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COMPACTNESS PROPERTIES OF CARLEMAN AND 
HILLE-TAMARKIN OPERATORS 

ANTON R. SCHEP 

Introduction. In this paper we study integral operators with domain a 
Banach function space Lp and range another Banach function space Lp 

or the space L0 of all measurable functions. Recall that a linear operator 
T from Lp into L0 is called an integral operator if there exists a 
fi X ^-measurable function T(x, y) on X X Y such that 

\T(x, y)f(y) \dv(y) < oo a.e. for a l l / e L and 
Pi / 

Tf(x) = J T(x,y)f(y)dp(y) a.e. for every/ e Lp f 

Such an integral operator is called a Carleman integral operator if for 
almost every x e X the function 

y\->T(x,y) = Tx(y) 

is an element of the associate space Lp , i.e., 

p\(Tx(y) ) < oo for almost every x G I 

If in addition the function 

x^p\(Tx(y)) 

is an element of Lp , i.e., p2(p\(Tx(y) ) < oo, then T is a Hille-Tamarkin 
operator from Lp into Lp . Hille-Tamarkin operators are also known as 
integral operators of finite double norm. Characterizations of the above 
classes of operators are discussed in [6] and [7]. It follows from the results 
in [7] that an order continuous linear operator from Lp into L0 is an 
integral operator if and only if the image under T of an order interval is 
equimeasurable (in the sense of Grothendieck), i.e., if we denote 

H = T[0,f] = {Tg:Q § g ^ / , g e L p | } , 

then for every X0 c X of finite measure and every € > 0 there exists 
X€ c X0 such that IL(X0 \X€) <c and x* o H is a relatively norm compact 
subset of L^. It can be derived from the results in [1] that if p\ is order 
continuous, then an order continuous linear operator T from Lp into L0 is 
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a Carleman integral operator if and only if the image under T of the unit 
ball is equimeasurable. We reformulate this result as a compact 
factorization theorem: if p\ is order continuous, then an order continuous 
linear operator T from Lp into L0 is a Carleman integral operator if and 
only if there exists a factorization T = R S with S a compact operator 
from Lp into L^ and R a multiplication operator from L^ into L0. We 
also prove a similar characterization of Hille-Tamarkin operators. Let p\ 
and p2 be order continuous norms. Then an order continuous linear 
operator T from Lp into Lp is a Hille-Tamarkin operator if and only 
if T = R • S with S a compact operator from Lp into L ^ and R a 
multiplication operator from L ^ into Lp . In the third section of this paper 
we discuss the relation between Hille-Tamarkin operators and majorizing 
operators. The results of this paper extend and complement those of [5]. 

1. Carleman integral operators. Throughout this paper we shall denote 
by (X, LI) and (Y, v) a-finite measure spaces and by 

Lpi = LP](Y, v) and Lpi = Lp2(X, ju) 

we shall denote Banach function spaces. For information on Banach 
function spaces we refer to [8], Chapter 15. We begin with a definition. 

Definition 1.1. Let H c L0(X, ju). Then H is called relatively uniformly 
compact in L0 if there exists g e L0(X, ju) with g(x) > 0 a.e. such 

that - • H is a relatively norm compact subset of L^X, /x). 
g 

Similarly H c L0(X, /i) is called relatively uniformly compact in Lp if 

there exists g G L with g(x) > 0 a.e. such that - • H is a relatively 
g 

norm compact subset of L^X, /A). 

We note that the above notions are related to relative compactness in 
the topology of relative uniform convergence (see [2] for relative uniform 
convergence of sequences). We now present a description of equi­
measurable sets. 

THEOREM 1.2. Let H c L0(X9 ju). Then H is equimeasurable if and only if 
H is relatively uniformly compact in L0(X, /x). 

Proof Assume first that H is relatively uniformly compact in L0. Let g 
be as in definition 1.1, c > 0 and X0 c X of finite measure. Then there 
exists 8 > 0 such that 

li{x G X0:g(x) < 8} < c. 

Let 

X€ = {x G X0:g(x) ^ 8}. 
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Then ii(X0 \ X€) < e and it is easy to see that Xx ° H ls relatively norm 
compact in L^, so H is equimeasurable. Assume now that H is 
equimeasurable. Then we can find disjoint Xn such that 

oo 

and Xx ' H is relatively norm compact in L^X, /A) for all n. Let 

Cn = SUP( H ^ J l o o ^ €= / / ) 

and define 

oo 

g(x) = 1 + 2 «^Xy. 
« = l 

Then 0 < g(x) a.e. and 

|A(JC) | ^ -g(x) a.e. on X„ for all h e / / . 

A diagonal argument now shows that - • H is relatively norm compact in 
g 

L^iX, ju), i.e., / / is relatively uniform compact in L0(X, /x). 
We recall that a linear operator T:Lp —> L0 is called orrfer continuous if 

/„ e Lp 2indfn(x) j 0 a.e. implies that Tfn(x)^0 a.e. 
The following theorem complements Theorem 2.2 of [6]. 

THEOREM 1.3. Let Lp = Lp(Y, v) be a Banach function space and let 
T:Lp —» L0 be a linear operator. Then the following are equivalent. 

(i) T is a Carleman integral operator. 
(ii) Iffn G Lp andfn -> 0 o(Lp, Up\ then Tfn(x) -> 0 a.e. If in addition p' 

is order continuous, then each of the above is equivalent to 
(iii) T is order continuous and T(U) is equimeasurable, where 

U= { / e Lp,p(f)^ 1}. 

(iv) T is order continuous and T has a factorization T = RS where 
S:Lp —> L œ w compact and R'.L^ —* L0 w multiplication by g G. L0 WZÏ/Ï 
g(x) > 0 a.e. 

Proof The implication (i) => (ii) is immediate from the inequality 

p'(Tx(y)) < °° a e -

Assume now that (ii) holds. Then p(fn) —* 0 implies 

/„ -» 0 o(Lp, L'p), 

so p(/„) —> 0 implies Tfn(x) —> 0 a.e. It follows that there exists 0 ^ 
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g ^ L0 such that 

\Tf(x)\ ^ g(x)p(f) a.e. 

(see the proof of Theorem 2.2 of [6] ). Let now 0 = fn = f in Lp 

such that fn —> 0 in measure on every set of finite measure. Then 
fn -> 0 o(Lp, Lp), so 

Tfn(x) -> 0 a.e. 

We conclude from Theorem 3.3 of [5] that T is an integral operator. It 
follows now from 

\Tf(x) | ^ g(x)p(f) a.e. for a l l / e Lp, 

as in the proof of Theorem 2.2 of [6], that T is a Carleman integral 
operator. Assume now that p' is order continuous and assume that (i) 
holds. We shall show that (Hi) holds. The order continuity of T is obvious, 
since T is an integral operator. To show that T(U) is equimeasurable we 
may assume that ti(X) < oo. Let c > 0. Then, since 

p\Tx(y)) < oo a.e., 

we can remove a set of measure less than €, so 

p\Tx(y) ) ^ M < oo a.e. on X. 

It follows then that 

\\p\Tx(y))\\, ^ A f - / ! ( * ) < oo. 

Since the norm || ||, X p' is order continuous, it follows that there exist 
simple functions tn(x, y) of the form 

n 

2 OLhXAh(x)XBk(y) 

such that 

HPTOJO - '*(*.>0)lli ^ o 
(see also the remark before Theorem 3.2). By passing to a subsequence we 
can assume that 

p\Tx(y) - ^ , | ) ) ^ 0 a . e . o n l 

An application of Egoroff s theorem now yields a set X0 c X with 
fi(X \ X0) ^ e such that 

\\XXo(p'(Tx(y) - tn(x9 ^) ) ) Hoc -> 0 as n -> oo. 

This implies directly that x* ° T is a norm limit of finite rank operators 
with respect to the operator norm on <^(Lp, L^) . Hence (iii) holds. The 
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equivalence of (iii) and (iv) follows from Theorem 1.2. Assume therefore 
that (iii) and (iv) hold. Then (iii) implies that T is an integral operator 
(Theorem 3.3 of [7]) and (iv) implies via Theorem 1.2 that there exists 
0 < g G L0 such that 

\Tf(x) | =i g(x)p(f) a.e. for a l l / G Lp. 

As above this implies that T is a Carleman integral operator. 

Remarks. 1. The implications (i) <=> (iii), provided p' is order continuous, 
are a variant of a result of Gretsky and Uhl ( [1] ). We point out however 
that the definition of a Carleman operator as given in [1] is not exactly the 
same as the definition of a Carleman integral operator as given above. The 
reason is that if p'(Tx(y) ) < oo for a.e. x G X, then it need not be true 
that the function 

JCH-> T(x,y) G L'p(Y9 v) 

is strongly measurable. Under the hypothesis that p' is order continuous 
we could have proved that x i—> T(x, y) is strongly measurable, but the 
proof of this is longer than the above direct proof. 

2. If p is order continuous, then we showed in [6] that (i) above is 
equivalent with: 

(ii)' If /„ G Lp and p(fn) -> 0, then Tfn(x) -> 0 a.e. 

In case p is not order continuous, then (ii)' need not imply (i) as can be 
seen from the identity operator on L^. Therefore condition (ii) above is 
the right condition. 

2. Hille-Tamarkin operators. In the following theorem we derive a 
characterization of order continuity of the norm of a Banach lattice, 
closely related to Meyer-Nieberg's characterization. For information on 
Banach lattice we refer to [3] or [9]. We would like to thank the referee for 
pointing out the present simple proof, which replaces our original more 
complicated proof. 

THEOREM 2.1. Let E be a Banach lattice. Then the following are 
equivalent. 

(i) If 0 = fn = f in E and fn A fm = 0 if n ¥= m, then there exist 
Xn G R with Xn | oo and g G E such that 

oo 

g = 2 \f„. 
i 
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(ii) I/O ^ fn ^ / in E and fn A fm = 0 / / n ¥* m, then there exist 
\n G R with \n t oo such that 

sup ^ Kfk < oo. 

(iii) The norm of E is order continuous. 

Proof. If (i) holds, then obviously (ii) holds. Assume (ii) holds. To prove 
(iii) let 0 ^ fn ê / with fn A fm = 0 if n ¥= m. Then by (ii) there are 
\n | oo and M G R such that 

2 A*/* ^ M for all A. 

Hence 

H/JI â M/Xw -> 0 as /i -> oo. 

It follows now from Meyer-Nieberg's theorem (see [9] ) that the norm on E 
is order continuous. Assume now that (iii) holds. Let 0 = fn = / a s in (i). 
Then there exist natural numbers k„ with k„ < / : „ , , for all n such that «4-1 

kn+P 

2/, 
It follows that 

kn + 1 

2 nf, 

< — for all p G N. 
«2^ 

< l /2 n for al l», 

which implies (i). 

Recall that / / c Lp is called relatively uniform compact in Lp if there 

exists 0 < g e L such that -H is relatively norm compact in L^. The 
g 

following theorem extends the result of Theorem 1.2. 

THEOREM 2.2. Let Lp be a Banach function space with order continuous 
and let H c Lp. Then H is relatively uniformly compact in Lp if and only if H 
is equimeasurable and order bounded in L . 

Proof. Assume first that H is relatively uniformly compact in L . From 
Theorem 1.2 we then conclude that H is equimeasurable. Let 0 < g G Lp 

such that -H is relatively norm compact in L^ . Then there exists M G R 
g 

such that 

^ M for all h G H. 
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Hence \h\ ^ Mg for all h G H and thus H is order bounded in Lp. Assume 
now that H G Lp is equimeasurable and order bounded in Lp. We assume 
first that Xx G Lp and \h\ ^ x* f° r an" h & H. Then we can find disjoint 
X, c Xwith 

oo 

U Y 

such that Xx ' H is relatively norm compact in L^. From the above 
theorem it follows that there exist Xn G R with 1 ^ \w j oo such that 

oo 

g = 2 
i 

Kxx„ e V 
Now 

1 

VII g(x) a.e. and 

, 1 
|A(JC) | ^ — g(jc) a.e. on Xn for all A G H. 

K 

Again a diagonal argument shows that - • H is relatively norm compact 
g 

in LQQ. NOW we shall remove the assumption that Xx G ^p anc^ 1̂1 — Xx 
for all // G //. Assume |A| ^ g0 G Lp for all /z G H. Then define 
Pj(/) = p(fg0). Then p, is an order continuous function norm (we may 
assume that g0 > 0 a.e. on X). Let 

^ 0 

Then / / , c Lp and |/z| ^ x* f° r a ^ h ^ Hx. From Theorem 1.2 it is 
immediate that 7/j is also equimeasurable. Hence by the above argument 

there exists g G L such that - • / / , is relatively norm compact in 1 ^ . 
1 g 

Put gj = g • g0. Then p(g,) = p^go) < oo and obviously —H is rela-
g\ 

tively norm compact in L^. 

To prove the analogue of Theorem 1.3 for Hille-Tamarkin operators 
we first need some additional definitions. Let fn G Lp. Then fn is 
relatively uniformly convergent t o / G Lp if there exists g G Lp such that 
\f — fn\ ^ eng for some sequence of scalars en I 0. We also recall that 
a function norm has the Fatou property if it follows from 0 ^ fx ^ f2 = 
. . . T/wi th a l l / , G Lp that p ( / J Î p( / ) (where p( / ) = oo if/ « Lp). 

THEOREM 2.3. Le/ Lp = Lp(Y, v) and Lp = Lp(X, ju) be Banach 
function spaces and assume that p2 is order continuous and has the Fatou 
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property. Let T:Lp —> Lp be a linear operator. Then the following are 
equivalent. 

(i) T is a Hille-Tamarkin operator. 
(ii) / / /„ e LP], p,(/„) =i 1 andfn -> 0 a(Lpi, L'p), then 1f„ -* 0 relatively 

uniformly in L . 
If in addition p\ is order continuous, then each of the above is equivalent 
to: 

(iii) T is order continuous and T(U) is relatively uniformly compact in Lp , 
where 

U = { / e L P i : p , ( / ) S 1}. 

(iv) T is order continuous and T has a factorization T = RS where 
S:Lp —» L^ is compact and R'.L^ —> Lp is a multiplication operator. 

Proof. Assume (i) holds. To prove (ii) let/w e Lp , P\{fn) = 1 such 
that 

Then by Theorem 1.3 

r/„(x) -> 0 a.e. and |7/"w(x) | ^ p'i(^(>0 ) a.e. 

Hence Tfn —» 0 in order in Lp . It follows ( [2], Theorems 11.8 and 16.3) 
that Tfn —> 0 relatively uniformly. Assume now that (ii) holds. It follows 
from the proof of Theorem 1.3 that T is a Carleman integral operator. It 
remains to show that if T(x9 y) denotes the kernel of T, then 

P\(Tx(y) ) e Lpr 

From Corollary 2.3 of [6] it follows that 

p\(Tx(y) ) = sup( | 2 / | :p , ( / ) ^ 1), 

where the supremum is taken in the space L0(X, /A). We now first show that 
there exists a constant M such that 

p2(sup\Tf\) ^ M 

for all finite sequences (f)i^n in Lp with p\(f) = 1 for / ^ AI. If the 
assertion would be false, then there would exist finite sequences ( /^)/^„ 
for each k such that 

Pl(fiJc) ^ 1 and p2(sup, s„ t 17^1 ) g * • 2*. 

Replacing fik by f^/2 and concatenating all the finite sequences into 
one single sequence (fn)^=\ we have 

P\(fn)->° a n d P2(sup | 7 / J ) ^>oo as « - * oo. 
k^n 
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This contradicts (ii), so there exists a constant M with the above described 
property. From the a-finiteness of /i it follows that there exists fn e Lp 

with PjCO = 1 such that 

p\(Tx(y) ) = sup(sup \Tfk(x) | ) a.e. on X. 
n k = n 

From the Fatou property of p2 it now follows that 

P2(p'\(Tx(y) ) ) = sup p2(sup \Tfk\ ) ^ M < oo. 

Assume now that p\ is order continuous. The equivalence of (iii) and (iv) is 
obvious and the implication (i) => (iii) follows from the previous theorem 
and Theorem 1.3. Assume therefore that (iii) holds. Then by Theorem 1.3 
T is a Carleman integral operator and as before 

P\(Tx(y) ) = sup( | 7 / | : / e Lp], p , ( / ) ^ 1). 

Now { \Tf\ : / G Lp , Pi( / ) = 1} is relatively uniformly compact in Lp , so 
that there exist g ^ Lp and C G R such that 

\Tf\ ^ Cg for a l l / e Lpi with p , ( / ) ^ 1. 

Hence 

P i ( r , (^ ) ) ë Cg e LP2, 

SO 

p\(Tx(y) ) e Lp: 

and thus T is a Hille-Tamarkin operator. 

Remarks. 1. We note that the assumption that p2 has the Fatou property 
is only used in the proof that (ii) implies (i). We give now an example to 
show that this hypothesis can not be dropped. Let I\lx —> c0 be the identity 
operator. Then obviously I is not a Hille-Tamarkin operator, since 

sup j / e j « c0. 

We shall indicate that I satisfies condition (ii) of the above theorem. Let 
fn e /, such that 

/„ -» 0 a(/„ U . 
Then ||/„||, -H. 0, so also H/JU -» 0. Let 

and assume all €w ^ 0. Then 

H-/„lloo-»0, 

which implies that 
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g = sup -\fn\ G C0. 

Now \fn\ ^ eng, so tha t / , —» 0 relatively uniformly in c0. 

2. If p\ and p2 are order continuous, then the above theorem implies that 
every Hille-Tamarkin operator from Lp into Lp is compact. It is well 
known from examples on L, and L ^ that to obtain (iii) from (i) we can not 
drop either one of the order continuity assumptions in the above theorem. 
This raises the question whether we can characterize the integral operators 
which satisfy (iii) in case p\ and p2

 a r e n o t both order continuous. In the 
next section we shall derive an answer to this question. 

3. Majorizing integral operators. Let T:Lp —» Lp be a linear operator. 
Then we shall call T majorizing if the set 

{ r / / G L P i , P l ( / ) g 1} 

is order bounded in Lp . We note that our usage of the term majorizing is 
in general slightly more restrictive than in [3]. By ^m(Lp , Lp ) we denote 
the set of all majorizing operators. Define 

\\T\\m = inf(p2(g):g G Lpi such that \Tf\ ^ g • p , ( / ) for a l l / e Lp) 

for T G £gm(L , Lp ). It is easily seen that \\T\\m defines a latticenorm on 
<S?m(LD , L0 ) such that &m(Ln , Ln ) becomes a Banach lattice. Let J% n 

v Pi ' Pi' v Pi ' Pr P\"Pi 

denote the set of all Hille-Tamarkin operators from Lp into Lp and let 
p2 ® p\ denote the double norm on Jfp , i.e., if TXx, >0 is the kernel of T 
e ^ „ P 2 then 

p2 0 p',(D = P2(p\(Tx(y) ). 

The formula 

p ' , ( r ,O0) = inf(g:|7fl â g P l ( / ) ) 

implies immediately that for all T G Jfp p we have 
| |r | |m = P2®p\(T). 

In general ^ ] P 2 will be a proper subset of2?m(L , L ), but it follows from 
Theorem 3.2 o? [6] that ' 2 

PhP2 v Pv Pr 

whenever p, is order continuous. It is easy to verify that JFp p is a 
Banach lattice in general, so that J^p is always a closed subspace of 
^ m ( L p ) , L ). We can consider now L'p ® Lp as a subspace of 
«^hP2. If £ p ®m Lpi denotes the completion of L'p ® Lp with respect to 
| |r | |m , then LP] ®mLpi is a closed subspace of J0£ . 
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THEOREM 3.1. Let Lp and Lp be Banach function spaces and let 
T:Lp —> Lp be a linear operator. Then the following are equivalent. 

< : > T G K ®™ L* 
(ii) T is order continuous and 

{Tf:f e Lp], p , ( / ) ^ 1} 

is relatively uniformly compact in Lp . 

Proof Assume (i) holds. Then there exist Sn e L'p ® Lp with 
\\Sn\\m < 1/4" such that T = 2 ^ Sn, with the series convergent in the 
IHIw-norm. Let 0 < gn e Lp2 such that 

P2(gn) < 1/4" and \SJ\ ^ gnPl(f) for a l l / e Lp f 

Put 

oo 

g = 2 2"g„. 
1 

Then \Tf\ ^ g p ^ / ) for all / e L so - • T maps L into L^. 
g 

Now - • Sn is a finite rank operator from Lp into L œ and 

1 1 ^ I 1 °° 

g i g A2 = W + 1 

s-( 2 J P , ( / ) ^ ( 1 )̂p,(/). 

Hence -T is a compact mapping from L into L^, which proves (ii). 
g 

Assume now that (ii) holds. Then there exists 0 < g e Lp such that 

1 

g 

is compact. Since L^ has the approximation property it follows that there 

exist Sn:L —> L ^ of finite rank such that Sn —> - • T in the operator 
g 

normofJ2T(Lpi, L J . Put 

r l l/=gs l l/ 
Then Tn\Lpx -> Lp2 is of finite rank and ||T - 7 j | m -> 0. Hence 

r G LP, ®« V 
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We now remark that the above result is an order continuous version of 
Proposition 8.2 of [3]. We now introduce another class of Hille-Tamarkin 
operators. Let <$p be the set of all order continuous T from Lp 

into Lp^ such that {Tf\px(f) ^ 1} is equimeasurable and order bounded in 
Lp . From Theorem 1.3 it follows easily that 

3 , h P 2
 c ^ „ p 2 -

From Theorem 2.2 and Theorem 3.1 it follows that 

<?P],p2 = L'9x ®m Lp2 

whenever p2 is order continuous. From Theorem 1.3 it follows that 

> h P 2 ~ ^ P 2 

whenever p\ is order continuous, so in particular 

S , ^m ^p2 ^p2 

whenever p\ and p2
 a r e order continuous. This result generalizes a result 

obtained in [4] for L spaces. 

THEOREM 3.2. Sn n is a closed sublattice ofJFn n. 

Proof. The fact that S? p is a sublattice immediately follows from the 
known properties of compact operators with range in L^ (see [3] ). It 
remains to be shown that Sn _ is closed in Jifn n . Let T„ e Sn . and 

PhP2 Pl'P2 n Pl 'P2 

r G J f o f l such that 
Pl'P2 

IIT - T„\\m < 1/2" for all n. 
Thus there exist 0 ^ j , e Lp2 with p2{g„) = 1/2" such that 

I (T - Tn)f\ ë g„ for a l l / e t/: = {/•„,(/) ^ 1}. 

Then g = 2 ^ g,2 exists in Lp , so that gn(x) —» 0 a.e. on X Let I 0 c I b e 
a set of finite measure and e > 0. Then Egoroffs theorem implies that 
there exists X0e c X0 such that 

M*o \ *o,«) < < / 2 

and g„ —» 0 uniformly on X0 c. Now Tn e <̂  implies that there exist 
c XQ £ with 

P1.P2 

M*0,< \ Xn) < c/2" 

such that Xx ' ^ W ) *s relatively norm compact in L^ . Let 

0 0 

Then ix(X0 \ X€) < e and x^ ' ^ ( ^ 0 l s relatively norm compact in L ^ for 
all n. Let now 8 > 0. Then there exists n & N such that 
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WxX( * gjloo < */4-

For this n there exis t / e U (1 ^ / ^ m) such that for a l l / G [/ there 
exists/, e {/} such that 

\\Xx(Tj- Tjk) IL < 5/2. 

Hence 

llx^TT " ^A) IL ^ IIXA-,(̂  - W - /*) IL 

+ \\Xx,T„(f ~ fk) IL ^ 2||x^„IL + \ < 8. 

It follows that Xx ' ^X^O *s relatively norm compact in L ^ and thus 

In conclusion we remark that all the inclusions in 

uPi ® m LPI c ^PhP2 c ^ 

can be proper, for if T:L] —> L^ is continuous but not compact in 
measure, then T e J^Xoo but T & SXoo and if T:L, —> L ^ weakly compact 
but not compact, then T e <f, (00 but T £ L^ ®m L^. 
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