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Abstract

A cover for a group is a finite set of subgroups whose union is the whole group. A cover is minimal if
its cardinality is minimal. Minimal covers of finite soluble groups are categorised; in particular all but at
most one of their members are maximal subgroups. A characterisation is given of groups with minimal
covers consisting of abelian subgroups.
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1. Introduction

A cover for a group G is a finite collection of proper subgroups whose set-theoretic
union is all of G. A cover &/ is irredundant if no proper subcollection of £/ is a cover
for G. A minimal cover is one of least cardinality among covers for the group; it is
necessarily irredundant. The size of a minimal cover of a group G we denote o{G).
The idea of a minimal cover is due to Cohen [3] and the terminology to Tomkinson
[12] who showed that, in a finite soluble group G,a(G) = | V\ 4- 1, where V is a chief
factor of G with least order among chief factors of G with multiple complements.

In this note we first add some detail to Tomkinson's result by proving the following
theorem.

THEOREM 1. Every minimal cover of a non-cyclic, finite, soluble group contains at
most one non-maximal subgroup.
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Rather more precise information is given below in Theorem 7 and its corollaries.
It is natural to ask questions about groups covered by subgroups with restricted

properties. Thus, for example, it is known that a group is centre-by-finite if and
only if it is coverable by abelian subgroups: see [8]; and hypercentral-by-finite if and
only if coverable by nilpotent subgroups: see [11]. These results are trivial in the
case of finite groups. However if we ask for minimal covers whose members have
restricted properties the question is no longer so easy. By way of example we prove
the following result.

THEOREM 2. A non-abelian group G has a minimal cover consisting of abelian
subgroups if and only if its central factor group G/Z is either

(1) monolithic, with non-central, elementary abelian monolith K/Z of prime-power
order p" having cyclic complements, and with K abelian; or
(2) elementary abelian of order p2 for some prime number p;

and, for each prime number q < p" or q < p, as the case may be, every finite factor
group of G has cyclic Sylow q-subgroups.

2. Notations and quotations

If s/ = [At: : 1 < i < n] is a cover for a group G and if D is the intersection of all
the members of s/ then we write Dc := coreG(£>) and call it the core of s/, denoted
corns/. For N < G and N c D we write s//N := {Aj/N : 1 < i < n}; it is a
cover of G/N, irredundant if and only if s/ is irredundant, and minimal if, but not
necessarily only if, s/ is minimal. If g € G then we write s/g := {Af : 1 < i: < n],
the conjugate of s/ via g. Plainly s/ is irredundant (respectively minimal) if, and
only if, every conjugate of s/ is irredundant (respectively minimal).

A natural partial order on covers of G is defined as follows. Us/ = [At : 1 < i < n}
and BS = {Bj : 1 < j < r] are covers of G and if there is a one-to-one function
/ : {1,2, ...,n] -*• {1,2 , . . . , r] such that At c Bf(i) (1 < i < n) we write sf •< 38;
it is easily checked that < is a partial order. Notice that every minimal cover of a
group is dominated in this partial order by a minimal cover consisting of maximal
subgroups. We shall term minimising a minimal cover that dominates no other cover.
Of course every minimal cover dominates a minimising cover.

We state here, for ease of reference, the result of Tomkinson [12] referred to earlier.

PROPOSITION 3. IfG is a finite soluble group then a (G) = | V| + 1, where V is of
least order among chief factors of G with multiple complements.

We examine in more detail just how minimal covers arise in soluble groups G. Let
p be a prime number and r > 1 an integer for which the order of p modulo r is a. Let
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C be a cyclic group of order r and let K be a faithful 1P C-module of dimension a, so
that K is simple. Then construct H = CK as the semi-direct product of C and K,
the latter thought of as an elementary abelian group of order p". It is easy to see that
every minimal cover of H consists of the p" conjugates of C together with a subgroup
containing K, the only member of the cover that need not be maximal and the only
one that is not core-free.

Continuing the same notation, but allowing r = 1, we next consider the 1P C-
module V := K ® K. It has p" + 1 non-zero simple submodules. Consequently the
natural semidirect product L = CV has p" + 1 subgroups, all containing C and all
isomorphic to H, and these form a cover of L. This cover is minimal by Proposition 3.
None of its members is core-free. This is our second example.

We shall say that a minimal cover si of a finite group G is of type 1 if G/ core si
is isomorphic to a group of the type described in the penultimate paragraph; and of
type 2 if G/ core si is of the type described in the last paragraph.

3. Proofs of Theorem 1 and extensions

It will be convenient to introduce the following notation. If si is a cover of the
finite soluble group G then we write si = s/0 U six where sf0 consists of the members
of si that are not maximal in G and six consists of the members of si that are maximal
in G. Moreover, if @ is a subset of si0, and if A' is minimal normal in G, we write
9*{N) := [AN : A € S>) and ®{N) := 3>*{N) U (sio\3>) U six. Notice that, for
every A e si0, AN ^ G and therefore @(N) is a minimal cover of G whenever si is
minimal.

LEMMA 4. Let G be a finite, soluble but non-cyclic group, and si a minimal cover
for it. Then six j= 0.

PROOF. We suppose, in order to obtain a contradiction, that G is a non-cyclic finite
soluble group of smallest order with respect to having a minimal cover si in which
six is empty. Let JV be minimal normal in G. Now si{N)/N is a minimal cover for
G/N so it follows that, for some Ao € si, N g Ao. Also, for some a £ Ao,

aN i ( J BN/N.

Choose x e N\A0- Then ax £ Ao so ax e B for some B e si (B ^ Ao). But then
aN e BN/N j£ A0N/N, a contradiction. •

LEMMA 5. Suppose G is a finite, non-cyclic, soluble group with a(G) = n. If si
is a minimal cover of G, and if si\ contains a core-free maximal subgroup of G, then

< 1-
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PROOF. Let A i e s/i be core-free. Since G is finite and soluble there is a minimal
normal subgroup Â  of G for which G = AtNi. Indeed Ni is the unique minimal
normal subgroup of G, and in particular \Nt\ > 2, and the complements of Nt in G
form a single conjugacy class of subgroups of G. Moreover a maximal subgroup of
G is core-free if and only if it is a complement of Â  in G. Note that Nx has more
than one complement or else A i is not core-free.

It follows from Proposition 3 that

Suppose that \s/0\ > 1 and let &/' := S^Q{NX), a minimal cover of G. We can find

heAt\ \J A.

Then, for all JC 6 Ni\{l},

hx € ( J atx

or else h is in ^{N\), a contradiction. Now |^l\{Ai}| < |TVi| — 1. Hence,
for some distinct x,x' e A^Xfl}, and some A e .s#'i\{A1}, hx,hx' € A whence
1 }£ x~*x' e A n Ni and therefore #! c A. However this leads to h e A, a
contradiction. Therefore \#/0\ < 1, as required. •

LEMMA 6. If G is a finite, non-cyclic, soluble group with a minimal cover containing
no core-free maximal subgroup of G, then \srfo\ < 1-

PROOF. We suppose that | ^ | > 2 and obtain a contradiction. Let G be a group of
least order with this property satisfying the hypotheses.

Let TV be a minimal normal subgroup of G. Firstly note that N is not contained in
every member of si'. This is because the cover s//N of G/N either has a core-free
maximal subgroup, in which case, by Lemma 5, it has at most one non-maximal
subgroup; or &//N has no core-free maximal subgroups of G/N and so, by the
minimality of G, has at most one non-maximal member, whence the minimality of G
gives a contradiction. We deduce from this that there is no minimal normal subgroup
contained in every member of s/\. For, if Af is minimal normal, and if N c A
(A € s/i) let Ao € s/0 with N £ Ao and

a minimal cover of G. Choose

h € Ao\ U

and x € N\A0. Then hx belongs to no member of s/, a contradiction. In fact there
are at least two members of s/t not containing A7. If A7 were in all but one member
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of sf\ then N would be in all but one member of the irredundant cover sio(N) and
therefore in all of them, by [1, Lemma 2.2 (b)], also a contradiction.

It follows that N has more than one complement in G and hence, from Proposition 3,

o(G) < \N\ + \.

If A e six does not contain N then let h e A\ U (s/0(N) \ {A}) and x € N\[l}. Then
hx <£AU\Js/0. But

> 3

and so hx is in one of the at most \N \ — 2 subgroups in s/i\{A}. But there are | ̂ V | — 1
possible choices for x so, for some different x, x' € N\{1}, hx,hx' belong to the
same member, B say, of six with B ^ A, whence

1 £x~xx' e BDN,

so N c B and therefore h e B, a contradiction.
The assumption that \sio\ > 2 is thus proved false. •

The proof of Theorem 1 is now complete because every minimal cover contains a
maximal subgroup by Lemma 4, and either some maximal subgroup in the cover is
core-free, the case covered by Lemma 5, or none are, the case covered by Lemma 6.

The next theorem gives more detail concerning minimal covers in finite soluble
groups.

THEOREM 7. A minimal cover for a finite soluble group is either of type 1 or of
type 2.

First we prove a useful lemma.

LEMMA 8. Let si be a core-free minimal cover of a finite soluble group G and N
be a minimal normal subgroup of G. Then N is contained in a unique member of si
and intersects trivially all the other members of si'. Moreover, \N\ — \s/\ — 1.

PROOF. Let s/ — {A/ : 1 < i < n). First of all we suppose that si consists
of maximal subgroups, that is si = si\. Notice that N intersects non-trivially, and
therefore is contained in, at least one member of si. Moreover, by [1, Lemma 2.2 (b)],
there are at least two members of si not containing N. Hence, for some ? satisfying
1 < t < n — 2, and re-numbering if necessary, we may suppose that N c A,
(1 < i'• < t) but, since Aj is maximal whenever j >t,NCiAj = l(t + l<j < n).
Now since si is irredundant as a cover for G, there exists a e A,+) not belonging
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to Ak for k £ t + 1. Then, for all n e N \ {1}, an e UL+2^'- Consequently,
if \N\ — 1 > n — (t + 1) we would have, by the pigeon-hole principle, distinct
x,x' 6 N \ {1} and some j e [t + 2 , . . . , n}, for which ax, ax' e A,. Then
1 7̂  x"1*' € Aj D A7 = 1, a contradiction. It follows that \N\ < n — t. Moreover,
N has multiple complements in G. Therefore, by Proposition 3,\N\ > n — \ and so
t < 1. Of course N is in at least one member of ^ so / = 1. This completes the
proof when si has no non-maximal subgroup.

In the case that A \ e si, say, is not maximal in G, A {N ^ G, so there is a maximal
subgroup A] containing AtN. Also si* := {si \ {Ai}) U {AJ} is a minimal cover
of G and, by Theorem 1, it consists of maximal subgroups. Therefore, by what we
have already proved, N is in a unique member of si*. Hence N is not contained in,
nor does it intersect non-trivially, members of si other than Ai.soJV c A|. This
completes the proof of Lemma 8. D

COROLLARY 9. A non-maximal subgroup in a core-free minimal cover for a finite
soluble group G contains the Fitting subgroup F(G).

PROOF. We use the notation of the lemma. First of all note that the Frattini
subgroup <t>(G) c D := Hsi because, by [1, Lemma 2.2 (b)] and Theorem 1, D is
the intersection of the maximal members of si. Since 4>(G) < G, <t>(G) = 1. Then
F(G) is the socle of G. If N is minimal normal in G, and if Ai is the non-maximal
member of sf then, considering sf* as in the proof of the lemma, we see that N c A \
so N is in no other member of s/ other than A i. It follows that N C A i for all minimal
normal N. That is F(G) c A,, as required. •

PROOF OF THEOREM 7. Let G be a finite soluble group with CT(G) = n, and let
s/ be a minimal cover for G. Assume, as we may do, that s/ is core-free. Either
s/ contains a core-free maximal subgroup, or it does not. In the first case G is
monolithic, say N is the monolith. Hence, by Lemma 8, there are n — 1 = \N\
members of si all complementing N. Since N has a unique conjugacy class of
\N\ — n — 1 complements therefore, si consists of the members of this class and
one other subgroup of G containing N. Now we show that C is cyclic. By [5], chief
factors of G above N have order less than \N\; and since si is a minimal cover with
|N | + 1 members it must be that such chief factors are either central or Frattini. This
shows that C is nilpotent. However, if not cyclic C, and therefore G, has a factor group
isomorphic to Cq x Cq for some prime q, and therefore a cover of q + 1 subgroups.
But q < | A71, a contradiction. (This argument is used by Tomkinson [12].) Thus si
is of type 1.

In the other case, that is where si contains no core-free maximal subgroup, all
members of si are maximal: for, by Corollary 9, a minimal cover with a non-
maximal member necessarily contains core-free maximal subgroups. Choose A e si
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and suppose that N c A is minimal normal. By Lemma 8 \N\ = n — 1. Let
5 := F(G). Then SDA = N. For, if A ^ B e s/ then BN = G. Hence S = N xT
where T := S n B < G. Then I ^ T £ A so AT = G and A fl T < G. However
A, B contain no common minimal normal subgroup, so A n T c corec(A <1 B) = 1.
That is A C\ S = N(A C) T) = N. In like manner r = B n 5 is a minimal normal
subgroup of G, so 5 is a direct product of two minimal normal subgroups of G.

We have proved that every member of s/ intersects 5 in a minimal normal subgroup
of G contained in no other member of si'. Hence S contains a minimal normal
subgroup U of G other than N, T. From this we see that N, T are G-isomorphic.

Since A, B are inconjugate maximal subgroups of G, C := A n B is maximal in at
least one of them, say in A, by [4, Corollary 16.7]. Now CN — A so CS = (CN)T =
AT'• = G and so Cfl 5 < G whence C n 5 = 1. Then, since N, T are G-isomorphic,

CC(AO = CC(T) = Cc(5) < SDC= 1.

By Gaschiitz [5] a chief factor of G above S has order less than \N\. By an argument
used earlier in this proof we see that C = G/5 is cyclic. It follows that G has a type 2
minimal cover, and it remains to show that sf is such a cover.

To this end we let C = (c), #/ = [Au A2,... , An}. Observe that G is a Frobenius
group with kernel S and complement C: every element of G is contained either
in 5 or in a conjugate of C. Now no A/ € s>/ is core-free so, by Lemma 8, the
subgroups Vj :— S H Aj (I < i < n) are precisely the minimal normal subgroups
of G. Moreover each At contains a conjugate of C: for, A, is maximal and does not
contain S so G = AjS — CS whence At/S D A, = G/S = C. Therefore A, contains
a conjugate of C, using the Schur-Zassenhaus Theorem. It follows that the subsets 5,
of S defined by

Si := {v e S : cv e A,} (1 < i < n)

are not empty. What is more, S is the union of the 5,s.
We show that 5, is a coset of Vt in 5. First, if vt, v2 e 5, then

[C, y,!;"1] = [c, W,̂ "1]"1 = (c^c"'^')1'2 = C^c"1 € A, fl V = Vj,

However the function v i-> [c, i>] is a one-to-one C-homomorphism under which
Vj —• V;. Hence U| vj1 e V̂  so, for some w, e V, 5, c VJu;,-. The converse inclusion
is easily proved, so we have that St = Vjiv, (I < i < n).

Finally, by [1, Lemma 2.6(b)], the 5,s form an irredundant cover of S and they
meet in a (unique) common point. That is, for some r e V, 5, = V)r (1 < J < «), so
cr € A, (1 < / < « ) . We have proved that si is, in this case, of type 2.

This completes the proof of Theorem 7. •

https://doi.org/10.1017/S1446788700002809 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700002809


166 R. A. Bryce and L. Serena [8]

The following corollary follows easily.

COROLLARY 10. Let the finite soluble group G have a minimal cover s/ with
intersection D.

(a) If &? is of type 1 then D = DG and, if s/ is minimising, then it is the unique
minimising cover of G with core DG.
(b) If &/ is of type 2 it is minimising and there is a unique conjugacy class of minimal

covers with core DG.

4. Minimal covering with nilpotent subgroups

Here we consider a characterisation of groups minimally covered with nilpotent or
abelian subgroups. A point of terminology: we shall call a (minimal) cover consisting
of abelian (nilpotent) groups an abelian (nilpotent, minimal) cover. The first result
applies to soluble, but not necessarily finite, groups.

THEOREM 11. Let G be a non-nilpotent soluble group.

(a) A nilpotent minimal cover s/for G is minimising of type 1 and, for some positive
k, its intersection is ?*(G). Moreover, if K/t;k(G) is the socle of G/l;k(G) then, for
every prime q < \K/%k(G)\, the Sylow q -subgroups ofevery finite factor group of G
are cyclic.
(b) Conversely, if for some positive k, G/f * {G) is monolithic with elementary abelian

monolith K/£k(G) with cyclic complements, and if for every prime q < \K/%k(G)\ the
Sylow q-subgroups of every finite factor group of G are cyclic, then G has a unique
nilpotent minimal cover.

PROOF, (a) Let the intersection of s/ be D. If s/ is of type 1 then, by Corollary 10,
DG = D and sf is minimising since it is nilpotent. On the other hand, if s/ is of
type 2 then the nilpotence of the members of s//Dc requires that D — DG and that
G/DG be elementary of order p2.

Now, by Tomkinson [11, Theorem A], for some positive k, D = DG c £*(G).
Since G is not nilpotent therefore, s/ is of type 1 and then, since t,x(G/D) = 1,
D = &(G).

Next let TV be normal and of finite index in G. Then, by [7], N n D is also of
finite index. Let p be the prime dividing K/D. Since K/D D N is nilpotent it has a
unique Sylow p-subgroup P/D n N. Also G/P is a nilpotent p'-group because each
of its chief factors is central. If for some prime q | \G/P\, the Sylow ^-subgroup of
G/P were not cyclic then G would have a factor group isomorphic to Cq x Cq and so
\K/D\ + 1 = a(G) < q + 1. This completes the proof of (a).
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(b) First we prove the existence statement noting first of all that G has a cover 38 with
intersection &(G): its members are K and the \K/Z;k(G)\ subgroups C containing
£*(G) for which C/Z;k(G) are complements in G/Z;k(G). All the members of 38 are
nilpotent since each is an abelian extension of &(G). It remains to prove that 38 is
minimal. To this end let si be a minimal cover of G and D its intersection. Note
that G/Dc n £*(G) is finite, using [7], and has exactly one non-central factor in a
chief series. If si were of type 2 with G/DG not nilpotent, it would have at least two
non-central chief factors in every chief series. Hence either si is of type 1 or, if of
type 2, G/DG is elementary abelian of order q2 for some prime q. In the second case
q > |#/£t(G)| since, by hypothesis, forprimes q less than \K/Z;k(G)\, G/DGr\£k(G)
has cyclic Sylow ^-subgroups. Of course then q = \K/£k(G)\ so 38 is minimal.

If si is of type 1 a chief series of G/£k(G) D DG through &(G)/&(G) n £>G has
exactly one non-central factor so the same is true of a chief series of G/%k(G) n Dc

through DG/Kk(G) n Dc. Consequently, writing L/DG for the socle of G/Dc, we
see that \38\ = \K/i;k{G)\ + 1 = \L/DG\ + I = \si\ = <x(G), so 38 is minimal.

We now prove that 38 is the unique nilpotent minimal cover of G. To this end we
suppose that si is a nilpotent minimal cover of G. By (a) its core is £/(G) for some
positive / and G/%i(G) has non-central monolith with cyclic complements. Since
both G/t;k(G) and G/£i(G) have trivial centre it follows that / = k and then that
si = 38. U

PROOF OF THEOREM 2. Let si = [Alt..., An) be an abelian minimal cover of G.
Since G is not abelian we may, and we temporarily do, suppose that Z := £1 (G) c A,
(1 < i < n). Also, since si is a minimal covering, (A,, A;-) = G (1 < / < j < n).
Then A,-DA; c ZandsoA,nA, = Z (1 < i < j < n). Let G := G/Z,A~i := AJZ
(1 < i < n), and si := .c//Z. Then £^ is a minimal cover of G and A, n At• = 1
(1 < i < y < «)• That is ^/ is a partition of G. G is finite by [7]. •

By a result of Suzuki [10] a finite insoluble group with a partition is isomorphic to
one of the following:

(1) PSL2(q).
(2) PGL2(q).
(3) Sz(2").

We use this to prove

LEMMA 12. A group with an abelian minimal cover is soluble.

PROOF. It is sufficient to show that, if G is a group with an abelian minimal cover
then, in the notation introduced above, G is soluble. By [2] minimal coverings of
groups of types (1) and (2) all contain non-abelian subgroups so G is neither of these.
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In the case (3), that is G = Sz(2n), a Sylow 2-subgroup 5 would be non-abelian,
so 5 would not be not in any A, and the set {5 D A,,: 1 < i < n] would be a partition
of 5. A 2-group with a partition has proper Hughes subgroup. However H2(S) = S,
its involutions being all in the derived group of 5. Thus case (3) is also dismissed. It
follows that G is soluble. •

Now from Theorem 1 and [1, Lemma 2.2 (b)], Z is actually contained in the given
At, and in fact D = Z. Either G is nilpotent, or it is not nilpotent. In the second
case therefore, by Theorem 11, for some k, Z = D = £*(G) so k = 1, and G/D is
monolithic with elementary abelian monolith K/D with cyclic complements. Note
that K is a member of &/, so abelian. Also all Sylow ^-subgroups of finite factor
groups of G are cyclic for q < \K/D\. In the case that G is nilpotent srf is of type 2
and G/D = Cp x Cp. Hence the conditions of Theorem 2 are necessary.

When G is not nilpotent the sufficiency of the stated conditions follows at once
from Theorem 11. When G is nilpotent the result is easy and the details are left to the
reader.
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