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Abstract. Glivenko’s theorem says that classical provability of a propositional formula entails
intuitionistic provability of the double negation of that formula. This stood right at the beginning
of the success story of negative translations, indeed mainly designed for converting classically
derivable formulae into intuitionistically derivable ones. We now generalise this approach:
simultaneously from double negation to an arbitrary nucleus; from provability in a calculus
to an inductively generated abstract consequence relation; and from propositional logic to any
set of objects whatsoever. In particular, we give sharp criteria for the generalisation of classical
logic to be a conservative extension of the one of intuitionistic logic with double negation.

§1. Introduction. Glivenko’s theorem says that, in propositional logic, classical
provability of a formula entails intuitionistic provability of the double negation of
that formula [45]. This stood right at the beginning of the success story of negative
translations, indeed mainly designed for converting classically derivable formulae into
intuitionistically derivable ones. Typically, a negative translation is an operation on
formulae in predicate logic such that each formula is classically equivalent to its
translation and is classically derivable exactly when the translation is intuitionistically
derivable. Negative translations have already been put into the context of nuclei [30,
114] or nucleus [30], and have proved to be useful also in computer science [48], set
theory [4], arithmetic and analysis [107], eventually contributing to program extraction
[101] and proof mining [63]. Double negation over intuitionistic logic is indeed a typical
instance of a nucleus [5, 50, 60, 76, 93, 105, 106, 114].1

As compared to recent literature on related topics [4, 15, 31, 36, 40, 48, 49, 57,
68, 77, 78, 83, 85, 94, 107, 111, 119], the main purpose of the present work is to
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2 GIULIO FELLIN AND PETER SCHUSTER

generalise Glivenko’s theorem and the theory of negative translations: simultaneously
from double negation to an arbitrary nucleus; from provability in a calculus to an
abstract consequence relation; and from propositional logic to any set of objects
whatsoever. As pointed out by van den Berg [114] and Escardó–Oliva [29, 30], a
generalised version of the Gentzen negative translation for arbitrary nuclei is already
known in logic [4], locale theory [60] and topos theory [62]; and van den Berg himself
gives a generalisation of the minimal Kuroda negative translation to nuclei in logic. We
aim for a deeper insight into these generalisations, dubbed j-translations, by passing
to arbitrary sets endowed with abstract consequence relations.2

To this end we move to a nucleus j over a Hertz–Tarski consequence relation in the
form of a (single-conclusion) entailment relation � à la Scott [14, 103]. Assuming that
� is inductively generated by axioms and rules, we propose two natural extensions
(§2.2): �j generalises the provability of double negation, and �j is inductively defined
by adding the generalisation of double negation elimination to the inductive definition
of �. By their very definitions, �j satisfies all the axioms and rules of �, and �j
satisfies all the axioms of �. But when does �j also satisfy all the rules of �? Glivenko
conservation, Corollary 3.7, says that �j extends �j , and that the two relations coincide
precisely when �j is closed under the non-axiom rules used to inductively generate �,
which of course is the case whenever there are no such non-axiom rules (Corollary 3.8).
While it may happen that this closure condition fails, and hence �j is not conservative
over �j , following Gödel one can ensure conservation by adding to � suitable rules
generalising the double negation shift (Theorem 3.5).

We then investigate into a different generalisation by weakening the conditions on
the function: instead of a nucleus j, we consider a j-homogeneous function k and the
related entailment relation �(k) which generalise the Kolmogorov negative translation
and its provability. Similarly to the above, we notice that �j extends �(k), and that
the two relations coincide precisely when �(k) is closed under the rules that are used
to inductively generate � (Theorem 3.13). A variant of this last result is shown for
k = jJ—which is intended to generalise the Kuroda negative translation—where J is
j-homogeneous (Corollary 3.14).

In logic, the prime instance of course is Glivenko’s theorem (Proposition 5.4) as a
syntactical conservation theorem (see also [36]):

Γ �c ϕ ⇐⇒ Γ �i ¬¬ϕ,
where �c and �i denote classical and intuitionistic propositional logic. Simultaneously
we re-obtain Gödel’s theorem [46], otherwise ascribed to Gabbay [39] (Proposition 5.7),
which says that, in predicate logic,

Γ �c ϕ ⇐⇒ Γ �∗ ¬¬ϕ,
where �∗ is any extension (by additional axioms) of intuitionistic predicate logic that
satisfies the double negation shift:

∀x¬¬ϕ � ¬¬∀xϕ.

2 Most recently van den Berg [115] has put forward a theory of nuclei for Miquel’s implicative
algebras [72].
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CONSERVATION AS TRANSLATION 3

Next, we regain Kolmogorov’s result [64] (Proposition 5.8(i)) that, in predicate logic,

Γ �c ϕ ⇐⇒ kΓ �i kϕ,
where k is the Kolmogorov negative translation inductively defined by

k� = ¬¬�, k⊥ = ¬¬⊥, kP = ¬¬P,
k(ϕ ∧ �) = ¬¬(kϕ ∧ k�), k(ϕ ∨ �) = ¬¬(kϕ ∨ k�), k(ϕ → �) = ¬¬(kϕ → k�),

k(∀x ϕ) = ¬¬∀x kϕ, k(∃x ϕ) = ¬¬∃x kϕ.

Analogous statements can be made for the Gentzen [41, 42] and for the minimal
Kuroda [66, 73, 114] negative translation (Proposition 5.8(ii) and (iii)).

While the double negation nucleus jϕ = ¬¬ϕ is an instance of the continuation
nucleus, it is tantamount to the same case jϕ = ¬ϕ → ϕ of the Peirce nucleus [30].
What does our main result mean for other nuclei in logic? The open nucleus jϕ =
A→ ϕ prompts a form of the deduction theorem (Proposition 5.11(i)), while the
closed nucleus jϕ = ϕ ∨ A yields a variant of the reduction from intuitionistic to
minimal logic going back to Johansson [59] (Proposition 5.11(ii)). Last but not least,
by observing that the modal operator © in propositional lax logic is a nucleus, we get
a general version of strong conservativity [32] (Proposition 5.13).

1.1. Preliminaries. We proceed in a constructive and predicative way, keeping the
concepts elementary and the proofs direct. If a formal system is desired, our work can
be placed in a suitable fragment of Aczel’s Constructive Zermelo–Fraenkel Set Theory
(CZF) [1–3, 6, 7] based on intuitionistic first-order predicate logic.

By a finite set we understand a set that can be written as {a1, ... , an} for some n � 0.
Given any set S, let Pow(S) (respectively, Fin(S)) consist of the (finite) subsets of S.
We thus deviate from the terminology prevalent in constructive mathematics and set
theory [6, 7, 11–13, 69, 71]: to reserve the term ‘finite’ to sets which are in bijection with
{1, ... , n} for a necessarily unique n ≥ 0. Those exactly are the sets which are finite in
our sense and are discrete too, i.e., have decidable equality [71].

§2. Entailment relations. Closely following [35, 89, 90] we briefly recall the basics
of entailment relations. Let S be a set and � ⊆ Pow(S) × S. Once abstracted from the
context of logical formulae, all but one of Tarski’s axioms of consequence [109]3 can be
put as

U 
 a
U � a

∀b ∈ U (V � b) U � a
V � a

U � a
∃U0 ∈ Fin(U )(U0 � a) ,

where U,V ⊆ S and a ∈ S. These axioms also characterise a finitary covering or
Stone covering in formal topology [95];4 see further [17, 18, 75, 76, 96, 97]. The
notion of consequence has presumably been described first by Hertz [51–53] (see
also [9, 67]).

3 Tarski has further required that S be countable.
4 This is from where we have taken the symbol �, used also [16, 116] to denote a ‘consecution’

[87].
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4 GIULIO FELLIN AND PETER SCHUSTER

Tarski has rather characterised the set of consequences of a set of propositions,
which corresponds to the algebraic closure operator U 
→ U� on Pow(S) of a relation
� as above where

U� = {a ∈ S : U � a} .
Rather than with Tarski’s notion, we henceforth work with its (tantamount) restriction
to finite subsets, i.e., a (single-conclusion) entailment relation.5 This is a relation
� ⊆ Fin(S) × S such that

Refl
U, a � a

V � b V ′, b � a
Trans

V,V ′ � a
U � a

Mono
U,U ′ � a

for all finite U,U ′, V, V ′ ⊆ S and a, b ∈ S, where as usual U,V = U ∪ V and V, b =
V ∪ {b}. Our focus thus is on finite subsets of S, for which we reserve the letters
U,V,W, ...; we sometimes write a1, ... , an in place of {a1, ... , an} even if n = 0.

Remark 2.1. The rule Refl is equivalent, by Mono, to the axiom a � a.

Redefining

T� = {a ∈ S : ∃U ∈ Fin(T )(U � a)}
for arbitrary subsets T of S gives back an algebraic closure operator on Pow(S). By
writing T � a in place of a ∈ T�, the entailment relations thus correspond exactly to
the relations satisfying Tarski’s axioms above.

Given an entailment relation �, by setting a � b = a � b we get a preorder on S;
whence the conjunction a ≈ b of a � b and b � a is an equivalence relation.

Quite often an entailment relation � is inductively generated from axioms by closing
up with respect to the three structural rules Refl, Mono and Trans above [92]. In the
present note some leeway is required by allowing for rules other than Refl, Mono and
Trans in the inductive generation of �. These non-structural rules have the form6

U1 � b1 ... Un � bn
r

U � b or, more compactly,

{Ui � bi : i � n}
r

U � b .

As an axiom is nothing but a rule with no premiss, we explicitly use non-axiom rule to
indicate a rule that has at least one premiss, whereas in general we do not excluded that
a rule be an axiom. If the three structural rules are the only non-axiom rules employed
for inductively generating an entailment relation �, we stress this by saying that � is
generated only by axioms.

Given an inductively generated entailment relation � and a set of rules ∗, then we
call �plus ∗ the entailment relation �∗ inductively generated by all the rules that either
are used for generating � or belong to ∗. We also say that �∗ is an inductive extension
of �, and we call ∗ the set of additional rules.

5 In the present note there is no need for abstract multi-conclusion consequence or entailment
à la Scott [102–104], Lorenzen’s contributions to which are currently under scrutiny [24, 25].
The relevance of multi-conclusion entailment to constructive algebra, point-free topology,
etc. has been pointed out in [14], and has widely been used, e.g., in [19–23, 26, 27, 69, 80,
88–91, 98, 99, 117, 118].

6 Examples are logical, mathematical and modal rules.
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CONSERVATION AS TRANSLATION 5

A main feature of inductive generation is that if � is an entailment relation generated
inductively by certain rules, then � ⊆ �′ for every entailment relation �′ satisfying
those rules. By an extension �′ of an entailment relation � we mean in general an
entailment relation �′ such that � ⊆ �′. We say that an extension �′ of � is conservative
if also � ⊇ �′ and thus � = �′ altogether [36, 89, 90].

2.1. Nuclei over entailment relations. In the context of an entailment relation, what
do we mean by a nucleus?

Definition 2.2. Given a set S endowed with an entailment relation �, we say that a
function j : S → S is a nucleus (over �) if for all a, b ∈ S andU ∈ Fin(S) the following
hold:

U, a � jb
Lj

U, ja � jb
U � b

Rj
U � jb .

Remark 2.3.

(i) By Refl and Trans, the rule Rj can be expressed by an axiom, viz.

b � jb. (1)

(ii) By Lj, from ja � ja we get j2a � ja and thus j2a ≈ ja.
(iii) The rule Rj is tantamount to the inverse of Lj. In particular, we have

U � jb
jU � jb ,

where jU = {ju : u ∈ U} and the double line stands for equivalence. This
characterisation is already known in particular cases, e.g., the following (iv).

(iv) If we consider a structure with a relative pseudo-complement operator, i.e., a
binary function → that satisfies

U, a � b
RPC

U � a → b ,

then it is easy to show that nuclei are characterised by a single equivalence:

a → jb ≈ ja → jb. (2)

This was observed, e.g., in [61, 62, 70] for nuclei in locale theory. In fact, by
means of Trans and RPC, (2) is another way of writing Lj and its inverse, which,
as noticed in (ii), is tantamount to Rj. Moreover, the following hold by means of
RPC, Lj and Rj:

j(a → b) � a → jb, (3)

j(a → b) � ja → jb. (4)

Note that (3) and (4) are equivalent in view of (2). As we will see in the
applications (§5), the converses of (3) and (4) do not hold in general.

Example 2.4. The above notion of a nucleus includes as a special case the notion of
a nucleus over a locale [5, 58, 60–62, 76, 86, 93, 105, 106], which is well-known as a
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6 GIULIO FELLIN AND PETER SCHUSTER

point-free way to put subspaces. In fact, if S is a locale with partial order �, then

U � a ⇐⇒
∧
U � a

defines an entailment relation [27] such that any given map j : S → S is a nucleus over
� precisely when j is a nucleus over the locale S. The latter means that j satisfies

ja ∧ jb � j(a ∧ b) (5)

on top of the conditions for j being a closure operator on S, which can be put as a � ja
and

a � jb =⇒ ja � jb . (6)

In the presence of a � ja, which corresponds to Rj in the form of (1), the conjunction of
(5) and (6) is equivalent to

c ∧ a � jb =⇒ c ∧ ja � jb ,

which in turn subsumes Lj. So the two notions of a nucleus coincide.

Example 2.5.

(i) Every entailment relation � has the trivial nucleus j = id.
(ii) Let an algebraic structure S come with a unary self-inverse function j (e.g., take

a group as S and the inverse as j). The entailment relation � of S-substructures
is inductively defined by

a1, ... , an � f(a1, ... , an) (7)

for every n-ary function f characteristic of S, including j. Then j is a nucleus over
�. Axiom (1) is just (7) for f = j, therefore the rule Rj holds. In particular,
j2 = id implies j(a) � a, which, together with Trans, gives the rule Lj.

(iii) Double negation ¬¬ is a nucleus over intuitionistic logic �i as an entailment
relation between propositional or first-order predicate formulae (see §5.2 for
further details).

2.2. Extensions induced by nuclei. Every nucleus over � induces two natural
extensions of � as follows.

Definition 2.6. Let j be a nucleus over an entailment relation � on a set S. We understand
by:

– the weak j-extension (or Kleisli extension) of � the relation �j ⊆ Fin(S) × S
defined by

U �j a ⇐⇒ U � ja;

– the strong j-extension of � the entailment relation �j ⊆ Fin(S) × S inductively
generated by the rules of � together with the stability axiom for j:

ja �j a. (8)

In the terminology coined before, �j is nothing but � plus the stability axiom
for j.
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CONSERVATION AS TRANSLATION 7

As we will see later on (Corollary 3.7),

� ⊆ �j ⊆ �j .

Lemma 2.7. Let S be a set with an entailment relation � and let j be a nucleus over �.
Then both �j and �j are entailment relations that extend �.

Proof. The statement for �j holds by the very definition of �j . As for �j : By (1)
and Remark 2.1, Refl carries over to � from �j . Mono is inherited from �, and so is
Trans in view of Lj:

U � ja
V, a � jb

Lj
V, ja � jb

Trans
U,V � jb .

Finally, also � ⊆ �j is a consequence of (1).

Remark 2.8.

(i) Stability and Rj together give a ≈j ja, where ≈j is the intersection of �j and
its converse on singletons.

(ii) By Refl in the form of a � a (Remark 2.1), stability holds for �j too, that is,
ja �j a.

Under appropriate circumstances, Remark 2.8 will help to obtain �j ⊆ �j (see
Corollaries 3.7 and 3.8).

Remark 2.9. The nucleus j on � is a nucleus also on �j and �j . In fact, by Lemma 2.7
both extensions inherit axiom (1) from �, and actually satisfy the following strengthening
of Lj:

U, a � b
Lj+

U, ja � b .

While Lj+ for �j is just Lj for �, stability ja � a is tantamount to Lj+ for any
entailment relation � whatsoever.

To better understand whether and when �j coincides with �j , we first study a
concrete example.

Example 2.10. Consider deduction in minimal propositional logic �m with the closed
nucleus c⊥ : ϕ 
→ ϕ ∨ ⊥ (see §5.3 for details). This �m is inductively generated by certain
axioms plus the rule

Γ, ϕ �m � R→
Γ �m ϕ → �

which cannot be expressed as an axiom. By its very definition, �c⊥m too satisfies R→.
Does also �mc⊥ satisfy this rule? If this were the case, then by definition of �mc⊥ we
would have

Γ, ϕ �m � ∨ ⊥
Γ �m (ϕ → �) ∨ ⊥ .
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8 GIULIO FELLIN AND PETER SCHUSTER

As ⊥ �m � ∨ ⊥, we would obtain �m (⊥ → �) ∨ ⊥. However, since minimal logic has
the disjunction property and neither disjunct is provable in general, this cannot be the
case. So �c⊥ does not satisfy the rule R→.

The moral of Example 2.10 is that � may already have non-axiom rules, such as
R→, which carry over to �j by its very definition, and thus need to hold in �j too for
the former to be conservative over the latter. To deal with this issue, we introduce the
following concept.

Definition 2.11. We say that a rule r that holds for � is compatible with j over � if r
also holds for �j . We usually omit “over j” if this is clear from the context.

Remark 2.12.

(i) Refl, Mono, Trans are compatible with every nucleus j, by Lemma 2.7.
(ii) Every composition r of compatible rules is compatible. In fact, the derivation

that gives r in � can be translated smoothly into �j , as all the applied rules are
compatible.

This is very useful: to check compatibility for all the rules of an entailment
relation �, it suffices to check compatibility for any set of rules that generate �.

(iii) Each axiom a1, ... , an � b can be viewed as a rule with no premiss, and as
such is compatible with any given nucleus j, simply by Rj. It follows that, if an
entailment relation � is generated only by axioms, then every rule that holds for
� is compatible with any nucleus j over �.

2.3. Homogeneous functions and translations. Throughout this subsection, let j be
a nucleus over an entailment relation � on a set S.

Definition 2.13. We say that a function k : S → S is:

– j-homogeneous (from �j to �) if k satisfies the following two conditions:

kja � ka, (9)

a ≈j ka. (10)

– A j-translation (from �j to �) if k satisfies (10) and

U �j b
kU � kb . (11)

Remark 2.14.

(i) Condition (10) implies the converse of (11), that is,

kU � kb
U �j b .

In fact, since �j extends �, we have that kU � kb implies kU �j kb, which
is equivalent to U �j b by means of a ≈j ka.

(ii) The nucleus j is j-homogeneous: it follows immediately from j2a � ja (Remark
2.3(ii)) and a ≈j ja (Remark 2.8).

(iii) Every j-translation is j-homogeneous: by applying (11) to (8) we get (9).
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(iv) The nucleus j is a j translation precisely when

U �j b
jU � jb .

(v) We have seen that j-translations are j-homogeneous. We want to stress that
the two notions are distinct via a counterexample. The closed nucleus c⊥ : ϕ 
→
ϕ ∨ ⊥ over minimal propositional logic �m is c⊥-homogeneous by (ii) but it is
not a c⊥-translation: this is a direct consequence of Corollary 3.7 and the fact
that R→ is not compatible with c⊥ (see Example 2.10).

(vi) Every j-translation k that satisfies Rk also satisfies Lk. In fact:

a,U � kb
extension

a,U �j kb
(11)

kb �j b
Trans

a,U �j b
(10)

ka, kU � kb ∗
ka,U � kb .

Where (∗) is subsequent applications of Trans with

Refl
u � u

Rk
u � ku

for each u ∈ U . It follows that a j-translation k is a nucleus if and only if it
satisfies Rk.

§3. Conservation as translation. We next present a few conservation theorems for
nuclei, typically giving necessary and sufficient conditions. Throughout this section, let
S be a set with an entailment relation � inductively generated by rules, and let j be a
nucleus over �.

3.1. Glivenko and Gödel conservation.

Definition 3.1. Given a rule

{Ui � bi : i � n}
r

U � b ,

to obtain its j-version rj we put j in front of every consequent:

{Ui � jbi : i � n}
rj

U � jb .

Remark 3.2.

(i) By definition of �j , the j-version rj holds for � if and only if the original rule r
holds for �j . This means that if r holds for �, then r is compatible with j over �
if and only if rj holds for �.

(ii) By j2a ≈ ja (Remark 2.3(iii)), rjj holds for � if and only if rj holds for �. In
particular, rj is compatible with j over � if and only if rj holds for �.

(iii) By ja ≈j a (Remark 2.8), if r holds for �, then rj holds for �j .
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Definition 3.3. Given an entailment relation � generated by rules, let its intermediate
j-extension �〈j〉 be � plus the j-version rj of all the rules r in the inductive definition
of �.

Remark 3.4.

(i) We have � ⊆ �〈j〉 ⊆ �j by Remark 3.2(iii).
(ii) By Remarks 2.12 and 3.2(i), to obtain �〈j〉 it suffices to add the j-version of all the

non-axiom rules in the inductive definition of � that are not already compatible
with j.

Theorem 3.5 (Gödel conservation). Let �∗ be � plus additional rules that hold for �j
and such that j is a nucleus also over �∗. Then �j∗ = �j ; in particular, �j extends �∗j ,
that is, �∗j ⊆ �j . Moreover, the following are equivalent:

(a) �j is conservative over �∗j , that is, �j ⊆ �∗j ;
(b) the nucleus j is a j-translation from �j to �∗;
(c) �∗j is an inductive extension of �∗;
(d) all the non-axiom rules that generate �∗ are compatible with j over �∗, that is,

they hold for �∗j ;
(e) �∗ is an extension of �〈j〉, that is, �〈j〉 ⊆ �∗.

Proof. First, note that � ⊆ �∗ ⊆ �j . Since � ⊆ �∗, we have �j ⊆ �j∗. On the other
hand, as stability and all the rules of �∗ hold for �j , we also have �j∗ ⊆ �j . Therefore
�j∗ = �j .

Since a ≈j∗ ja by Remark 2.8(i), (b) is tantamount to

U �j b
jU �∗ jb

which by the inverse of Lj (see Remark 2.3(iii)) is equivalent to (a).
As �j is an inductive extension of �∗, (c) follows from (a); and (c) trivially entails

(d).
To deduce (a) from (d), assume (d) and consider one by one the rules that generate

�j : Refl, Mono, Trans hold for �j since �j is an entailment relation by Lemma 2.7;
stability (8) holds for �j by Remark 2.8(i); all the rules that generate �∗ hold for
�j since they are either compatible with j by assumption (d), or axioms and thus
compatible with j by Remark 2.12(iii). As �j is the smallest extension of �∗ satisfying
all these rules, we obtain (a).

By Remark 3.2(ii) with �〈j〉 in place of �, (d) and thus (a) hold with 〈j〉 in place of
∗. So, if (e), then

�j = �〈j〉j ⊆ �∗j ⊆ �j

(see also Figure 1); whence (a).
To obtain (e) from (d), suppose (d) and let r be a rule in the inductive definition of

�. By (d), r holds for �∗j which, by Remark 3.2(i) with �∗ in place of � means that
rj holds for �∗. Hence all the rules of �〈j〉 hold for �∗, and thus (e).

Remark 3.6. Let �∗ be an inductive extension of �.

(i) For j to be a nucleus over �∗ too, it is sufficient to check Lj. In fact, Rj is
tantamount to (1), which as an axiom is inherited by �∗ from � by the very
definition of extension.
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�j

�∗j

�∗ �〈j〉j

�j

�〈j〉

�

j

j

j

j

j

j

Figure 1. Diagram of the entailment relations involved in the situation of Theorem 3.5. A solid
arrow denotes a strong j-extension, a dashed arrow denotes a weak j-extension, a dotted arrow
denotes a generic extension, and a double line denotes a conservative extension. The intuition
is that, if the outer triangle does not satisfy the desired properties, then we can move to an inner
triangle that works.

(ii) Lj is trivially satisfied whenever ∗ = ∅.
(iii) If Lj can be proved admissible for � by exclusively composing the generating

rules of �, then the same composition equally shows that Lj is admissible for �∗.

Corollary 3.7 (Glivenko conservation). �j extends �j , that is, �j ⊆ �j ; and the
following are equivalent:

(a) �j is conservative over �j , that is, �j ⊆ �j ;
(b) the nucleus j is a j-translation from �j to �;
(c) �j is an inductive extension of �;
(d) all the non-axiom rules that generate � are compatible with j, that is, they hold

for �j ;
(e) �〈j〉 is conservative over �, that is, �〈j〉 ⊆ �.

Proof. This is Theorem 3.5 with �∗ = �.

Corollary 3.8. If � is inductively generated only by axioms, then j is a j-translation
and �j is a conservative extension of �j , that is, �j = �j .

3.2. Kolmogorov and Kuroda conservation. We now generalise Corollary 3.7 from
the nucleus j to a j-homogeneous function.

Definition 3.9. For the given nucleus j over an entailment relation �, and any function
k : S → S whatsoever, we define the relation �(k) ⊆ Fin(S) × S by

U �(k) a ⇐⇒ kU � ka.
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Definition 3.10. Given a rule r that holds for �, we say that:

– r is Kolmogorov compatible with k (over �) if it also holds for �(k),
– r is j-Kuroda compatible with k (over �) if it also holds for �j(k).

We thus have an analogue of Remark 2.12:

Remark 3.11.

(i) Refl, Mono, Trans are trivially Kolmogorov compatible with k. This means that
�(k) is an entailment relation; however in general it is not an extension of the
original �.

(ii) Compatibility entails j-Kuroda compatibility, hence Refl, Mono, Trans are
Kuroda compatible with k by Remark 2.12.

(iii) Every composition r of Kolmogorov (resp. j-Kuroda) compatible rules is
Kolmogorov (resp. j-Kuroda) compatible. In fact, the derivation that gives r
in � can be translated smoothly into �(k) (resp. �j(k)), as all the applied rules
are Kolmogorov (resp. j-Kuroda) compatible.

This means that if we want to check Kolmogorov (resp. j-Kuroda) compatibility
for all the rules of an entailment relation �, it suffices to check it for any set of
rules that generate �.

Remark 3.12. Remark 2.3(iii) yields �(jk) = �j(k) and �(j) = �j .

Theorem 3.13 (Kolmogorov conservation). Let k : S → S be j-homogeneous. Then �j
extends �(k), that is, �(k) ⊆ �j ; and the following are equivalent:

(a) �j is conservative over �(k), that is, �j ⊆ �(k);
(b) the j-homogeneous function k is a j-translation;
(c) �(k) is an inductive extension of �;
(d) all the rules in the inductive definition of � are Kolmogorov compatible with k,

that is, they hold for �(k).

Proof. The fact that �(k) ⊆ �j is just Remark 2.14(i). The implications from (a)
to (c) and from (c) to (d) hold just as in Theorem 3.5. Suppose that all the non-
structural rules in the inductive definition of � are Kolmogorov compatible with k,
and that U �j b. We show that kU � kb by induction on the derivation of U �j b:
the cases involving structural rules are trivial; the case of the stability axiom ja �j a
is tantamount to kja � ka, which holds since k is j-homogeneous; consider the case
in which U �j b is derived from a non-structural rule r in the inductive definition of
�, i.e.,

{Ui �j bi : i � n}
r

U �j b ,

then

Ui �j bi induction hypothesis
{kUi � kbi : i � n}

r
kU � kb ,

where r can be applied because of the Kolmogorov compatibility. This proves that (d)
implies (b). Finally, the fact that (b) implies (a) is just (11).
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By setting k = j in Theorem 3.13, by Remark 3.12 we have �(j) = �j , which in
particular means that compatibility and Kolmogorov compatibility are equivalent.
Therefore Corollary 3.7 except for condition (e) is a special case of Theorem 3.13.

Corollary 3.14 (Kuroda conservation). Let S be a set with an entailment relation
� inductively generated by rules, and let j be a nucleus over �. Let J : S → S be j-
homogeneous. Then �j is an extension of �j(J ), that is, �j(J ) ⊆ �j ; and the following
are equivalent:

(a) �j is conservative over �j(J ), that is, �j ⊆ �j(J );
(b) the function jJ is a j-translation;
(c) �j(J ) is an inductive extension of �;
(d) all the non-structural rules in the inductive definition of � are Kuroda j-compatible

with J, that is, they hold for �j(J ).

Proof. First, note that if J is j-homogeneous, then so is k = jJ . Then the claim
follows immediately from Theorem 3.13 and Remark 3.12.

§4. Logic as entailment. We now want to see how the conservation results that we
have just proved apply to logic.

Throughout this section and the following one, if not stated otherwise, the overall
assumption is that S is a set of propositional formulae containing �,⊥ and closed
under the connectives ∨,∧,→.7 By minimal (propositional) logic �m we mean the
fragment of propositional intuitionistic logic without the principle of ex falso sequitur
quodlibet. More precisely, we define �m as the least entailment relation � that satisfies
the deduction theorem

Γ, ϕ � �
R→

Γ � ϕ → �
and the following axioms:

ϕ,� � ϕ ∧ �, ϕ ∧ � � ϕ, ϕ ∧ � � �,
ϕ � ϕ ∨ �, � � ϕ ∨ �, ϕ ∨ �,ϕ → �, � → � � �,

ϕ, ϕ → � � �,
� �.

Of course, we understand this as an inductive definition. In this setting, negation ¬ is
not given as a primitive operator, but it is rather defined by

¬ϕ = ϕ → ⊥.
The above system for minimal logic is equivalent to the G3-style calculus in Table 1;
meaning that they inductively generate the same entailment relation.

7 It is worth noting that, while we explicitly talk about logic, everything in this section can
easily be transferred into any setting with logic-like operators, such as lattice theory, locale
theory [60], topos theory [62] and such.
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Table 1. Sequent calculus-like rules for minimal propositional logic.

Γ, ϕ, � � �
L∧

Γ, ϕ ∧ � � �
Γ � ϕ Γ � �

R∧
Γ � ϕ ∧ �

Γ, ϕ � � Γ, � � �
L∨

Γ, ϕ ∨ � � �
Γ � ϕ

R∨1
Γ � ϕ ∨ �

Γ � �
R∨2

Γ � ϕ ∨ �
Γ � ϕ Γ, � � �

L→
Γ, ϕ → � � �

Γ, ϕ � �
R→

Γ � ϕ → �

R�
Γ � �

�t

�c

�n �i

�s �f

�g

�m

Figure 2. Diagram of the logics introduced in §4, mostly based on [81, figure 4.1].

We define the following inductive extensions of minimal logic �m:

extension additional axiom extension additional axiom
intuitionistic logic �i ⊥ � ϕ (12) classical logic �c ¬¬ϕ � ϕ (13)

Glivenko logic �g � ¬¬(⊥ → ϕ) (14) Frobenius logic �f � ⊥ ∨ (⊥ → ϕ) (15)

Clavius logic �s ¬ϕ → ϕ � ϕ (16) negative logic �n � ⊥ (17)

trivial logic �t � ϕ (18)

For a discussion of these and other logics, see [81, 82], from whom we took the
names for �g and �n. See also Figure 2 to see how they are related.

4.1. Predicate and infinitary extensions. Let �∗ be an inductive extension of �m.
When we say that we work in predicate logic, we mean that we add quantifiers ∀ and ∃
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Table 2. Sequent calculus-like rules for quantifiers. Rules R∀ and L∃ come with the condition that
y has to be fresh.

Γ, ϕ[t/x] � �
L∀

Γ,∀xϕ � �
Γ � ϕ[y/x]

R∀
Γ � ∀xϕ

Γ, ϕ[y/x] � �
L∃

Γ,∃xϕ � �
Γ � ϕ[t/x]

R∃
Γ � ∃xϕ

to the language, and hence require that the formulae in S are closed under ∀,∃ as well.
Moreover, we extend the inductive definition of �∗ by adding the rule

Γ � ϕ[y/x]
R∀

Γ � ∀xϕ

with the condition that y has to be fresh, and the following axioms:

∀xϕ � ϕ[t/x],

ϕ[t/x] � ∃xϕ,
∃xϕ,∀x(ϕ → �) � �,

where the latter comes with the condition that x cannot be free in �. Over �∗, these
axioms and rule are equivalent to the G3-style rules in Table 2.

The definition of a nucleus j given in [114] requires j to be compatible with
substitution, that is,

j(ϕ[t/x]) = (jϕ)[t/x].

We prefer not to have this as a general assumption, but to make explicit whenever we
need it.

When we say that we work in infinitary logic, we mean that we add infinitary
connectives

∧
i∈N

and
∨
i∈N

to the language, and hence require that the formulae in S
are closed under

∧
i∈N
,
∨
i∈N

as well. Moreover, we extend the inductive definition of
�∗ by adding the rule

{Γ � ϕn : n ∈ N}
R

∧

Γ �
∧

i∈N

ϕi

and the following axioms:
∧

i∈N

ϕi � ϕn for every n ∈ N,

ϕn �
∨

i∈N

ϕi for every n ∈ N,

∨

i∈N

ϕi ,
∧

i∈N

(ϕi → �) � �.

Over �∗, these axioms and rule are equivalent to the G3-style rules in Table 3.

https://doi.org/10.1017/S1755020324000170 Published online by Cambridge University Press

https://doi.org/10.1017/S1755020324000170


16 GIULIO FELLIN AND PETER SCHUSTER

Table 3. Sequent calculus-like rules for quantifiers. For each n ∈ N there is one rule L
∧
n and one

rule R
∨
n .

Γ, ϕn � �
L

∧
n

Γ,
∧

i∈N

ϕi � �
{Γ � ϕn : n ∈ N}

R
∧

Γ �
∧

i∈N

ϕi

{Γ, ϕn � � : n ∈ N}
L

∨

Γ,
∨

i∈N

ϕi � �
Γ � ϕn R

∨
n

Γ �
∨

i∈N

ϕi

§5. Nuclei in logic. Among the logical rules seen in §4, R→, R∀ and R
∧

are the
only ones that cannot be expressed as axioms. Therefore, when checking compatibility
of rules with j, if we do not add other rules that cannot be expressed as axioms, then
the only rules we have to deal with are these three.

Lemma 5.1 (Compatibility criterion). Let � be an inductive extension of �m, and let
j be a nucleus over �.

(i) In either propositional, predicate or infinitary logic, R→ is compatible with j if
and only if

ϕ → j� � j(ϕ → �).

(ii) In predicate logic, if j is compatible with substitution, that is,

j(ϕ[t/x]) = (jϕ)[t/x],

then R∀ is compatible with j if and only if

∀xjϕ � j∀xϕ.

(iii) In infinitary logic, R
∧

is compatible with j if and only if

∧

i∈N

jϕi � j
∧

i∈N

ϕi .

Proof. We only prove (i), as the proof of (ii) and (iii) is similar. Suppose that R→ is
compatible with j. Then:

axiom
ϕ → j�, ϕ � j�
ϕ → j�, ϕ �j �

R→
ϕ → j� �j ϕ → �

ϕ → j� � j(ϕ → �) .
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Now suppose that ϕ → j� � j(ϕ → �). Then:

Γ, ϕ �j �

Γ, ϕ � j�
R→

Γ � ϕ → j�
assumption

ϕ → j� � j(ϕ → �)
Trans

Γ � j(ϕ → �)

Γ �j ϕ → � .

5.1. Some notable translations in logic. We now consider predicate logic. We
introduce some classes of functions that generalise some well-known negative
translations. Let � be either �m or �i . Given a nucleus j on �, we inductively define
k, g, t, J : S → S as follows:

kP = jP, gP = jP, tP = jP, JP = P,

k� = j�, g� = j�, t� = j�, J� = �,

k⊥ = j⊥, g⊥ = j⊥, t⊥ = j⊥, J⊥ = ⊥,

k(ϕ ∧ �) = j(kϕ ∧ k�), g(ϕ ∧ �) = gϕ ∧ g�, t(ϕ ∧ �) = tϕ ∧ t�, J (ϕ ∧ �) = Jϕ ∧ J�

k(ϕ ∨ �) = j(kϕ ∨ k�), g(ϕ ∨ �) = j(gϕ ∨ g�), t(ϕ ∨ �) = tϕ ∨ t�, J (ϕ ∨ �) = Jϕ ∨ J�

k(ϕ → �) = j(kϕ → k�), g(ϕ → �) = gϕ → g�, t(ϕ → �) = tϕ → t�, J (ϕ → �) = Jϕ → jJ�,

k(∀x ϕ) = j∀x kϕ, g(∀x ϕ) = ∀x gϕ, t(∀x ϕ) = ∀x tϕ, J (∀x ϕ) = ∀x jJϕ,

k(∃x ϕ) = j∃x kϕ, g(∃x ϕ) = j(∃x gϕ), t(∃x ϕ) = ∃x tϕ, J (∃x ϕ) = ∃x Jϕ.

The Kolmogorov j-function k is named after the Kolmogorov negative translation,
which is k obtained for j = ¬¬, as seen in Proposition 5.8(i). A refined version of the
Kolmogorov j-function is the Gentzen j-function g, named after the Gentzen negative
translation, which is g obtained for j = ¬¬, as seen in Proposition 5.8(ii). An even
more refined version is the prime j-function t which, however, does not provide a
j-translation for j = ¬¬ as the Gentzen negative translation is known to be minimal
in this sense [37]. Finally, we call J the Kuroda j-function. Its definition follows van den
Berg [114], and is based on the minimal Kuroda negative translation, which is jJ for
j = ¬¬, as seen in Proposition 5.8(iii).

Remark 5.2.

(i) The following hold for all ϕ ∈ S: ϕ ≈j tϕ, ϕ ≈j kϕ, ϕ ≈j gϕ, ϕ ≈j Jϕ. It
follows that t, k, g, J are j-homogenous exactly when they satisfy (9).

(ii) Every rule in the inductive definition of � is Kolmogorov compatible with t, k, g.
This, together with (i) and Theorem 3.13, implies that t, k, g are j-translations
exactly when they satisfy (9).

(iii) Every rule in the inductive definition of � is Kuroda j-compatible with J. This,
together with (i) and Corollary 3.14, implies that jJ is a j-translation exactly
when J satisfies (9).

Proof. The properties in (i) are readily seen by induction on ϕ. We refer to [33,
appendix A] for (ii) and (iii).8

8 As both proofs have several cases, they are somewhat lengthy but straightforward otherwise.
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5.2. The continuation nucleus and the Glivenko nucleus. Let �∗ be an inductive
extension of �m, and fix a formula α. The continuation nucleus

gα : ϕ 
→ (ϕ → α) → α

has as special case the Glivenko nucleus [93, 114]

g⊥ : ϕ 
→ ¬¬ϕ .

While gα is well-known to be a nucleus whenever �∗ is �m, �i or �c (see, e.g., [114]),
to be sure (Remark 3.6) that this is the case for every inductive extension �∗ of �m we
give a proof in which we only use generating rules of �m; in fact, Trans and R→ suffice
together with modus ponens.

Lemma 5.3. gα is a nucleus over �∗ for every formula α.

Proof. Rgα :

Γ �∗ ϕ
axiom

ϕ,ϕ → α �∗ α Trans
Γ, ϕ → α �∗ α R→

Γ �∗ (ϕ → α) → α

Lgα :

Γ, ϕ �∗ (� → α) → α
axiom

� → α, (� → α) → α �∗ α
Trans

Γ, � → α, ϕ �∗ α
R→

Γ, � → α �∗ ϕ → α
axiom

ϕ → α, (ϕ → α) → α �∗ α
Trans

Γ, (ϕ → α) → α, � → α �∗ α
R→

Γ, (ϕ → α) → α �∗ (� → α) → α

5.2.1. The intuitionistic case: Glivenko’s theorem. Take propositional intuitionistic
logic �i as �. As stability (8) equals double negation elimination (16), the strong
extension �g⊥i of intuitionistic logic �i is classical logic �c .

Proposition 5.4 (Glivenko’s theorem [44, 45]). In propositional logic,

Γ �c ϕ ⇐⇒ Γ �i ¬¬ϕ.
Proof. Since ϕ → ¬¬� �i ¬¬(ϕ → �) holds, e.g., by [113, lemma 6.2.2], in view

of Lemma 5.1(i) R→ is compatible with ¬¬, and we get the claim as an instance of
Corollary 3.7.

That ¬¬ is a ¬¬-translation (Corollary 3.7(b)) is the alternative formulation of
Glivenko’s theorem

Γ �c ϕ =⇒ ¬¬Γ �i ¬¬ϕ.

5.2.2. Glivenko’s theorem in general algebra. We compare our approach with some
occurrences of Glivenko’s theorem in universal algebra, starting from Birkhoff’s
presentation [10, chap. IX, theorem 16]:

In any pseudo-complemented distributive lattice L, the correspondence
a 
→ a∗∗ is a closure operation in L, and a lattice-homomorphism of L
onto the complete Boolean algebra of “closed” elements.
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As far as we see, this falls somewhat short of capturing Glivenko’s theorem: Any
nucleus j : S → S whatsoever on a frame S is a closure operator and induces a frame
homomorphism S → Sj onto the frame Sj = {a ∈ S : ja = a} in which the join of
C ⊆ Sj is j(

∨
C ), where

∨
denotes the join in Sj , see, e.g., [60, Subsection II.2.2].

As Birkhoff has noticed, moreover, (a ∨ a∗)∗∗ = 1 for every (not necessarily closed)
element a, yet we do not see any trace of Glivenko’s theorem. The situation changes
with later adaptions such as Esakia’s [28, Section A.2]:

Let H be a Heyting algebra and Rg(H ) the set of all its regular
elements, i.e.,

Rg(H ) = {¬a : a ∈ H}.

It is known thatRg(H ) is a Boolean algebra and that the map h : H →
Rg(H ), given by ha = ¬¬a (a ∈ H ), is a surjective homomorphism of
the Heyting algebra H onto the Boolean algebra Rg(H ).

Rather than that the regular elements form a Boolean algebra [8], the crucial issue for
Glivenko’s theorem is that double negation is a morphism of Heyting algebras, more
precisely that double negation commutes with implication:

¬¬(ϕ → ϕ) ≈i ¬¬ϕ → ¬¬�. (19)

We notice that by Remark 2.3(iv) the left-to-right direction of (19) is a general property
of nuclei, whereas the right-to-left direction is equivalent to

ϕ → ¬¬� �i ¬¬(ϕ → �), (20)

which is nothing but the condition that we have exhibited in Lemma 5.1 for the rule
R→ to be compatible with double negation over intuitionistic provability �i .

5.2.3. The minimal case. Take propositional minimal logic �m as �. As observed
above, stability (8) equals double negation elimination (16); whence the strong
extension �g⊥m of minimal logic �m is classical logic �c .

Lemma 5.5. Over any given extension �∗ of minimal logic, axiom (13), viz.

�∗ ¬¬(⊥ → ϕ),

is equivalent to (20) with �∗ in place of �i : that is,

ϕ → ¬¬� �∗ ¬¬(ϕ → �) . (21)

Proof. We can obtain (13) from the instance

⊥ → ¬¬ϕ �∗ ¬¬(⊥ → ϕ),

of (21) by an application of Trans with the derivable �∗ ⊥ → ¬¬ϕ.
As (20) is well-known [113], (21) follows from instances of ex falso sequitur quodlibet

in minimal logic. By using Lj, (21) equally follows from the same instances of (13). In
the Appendix 7 we detail a direct proof.
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�m �g �i �c

�mj

�= �= �=

�=

Figure 3. Diagram of the entailment relations involved in the situation of Propositions 5.4 and
5.6. A solid arrow denotes a strong ¬¬-extension, a dashed arrow denotes a weak ¬¬-extension,
a dotted arrow denotes a generic extension, and a double line denotes a conservative extension.

The following statement [15, 82]9 is a generalisation of Proposition 5.4 (Figure 3):

Proposition 5.6 (General Glivenko theorem [15, 82]). Let �∗ be an inductive
extension of �m the additional rules of which hold for �c . The following are equivalent:

(a) Γ �c ϕ ⇐⇒ Γ �∗ ¬¬ϕ for all Γ, ϕ;
(b) �g ⊆ �∗.

Proof. Since ϕ → ¬¬� �i ¬¬(ϕ → �) holds by 5.5, in view of Lemma 5.1(i) the
rule R→ is compatible with ¬¬, and we get the claim as an instance of Corollary
3.7.

Since in minimal logic ⊥ has no special role, we would get a completely analogous
statement if we considered the more general continuation nucleus gα : ϕ 
→ (ϕ → α) →
α in place of ¬¬ and used the axiom

� ((α → ϕ) → α) → α
in place of (13) to define �g .

5.2.4. The predicate case. Let us go back to considering intuitionistic logic �i
as �.

Proposition 5.7 (Gödel’s theorem [46]). Let �∗ be an inductive extension of �i the
additional rules of which hold for �c . The following are equivalent in predicate logic:

(a) Γ �c ϕ ⇐⇒ Γ �∗ ¬¬ϕ for all Γ, ϕ;
(b) ∀x¬¬ϕ �∗ ¬¬∀xϕ for all ϕ.

Proof. Similar to Proposition 5.4; but apply Theorem 3.5 instead of Corollary
3.7. Lemma 5.1(ii) can be applied since the Glivenko nucleus is compatible with
substitution.

9 This was observed by Odintsov [82] and Cignoli and Torres [15] apparently simultaneously,
in 2004. The latter further showed that our conservation criterionϕ → ¬¬� �∗ ¬¬(ϕ → �)
is equivalent to the double negation of double negation elimination �∗ ¬¬(¬¬ϕ → ϕ).
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Condition (b) in Proposition 5.7 is called Double Negation Shift (DNS) and is known
to define a proper intermediate logic �DNS, that is, �i � �DNS � �c [31].10

Proposition 5.8. Let k, g, J be respectively the Kolmogorov, Gentzen and Kuroda
¬¬-functions. In predicate logic:

(i) Γ �c ϕ ⇐⇒ kΓ �i kϕ.
In other words, k is a ¬¬-translation, known as the Kolmogorov negative

translation [37, 64].
(ii) Γ �c ϕ ⇐⇒ gΓ �i gϕ.

In other words, g is a ¬¬-translation, known as the Gentzen negative
translation11 [37, 41, 43].

(iii) Γ �c ϕ ⇐⇒ ¬¬JΓ �i ¬¬Jϕ ⇐⇒ JΓ �i ¬¬Jϕ.
In other words, ¬¬J is a ¬¬-translation, known as the minimal Kuroda

negative translation12 [37, 66, 73, 114].

Proof. Since ⊥ ≈i ¬¬⊥, it is easy to see that k, g, J all satisfy (9). Hence by Remark
5.2, k and g satisfy the conditions of Theorem 3.13, which shows (i) and (ii). Similarly,
by Remark 5.2, J satisfies the conditions of Corollary 3.14, which shows (iii).

Theorem 3.13 gives results similar to those in Proposition 5.8 also for other negative
translations, such as the Gödel negative translation [47], the original Kuroda negative
translation [66], the Krivine negative translation—which was introduced by Streicher
and Reus [108] based on Krivine’s work [65]—and the negative translation by Ferreira
and Oliva [37]. We only point out that, unlike the ones presented here, the latter two
cannot be generalised—at least not in a direct way—for an arbitrary nucleus j, and
hence a counterpart of Remark 5.2 cannot be given.

5.2.5. The infinitary case. The following statement [110]13 is the counterpart of
Proposition 5.7 for infinitary logic:

Proposition 5.9. Let �∗ be an inductive extension of �i the additional rules of which
hold for �c . The following are equivalent in infinitary logic:

(a) Γ �c ϕ ⇐⇒ Γ �∗ ¬¬ϕ for all Γ, ϕ;
(b)

∧
i∈N

¬¬ϕi �∗ ¬¬
∧
i∈N
ϕi for all {ϕi : i ∈ N}.

Proof. Similar to Proposition 5.7.

As above, condition (b) in Proposition 5.9 defines a proper intermediate logic
�DNSinf , that is, �i � �DNSinf � �c .

10 Even though DNS is not valid in intuitionistic logic, it holds constructive value, as noted by
Ilik [54].

11 In literature, this is often referred to as the Gödel–Gentzen negative translation. However,
the translation introduced by Gödel [47] was in fact a different one, somewhere in between
Kolmogorov’s and Gentzen’s [33, 37, 112].

12 This is a variant introduced by Murthy [73] of the original Kuroda negative translation [66].
It has been studied in the literature for having somewhat nicer properties than Kuroda’s
original version [37, 114].

13 We are grateful to Matteo Tesi for the advance communication of his result.
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5.2.6. The Peirce nucleus and the Clavius nucleus. Let again �∗ be an inductive
extension of �m, and fix a formula α. The Peirce nucleus [60, 62, 93, 114] is

pα : ϕ 
→ (ϕ → α) → ϕ .
As for Lemma 5.3 one readily proves with the generating rules of �m that pα is in fact
a nucleus. We are especially interested in the particular case of the Clavius nucleus:

p⊥ : ϕ 
→ ¬ϕ → ϕ .
Over intuitionistic logic, it is easy to see that the Glivenko nucleus is equivalent to

the Clavius nucleus, i.e., ¬¬ϕ ≈i ¬ϕ → ϕ for every ϕ, and hence Propositions 5.4 and
5.7–5.9 equally hold for the Clavius nucleus in place of the Glivenko nucleus.

If we consider minimal logic �m instead, then the Clavius nucleus is no more
equivalent to the Glivenko nucleus. As stability (8) for the Clavius nucleus j equals
(14), the strong extension �jm of minimal logic �m is nothing but the Clavius logic �s .
We thus get the following counterpart of Glivenko’s theorem:

Proposition 5.10. In propositional logic,

Γ �s ϕ ⇐⇒ Γ �m ¬ϕ → ϕ.
Proof. Since ϕ → (¬� → �) �m ¬(ϕ → �) → (ϕ → �), by Lemma 5.1(i) we get

the claim as an instance of Corollary 3.7.

5.3. Open and closed nuclei. Once more let �∗ be an inductive extension of �m,
and fix a formula α. The closed nucleus cα and the open nucleus oα [93, 114] are defined
by14

cα : ϕ 
→ ϕ ∨ α, oα : ϕ 
→ α → ϕ.

Still as for Lemma 5.3, with the generating rules of �m one easily sees that cα and oα
are nuclei over �∗. We notice the following facts about the extensions induced by these
nuclei:

– Stability of the open nucleus is equivalent to � α, which can be read as “α
is derivable”; thus the strong extension �oα∗ is the smallest entailment relation
containing �∗ in which “α holds”. If α = ⊥, then stability of o⊥ becomes (18),
thus the strong extension �o⊥m is nothing but negative logic �n.

14 Why “open” and “closed”? The following is well-known [60]. Let L be a bounded distributive
lattice, and let X = Spec(L) be the spectrum of L (i.e., the collection of prime filters of L).
Then X is a topological space with basis of opens

ext(a) = {P ∈ X : a ∈ P} (a ∈ L).

Consider a ∈ L, writeU = ext(a). ThenX \U = Spec(LU ) andU = Spec(LU ), whereLU

and LU are L with � modified:

x �U y ⇐⇒ x � y ∨ a, (closed case),

x �U y ⇐⇒ x ∧ a � y, (open case).

For instance, a �U 0 and 1 �U a. If L is a Heyting algebra, then x ∧ a � y ⇐⇒ x �
a → y.
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�t

�nc⊥ �io⊥

�n �i

�fo⊥ �fc⊥

�f

�mo⊥ �mc⊥

�m

c⊥
c⊥

o⊥
o⊥

o⊥ c⊥

o⊥ c⊥

o⊥ c⊥

o⊥
c⊥

Figure 4. Diagram of the entailment relations induced by open and closed nuclei. A solid arrow
denotes a strong extension, a dashed arrow denotes a weak extension, a dotted arrow denotes a
generic extension, and a double line denotes a conservative extension.

– Similarly, stability of the closed nucleus is equivalent to α � ϕ for every
propositional formula ϕ, which can be read as “α is inconsistent”; thus the
strong extension �cα∗ is the smallest entailment relation containing �∗ in which
“α is inconsistent”. If α = ⊥, then stability of c⊥ becomes (12), thus the strong
extension �c⊥m is nothing but intuitionistic logic �i .

– We also note that in (�oα )cα and (�cα )oα we have both �α andα � ϕ, which by
Trans lead to �ϕ for every ϕ: this means that they both equal trivial logic �t .

We can sum up the situation via the diagram in Figures 4 and 5. We now ask ourselves
whether some of the strong extensions are conservative over the corresponding weak
extension.

Proposition 5.11.

(i) Let �∗ be �m plus additional axioms. Then:

Γ �oα∗ ϕ ⇐⇒ Γ �∗ α → ϕ ⇐⇒ Γ, α �∗ ϕ,

for all Γ, ϕ. In other words, ϕ is derivable from Γ when assuming that α is
derivable, if and only if α → ϕ is derivable from Γ, if and only if ϕ is derivable
from Γ and α.

https://doi.org/10.1017/S1755020324000170 Published online by Cambridge University Press

https://doi.org/10.1017/S1755020324000170


24 GIULIO FELLIN AND PETER SCHUSTER

�t

�n �i

�f

�mc⊥

�m

c⊥ o⊥

c⊥o⊥

c⊥o⊥

c⊥

Figure 5. Simplified version of Figure 4, where the weak extensions that coincide with the
corresponding strong extension are omitted.

(ii) Let �∗ be �m plus additional axioms. Then

Γ �cα∗ ϕ ⇐⇒ Γ �∗ ϕ ∨ α
for all Γ, ϕ if and only if

�∗ α ∨ (α → ϕ). (22)

Proof.

(i) In view of ϕ → (α → �) �m α → (ϕ → �), the first equivalence holds by
means of Theorem 3.5 and Lemma 5.1. The second equivalence is the deduction
theorem for �∗.

(ii) It can easily be shown that (22) is equivalent to ϕ → (� ∨ α) � (ϕ → �) ∨ α;
hence the claim follows from Theorem 3.5 and Lemma 5.1.

Corollary 5.12.

(i) Let �∗ ∈ {�m,�f,�i}. Then �o⊥∗ = �∗o⊥ .
(ii) Let �∗ ∈ {�f,�n}. Then �∗c⊥ = �c⊥∗ .
(iii) �mc⊥ � �c .

In conclusion, all strong extensions in Figure 4 are conservative over the
corresponding weak extension except for �c over �mc⊥ .

5.3.1. A few remarks about the predicate case. In predicate logic, we get an
analogous situation by considering the logic �F , defined as the predicate version
of the Frobenius logic �f plus the dual Frobenius rule [62]

∀x(ϕ ∨ ⊥) � (∀xϕ) ∨ ⊥.
Functions based on the open and closed nuclei but over predicate intuitionistic

logic �i are known in literature. For instance, having fixed a formula A, Friedman
employed the prime cA-function15 tCα —thus known as Friedman’s A-translation—to

15 See §5.1.
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prove Markov’s rule [38]; and Ishihara and Nemoto used the prime oA-function tOA to
prove the independence-of-premiss rule [56]. Note that:

tOA oAϕ = tOAA→ tOA ϕ, tCA cAϕ = tCA ϕ ∨ tCA A.

This means that tOA satisfies (8), and hence is an oA-translation, if and only if “tOAA
holds” in the sense that � tOAA; this is the case, e.g., when A is atomic. Similarly, tCA
satisfies (8), and thus is a cA-translation, precisely when “tCA A is inconsistent” in the
sense that tCA A� ϕ for every ϕ; this is the case, e.g., when A = ⊥. In the latter case,
however, the strong cA-extension is trivial.

5.4. Propositional lax logic. In propositional lax logic [32] the modality © is
characterised by rules corresponding [32, p. 2, Section 1] to the ones of a nucleus.
In our setting, we define �L by adding a unary relation symbol © to the language of
�i , and the axiom

ϕ → ©� ≈ ©ϕ → ©�

to the inductive definition of �i . It is evident that j = © is a nucleus over �L. This
trivially extends to every inductive extension of �L since L© is a generating rule.

The strong ©-extension �©
L of �L is �i plus

ϕ ≈ ©ϕ,

i.e., plus an identity operator © on formulae. We also define �L∗ as �L plus

ϕ → ©� � ©(ϕ → �),

i.e., the smallest extension of �L in which the nucleus © is compatible with R→
(Theorem 3.5).

Given a formulaϕ in the language of �L, we denote byϕ′ the formula obtained from
ϕ by removing all occurrences of ©. Formally, the definition of ϕ′ is given inductively:

P′ = P, �′ = �, ⊥′ = ⊥,
(ϕ ∧ �)′ = ϕ′ ∧ �′, (ϕ ∨ �)′ = ϕ′ ∨ �′, (ϕ → �)′ = ϕ′ → �′,

(∀xϕ)′ = ∀xϕ′, (∃xϕ)′ = ∃xϕ′, (©ϕ)′ = ϕ′.

We obtain a somewhat more general version of strong conservativity [32, theorem 2.4]:

Proposition 5.13. The following are equivalent:

(a) Γ �L∗ ©ϕ,
(b) Γ �©

L ϕ,
(c) Γ′ �©

L ϕ
′,

(d) Γ′ �i ϕ′.

In particular, if Γ �L ϕ, then Γ′ �i ϕ′.

Proof. Items (a) and (b) are equivalent by Theorem 3.5. The fact that (d) implies
(c) holds since �©

L extends �i . The directions from (c) to (b) and from (b) to (d) are
proved straightforwardly by structural induction.

§6. Future work. Orevkov [84] has established some well-known conservativity
results of classical logic over intuitionistic and minimal first-order logics with equality.
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In particular, he isolates seven classes of single-succedent sequents—the so-called
Glivenko sequent classes—defined in terms of the absence of positive or negative
occurrences of particular logical symbols (in a first-order language with equality) where
classical derivability implies intuitionistic derivability. The same article also shows that
these classes are optimal: any class of sequents for which classical derivability implies
intuitionistic derivability is contained in one of these seven classes. In recent years
simpler proofs of conservativity results for some Glivenko sequent classes have been
given [55, 74, 100]. An extremely simple and purely logical proof of the first Glivenko
class for coherent theories has been obtained by Negri [77] by means of G3-style
sequent calculi; this has been extended to geometric theories in [79] and then to cover
all other first-order Glivenko sequent classes in [34, 78]. We want to investigate whether
a generalisation of these results is possible in our setting.

§7. Appendix Proof details. We give here a direct proof of Lemma 5.5.

Lemma 7.1. Over any given extension �∗ of minimal logic, the following are equivalent:

(a) �∗ ¬¬(⊥ → ϕ),
(b) ϕ → ¬¬� �∗ ¬¬(ϕ → �) .

Proof. As for (b) =⇒ (a):

Refl
⊥,¬ϕ �∗ ⊥ R→
⊥ �∗ ¬¬ϕ R→

�∗ ⊥ → ¬¬ϕ
assumption

⊥ → ¬¬ϕ �∗ ¬¬(⊥ → ϕ)
Trans

�∗ ¬¬(⊥ → ϕ)

As for (a) =⇒ (b):

axiom
ϕ → ¬¬�,ϕ �∗ ¬¬�

L¬¬
ϕ → ¬¬�,¬¬ϕ �∗ ¬¬�

R→
ϕ → ¬¬� �∗ ¬¬ϕ → ¬¬�

(see below)

¬(ϕ → �) �∗ ¬¬ϕ

Refl
�,⊥ �∗ ⊥

Refl
�,ϕ �∗ �

R→
� �∗ ϕ → �

L→
�,¬(ϕ → �) �∗ ⊥

L¬¬
¬¬�,¬(ϕ → �) �∗ ⊥

L→
¬¬ϕ → ¬¬�,¬(ϕ → �) �∗ ⊥

R→
¬¬ϕ → ¬¬� �∗ ¬¬(ϕ → �)

Trans
ϕ → ¬¬� �∗ ¬¬(ϕ → �)

where ¬(ϕ → �) �∗ ¬¬ϕ is derived as follows:

(a)
�∗ ¬¬(⊥ → �)

Refl
⊥ → �,⊥,¬ϕ �∗ ⊥

Refl
�,¬ϕ, ϕ �∗ �

axiom
¬ϕ, ϕ �∗ ⊥

L→
⊥ → �,¬ϕ, ϕ �∗ �

R→
⊥ → �,¬ϕ �∗ ϕ → �

⊥ → �,¬(ϕ → �),¬ϕ �∗ ⊥
R→

⊥ → �,¬(ϕ → �) �∗ ¬¬ϕ
L¬¬

¬¬(⊥ → �),¬(ϕ → �) �∗ ¬¬ϕ
Trans

¬(ϕ → �) �∗ ¬¬ϕ
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shift. In Ferreira, F., Löwe, B., Mayordomo, E., & Gomes, L. M., editors. Programs,
Proofs, Processes. Berlin, Heidelberg: Springer, pp. 151–161.

[30] ———. (2012). The Peirce translation. Annals of Pure and Applied Logic, 163,
681–692.

[31] Espı́ndola, C. (2013). A short proof of Glivenko theorems for intermediate
predicate logics. Archive for Mathematical Logic, 52(7–8), 823–826.

[32] Fairtlough, M., & Mendler, M. (1997). Propositional lax logic. Information
and Computation, 137(1), 1–33.

[33] Fellin, G. (2022). Constructivisation through Induction and Conservation. Ph.D.
Thesis, University of Helsinki & University of Trento, Unigrafia, Helsinki.

[34] Fellin, G., Negri, S., & Orlandelli, E. (2023). Glivenko sequent classes and
constructive cut elimination in geometric logics. Archive for Mathematical Logic, 62,
657–688.

https://doi.org/10.1017/S1755020324000170 Published online by Cambridge University Press

https://ncatlab.org/nlab/files/AczelRathjenCST.pdf
https://ncatlab.org/nlab/files/AczelRathjenCST.pdf
https://doi.org/10.1017/S1755020324000170


CONSERVATION AS TRANSLATION 29

[35] Fellin, G., & Schuster, P. (2021). A general Glivenko–Gödel theorem for nuclei.
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tation. In Ursini, A., & Aglianò, P., editors. Logic and Algebra. Proceedings of the
International Conference Dedicated to the Memory of Roberto Magari, April 26–30,
1994, Pontignano, Italy, Lecture Notes in Pure and Applied Mathematics, 180. New
York: Marcel Dekker, pp. 617–636.

[76] ———. (2002). Continuous domains as formal spaces. Mathematical Struc-
tures in Computer Science, 12(1), 19–52.

[77] ———. (2003). Contraction-free sequent calculi for geometric theories with
an application to Barr’s theorem. Archive for Mathematical Logic, 42(4), 389–401.

[78] ———. (2016). Glivenko sequent classes in the light of structural proof theory.
Archive for Mathematical Logic, 55(3–4), 461–473.

[79] ———. (2021). Geometric rules in infinitary logic. In Arieli, O., & Zamansky,
A., editors. Arnon Avron on Semantics and Proof Theory of Non-Classical Logics.
Cham: Springer, pp. 265–293.

[80] Negri, S., von Plato, J., & Coquand, T. (2004). Proof-theoretical analysis of
order relations. Archive for Mathematical Logic, 43, 297–309.

[81] Odintsov, S. (2008). Constructive Negations and Paraconsistency. Dordrecht:
Springer.

[82] Odintsov, S. P. (2004). Negative equivalence of extensions of minimal logic.
Studia Logica, 78(3), 417–442.

[83] Ono, H. (2009). Glivenko theorems revisited. Annals of Pure and Applied Logic,
161(2), 246–250.

[84] Orevkov, V. P. (1968). Glivenko’s sequence classes. In Orevkov, V. P., editor.
Logical and Logico-mathematical Calculi. Part 1. Providence: American Mathematical
Society, pp. 131–154.

[85] Pereira, L. C., & Haeusler, E. H. (2015). On constructive fragments of classical
logic. In Wansing, H., editor. Dag Prawitz on Proofs and Meaning, Outstanding
Contributions to Logic, 7. Cham: Springer, pp. 281–292.

[86] Picado, J., & Pultr, A. (2012). Frames and Locales. Topology without Points,
Frontiers in Mathematics. Basel: Birkhäuser.
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