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Covers of moduli surfaces

V. Braungardt

Abstract

Which algebraic surfaces occur as covers of moduli spaces for curves? We show that
surfaces of a special type over number fields do, with possible exception for non-elliptic
K3 surfaces.

1. Introduction

Unramified covers of the moduli spaces for smooth curves are defined over number fields by a result
of Weil [Wei56]. Conversely, is every quasi-projective variety over Q̄ birational to a cover of a moduli
space for curves? In the one-dimensional case this question has been answered affirmatively by Belyi
[Bel79]. His algorithm produces a finite morphism from a given smooth projective curve over Q̄ to
the moduli space M̄0,4

∼= P1, unramified over the interior M0,4
∼= P1 � {0, 1,∞}. The morphism

can be arranged to map a given finite subset of the curve to ∞.
Grothendieck [Gro97] observed that results like this can give rise to a nice elementary description

of algebraic varieties over number fields: If a cell decomposition of the moduli space is fixed, then
covers are given by combinatorial data, represented by dessins d’enfants in the case of curves
covering M0,4.

2. Two-dimensional moduli spaces

Let Mg,n be the stack of smooth n-pointed genus g projective curves and M̄g,n its completion
as described by Knudsen [Knu83]. Note that the n marked points are ordered. The quotient by
the obvious action of the symmetric group Sn is the stack Mg,[n] of curves with a distinguished
n-element subset.

The map Mg,n → Mg,[n] is an unramified cover. Further covers tend to arise as moduli spaces
for curves with various extra structures, such as level structures [BP00] and Hurwitz spaces.

We are working in characteristic 0, by default over the algebraic numbers. However, by Weil’s
result mentioned above, it makes no difference to allow complex coefficients for covers. A cover of
Mg,[n] is then the same as a quotient Tg,n/H of Teichmüller space Tg,n by a cofinite subgroup H
of its holomorphic automorphism group, at least if 2g + n � 5.

The dimension of Mg,n is 3g − 3 + n. In dimension 2 we have M0,5 and M1,2. In contrast
to higher dimensions, the two-dimensional Teichmüller spaces T0,5 and T1,2 are isomorphic. In the
tower of covers

T1,2 = T0,5 → M0,5 → M1,[2] → M0,[5],

the map from M0,5 to M1,[2] associates to a five-pointed line its double cover E branched in the first
four marked points and marked with the preimages p, p̄ of the fifth marked point in the line; there
are ways of setting up a morphism of stacks from this. The map from M1,[2] to M0,[5] associates

Received 5 March 2002, accepted in final form 2 October 2002.
2000 Mathematics Subject Classification 14J20, 14H10.
Keywords: moduli of curves, surfaces over number fields.
This journal is c© Foundation Compositio Mathematica 2004.

https://doi.org/10.1112/S0010437X03000642 Published online by Cambridge University Press

http://www.compositio.nl
http://www.ams.org/msc/
http://www.compositio.nl
https://doi.org/10.1112/S0010437X03000642


V. Braungardt

to a marked curve (E, {p, p̄}) its quotient by the involution t �→ t̄ with t̄ = p + p̄ − t in Pic1(E).
This quotient is a line marked by the branch points and the image of p and p̄.

Let P = P1 � {0, 1,∞} and let Q be the complement of the diagonal in P ×P . To (p, p′) ∈ Q we
associate the five-pointed curve (P1; 0, 1,∞, p, p′). This gives M0,5

∼= Q endowed with a universal
family of five-pointed lines. We will identify M0,5 with its fine moduli space Q. The corresponding
model of M̄0,5 is the blow-up of P1×P1 in the three points (0, 0), (1, 1) and (∞,∞). The complement
of M0,5 = Q in this surface is the union of ten smooth rational curves of self-intersection −1.

3. Bundles and abelian surfaces

We are now going to realize some classes of surfaces over Q̄ as covers of Q = M0,5 up to birational
equivalence.

Product surfaces C × C ′ cover P1 × P1 without ramification over Q: Just put together Belyi
morphisms (cf. § 1) for the two factors. Because we consider surfaces up to birational equivalence,
this technique applies to all ruled surfaces.

Proposition 1. Any fibre bundle (for the étale topology) of fibre genus g � 2 is birational to a
cover of M0,5.

Proof. Let X → C be a bundle with fibre F . Let F̄ := F/Aut(F ) and let V ⊂ F̄ be the branch
locus of F → F̄ . The natural morphism X → F̄ ×C is branched precisely over V ×C. The desired
morphism X → P1×P1 arises from Belyi morphisms for the curves C and F̄ , the latter chosen such
that V be mapped to {0, 1,∞}.

Proposition 2. Any abelian surface is birational to a cover of M0,[5].

Proof. If the abelian surface A is isogenous to the product of two elliptic curves then we are done.
Otherwise A is the Jacobian of a curve C of genus two. Then A is birationally equivalent to the
symmetric square Sym2 C = (C × C)/S2 of the curve. From a Belyi morphism β: C → P1 we get a
map Sym2 C → Sym2 P1 unramified over the image of Q.

Consider the subgroup S2 ⊂ S5 acting on M0,5 by interchanging the last two marked points. This
corresponds to the involution (p, p′) �→ (p′, p) on Q. Since it acts freely, the quotient scheme Q/S2,
which is the image of Q in Sym2 P1, represents the quotient stack Q/S2, which covers M0,[5].

4. A criterion for fibred surfaces

It would be nice to have variants of Belyi’s algorithm [Bel79, Bel02] which work over function fields,
because then we could apply the following criterion.

Theorem 1. Let X be a smooth irreducible surface over Q̄ and X → C a morphism with connected
fibres onto a curve C. Let K = K(C) be the function field of the curve. If the generic fibre XK

admits a morphism XK → P1
K branched at most over four K-rational points, then there is a finite

cover of M0,5 birationally equivalent to X.

Proof. The generic fibre XK is smooth and geometrically integral. By assumption we have gK :
XK → P1

K branched over four K-rational points. Call them 0, 1, ∞ and t.
We may consider t as a morphism C → P1 because a rational map on a smooth curve is defined

everywhere. If the map is constant, i.e. t ∈ Q̄, then X is birationally a cover of P1 × C branched
over horizontal and vertical fibres, and we may proceed as in Proposition 1. Assume now that t is
transcendental over Q̄.
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Over some open part C0 ⊂ C the fibration X0 := X×C C0 is smooth, gK extends to a morphism
g0: X0 → P1 and the restriction of g0 to any fibre X(c), c ∈ C0, is finite and ramifies at most
over 0, 1, ∞ and t(c). Blow up X until g0 extends to a morphism g: X → P1. The exceptional locus
of the blow-up will lie over C � C0.

Belyi provides a morphism b: P1 → P1 which maps not only its own ramification points but also
the points 0, 1 and ∞, the branch points of t and the image t(C � C0) to {0, 1,∞}. Define a map
h = (h1, h2): X → P1 × P1 by

h1 = b ◦ t ◦ (X → C), h2 = b ◦ g.

Denote by X ′ ⊂ X the preimage of the open part Q ⊂ P1×P1 from § 2. We claim that the restriction
h′: X ′ → Q of h is finite and étale.

It is proper because h is. Fix a point x ∈ X ′. It projects to a point c ∈ C0 because otherwise
h1(x) = b(t(c)) ∈ {0, 1,∞}. So the restriction of h2 to the fibre X ′(c) is quasi-finite. However,
then h′ cannot blow down a curve through x because the fibres of h1 are unions of fibres over C.

If h′ is not étale at x then either b ◦ t ramifies at c or h2|X ′(c) ramifies at x. In the first case we
have h1(x) ∈ {0, 1,∞} by the choice of b. In the latter case we distinguish two subcases.

a) b is ramified at g(x). Then h2(x) ∈ {0, 1,∞}.
b) g|X ′(c) ramifies at x. Then g(x) = 0, 1, ∞ or t(c); thus h2(x) = 0, 1, ∞ or b(t(c)). In the last

case h(x) is on the diagonal of P1 × P1.

5. Elliptic fibrations

The surface X in this section fibres over a curve C and the general fibre is a smooth curve of
genus 1. Denote by K := K(C) the function field (or generic point) of the base curve. So the generic
fibre XK = X ×C K is a smooth and geometrically irreducible curve of genus 1 over K.

Theorem 2. Any elliptic fibration is birational to a cover of M0,5.

Proof. We want to construct a morphism XK → P1
K as required by Theorem 1. As XK is an

unramified cover of its Picard curve Pic0 XK by means of any polarization, we are reduced to the
case that XK is an elliptic curve with zero section o ∈ X(K). Let q: XK → P1

K be the quotient by
group inversion.

The ramification locus of q is defined over K as it is the kernel of x �→ x + x. So the branch
locus of q is a K-subvariety of P1. Over an algebraic closure K̄ of K it consists of four points q(o),
z1, z2, z3.

The branch points z1, z2, z3 are permuted by a subgroup H of Aut(P1). Over K̄ this subgroup
is isomorphic to the symmetric group S3. Its elements might not be K-rational; though, the set of
the three involutions, the set of the two 3-cycles and the subgroup scheme H are defined over K.

Let q2 : P1
K → P1

K the quotient by H. Its ramification locus over K̄ splits into three H-orbits:

– the fixed points of the 3-cycles are conjugate by any of the involutions;

– the zi are conjugate by definition of H;

– the other three fixed points of the involutions are then conjugate, too.

Every orbit is defined over K. So their images by q2 are K-rational. These are the branch points
of q2. Call them 0, ∞ and 1728. The point q(o) is then mapped to the j-invariant of XK .

The composite map q2 ◦ q: XK → P1
K ramifies precisely over the K-rational points 0, 1728,

j(XK) and ∞.
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Remark 1. At this point we have realized all surfaces of Kodaira dimension 1 as well as all Enriques
and hyperelliptic surfaces. Additionally there are K3 surfaces which admit elliptic fibrations. We
are left with non-elliptic K3 and surfaces of general type.

Remark 2. We considered M0,5 as a subset of P1 × P1. Alternatively M0,5 can be embedded into
the projective plane. It is isomorphic to the complement of a configuration of lines known as the
complete square: the union of the six lines connecting four points in general position. Special covers
of this representative of M0,5 have been extensively studied, see e.g. [BHH87]. Thus a wide variety of
examples is known.

Remark 3. Most of our constructions realize an open part of a given complete surface X as a cover
of M0,[5]. To see that we cannot always realize X itself as a cover of M̄0,[5], note that if X is simply
connected then every morphism X → M̄0,[5] lifts to X → M̄0,5. On the other hand a surjective
morphism X → M̄0,5 can only exist if X contains curves with negative self-intersection. It follows
that P2 is not a cover of M̄0,[5].
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der Mathematik, vol. 4 (Vieweg & Sohn, Braunschweig, 1987).

Bel79 G. V. Belyi, On Galois extensions of a maximal cyclotomic field (Russian), Izv. Akad. Nauk SSSR,
Ser. Mat. 43 (1979), 267–276.

Bel02 G. V. Belyi, A new proof of the three-point theorem (Russian), Mat. Sb. 193 (2002), 21–24 (Engl.
transl. Sb. Math. 193 (2002), 329–332).

BP00 M. Boggi and M. Pikaart, Galois covers of moduli of curves, Compositio Math. 120 (2000), 171–191.
Gro97 A. Grothendieck, Esquisse d’un programme, in Geometric Galois actions. 1. Around Grothendieck’s

esquisse d’un programme, Lecture Note Series, vol. 242 (London Mathematical Society, 1997), 5–48.
Knu83 F. F. Knudsen, The projectivity of the moduli space of stable curves. II. The stacks Mg,n, Math.

Scand. 52 (1983), 161–199.
Wei56 A. Weil, The field of definition of a variety, Amer. J. Math. 78 (1956), 509–524.

V. Braungardt braungardt@mathematik.uni-muenchen.de
Mathematisches Institut, Universität München, Theresienstr. 39, D-80333 München, Germany

1036

https://doi.org/10.1112/S0010437X03000642 Published online by Cambridge University Press

mailto:braungardt@mathematik.uni-muenchen.de
https://doi.org/10.1112/S0010437X03000642

	1 Introduction
	2 Two-dimensional moduli spaces
	3 Bundles and abelian surfaces
	4 A criterion for fibred surfaces
	5 Elliptic fibrations

