A NOTE ON MINIMAL COVERINGS OF GROUPS BY SUBGROUPS

R. A. BRYCE and L. SERENA

To Laci Kovács on his 65th birthday

(Received 30 March 2001)

Communicated by J. Cossey

Abstract

A cover for a group is a finite set of subgroups whose union is the whole group. A cover is *minimal* if its cardinality is minimal. Minimal covers of finite soluble groups are categorised; in particular all but at most one of their members are maximal subgroups. A characterisation is given of groups with minimal covers consisting of abelian subgroups.

2000 Mathematics subject classification: primary 20E99, 20F99.

1. Introduction

A cover for a group G is a finite collection of proper subgroups whose set-theoretic union is all of G. A cover \mathscr{A} is *irredundant* if no proper subcollection of \mathscr{A} is a cover for G. A *minimal* cover is one of least cardinality among covers for the group; it is necessarily irredundant. The size of a minimal cover of a group G we denote $\sigma(G)$. The idea of a minimal cover is due to Cohen [3] and the terminology to Tomkinson [12] who showed that, in a finite soluble group G, $\sigma(G) = |V| + 1$, where V is a chief factor of G with least order among chief factors of G with multiple complements.

In this note we first add some detail to Tomkinson's result by proving the following theorem.

THEOREM 1. Every minimal cover of a non-cyclic, finite, soluble group contains at most one non-maximal subgroup.

^{© 2001} Australian Mathematical Society 0263-6115/2001 A2.00 + 0.00

Rather more precise information is given below in Theorem 7 and its corollaries.

It is natural to ask questions about groups covered by subgroups with restricted properties. Thus, for example, it is known that a group is centre-by-finite if and only if it is coverable by abelian subgroups: see [8]; and hypercentral-by-finite if and only if coverable by nilpotent subgroups: see [11]. These results are trivial in the case of finite groups. However if we ask for *minimal* covers whose members have restricted properties the question is no longer so easy. By way of example we prove the following result.

THEOREM 2. A non-abelian group G has a minimal cover consisting of abelian subgroups if and only if its central factor group G/Z is either

- (1) monolithic, with non-central, elementary abelian monolith K/Z of prime-power order p^a having cyclic complements, and with K abelian; or
- (2) elementary abelian of order p^2 for some prime number p;

and, for each prime number $q < p^a$ or q < p, as the case may be, every finite factor group of G has cyclic Sylow q-subgroups.

2. Notations and quotations

If $\mathscr{A} = \{A_i : 1 \le i \le n\}$ is a cover for a group G and if D is the intersection of all the members of \mathscr{A} then we write $D_G := \operatorname{core}_G(D)$ and call it the *core* of \mathscr{A} , denoted core \mathscr{A} . For $N \subseteq G$ and $N \subseteq D$ we write $\mathscr{A}/N := \{A_i/N : 1 \le i \le n\}$; it is a cover of G/N, irredundant if and only if \mathscr{A} is irredundant, and minimal if, but not necessarily only if, \mathscr{A} is minimal. If $g \in G$ then we write $\mathscr{A}^g := \{A_i^g : 1 \le i \le n\}$, the *conjugate* of \mathscr{A} via g. Plainly \mathscr{A} is irredundant (respectively minimal) if, and only if, every conjugate of \mathscr{A} is irredundant (respectively minimal).

A natural partial order on covers of G is defined as follows. If $\mathscr{A} = \{A_i : 1 \le i \le n\}$ and $\mathscr{B} = \{B_j : 1 \le j \le r\}$ are covers of G and if there is a one-to-one function $f: \{1, 2, \ldots, n\} \to \{1, 2, \ldots, r\}$ such that $A_i \subseteq B_{f(i)}$ $(1 \le i \le n)$ we write $\mathscr{A} \le \mathscr{B}$; it is easily checked that \le is a partial order. Notice that every minimal cover of a group is dominated in this partial order by a minimal cover consisting of maximal subgroups. We shall term *minimising* a minimal cover that dominates no other cover. Of course every minimal cover dominates a minimising cover.

We state here, for ease of reference, the result of Tomkinson [12] referred to earlier.

PROPOSITION 3. If G is a finite soluble group then $\sigma(G) = |V| + 1$, where V is of least order among chief factors of G with multiple complements.

We examine in more detail just how minimal covers arise in soluble groups G. Let p be a prime number and r > 1 an integer for which the order of p modulo r is a. Let

C be a cyclic group of order r and let K be a faithful \mathbb{Z}_p C-module of dimension a, so that K is simple. Then construct H = CK as the semi-direct product of C and K, the latter thought of as an elementary abelian group of order p^a . It is easy to see that every minimal cover of H consists of the p^a conjugates of C together with a subgroup containing K, the only member of the cover that need not be maximal and the only one that is not core-free.

Continuing the same notation, but allowing r=1, we next consider the \mathbb{Z}_p C-module $V:=K\oplus K$. It has p^a+1 non-zero simple submodules. Consequently the natural semidirect product L=CV has p^a+1 subgroups, all containing C and all isomorphic to H, and these form a cover of L. This cover is minimal by Proposition 3. None of its members is core-free. This is our second example.

We shall say that a minimal cover \mathscr{A} of a finite group G is of $type\ 1$ if $G/\operatorname{core}\mathscr{A}$ is isomorphic to a group of the type described in the penultimate paragraph; and of $type\ 2$ if $G/\operatorname{core}\mathscr{A}$ is of the type described in the last paragraph.

3. Proofs of Theorem 1 and extensions

It will be convenient to introduce the following notation. If \mathscr{A} is a cover of the finite soluble group G then we write $\mathscr{A} = \mathscr{A}_0 \cup \mathscr{A}_1$ where \mathscr{A}_0 consists of the members of \mathscr{A} that are not maximal in G and \mathscr{A}_1 consists of the members of \mathscr{A} that are maximal in G. Moreover, if \mathscr{D} is a subset of \mathscr{A}_0 , and if N is minimal normal in G, we write $\mathscr{D}^*(N) := \{AN : A \in \mathscr{D}\}$ and $\mathscr{D}(N) := \mathscr{D}^*(N) \cup (\mathscr{A}_0 \setminus \mathscr{D}) \cup \mathscr{A}_1$. Notice that, for every $A \in \mathscr{A}_0$, $AN \neq G$ and therefore $\mathscr{D}(N)$ is a minimal cover of G whenever \mathscr{A} is minimal.

LEMMA 4. Let G be a finite, soluble but non-cyclic group, and \mathscr{A} a minimal cover for it. Then $\mathscr{A}_1 \neq \emptyset$.

PROOF. We suppose, in order to obtain a contradiction, that G is a non-cyclic finite soluble group of smallest order with respect to having a minimal cover \mathscr{A} in which \mathscr{A}_1 is empty. Let N be minimal normal in G. Now $\mathscr{A}(N)/N$ is a minimal cover for G/N so it follows that, for some $A_0 \in \mathscr{A}$, $N \not\subseteq A_0$. Also, for some $a \in A_0$,

$$aN \notin \bigcup_{B \in \mathscr{A} \setminus \{A_0\}} BN/N.$$

Choose $x \in N \setminus A_0$. Then $ax \notin A_0$ so $ax \in B$ for some $B \in \mathscr{A}$ $(B \neq A_0)$. But then $aN \in BN/N \neq A_0N/N$, a contradiction.

LEMMA 5. Suppose G is a finite, non-cyclic, soluble group with $\sigma(G) = n$. If \mathscr{A} is a minimal cover of G, and if \mathscr{A}_1 contains a core-free maximal subgroup of G, then $|\mathscr{A}_0| \leq 1$.

PROOF. Let $A_1 \in \mathscr{A}_1$ be core-free. Since G is finite and soluble there is a minimal normal subgroup N_1 of G for which $G = A_1N_1$. Indeed N_1 is the unique minimal normal subgroup of G, and in particular $|N_1| > 2$, and the complements of N_1 in G form a single conjugacy class of subgroups of G. Moreover a maximal subgroup of G is core-free if and only if it is a complement of N_1 in G. Note that N_1 has more than one complement or else A_1 is not core-free.

It follows from Proposition 3 that

$$n \leq |N_1| + 1$$
.

Suppose that $|\mathscr{A}_0| > 1$ and let $\mathscr{A}' := \mathscr{A}_0(N_1)$, a minimal cover of G. We can find

$$h \in A_1 \setminus \bigcup_{A \in \mathscr{A}' \setminus \{A_1\}} A$$
.

Then, for all $x \in N_1 \setminus \{1\}$,

$$hx \in \bigcup \mathcal{A}_1$$

or else h is in $\mathscr{A}_0^*(N_1)$, a contradiction. Now $|\mathscr{A}_1\setminus\{A_1\}|<|N_1|-1$. Hence, for some distinct $x,x'\in N_1\setminus\{1\}$, and some $A\in\mathscr{A}_1\setminus\{A_1\}$, $hx,hx'\in A$ whence $1\neq x^{-1}x'\in A\cap N_1$ and therefore $N_1\subseteq A$. However this leads to $h\in A$, a contradiction. Therefore $|\mathscr{A}_0|\leq 1$, as required.

LEMMA 6. If G is a finite, non-cyclic, soluble group with a minimal cover containing no core-free maximal subgroup of G, then $|\mathcal{A}_0| \leq 1$.

PROOF. We suppose that $|\mathscr{A}_0| \ge 2$ and obtain a contradiction. Let G be a group of least order with this property satisfying the hypotheses.

Let N be a minimal normal subgroup of G. Firstly note that N is not contained in every member of \mathscr{A} . This is because the cover \mathscr{A}/N of G/N either has a core-free maximal subgroup, in which case, by Lemma 5, it has at most one non-maximal subgroup; or \mathscr{A}/N has no core-free maximal subgroups of G/N and so, by the minimality of G, has at most one non-maximal member, whence the minimality of G gives a contradiction. We deduce from this that there is no minimal normal subgroup contained in every member of \mathscr{A}_1 . For, if N is minimal normal, and if $N \subseteq A$ $(A \in \mathscr{A}_1)$ let $A_0 \in \mathscr{A}_0$ with $N \not\subseteq A_0$ and

$$\mathscr{A}^{(1)} := (\mathscr{A}_0 \setminus \{A_0\})(N),$$

a minimal cover of G. Choose

$$h \in A_0 \setminus \cup (\mathscr{A}^{(1)} \setminus \{A_0\}),$$

and $x \in N \setminus A_0$. Then hx belongs to no member of \mathcal{A} , a contradiction. In fact there are at least two members of \mathcal{A}_1 not containing N. If N were in all but one member

 \Box

of \mathscr{A}_1 then N would be in all but one member of the irredundant cover $\mathscr{A}_0(N)$ and therefore in all of them, by [1, Lemma 2.2 (b)], also a contradiction.

It follows that N has more than one complement in G and hence, from Proposition 3,

$$\sigma(G) \leq |N| + 1$$
.

If $A \in \mathscr{A}_1$ does not contain N then let $h \in A \setminus \cup (\mathscr{A}_0(N) \setminus \{A\})$ and $x \in N \setminus \{1\}$. Then $hx \notin A \cup \bigcup \mathscr{A}_0$. But

$$|\{A\} \cup \bigcup \mathscr{A}_0| \geq 3$$

and so hx is in one of the at most |N| - 2 subgroups in $\mathcal{A}_1 \setminus \{A\}$. But there are |N| - 1 possible choices for x so, for some different $x, x' \in N \setminus \{1\}$, hx, hx' belong to the same member, B say, of \mathcal{A}_1 with $B \neq A$, whence

$$1 \neq x^{-1}x' \in B \cap N.$$

so $N \subseteq B$ and therefore $h \in B$, a contradiction.

The assumption that $|\mathcal{A}_0| \ge 2$ is thus proved false.

The proof of Theorem 1 is now complete because every minimal cover contains a maximal subgroup by Lemma 4, and either some maximal subgroup in the cover is core-free, the case covered by Lemma 5, or none are, the case covered by Lemma 6.

The next theorem gives more detail concerning minimal covers in finite soluble groups.

THEOREM 7. A minimal cover for a finite soluble group is either of type 1 or of type 2.

First we prove a useful lemma.

LEMMA 8. Let \mathcal{A} be a core-free minimal cover of a finite soluble group G and N be a minimal normal subgroup of G. Then N is contained in a unique member of \mathcal{A} and intersects trivially all the other members of \mathcal{A} . Moreover, $|N| = |\mathcal{A}| - 1$.

PROOF. Let $\mathscr{A} = \{A_i : 1 \le i \le n\}$. First of all we suppose that \mathscr{A} consists of maximal subgroups, that is $\mathscr{A} = \mathscr{A}_1$. Notice that N intersects non-trivially, and therefore is contained in, at least one member of \mathscr{A} . Moreover, by [1, Lemma 2.2 (b)], there are at least two members of \mathscr{A} not containing N. Hence, for some t satisfying $1 \le t \le n-2$, and re-numbering if necessary, we may suppose that $N \subseteq A_i$ $(1 \le i \le t)$ but, since A_j is maximal whenever j > t, $N \cap A_j = 1$ $(t+1 \le j \le n)$. Now since \mathscr{A} is irredundant as a cover for G, there exists $a \in A_{t+1}$ not belonging

to A_k for $k \neq t+1$. Then, for all $n \in N \setminus \{1\}$, $an \in \bigcup_{i=t+2}^n A_i$. Consequently, if |N|-1>n-(t+1) we would have, by the pigeon-hole principle, distinct $x,x'\in N\setminus \{1\}$ and some $j\in \{t+2,\ldots,n\}$, for which $ax,ax'\in A_j$. Then $1\neq x^{-1}x'\in A_j\cap N=1$, a contradiction. It follows that $|N|\leq n-t$. Moreover, N has multiple complements in G. Therefore, by Proposition $3,|N|\geq n-1$ and so $t\leq 1$. Of course N is in at least one member of $\mathscr A$ so t=1. This completes the proof when $\mathscr A$ has no non-maximal subgroup.

In the case that $A_1 \in \mathcal{A}$, say, is not maximal in G, $A_1N \neq G$, so there is a maximal subgroup A_1^* containing A_1N . Also $\mathscr{A}^* := (\mathscr{A} \setminus \{A_1\}) \cup \{A_1^*\}$ is a minimal cover of G and, by Theorem 1, it consists of maximal subgroups. Therefore, by what we have already proved, N is in a unique member of \mathscr{A}^* . Hence N is not contained in, nor does it intersect non-trivially, members of \mathscr{A} other than A_1 , so $N \subseteq A_1$. This completes the proof of Lemma 8.

COROLLARY 9. A non-maximal subgroup in a core-free minimal cover for a finite soluble group G contains the Fitting subgroup F(G).

PROOF. We use the notation of the lemma. First of all note that the Frattini subgroup $\Phi(G) \subseteq D := \cap \mathscr{A}$ because, by [1, Lemma 2.2(b)] and Theorem 1, D is the intersection of the maximal members of \mathscr{A} . Since $\Phi(G) \subseteq G$, $\Phi(G) = 1$. Then F(G) is the socle of G. If N is minimal normal in G, and if A_1 is the non-maximal member of \mathscr{A} then, considering \mathscr{A}^* as in the proof of the lemma, we see that $N \subseteq A_1^*$ so N is in no other member of \mathscr{A} other than A_1 . It follows that $N \subseteq A_1$ for all minimal normal N. That is $F(G) \subseteq A_1$, as required.

PROOF OF THEOREM 7. Let G be a finite soluble group with $\sigma(G) = n$, and let \mathscr{A} be a minimal cover for G. Assume, as we may do, that \mathscr{A} is core-free. Either \mathscr{A} contains a core-free maximal subgroup, or it does not. In the first case G is monolithic, say N is the monolith. Hence, by Lemma 8, there are n-1=|N| members of \mathscr{A} all complementing N. Since N has a unique conjugacy class of |N|=n-1 complements therefore, \mathscr{A} consists of the members of this class and one other subgroup of G containing N. Now we show that G is cyclic. By [5], chief factors of G above G have order less than |G|; and since G is a minimal cover with |G|+1 members it must be that such chief factors are either central or Frattini. This shows that G is nilpotent. However, if not cyclic G, and therefore G, has a factor group isomorphic to G and G for some prime G and therefore a cover of G has a factor group isomorphic to G and the contradiction. (This argument is used by Tomkinson [12].) Thus G is of type 1.

In the other case, that is where \mathscr{A} contains no core-free maximal subgroup, all members of \mathscr{A} are maximal: for, by Corollary 9, a minimal cover with a non-maximal member necessarily contains core-free maximal subgroups. Choose $A \in \mathscr{A}$

and suppose that $N \subseteq A$ is minimal normal. By Lemma 8 |N| = n - 1. Let S := F(G). Then $S \cap A = N$. For, if $A \neq B \in \mathscr{A}$ then BN = G. Hence $S = N \times T$ where $T := S \cap B \trianglelefteq G$. Then $1 \neq T \not\subseteq A$ so AT = G and $A \cap T \trianglelefteq G$. However A, B contain no common minimal normal subgroup, so $A \cap T \subseteq \text{core}_G(A \cap B) = 1$. That is $A \cap S = N(A \cap T) = N$. In like manner $T = B \cap S$ is a minimal normal subgroup of G, so S is a direct product of two minimal normal subgroups of G.

We have proved that every member of \mathscr{A} intersects S in a minimal normal subgroup of G contained in no other member of \mathscr{A} . Hence S contains a minimal normal subgroup U of G other than N, T. From this we see that N, T are G-isomorphic.

Since A, B are inconjugate maximal subgroups of G, $C := A \cap B$ is maximal in at least one of them, say in A, by [4, Corollary 16.7]. Now CN = A so CS = (CN)T = AT = G and so $C \cap S \subseteq G$ whence $C \cap S = 1$. Then, since N, T are G-isomorphic,

$$C_C(N) = C_C(T) = C_C(S) \le S \cap C = 1.$$

By Gaschütz [5] a chief factor of G above S has order less than |N|. By an argument used earlier in this proof we see that $C \cong G/S$ is cyclic. It follows that G has a type 2 minimal cover, and it remains to show that \mathscr{A} is such a cover.

To this end we let $C = \langle c \rangle$, $\mathscr{A} = \{A_1, A_2, \dots, A_n\}$. Observe that G is a Frobenius group with kernel S and complement C: every element of G is contained either in S or in a conjugate of C. Now no $A_i \in \mathscr{A}$ is core-free so, by Lemma 8, the subgroups $V_i := S \cap A_i$ ($1 \le i \le n$) are precisely the minimal normal subgroups of G. Moreover each A_i contains a conjugate of C: for, A_i is maximal and does not contain S so $G = A_i S = CS$ whence $A_i / S \cap A_i \cong G / S \cong C$. Therefore A_i contains a conjugate of C, using the Schur-Zassenhaus Theorem. It follows that the subsets S_i of S defined by

$$S_i := \{ v \in S : c^v \in A_i \} \quad (1 \le i \le n)$$

are not empty. What is more, S is the union of the S_i s.

We show that S_i is a coset of V_i in S. First, if $v_1, v_2 \in S_i$ then

$$[c, v_1 v_2^{-1}] = [c, v_1 v_2^{-1}]^{v_2} = (c^{-1} c^{v_1 v_2^{-1}})^{v_2} = c^{-v_2} c^{v_1} \in A_i \cap V = V_i.$$

However the function $v \mapsto [c, v]$ is a one-to-one C-homomorphism under which $V_i \to V_i$. Hence $v_1 v_2^{-1} \in V_i$ so, for some $w_i \in V$, $S_i \subseteq V_i w_i$. The converse inclusion is easily proved, so we have that $S_i = V_i w_i$ $(1 \le i \le n)$.

Finally, by [1, Lemma 2.6(b)], the S_i s form an irredundant cover of S and they meet in a (unique) common point. That is, for some $r \in V$, $S_i = V_i r$ $(1 \le i \le n)$, so $c^r \in A_i$ $(1 \le i \le n)$. We have proved that \mathscr{A} is, in this case, of type 2.

This completes the proof of Theorem 7.

The following corollary follows easily.

COROLLARY 10. Let the finite soluble group G have a minimal cover $\mathscr A$ with intersection D.

- (a) If \mathscr{A} is of type 1 then $D = D_G$ and, if \mathscr{A} is minimising, then it is the unique minimising cover of G with core D_G .
- (b) If \mathscr{A} is of type 2 it is minimising and there is a unique conjugacy class of minimal covers with core D_G .

4. Minimal covering with nilpotent subgroups

Here we consider a characterisation of groups minimally covered with nilpotent or abelian subgroups. A point of terminology: we shall call a (minimal) cover consisting of abelian (nilpotent) groups an abelian (nilpotent, minimal) cover. The first result applies to soluble, but not necessarily finite, groups.

THEOREM 11. Let G be a non-nilpotent soluble group.

- (a) A nilpotent minimal cover \mathscr{A} for G is minimising of type 1 and, for some positive k, its intersection is $\zeta_k(G)$. Moreover, if $K/\zeta_k(G)$ is the socle of $G/\zeta_k(G)$ then, for every prime $q < |K/\zeta_k(G)|$, the Sylow q-subgroups of every finite factor group of G are cyclic.
- (b) Conversely, if for some positive k, $G/\zeta_k(G)$ is monolithic with elementary abelian monolith $K/\zeta_k(G)$ with cyclic complements, and if for every prime $q < |K/\zeta_k(G)|$ the Sylow q-subgroups of every finite factor group of G are cyclic, then G has a unique nilpotent minimal cover.

PROOF. (a) Let the intersection of \mathscr{A} be D. If \mathscr{A} is of type 1 then, by Corollary 10, $D_G = D$ and \mathscr{A} is minimising since it is nilpotent. On the other hand, if \mathscr{A} is of type 2 then the nilpotence of the members of \mathscr{A}/D_G requires that $D = D_G$ and that G/D_G be elementary of order p^2 .

Now, by Tomkinson [11, Theorem A], for some positive k, $D = D_G \subseteq \zeta_k(G)$. Since G is not nilpotent therefore, $\mathscr A$ is of type 1 and then, since $\zeta_1(G/D) = 1$, $D = \zeta_k(G)$.

Next let N be normal and of finite index in G. Then, by [7], $N \cap D$ is also of finite index. Let p be the prime dividing K/D. Since $K/D \cap N$ is nilpotent it has a unique Sylow p-subgroup $P/D \cap N$. Also G/P is a nilpotent p'-group because each of its chief factors is central. If for some prime $q \mid |G/P|$, the Sylow q-subgroup of G/P were not cyclic then G would have a factor group isomorphic to $C_q \times C_q$ and so $|K/D| + 1 = \sigma(G) \le q + 1$. This completes the proof of (a).

(b) First we prove the existence statement noting first of all that G has a cover \mathscr{B} with intersection $\zeta_k(G)$: its members are K and the $|K/\zeta_k(G)|$ subgroups C containing $\zeta_k(G)$ for which $C/\zeta_k(G)$ are complements in $G/\zeta_k(G)$. All the members of \mathscr{B} are nilpotent since each is an abelian extension of $\zeta_k(G)$. It remains to prove that \mathscr{B} is minimal. To this end let \mathscr{A} be a minimal cover of G and G its intersection. Note that $G/D_G \cap \zeta_k(G)$ is finite, using [7], and has exactly one non-central factor in a chief series. If \mathscr{A} were of type 2 with G/D_G not nilpotent, it would have at least two non-central chief factors in every chief series. Hence either \mathscr{A} is of type 1 or, if of type 2, G/D_G is elementary abelian of order G for some prime G. In the second case G is elementary abelian of order G for some prime G. In the second case G is elementary abelian of order G for some prime G. In the second case G is elementary abelian of order G for some prime G. In the second case G is elementary abelian of order G for some prime G. In the second case G is elementary abelian of order G for some prime G. In the second case G is elementary abelian of order G for some prime G is minimal.

If \mathscr{A} is of type 1 a chief series of $G/\zeta_k(G) \cap D_G$ through $\zeta_k(G)/\zeta_k(G) \cap D_G$ has exactly one non-central factor so the same is true of a chief series of $G/\zeta_k(G) \cap D_G$ through $D_G/\zeta_k(G) \cap D_G$. Consequently, writing L/D_G for the socle of G/D_G , we see that $|\mathscr{B}| = |K/\zeta_k(G)| + 1 = |L/D_G| + 1 = |\mathscr{A}| = \sigma(G)$, so \mathscr{B} is minimal.

We now prove that \mathscr{B} is the unique nilpotent minimal cover of G. To this end we suppose that \mathscr{A} is a nilpotent minimal cover of G. By (a) its core is $\zeta_l(G)$ for some positive l and $G/\zeta_l(G)$ has non-central monolith with cyclic complements. Since both $G/\zeta_k(G)$ and $G/\zeta_l(G)$ have trivial centre it follows that l = k and then that $\mathscr{A} = \mathscr{B}$.

PROOF OF THEOREM 2. Let $\mathscr{A} = \{A_1, \ldots, A_n\}$ be an abelian minimal cover of G. Since G is not abelian we may, and we temporarily do, suppose that $Z := \zeta_1(G) \subseteq A_i$ $(1 \le i \le n)$. Also, since \mathscr{A} is a minimal covering, $\langle A_i, A_j \rangle = G$ $(1 \le i < j \le n)$. Then $A_i \cap A_j \subseteq Z$ and so $A_i \cap A_j = Z$ $(1 \le i < j \le n)$. Let $\overline{G} := G/Z$, $\overline{A_i} := A_i/Z$ $(1 \le i \le n)$, and $\overline{\mathscr{A}} := \mathscr{A}/Z$. Then $\overline{\mathscr{A}}$ is a minimal cover of \overline{G} and $\overline{A_i} \cap \overline{A_j} = 1$ $(1 \le i < j \le n)$. That is $\overline{\mathscr{A}}$ is a partition of \overline{G} . \overline{G} is finite by [7].

By a result of Suzuki [10] a finite insoluble group with a partition is isomorphic to one of the following:

- (1) $PSL_2(q)$.
- (2) $PGL_2(q)$.
- (3) $Sz(2^n)$.

We use this to prove

LEMMA 12. A group with an abelian minimal cover is soluble.

PROOF. It is sufficient to show that, if G is a group with an abelian minimal cover then, in the notation introduced above, \bar{G} is soluble. By [2] minimal coverings of groups of types (1) and (2) all contain non-abelian subgroups so \bar{G} is neither of these.

In the case (3), that is $\bar{G} \cong Sz(2^n)$, a Sylow 2-subgroup S would be non-abelian, so S would not be not in any \bar{A}_i and the set $\{S \cap \bar{A}_i : 1 \le i \le n\}$ would be a partition of S. A 2-group with a partition has proper Hughes subgroup. However $H_2(S) = S$, its involutions being all in the derived group of S. Thus case (3) is also dismissed. It follows that G is soluble.

Now from Theorem 1 and [1, Lemma 2.2 (b)], Z is actually contained in the given A_i , and in fact D = Z. Either G is nilpotent, or it is not nilpotent. In the second case therefore, by Theorem 11, for some k, $Z = D = \zeta_k(G)$ so k = 1, and G/D is monolithic with elementary abelian monolith K/D with cyclic complements. Note that K is a member of \mathscr{A} , so abelian. Also all Sylow q-subgroups of finite factor groups of G are cyclic for q < |K/D|. In the case that G is nilpotent \mathscr{A} is of type 2 and $G/D \cong C_p \times C_p$. Hence the conditions of Theorem 2 are necessary.

When G is not nilpotent the sufficiency of the stated conditions follows at once from Theorem 11. When G is nilpotent the result is easy and the details are left to the reader.

References

- [1] R. A. Bryce, V. Fedri and L. Serena, 'Covering groups with subgroups', Bull. Austral. Math. Soc. 55 (1997), 469-476.
- [2] ——, 'Subgroup coverings of some linear groups', Bull. Austral. Math. Soc. 60 (1999), 227–238.
- [3] J. H. E. Cohen, 'On n-sum groups', Math. Scand. 75 (1994), 44-58.
- [4] K. Doerk and T. Hawkes, Finite soluble groups (Walter de Gruyter, Berlin, 1992).
- [5] W. Gaschütz, 'Existenz und Konjugiertsein von Untergruppen, die in endlichen auflösbaren Gruppen durch gewisse Indexschranken definiert sind', J. Algebra 53 (1978), 1–20.
- [6] O. Kegel, 'Die Nilpotenz der H_p -Gruppen', Math. Z. **75** (1960/61), 373–376.
- [7] B. H. Neumann, 'Groups covered by finitely many cosets', Publ. Math. Debrecen 3 (1954), 227–242.
- [8] ——, 'A problem of Paul Erdös on groups', J. Austral. Math. Soc. Ser. A 21 (1976), 467–472.
- [9] D. Passman, Permutation groups (W. A. Benjamin, Inc., New York, 1968).
- [10] M. Suzuki, 'On a finite group with a partition', Arch. Math. 12 (1961), 241-254.
- [11] M. J. Tomkinson, 'Hypercentre-by-finite groups', Publ. Math. Debrecen 40 (1992), 313-321.
- [12] ——, 'Groups as the union of proper subgroups', Math. Scand. 81 (1997), 189–198.

School of Mathematical Sciences Australian National University Canberra ACT 0200 Australia

e-mail: bob.bryce@maths.anu.edu.au

Dipartimento di Matematica e Applicazioni per l'Architettura Università di Firenze Piazza Ghiberti 27 50122 Firenze

Italia

e-mail: serena@math.unifi.it