that 𝑅 ∈ 𝐷𝐻 (𝐿) where
𝑅 = 𝜂𝐻 (P).

Proof. By assumption, 𝜌(Gal(𝐾/𝐾)) is a primitive subgroup of Sym({𝑃1, . . . , 𝑃𝑛}) � 𝑆𝑛. Since
𝐿/𝐾 is Galois, 𝐽 = 𝜌(Gal(𝐾/𝐿)) is a normal subgroup of 𝜌(Gal(𝐾/𝐾)). By Lemma 2.3, the group
𝐽 ⊂ Sym({𝑃1, . . . , 𝑃𝑛}) is either trivial or transitive. However, since 𝑃 ∉ 𝐶 (𝐿), the group J is nontrivial
and therefore transitive. This proves (i).

Recall that 𝜑(𝑃) = 𝛼 ∈ P1 (𝐾) −BV(𝜑). Since P has precisely n conjugates, and deg(𝜑) = 𝑛, we see
that the fibre 𝜑∗(𝛼) consists of 𝑃1, . . . , 𝑃𝑛, each with multiplicity 1. By composing 𝜑 with a suitable
automorphism of P1, we may suppose that 𝛼 ∈ A1 (𝐾) = 𝐾 . We shall find it convenient to think of 𝜑
as an element of 𝐾 (𝐶), and with this identification, we have 𝐾 (P1) = 𝐾 (𝜑) ⊆ 𝐾 (𝐶). The extension
𝐾 (𝐶)/𝐾 (𝜑) has degree n.

Write

O𝑃 = {ℎ ∈ 𝐾 (𝐶) : ord𝑃 (ℎ) ≥ 0}, 𝔪𝑃 = {ℎ ∈ 𝐾 (𝐶) : ord𝑃 (ℎ) ≥ 1},

for the valuation ring of P and its maximal ideal. Then the residue field O𝐷/𝔪𝐷 can be identified with
𝐾 (𝑃), where the identification is given by 𝑔 +𝔪𝐷 ↦→ 𝑔(𝑃). Now fix 𝜃 ∈ 𝐾 (𝑃) such that 𝐾 (𝑃) = 𝐾 (𝜃).
Note that [𝐾 (𝜃) : 𝐾] = 𝑛 since P has degree n. Then there is some 𝑔 ∈ O𝑃 such that 𝑔(𝑃) = 𝜃. As
𝑔 ∈ 𝐾 (𝐶) and 𝐾 (𝐶) has degree n over 𝐾 (𝜑), there is a polynomial 𝐹 (𝑈,𝑉) ∈ 𝐾 [𝑈,𝑉],

𝐹 (𝑈,𝑉) =
𝑚∑
𝑖=1

𝑎𝑖 (𝑉)𝑈𝑖 , 𝑎𝑖 (𝑉) ∈ 𝐾 [𝑉] (6.4)

of degree 𝑚 | 𝑛, such that gcd(𝑎0 (𝑉), . . . , 𝑎𝑚 (𝑉)) = 1, and 𝐹 (𝑔, 𝜑) = 0. Now, 𝐹 (𝜃, 𝛼) =
𝐹 (𝑔(𝑃), 𝜑(𝑃)) = 0, and so 𝜃 is a root of the polynomial 𝐹 (𝑈, 𝛼) ∈ 𝐾 [𝑈]; this polynomial is nonzero
as gcd(𝑎0 (𝑉), . . . , 𝑎𝑚 (𝑉)) = 1. As 𝜃 has degree n over K, it follows that 𝑚 = 𝑛, and that 𝐹 (𝑈,𝑉)
is irreducible over 𝐾 (𝑉). In particular, 𝐹 (𝑈,𝑉) = 0 is a (possibly singular) plane model for 𝐶/𝐾 ,
and the map 𝜑 is given by (𝑢, 𝑣) ↦→ 𝑣. As C is absolutely irreducible, 𝐹 (𝑈,𝑉) is irreducible over 𝐾 .
Let 𝑔1 = 𝑔, 𝑔2, . . . , 𝑔𝑛 be the roots of 𝐹 (𝑈, 𝜑) = 0 in K; then K = 𝐾 (𝜑) (𝑔1, . . . , 𝑔𝑛). In particular,
𝐺 ′ = Gal(K/𝐾 (𝐶)) may be identified as a transitive subgroup of Sym(𝑔1, . . . , 𝑔𝑛) � 𝑆𝑛.

Let 𝜃1 = 𝜃, 𝜃2, . . . , 𝜃𝑛 be the roots of 𝐹 (𝑈, 𝛼) = 0, which are distinct since 𝐾 (𝜃)/𝐾 has degree n.
We see that the affine plane model 𝐹 (𝑈,𝑉) = 0 for C has n distinct points (𝜃1, 𝛼), . . . , (𝜃𝑛, 𝛼) above
𝛼 ∈ P1. However, the smooth model C has precisely n points 𝑃1, . . . , 𝑃𝑛 above 𝛼 ∈ P1. After relabeling,
we may identify 𝑃𝑖 = (𝜃𝑖 , 𝛼). Next, we consider the action of Gal(𝐾/𝐿) on 𝑃1, . . . , 𝑃𝑛, and recall that
𝛼 ∈ 𝐾 ⊆ 𝐿. It follows that J is conjugate to Gal(𝐿(𝜃1, . . . , 𝜃𝑛)/𝐿) when we consider J as a subgroup
of Sym({𝑃1, . . . , 𝑃𝑛}) � 𝑆𝑛 and Gal(𝐿(𝜃1, . . . , 𝜃𝑛)/𝐿) as a subgroup of Sym({𝜃1, . . . , 𝜃𝑛}) � 𝑆𝑛.

Let P be a point of �̃� above P. Thus,

𝑔1 (P) = 𝑔(𝑃) = 𝜃, 𝜇(P) = 𝜑(𝑃) = 𝛼 ∈ 𝐾 ⊆ 𝐿.

As in the proof of Lemma 6.2, the extension 𝐿(P)/𝐿 is Galois. Since 𝜃 = 𝑔1 (P) ∈ 𝐿(P), we see that
𝜃1, . . . , 𝜃𝑛 ∈ 𝐿(P). In particular, for each i, there is an automorphism 𝜎 ∈ 𝐿(P)/𝐿 such that 𝜎(𝜃) = 𝜃𝑖 .
Recalling the natural identification of Gal(𝐿(P)/𝐿) with 𝐺P , we see that there is an automorphism
𝜎′ ∈ 𝐺P such that 𝜎′(𝑔1) (P) = 𝜎(𝜃) = 𝜃𝑖 . However, 𝜎′(𝑔1) is a root of 𝐹 (𝑈, 𝜑) and is equal to
one of the 𝑔 𝑗 . Thus, 𝑔𝑖 (P) = 𝜃𝑖 , after suitably reordering 𝑔1, . . . , 𝑔𝑛. Since 𝑔1, . . . , 𝑔𝑛 generate K, we
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conclude that 𝐿(P) = 𝐿(𝜃1, . . . , 𝜃𝑛) and that 𝐺P is conjugate to Gal(𝐿(𝜃1, . . . , 𝜃𝑛)/𝐿), which is in
turn conjugate to J. This proves (ii).

Finally, letting 𝐻 = 𝐺P , we deduce (iii) from Lemma 6.2. �

Of course, if genus(𝐷𝐻 ) ≥ 2, then by Faltings’ theorem, there are only finitely many 𝑅 ∈ 𝐷𝐻 (𝐿).
The monodromy data for the morphism 𝜑 gives lower bounds for the genus of 𝐷𝐻 . We shall make use of
lower bounds due to Guralnick and Shareshian [15]. Fix an embedding 𝐿 ⊂ 𝐿 ⊂ C. Then 𝜑 induces an
étale covering 𝐶 (C) − 𝜑−1 (BV(𝜑)) → P1 (𝐶) − BV(𝜑) of Riemann surfaces. Since K/𝐿(P1) is regular
(i.e. K ∩ 𝐿 = 𝐿), we can identify 𝐺 = Gal(K/𝐿(P1)) with the image of the monodromy representation
[25, Chapter 4] of this covering. Moreover, monodromy attaches (e.g., [25, Corollary 4.10]) elements

𝜎1, 𝜎2, . . . , 𝜎𝑟 ∈ 𝐺 − {1} (6.5)

to the branch values BV(𝜑) = {𝛽1, 𝛽2, . . . , 𝛽𝑟 }, satisfying

𝐺 = 〈𝜎1, . . . , 𝜎𝑟 〉, 𝜎1𝜎2 · · ·𝜎𝑟 = 1. (6.6)

In this context, G is known as the monodromy group.

Theorem 6.4 (Guralnick and Shareshian). Let 𝑛 ≥ 5. Let 𝜑 : 𝐶 → P1 be a morphism with monodromy
group 𝐺 = 𝐴𝑛 or 𝑆𝑛. Suppose, # BV(𝜑) ≥ 5. Let 𝐻 ≠ 𝐴𝑛 be a maximal transitive subgroup of G. Then
𝐷𝐻 has genus ≥ 3.

Proof. For 𝑛 ≥ 7, this is a special case of Theorem 1.1.2 of [15], and for 𝑛 = 5, 6 a special case of
Corollary A.3.3 of the same paper. �

We note that Monderer and Neftin [26, Theorem 1.2] prove a stronger version of Theorem 6.4 that does
not require the assumption of at least 5 branch points, but at the expense of assuming that 𝑛 > 3.5×106.

Remark. In the present context, the Riemann–Hurwitz formula, maybe restated (e.g., [22, Proposition
4.20]) as

genus(𝐷𝐻 ) = 1 − [𝐺 : 𝐻] + 1
2

𝑟∑
𝑖=1

ind(𝜎𝑖 , 𝐺/𝐻). (6.7)

We explain the notation. Given a group G acting on a finite set Ω, and an element 𝑔 ∈ 𝐺, we define the
index of g to be ind(𝑔,Ω) := #Ω − # Orb(𝑔,Ω), where Orb(𝑔,Ω) is the set of orbits of g acting on Ω.
We define the minimal index of G acting on Ω by

ind(𝐺,Ω) := min{ind(𝑔,Ω) : 𝑔 ∈ 𝐺, 𝑔 ≠ 1}.

Note that a large minimal index for the action of G on the coset space 𝐺/𝐻, together with a sufficiently
large number of branch points r, forces the genus of 𝐷𝐻 to be large thanks to (6.7). A recent paper of
Burness and Guralnick [6, Theorem 7] gives lower bounds for the minimal index for primitive actions,
and in forthcoming work, we will use this to deduce a version of Theorem 6.4 for G other than 𝐴𝑛, 𝑆𝑛.

7. Proof of Theorem 1.2

In this section, we prove Theorem 1.2, which we now restate in a stronger but more technical form.

Theorem 7.1. Let K be a number field. Let 𝐶/𝐾 be a curve of genus g, and write J for the Jacobian
of C. Let 𝑛 ≥ 2 and suppose (1.1) holds. Suppose 𝑊𝑛 (𝐶) does not contain the translate of an abelian
subvariety 𝐴/𝐾 of J of positive rank. Suppose C has infinitely many degree n points with Galois group
𝑆𝑛 or 𝐴𝑛. Then C has only finitely many degree n points with any primitive Galois group ≠ 𝐴𝑛, 𝑆𝑛.
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We note that Theorem 1.2 follows from Theorem 7.1 thanks to the theorem of Debarre and Fahlaoui.
It therefore remains to prove Theorem 7.1. We note that 𝑆𝑛 has no proper primitive subgroups ≠ 𝐴𝑛 for
𝑛 ≤ 4. Thus, we may suppose that 𝑛 ≥ 5.

Let K be a number field and let 𝐶/𝐾 be a curve of genus g. Let 𝑛 ≥ 5 and suppose 𝑔 > (𝑛 − 1)2.
Suppose 𝐴(𝐾) is finite for any abelian subvariety 𝐴/𝐾 of J having a translate contained in 𝑊𝑛 (𝐶).
Suppose C has infinitely many degree n points with Galois group 𝐴𝑛 or 𝑆𝑛. By Theorem 5.1, there is
a degree n morphism 𝜑 : 𝐶 → P1 such that all but finitely many primitive degree n divisors are fibres
𝜑∗(𝛼) with 𝛼 ∈ P1 (𝐾). Thus, to prove Theorem 1.2, we need to show that there are at most finitely
many 𝛼 ∈ P1 (𝐾) − BV(𝜑) such that the Galois group of the fibre 𝜑∗(𝛼) is primitive but not 𝐴𝑛, 𝑆𝑛.

As in Section 6, we writeK for the Galois closure of the function field extension 𝐾 (𝐶)/𝐾 (P1) induced
by 𝜑, and we let 𝐺 ′ = Gal(K/𝐾 (P1)). As 𝜑 has degree n, we may identify 𝐺 ′ as a subgroup of 𝑆𝑛.

Lemma 7.2. 𝐺 ′ = 𝐴𝑛 or 𝑆𝑛.

Proof. There infinitely many fibres 𝜑∗(𝛼) with 𝛼 ∈ P1 (𝐾) − BV(𝜑) that have Galois group 𝐴𝑛 or 𝑆𝑛.
Choose such an 𝛼, let 𝑃 ∈ 𝜑∗(𝛼); thus, the Galois group of the Galois closure of the extension 𝐾 (𝑃)/𝐾
has Galois group 𝑆𝑛 or 𝐴𝑛. Moreover, 𝑃 ∈ 𝐶 is a degree n point, and we regard it as a degree n place
of 𝐾 (𝐶). We let P be a place of K above P. By Lemma 6.1, the extension 𝐾 (P)/𝐾 is Galois, and its
Galois group is isomorphic to the decomposition group 𝐺 ′

P ⊆ 𝐺 ′. However, 𝐾 (𝑃) ⊆ 𝐾 (P) and the
Galois group of the Galois closure of 𝐾 (𝑃)/𝐾 is either 𝐴𝑛 or 𝑆𝑛. It follows that 𝐺 ′ = 𝐴𝑛 or 𝑆𝑛. �

Lemma 7.3. Let 𝑟 = # BV(𝜑). Then 𝑟 ≥ 2𝑛 + 1.

Proof. Write BV(𝜑) = {𝛽1, . . . , 𝛽𝑟 }. We make use of the Riemann–Hurwitz formula applied to 𝜑. Thus,

2𝑔 − 2 = −2𝑛 +
𝑟∑
𝑖=1

∑
𝑃∈𝜑∗ (𝛽𝑖)

𝑒(𝑃) − 1 ≤ −2𝑛 + 𝑟 (𝑛 − 1).

However, 𝑔 ≥ (𝑛 − 1)2 + 1. Putting these together gives

𝑟 ≥ 2(𝑛 − 1) + 2𝑛
𝑛 − 1

> 2𝑛.

�

As in Section 6, let 𝐿 = K∩𝐾, and recall that 𝐿/𝐾 is a finite Galois extension. Let𝐺 = Gal(K/𝐿(P1)).

Lemma 7.4.

(a) Suppose 𝐺 ′ = 𝐴𝑛. Then 𝐿 = 𝐾 and 𝐺 = 𝐴𝑛.
(b) Suppose 𝐺 ′ = 𝑆𝑛. Then

(i) either 𝐿 = 𝐾 and 𝐺 = 𝑆𝑛,
(ii) or 𝐿/𝐾 is quadratic and 𝐺 = 𝐴𝑛.

Proof. As 𝜑 is ramified, the extension K/𝐿(P1) is non-trivial. Therefore, by the exactness of (6.1), the
group G is a nontrivial normal subgroup of 𝐺 ′. As 𝑛 ≥ 5, the only nontrivial normal subgroup of 𝐴𝑛 is
𝐴𝑛, and the only nontrivial normal subgroups of 𝑆𝑛 are 𝑆𝑛 and 𝐴𝑛. The lemma follows. �

We now complete the proof of Theorem 7.1. As observed at the beginning of the section, we need
to show that there are at most finitely many 𝛼 ∈ P1 (𝐾) − BV(𝜑) such that the Galois group of the fibre
𝜑∗(𝛼) is primitive but not 𝐴𝑛, 𝑆𝑛. It is therefore enough, for each primitive subgroup 𝐼 ⊂ 𝐺 ′, with
𝐼 ≠ 𝐴𝑛, 𝑆𝑛, to show that there are finitely many 𝛼 ∈ P1 (𝐾) − BV(𝜑) such that the fibre 𝜑∗(𝛼) has
Galois group I. Fix a primitive subgroup 𝐼 ⊂ 𝐺 ′, 𝐼 ≠ 𝐴𝑛, 𝑆𝑛, and suppose there are infinitely many
𝛼 ∈ P1(𝐾) − BV(𝜑) such that the fibre 𝜑∗(𝛼) has Galois group I. Since 𝐶 (𝐿) is finite by Faltings’
theorem, only finitely many of these fibres contain a point of 𝐶 (𝐿). Thus, for infinitely many of the
fibres, there is a primitive degree n point 𝑃 ∈ 𝐶 −𝐶 (𝐿) whose Galois group is I. There are finitely many
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possibilities for the groups J, H in Lemma 6.3. As 𝐼 ≠ 𝐴𝑛, 𝑆𝑛, by the lemma, 𝐻 ≠ 𝐴𝑛, 𝑆𝑛 is a transitive
subgroup of G. If 𝐻 ⊂ 𝐴𝑛, then let 𝐻 ′ be a maximal subgroup of 𝐴𝑛 containing H. If 𝐻 ⊄ 𝐴𝑛, then in
this case, 𝐺 = 𝑆𝑛, and we let 𝐻 ′ be a maximal subgroup of 𝑆𝑛 containing H, and note that 𝐻 ′ ≠ 𝐴𝑛. As
𝐻 ⊆ 𝐻 ′, we have K𝐻 ′ ⊆ K𝐻 , and so the map 𝜋𝐻 : 𝐷𝐻 → P1 factors via the map 𝜋𝐻 ′ : 𝐷 ′

𝐻 → P1. In
particular, by Theorem 6.4 (applied with 𝐻 ′ in place of H), the curve 𝐷𝐻 ′ has genus ≥ 2, and therefore,
so does the curve 𝐷𝐻 . Therefore, 𝐷𝐻 (𝐿) is finite. This gives a contradiction and completes the proof.
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