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Abstract

The Scarr–Rowe effect is a gene × environment interaction, which is characterized by a negative association between exposure to low so-
cioeconomic status (SES) environments and the additive heritability of cognitive ability. Utilizing a polygenic score for educational attainment
(EA3), it was found that the two-way interaction between EA3 and parental educational attainment (EA; used as a proxy for parental SES) was
a significant positive predictor of participants’ composite cognitive ability (IQ) score (β= .018, SE= .008, p= .028) after controlling hierarchi-
cally for the direct effects of (population-stratification-controlled) EA3, parental EA, and 20 distinct interaction terms (10 involving the inter-
actions between the principal components [PCs] and EA3, and 10 involving the interaction between the PCs and parental EA). The presence of
this interaction is consistent with the Scarr–Rowe effect, as the expressivity of EA3 on cognitive ability increases with increasing parental EA.
No statistically significant sex differences in the effect magnitudes were found, although the effect was significantly present in the female but
not male sample.
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The Scarr–Rowe effect is an interaction between familial socioeco-
nomic status (SES) and the additive heritability of IQ; the nature of
the interaction is such that the heritability of IQ is lower among
those from lower SES households and higher among those from
higher SES ones. This interaction might result from variation in
the quality of childhood environments, for which household SES
serves as a proxy measure, leading to variability in the extent to
which individuals phenotypically realize their full genotypic poten-
tial for IQ (Bronfenbrenner & Ceci, 1994). Scarr-Salapatek (1971)
first found evidence of the effect, a finding which Rowe et al. (1999)
subsequently replicated, hence the finding has come to be known
as the Scarr–Rowe interaction (Turkheimer et al., 2009) or effect.
In a subsequent meta-analysis, Tucker-Drobb and Bates (2015)
identified a difference between the US, where they found the effect
to be robustly present, and certain non-US countries, where they
found the effect to be absent or even reversed (lower parental SES
going with higher heritability). The aggregate interaction term is of
small magnitude (for the USA, ρ = .07, SE = .03, p = .003); none-
theless, individual studies have identified larger effects, most nota-
bly that of Turkheimer et al. (2003), which found that the
heritability of IQ in those with the lowest SES dropped to near zero.

A recent study that used a very large sample of the US popula-
tion (Figlio et al., 2017) found no evidence for the effect in a sample
of twins and siblings born in the late 1990s and early 2000s (it

should be noted that data on the zygosity of their twin sample were
unavailable, so some caution should be exercised in interpreting
some of their analyses). This result is consistent with the possibility
that the Scarr–Rowe effect is diminishing in strength over time in
the USA, perhaps due to improving bioecological conditions for
low-SES groups in the USA (for evidence of such improvement,
see Rindermann, 2018).

The Scarr–Rowe effect is typically measured as a positively
signed two-way interaction between IQ additive heritability (A)
and SES, which is estimated net of the main effects of A, C (shared
environment), E (nonshared environment), and SES. These behav-
ior-genetic variance components and interaction terms are usually
estimated using a twin-study design (e.g. Tucker-Drob & Bates,
2015). But sibling and adoption studies can also be used to derive
such estimates (Figlio et al. 2017; Tucker-Drob & Bates, 2015).
Recent advances in genomewide association studies (GWASs)
have made it possible to estimate heritability using the combined
effects of multiple variants sampled from large numbers of individ-
uals, a subset of whomwill be genetically (and phenotypically) sim-
ilar with respect to these variants (and associated traits) by chance
(a situation that the Genome Wide Trait Analysis method usefully
exploits). Tahmasbi et al. (2017) used this method to estimate the
magnitude of the Scarr–Rowe effect in the UK BioBank sample;
they found that the effect was reversed relative to what is typically
found in the USA, which is consistent with the overall direction of
the effect outside of the USA that Tucker-Drob and Bates (2015)
report. A more recent study employed polygenic scores (PGSs) in
testing for the effect in a large genotypedUS sample (theWisconsin
Longitudinal Study) born in the late 1930s and early 1940s
(Woodley of Menie et al., 2018). A PGS is a normally distributed
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genetic index of a trait of interest, comprised of variants that are
predictive of the phenotype of interest, weighted by their regression
beta values. The correlation between a PGS and its associated trait
yields a highly imperfect but nevertheless hypothetically quite
direct estimate of the heritability of the trait, with the best PGSs
currently able to account for approximately 10% of the variance
in an out-of-sample measure of general intelligence or IQ (Lee
et al., 2018).

In the study of Woodley of Menie et al. (2018), two methods
were used to estimate the interaction between a cognitive PGS (des-
ignated EA3 in Lee et al., 2018) and parental SES. First, the
Continuous Parameter Estimation Model was used to estimate
the interaction between the two directly, without estimating the
main effects (β= 0.08, SE = .01, p= 4.71 × 10−10). Second, the
effect was also detected using a conventional two-way interaction
model in which the interaction between the two was estimated
hierarchically, after first estimating the main effects of EA3 and
(log-transformed) parental SES on IQ (β= 0.02, SE= .01, pone-tailed
= .0451). The positive signs on these coefficients indicate that as the
level of parental SES increases, so too does the covariance between
EA3 and IQ. In turn, this increase in covariance can be said to cap-
ture the increased expressivity of EA3 on IQ as a function of rising
parental SES.

In the current study, we will attempt to replicate the association
using a PGS for educational attainment (EA) in another large
European–American sample, specifically the Health and
Retirement Study (HRS).

Methods

Sample

The HRS, organized by the University of Michigan, is a longi-
tudinal panel study surveying a large and representative sample
of the US population (around 20,000 individuals) born in the dec-
ades ranging from the 1890s to the 1950s. It tracks a large variety of
phenotypes and also genotypes related to health.More information
on this study, in addition to guidelines on how to obtain permis-
sion to access the study data, can be found at https://hrs.isr.umich.
edu/about.

Educational Attainment 3

In HRS, participants were genotyped with respect to a large variety
of physiological, behavioral, and cognitive phenotypes, with the
DNA having been collected between 2006 and 2012. We employed
the educational attainment 3, or EA3 PGS, which derived originally
from the meta-analysis of Lee et al. (2018) and was trained on an
EA measure that used the 1997 ISCED UNEASCO seven-category
classification scheme, converted into US years-of-schooling equiv-
alents. The EA3 PGS is associated with the phenotype of general
intelligence or ‘IQ’. Consistent with this, Lee et al. (2018) con-
ducted several out-of-sample validations, finding in one case that
EA3 accounted for nearly 10% of the variance in performance on
an IQ test (the Henmon–Nelson test of cognitive ability from the
Wisconsin Longitudinal Study). Ware et al. (2021) describe the
additional steps that were taken in generating an HRS, sample-spe-
cific version of EA3 as follows:

The educational attainment PGSs [EA3] were created using results from a
2018 study by the Social Science Genetic Association Consortium (SSGAC)
[Lee et al., 2018]. The meta-analysis included 405,073 individuals in the
combined discovery and replication sample and 726,808 individuals that
did not contribute to the analyses of the previous study and were used

as replication in this study (total of 1,131,881 individuals). Genome-wide
significant SNPs were identified in 1271 loci : : : Approximately 10.2 mil-
lion SNPs were included in the analyses, with all cohorts utilizing SNPs
imputed to the 1000 genomes reference panel (1000G). The original
GWAS included the HRS. To compute the PGSs for HRS respondents,
the SSGAC provided SNP weights with the HRS : : : results removed
(due to data use agreements). Study-specific GWASs controlled for the first
ten principal components of the genotypic data, a third-order polynomial
in age, an indicator for being female, interactions between age and female,
and study-specific controls, including dummy variables for major events
such as wars or policy changes that may have affected access to education
in their specific sample. The European ancestry PGSs contains 1,274,056
SNPs that overlapped between the HRS genetic database and the GWAS
meta-analysis : : : The posted PGSs have been standardized within ethnicity
to a standard normal curve (mean= 0, standard deviation= 1). (p. 84)

The HRS-specific EA3 release is accompanied by participant infor-
mation on 10 ancestral principal components (PCs), which can be
used as an additional control for population stratification in regres-
sion analysis. To further reduce confounding for population strati-
fication, we restricted the analysis to those participants identified
as being of European ancestry, which was the sample used to train
the EA3 PGS in the HRS dataset (Ware et al., 2021).

IQ Measure

TheHRS containsmany itemsmeasuring cognitive ability, spanning a
variety of domains and administered to various waves of the study.
The items includemeasures of self-ratedmemory,memory compared
to 2 years previously, immediate word recall, delayed word recall,
knowing the date, knowing the day of the week, counting backwards
from20, counting backwards from86, word recognition tests, demen-
tia tests, Serial 7s (a working memory measure), and vocabulary.
Scores on these measures were standardized and then concatenated
acrosswaves into a unit-weighted general intelligence or IQ composite
score, whichwas available for a total of 17,226 participants (simply the
average of all cognitive total variables). For full details of the cognitive
ability measures developed for and used in the HRS, see Fisher
et al. (2017).

Parental EA

Parental EA was selected as a proxymeasure of parental SES. There
are two reasons for this variable choice. First, although there are
broader measures of parental SES in HRS, these were available
for far fewer individuals, reducing the prospective power of our
analyses. Second, it has been noted that composites of parental
SES, combining measures of household income and EA, might
mask the true effects of specific SES variance components on off-
spring cognitive characteristics in different social contexts
(e.g. wealthier vs. poorer nations). Consistent with this possibility,
O’Connell (2019) found that when considered separately, parental
EA has a larger effect on offspring academic performance than
household income, especially in wealthier Program for

Table 1. Correlation matrix for the HRS combined-sex cohort. The EA3 PGS is
controlled for population stratification (N= 9546)

Correlations EA3 IQ Parental EA

EA3 1

IQ 0.156 1

Parental EA 0.144 0.297 1

Note: EA3, polygenic score for educational attainment; EA, educational attainment.
p < .001 in all cases.
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International Student Assessment nations, suggesting that the for-
mer may be the more important parental SES component for the
purposes of detecting the Scarr–Rowe effect. In light of this result,
O’Connell proposes ‘eschewing the unitary concept of SES’ (p. 41).
Other studies of the Scarr–Rowe effect have also utilized parental
EA in lieu of parental SES (e.g. Spengler et al., 2018).

The total sample size for the HRS across all variables is 9546.
Individuals with missing values for one or more of the variables were
excluded, except in the case of parental EA, where if only one parent
reported a value, that value is used in lieu of an average of both
parents.

Measurement Model

We employ a model that incorporates two-way interactions to esti-
mate the Scarr–Rowe effect in HRS. These analyses were based on
the one fromWoodley of Menie et al. (2018) in which the interaction
between EA3 and parental SES was used to predict the IQ measure
after hierarchically controlling for the main effects of EA3 and paren-
tal SES. In this analysis, we also included additional controls for pop-
ulation stratification. These were implemented by first residualizing
both EA3 and parental EA for 10 PCs, each corresponding to a differ-
ent biogeographic ancestry component. Thus, the main effects were
estimated independently of the potential confounding effects of

Table 2. Two-way interaction models predicting IQ, using EA3 and parental EA (controlled for 10 PCs), interactions between principal components and EA3,
interactions between principal components and parental EA, and the interaction between EA3 and parental EA

Source df Sum of squares Mean square F value Pr > F

Model 23 749.680 32.595 46.57 <.0001

Error 9523 6665.912 0.700

Uncorrected total 9546 7415.591

R2 Coeff var Root MSE IQ_std mean

.101 697.537 0.837 .120

Parameter Estimate Type I sum of squares F value SE Pr > F

EA3 0.098 174.163 248.81 0.009 <.0001

Parental EA 0.242 556.899 795.59 0.009 <.0001

EA3 × ZPC1_5A 0.010 0.748 1.07 0.009 .3013

EA3 × ZPC1_5B 0.013 1.734 2.48 0.009 .1156

EA3 × ZPC1_5C 0.000 0.003 0.00 0.009 .9523

EA3 × ZPC1_5D −0.005 0.231 0.33 0.008 .5659

EA3 × ZPC1_5E 0.013 1.443 2.06 0.009 .1511

EA3 × ZPC6_10A −0.005 0.146 0.21 0.009 .6476

EA3 × ZPC6_10B 0.003 0.000 0.00 0.008 .9900

EA3 × ZPC6_10C 0.007 0.312 0.45 0.009 .5047

EA3 × ZPC6_10D 0.014 1.635 2.34 0.009 .1265

EA3 × ZPC6_10E −0.016 1.892 2.70 0.009 .1002

Parental EA × ZPC1_5A 0.007 0.709 1.01 0.008 .3142

Parental EA × ZPC1_5B 0.010 0.890 1.27 0.008 .2595

Parental EA × ZPC1_5C −0.006 0.347 0.50 0.009 .4816

Parental EA × ZPC1_5D −0.003 0.047 0.07 0.009 .7949

Parental EA × ZPC1_5E 0.010 1.186 1.69 0.008 .1931

Parental EA × ZPC6_10A 0.007 0.429 0.61 0.009 .4335

Parental EA × ZPC6_10B −0.016 2.184 3.12 0.009 .0774

Parental EA × ZPC6_10C −0.004 0.203 0.29 0.009 .5903

Parental EA × ZPC6_10D −0.004 0.171 0.24 0.009 .6212

Parental EA × ZPC6_10E 0.010 0.922 1.32 0.009 .2512

EA3 × parental EA 0.018 3.388 4.84 0.008 .0278

Note: EA3, polygenic score for educational attainment; EA, educational attainment; coeff var, coefficient of variation; root MSE, root-mean-square error.

Table 3. Correlation matrix for the HRS male (above diagonal) and female
(below diagonal) participants. The EA3 scores are controlled for population
stratification (N= 5384 for males and 4162 for females)

Correlations EA3 IQ Parental EA

EA3 1 0.170 0.125

IQ 0.153 1 0.301

Parental EA 0.157 0.305 1

Note: EA3, polygenic score for educational attainment.
p < .001 in all cases.
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population stratification. In estimating the interaction terms, first EA3
was interacted with each PC, then the parental EAmeasure was inter-
acted with each PC. Finally, the Scarr–Rowe effect was estimated by
interacting EA3 with parental EA. These analyses were conducted on
the combined sample and for each sex independently. As inWoodley
ofMenie et al. (2018), a positively signed interaction betweenEA3 and
parental EA as a predictor of IQ indicates the presence of the Scarr–
Rowe effect, as the association between EA3 and IQ can be said to
increasewith rising parental EA. This can be interpreted as an increase
in the expressivity of EA3 on cognitive ability with rising parental EA,
which is consistent with the expectation that heritability rises
with SES.

Results

Correlation Matrix

Table 1 reports the correlations for all variables employed in this
analysis of the Scarr–Rowe effect for the combined-sex cohort.

Two-Way Interaction Model

Two-way interaction models were run as hierarchical general linear
models (type 1 sumof squares) in order to seewhether the effect could
be detected. The results of these analyses are presented in Table 2.

Table 3 presents the correlation matrices for males and females
separately.

The two-way interaction models broken out by sex are pre-
sented in Tables 4 and 5.

There is no statistically significant difference in the B values for
females and males (z =1.01, p = .313).

Discussion

A statistically significant Scarr–Rowe effect is present among HRS
participants, controlled for population stratification, both at the level
of the main effects of EA3 and parental EA on IQ and at the level of
the interaction terms. The effect is furthermore statistically significant

Table 4. Hierarchical general linearmodel examining themain effects and interactions of residualized EA3 and residualized parental EA on standardized IQ in females.
The model controls for population stratification effects

Source df Sum of squares Mean square F value Pr > F

Model 23 428.374 18.625 27.78 <.0001

Error 5361 3594.196 0.670

Uncorrected total 5384 4022.570

R2 Coeff var Root MSE cog1_std mean

.106 688.764 0.82 .119

Source df Estimate SE F value Pr > F

EA3 1 0.084 0.011 125.11 <.0001

Parental EA 1 0.248 0.011 486.54 <.0001

EA3 × ZPC1_5A 1 −0.001 0.012 0.00 .950

EA3 × ZPC1_5B 1 0.022 0.012 3.80 .051

EA3 × ZPC1_5C 1 0.002 0.012 0.01 .940

EA3 × ZPC1_5D 1 0.003 0.011 0.07 .795

EA3 × ZPC1_5E 1 0.015 0.012 1.84 .175

EA3 × ZPC6_10A 1 −0.009 0.011 0.60 .438

EA3 × ZPC6_10B 1 −0.004 0.011 0.39 .531

EA3 × ZPC6_10C 1 0.000 0.011 0.13 .722

EA3 × ZPC6_10D 1 0.017 0.011 1.30 .255

EA3 × ZPC6_10E 1 −0.020 0.011 2.69 .101

Parental EA × ZPC1_5A 1 0.001 0.011 0.08 .782

Parental EA × ZPC1_5B 1 0.010 0.011 0.77 .380

Parental EA × ZPC1_5C 1 −0.011 0.012 0.67 .413

Parental EA × ZPC1_5D 1 0.001 0.011 0.04 .837

Parental EA × ZPC1_5E 1 0.024 0.011 5.20 .023

Parental EA × ZPC6_10A 1 −0.002 0.012 0.05 .820

Parental EA × ZPC6_10B 1 −0.014 0.011 1.23 .267

Parental EA × ZPC6_10C 1 −0.016 0.011 2.20 .138

Parental EA × ZPC6_10D 1 −0.011 0.011 1.08 .299

Parental EA × ZPC6_10E 1 0.008 0.011 0.48 .488

EA3 × parental EA 1 0.023 0.011 4.67 .031

Note: EA3, polygenic score for educational attainment; EA, educational attainment; coeff var, coefficient of variation; root MSE, root-mean-square error.
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in the female sample, but not in themale sample; however, there is no
statistically significant difference between the effect magnitudes of the
two samples. The results of these analyses broadly replicate those
found in the WLS, given that the effect is present as a two-way inter-
action between EA3 and parental EA (as a parental SES proxy) on IQ,
net of main effects (Woodley of Menie et al., 2018). Moreover, the
mean birth decade for these participants (the 1930s) is matched to
that of the WLS participants used in the prior analysis (who were
mostly born in the late 1930s). It would be interesting to see whether
or not the effect is present using PGSs among younger cohorts. The
findings of Figlio et al. (2017) suggest that, at least in the USA, the
effect may have decayed, perhaps reflecting greater equity in early-life
environments (Rindermann, 2018). Replicating the absence of the
effect in younger cohorts using PGSs would increase the robustness
of this conclusion.

The use of PGS and other genetic data in detecting the
Scarr–Rowe effect significantly increases the scope of research
into this effect, as the availability of twins for the purposes of

behavior-genetic research is no longer a limiting factor, either in
terms of prospective sample power or variety (i.e. many twin-free
samples can now be genotyped and employed in this research).

Acknowledgment. The HRS (Health and Retirement Study) is sponsored by
the National Institute on Aging (NIA U01AG009740) and is conducted by the
University of Michigan.

Note

1 As this was a technical replication of the main result, significance was esti-
mated on a one-tailed basis, as the effect direction was anticipated in advance.
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