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Abstract
Quantifying tail dependence is an important issue in insurance and risk management. The prevalent tail depen-
dence coefficient (TDC), however, is known to underestimate the degree of tail dependence and it does not capture
non-exchangeable tail dependence since it evaluates the limiting tail probability only along the main diagonal. To
overcome these issues, two novel tail dependence measures called the maximal tail concordance measure (MTCM)
and the average tail concordance measure (ATCM) are proposed. Both measures are constructed based on tail
copulas and possess clear probabilistic interpretations in that the MTCM evaluates the largest limiting probability
among all comparable rectangles in the tail, and the ATCM is a normalized average of these limiting probabilities.
In contrast to the TDC, the proposed measures can capture non-exchangeable tail dependence. Analytical forms of
the proposed measures are also derived for various copulas. A real data analysis reveals striking tail dependence
and tail non-exchangeability of the return series of stock indices, particularly in periods of financial distress.

1. Introduction
The dependence between two continuous random variables X ∼ F and Y ∼ G is characterized by their
copula C : [0, 1]2 → [0, 1], that is the distribution function of (F(X), G(Y )). Of particular interest in
extreme value analysis is to quantify dependence in tail regions, so to summarize the tendency for X and
Y to jointly take on extremely small (or large) values. According to Ledford and Tawn (1996, 1997),
Ramos and Ledford (2009) and Hua and Joe (2011), (lower) tail dependence of the bivariate random
vector (X, Y ) can be described by the tail order 1/η, where η ∈ (0, 1], and the tail dependence parameter
λ ≥ 0 such that

C(p, p) � l(p) p1/η (p ↓ 0) and λ = lim
p↓0

l(p)

for some slowly varying function l : R+ →R+ = [0, ∞), where f � g (x → y) for f , g : R→R means
that limx→y f (x)/g(x) = 1 for y ∈R∪ {±∞}.

The case when η = 1 is of particular importance in insurance and risk management, for exam-
ple, where the Gaussian copula has been blamed as a result of financial crisis of 2007–2009; see
Embrechts (2009) and Donnelly and Embrechts (2010). When η = 1, the tail dependence parameter
λ(C) = limp↓0 C(p, p)/p is also known as the tail dependence coefficient (TDC, Sibuya 1960). It is used
for measuring tail dependence; see, for example, Aloui et al. (2011) and Garcia and Tsafack (2011)
for financial applications. Despite its popularity, the TDC is known to underestimate the degree of tail
dependence since it quantifies the speed of decay of the joint tail probability only along the main diagonal
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Figure 1. Scatter plot of the survival Marshall–Olkin copula ĈMO
α,β for (α, β) = (0.353, 0.75) and its tail

concordance measures. The lower TDC λ evaluates the limiting tail probability at the square colored in
red. The μ-ATCM λμ is a normalized average of � over all comparable rectangles (green) weighted by
the measure μ. Finally, the MTCM λ∗ is the maximum of limiting tail probabilities over all comparable
rectangles, which is attained for the rectangle highlighted in blue.

of C. In addition, the TDC does not capture non-exchangeable tail dependence in the sense that λ(C)
always equals λ(C�), where C� is the copula of (Y , X); see Hua et al. (2019) and Bormann and Schienle
(2020) for recent analyses of tail non-exchangeability. Furman et al. (2015) addressed these issues and
proposed variants of the TDC where the main diagonal is replaced by the path maximizing the joint
tail probability. Calculation and estimation of such tail indices may not always be straightforward due
to the difficulty of deriving the path of maximal dependence for a given copula C; see Sun et al. (2020,
2022) for recent progress on estimating such tail indices. A similar measure of non-exchangeable tail
dependence limsup(u,v)↓(0,0) C(u, v)/(u + v) has also been considered in Genest and Jaworski (2021).

In this paper, we construct measures of non-exchangeable tail dependence, called the tail concordance
measures (TCMs), based on the so-called tail copula. The tail copula of (U, V) ∼ C is defined by

�(u, v) = lim
p↓0

C(pu, pv)

p
= lim

p↓0

P((U, V)/p ∈ [0, u] × [0, v])

p
, (u, v) ∈R

2
+.

The tail copula is a generalization of the TDC and plays an important role in extreme value analysis;
see Jaworski (2004), Schmidt and Stadtmüller (2006), Klüppelberg et al. (2007), Nikoloulopoulos et al.
(2009) and Joe et al. (2010). We construct measures of tail dependence based on the subset{

�

(
b,

1

b

)
: b ∈ (0, ∞)

}
. (1.1)

Elements in the reference set (1.1) are comparable with each other as limiting tail probabilities evalu-
ated at the rectangles [0, b] × [0, 1/b], b ∈ (0, ∞), all having the equal volume b × (1/b) = 1. Based on
this interpretation, we propose two measures of tail dependence; one is the maximal tail concordance
measure (MTCM), defined as the supremum over (1.1), and another is the μ-average tail concordance
measure (ATCM), defined as the normalized average over (1.1) weighted by what we call an angular
measure μ : B((0, ∞)) → [0, 1], where B((0, ∞)) denotes the Borel σ -algebra on (0, ∞). An illustra-
tion of the two measures is provided in Figure 1. Inspired by the tail indices proposed by Furman et al.
(2015), the MTCM is constructed to extract the most distinctive feature of tail dependence. On the other
hand, the ATCM, regarded as a generalization of the tail dependence measure studied in Schmid and
Schmidt (2007), can be used when specific elements in (1.1) are of particular importance from a practical
point of view. Therefore, the two measures quantify different but important features of non-exchangeable
tail dependence summarized by tail copulas.

We also introduce an axiomatic framework of tail dependence measures based on tail copulas as an
analog to that introduced in Scarsini (1984) for measures of concordance. The TCMs introduced above
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are then shown to satisfy all the axiomatic properties naturally required to quantify tail dependence,
such as the monotonicity with respect to an appropriate order among tail copulas and the normalization
property where the TCM takes the maximum 1 and the minimum 0 if and only if the underlying tail
copula represents the so-called tail comonotonicity and tail independence, respectively. In particular,
we investigate the relationship of the proposed measures with tail comonotonicity motivated by Hua
and Joe (2012a,b) and Cheung et al. (2019), the recent studies of tail comonotonicity in the context of
risk measures.

Examples of the angular measure μ and the corresponding ATCM are also provided from the view-
point of mathematical tractability and practical use. Our construction of TCMs based on the reference
set (1.1) provides a clear probabilistic interpretation of the angular measure μ and thus enables us to
construct flexible tail dependence measures according to the purpose of the analysis. As an example in
credit risk modeling, some elements in (1.1) can be understood as limiting probabilities of joint default
when C models the dependence between the values of two firms. In this situation, the measure μ can be
chosen to put more weight on these elements.

Analytical forms of the proposed measures for a variety of parametric models are also provided; see
Table 1. Since tail copulas can be obtained as simple limits of the underlying copula, analytical forms
of the proposed TCMs are typically available. Admitting analytical forms is beneficial when paramet-
ric copulas are estimated by matching the corresponding TCMs to their empirical counterparts. From
Table 1, we observe that the MTCM is higher than the TDC for non-exchangeable copulas (1), (4) and
(5) whereas the MTCM coincides with the TDC for exchangeable copulas (2) and (3). On the other hand,
exchangeable copulas (2) and (3) have higher ATCMs compared with others, all of which have the same
values of the TDC.

Together with the probabilistic interpretability, we believe that the proposed TCMs can be useful in
various practical situations to quantify tail dependence. Numerical studies are also conducted to demon-
strate the practical use of the proposed TCMs. Our simulation studies show that different features of tail
dependence are captured by the proposed two measures. A real data analysis then reveals striking tail
dependence and tail non-exchangeability of the return series of stock indices particularly in the periods
of financial distress.

The present paper is organized as follows. Section 2 presents the framework for measuring tail depen-
dence based on tail copulas. Section 3 introduces the proposed tail concordance measures. Axiomatic
properties and examples for various parametric copulas are also provided. Simulation and empiri-
cal studies are conducted in Section 4. Section 5 concludes with ideas for future research directions.
Technical supplements, proofs and statistical inference of the proposed measures can be found in the
appendix.

2. Tail copulas and tail concordance measures
Let C2 be the set of all 2-copulas, that is, bivariate distribution functions with standard uniform margins.
The comonotonicity and independence copulas are defined by M(u, v) = min (u, v) and �(u, v) = uv for
(u, v) ∈ [0, 1]2, respectively. For (U, V) ∼ C ∈ C2, the limit

�(u, v) = �(u, v; C) = lim
p↓0

C(pu, pv)

p
= lim

p↓0

P((U, V)/p ∈ [0, u] × [0, v])

p
, (u, v) ∈R

2
+, (2.1)

provided it exists, is called a tail copula, also known as a tail dependence function. Throughout this
paper, we focus only on the lower tail around the origin (0,0) in [0, 1]2 since tail dependence around the
other three corners (1,0), (0,1), (1,1) can be studied by replacing C with its rotated copulas. The existence
of �(· ; C) can equivalently be stated in terms of the so-called tail expansion of C; see Jaworski (2004,
2006, 2010) for details. Basic properties of tail copulas are summarized in Appendix A. Let

CL
2 =

{
C ∈ C2 : lim

p↓0

C(pu, pv)

p
exists for every (u, v) ∈R

2
+

}
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Table 1. Analytical forms and examples for specific numerical values of the TDC and the proposed tail dependence measures; see
Section 3.3 for details.

TDC MTCM ATCM with μ = 1
2
(δ2 + δ 1

2
)

(1) Survival Marshall–Olkin copula ĈMO
α,β , 0 < α, β ≤ 1:

Analytical form min (α, β)
√

αβ 1
2

min (4α, β) + 1
2

min (α, 4β)
(α, β) = (0.35, 0.75) 0.350 0.512 0.550

(2) Archimedean copula Cϕ with limx↓0 xϕ ′(x)/ϕ(x) = −θ , 0 < θ < ∞:
Analytical form 2−1/θ 2−1/θ 2

(
2θ + 2−θ

)−1/θ

θ = 0.66 0.350 0.350 0.600

(3) Survival Archimedean copula Ĉϕ with − limx↓0 xϕ ′(1 − x)/ϕ(1 − x) = θ , 1 ≤ θ < ∞:
Analytical form 2 − 21/θ 2 − 21/θ 5 − 2

(
2θ + 2−θ

)1/θ

θ = 1.38 0.350 0.350 0.584

(4) Survival asymmetric Gumbel copula ĈGu
α,β,θ , 0 < α, β ≤ 1 and 1 ≤ θ < ∞:

Analytical form α + β − (αθ + βθ )1/θ
(
2 − 21/θ

)√
αβ 5

2
(α + β) − 1

2
{(4α)θ + βθ}1/θ

− 1
2
{αθ + (4β)θ}1/θ

(α, β, θ ) = (0.35, 0.75, 10) 0.350 0.476 0.550

(5) Survival asymmetric Galambos copula ĈGa
α,β,θ , 0 < α, β ≤ 1 and 0 < θ < ∞:

Analytical form (α−θ + β−θ )−1/θ 2−1/θ
√

αβ 1
2
{(4α)−θ + β−θ}−1/θ

+ 1
2
{α−θ + (4β)−θ}−1/θ

(α, β, θ ) = (0.35, 0.75, 10) 0.350 0.478 0.550
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be the set of all copulas admitting tail copulas, and let

L=
{
� : R2

+ →R+ : there exists C ∈ C2 such that �(u, v) = lim
p↓0

C(pu, pv)

p

}

be the set of all tail copulas. By construction, CL
2 and L are convex sets. Moreover, the inclusion

relationship CL
2 ⊆ C2 is strict; see Jaworski (2010, Corollary 8.3.2).

The following concepts are fundamental for quantifying tail dependence summarized by tail copulas.

Definition 2.1 (Tail dependence and tail concordance order). Let C, C′ ∈ CL
2 with � = �(· ; C) and

�′ = �(· ; C′).

(1) (Tail independence) C (or �) is called tail independent if � ≡ 0, and it is called tail dependent
if � �≡ 0.

(2) (Tail comonotonicity) C (or �) is called tail comonotonic if � = �, where

�(u, v) = min (u, v), (u, v) ∈R
2
+.

(3) (Tail concordance order) C ′ (or �′) is said to be more tail concordant than C (or �), denoted
by C �L C′ (or � � �′), if �(u, v) ≤ �′(u, v) for all (u, v) ∈R

2
+.

Note that � is tail independent and M is tail comonotonic. Therefore, we have that 0, � ∈L. Roughly
speaking, tail comonotonicity means that the underlying copula behaves like the comonotonic copula M
in the tail. Detailed discussions on the notion of tail comonotonicity, particularly related to asymptotic
behavior of risk measures, can be found in Hua and Joe (2012a,b) and Cheung et al. (2019). On the
other hand, tail independence means that the joint probability C(pu, pv) vanishes faster than p. By
Proposition A.1(5), a tail copula � is tail independent if and only if there exists u0, v0 > 0 such that
�(u0, v0) = 0. Moreover, as stated in Proposition A.1(7), the tail copulas 0 and � are the minimal and
maximal elements in L with respect to the tail concordance order, that is, 0 � � � � for all � ∈L. In
fact, Jaworski (2004) showed that L can be characterized by

L= {� : R2
+ →R+ : � is positive homogeneous, 2-increasing and 0 � � � �};

see Proposition A.1(1) and (4) for the properties of 2-increasingness and positive homogeneity of tail
copulas. A key property of tail copulas is the positive homogeneity

�(tu, tv) = t�(u, v) for every t ≥ 0 and (u, v) ∈R
2
+, (2.2)

which leads to the following equivalent relations to the tail concordance order.

Proposition 2.2 (Properties related to the tail concordance order). Let C, C′ ∈ CL
2 with � = �(· ; C)

and �′ = �(· ; C′).

(1) Let θ �→ rθ ∈ (0, ∞), θ ∈ (0, π/2), be arbitrary. Then � � �′ if and only if

�(rθ cos θ , rθ sin θ ) ≤ �′(rθ cos θ , rθ sin θ ) for every θ ∈
(

0,
π

2

)
. (2.3)

(2) We have that C �L C′ if and only if, for (U, V) ∼ C and (U′, V ′) ∼ C′,

lim
p↓0

P(U ≤ pu | V ≤ p) ≤ lim
p↓0

P(U′ ≤ pu | V ′ ≤ p) for every u ∈ (0, 1], and

lim
p↓0

P(V ≤ pv | U ≤ p) ≤ lim
p↓0

P(V ′ ≤ pv | U′ ≤ p) for every v ∈ (0, 1].

By Proposition 2.2(1), the relationship � � �′ can be simplified to checking the pointwise inequality
between � and �′ at one representative point (rθ cos θ , rθ sin θ ) for each angle θ ∈ (0, π/2). Part (2)
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provides an intuitive interpretation of the order � � �′ by the monotonicity of limiting tail probabilities.
Related orders implied by � � �′ can be found in Li (2013).

Remark 2.3. Independently of the present paper, the tail concordance order has recently been intro-
duced and explored in Siburg et al. (2022) and Siburg and Strothmann (2022).

Example 2.4 (Tail concordance order for extreme value copulas). A bivariate extreme value (EV) copula
is given by

CA(u, v) = exp

{
( log u + log v)A

(
log u

log u + log v

)}
, (u, v) ∈ [0, 1]2,

where A ∈A is the so-called Pickands dependence function with
A= {A : [0, 1] → [1/2, 1] : convex and max (w, 1 − w) ≤ A(w) ≤ 1 for all w ∈ [0, 1]}.

For instance, A ≡ 1 yields CA = � and A(w) = max (w, 1 − w) yields CA = M. Using the relationships
log (1 − x) � −x and 1 − x � e−x (x ↓ 0), it is straightforward to check that the survival copula of CA has
the tail copula

�(u, v; ĈA) = u + v − (u + v)A

(
u

u + v

)
, (u, v) ∈R

2
+. (2.4)

By Equation (2.4), the tail concordance order CA �L CA
′ for A, A′ ∈A is equivalent to A′(w) ≤ A(w) for

all w ∈ [0, 1], which is the order considered in Jaworski (2019) to quantify dependence of EV copulas.

We now introduce axioms of measures that quantify the degree of tail concordance.

Definition 2.5 (Axioms of tail concordance measures). A map κ : L→R is called a tail concordance
measure (TCM) if it satisfies the following conditions.

(1) (Normalization) κ(�) = 1 if � is tail comonotonic.
(2) (Tail independence) κ(�) = 0 if and only if � is tail independent.
(3) (Monotonicity) If � � �′ for �, �′ ∈L, then κ(�) ≤ κ(�′).
(4) (Continuity) If �[n] → � (n → ∞) pointwise for �[n], � ∈L, n ∈N, then limn→∞ κ(�[n]) =

κ(�).

If, in addition, κ(�) = 1 and � = � are equivalent, then κ is called a strict TCM.
Axiom (3) is a fundamental requirement to quantify tail concordance, and Axioms (1) and (2) nor-

malize the measure. By these three axioms, we have that 0 ≤ κ(�) ≤ 1 for every � ∈L. Axiom (4)
ensures that if κ is calculated based on an approximated tail copula �[n] of �, then the estimate κ(�[n])
is close to κ(�). Finally, strictness of κ can be naturally required to detect tail comonotonicity under
which various asymptotic results are accessible. Let us now introduce properties of TCMs related to the
evaluation of convex combinations of tail copulas.

Definition 2.6 (Convexity, concavity and linearity). A TCM κ is called

(1) convex if
κ(t� + (1 − t)�′) ≤ tκ(�) + (1 − t)κ(�′) for every �, �′ ∈L and t ∈ [0, 1], (2.5)

(2) concave if the reverse inequality in (2.5) holds, and
(3) linear if κ is convex and concave.

3. The proposed tail concordance measures
3.1 Definitions, basic properties and examples
By positive homogeneity (2.2) of tail copulas, it is sufficient to construct measures of tail concor-
dance only from �(u, v) with the restricted domain (u, v) ∈ {(rθ cos θ , rθ sin θ ) : θ ∈ (0, π/2)} for some

https://doi.org/10.1017/asb.2023.4 Published online by Cambridge University Press

https://doi.org/10.1017/asb.2023.4


472 Takaaki Koike et al.

rθ : (0, π/2) → (0, ∞). As discussed in Section 1, we take rθ = 1/( sin θ cos θ )1/2 so that the rectangles
appearing in (2.1) have the same volume as [0, 1] × [0, 1] for every θ ∈ (0, π/2). Consequently, elements
in the reference set {

�

(
b,

1

b

)
: b ∈ (0, ∞)

}
are comparable with each other as limiting tail probabilities evaluated at the rectangles [0, b] × [0, 1/b]
for b ∈ (0, ∞). Based on this interpretation, we consider the following classes of measures.

Definition 3.1 (Maximal and μ-average tail concordance measures).

(1) The maximal TCM (MTCM) λ∗ : L→R+ is defined by

λ∗(�) = sup
b∈(0,∞)

�(b, 1/b). (3.1)

(2) Let M be the set of all Borel probability measures on (0, ∞) such that
∫

(0,∞)
�(b, 1/b) dμ(b) <

∞. For μ ∈M, the μ-average TCM (ATCM) λμ : L→R+ is defined by

λμ(�) =
∫

(0,∞)
�(b, 1/b) dμ(b)∫

(0,∞)
�(b, 1/b) dμ(b)

. (3.2)

The measure μ is called the angular measure.

The MTCM is constructed based on the idea that the rectangle maximizing the limiting probability
�(b, 1/b) captures the feature of tail dependence of C. On the other hand, the ATCM can be inter-
preted as a normalized average of the limiting tail probabilities weighted by μ ∈M. As we will see in
Example 3.6, the angular measure μ ∈M can be chosen externally by an analyst depending on the
importance of each rectangle [0, b] × [0, 1/b]. Therefore, the two measures λ∗ and λμ can be used for
different purposes since the main objective of λ∗ may be to extract the most distinctive feature of the
tail behavior. Unlike the MTCM, the ATCM requires the denominator

∫
(0,∞)

�(b, 1/b) dμ(b) so that
λμ satisfies Axiom (1) in Definition 2.5; see Proposition 3.7 below. Due to this denominator, it may
be more reasonable to use the numerator in (3.2) rather than λμ when quantifying the degree of aver-
age tail dependence in comparison with λ and λ∗. Differently from the TDC, μ-ATCMs can capture
non-exchangeable tail dependence as seen in the following representation.

Proposition 3.2 (Representation of μ-ATCMs). For μ ∈M, the μ-ATCM can be represented as

λμ(�) = w0�(1, 1) + w1

∫
(0,1)

�(b, 1/b) dμ1(b) + w2

∫
(0,1)

�(1/b, b) dμ2(b)

w0 + w1

∫
(0,1)

b dμ1(b) + w2

∫
(0,1)

b dμ2(b)
, (3.3)

where w0, w1, w2 ≥ 0 with w0 + w1 + w2 = 1 and μ1 and μ2 are Borel probability measures on (0,1).

Representation (3.3) may be easier to interpret than (3.2) since the limiting non-exchangeable
tail probabilities �(b, 1/b) and �(1/b, b) are treated on the same scale on (0,1) where the weights
for different bs are determined by μ1 and μ2, respectively. The TDC corresponds to the case when
(w0, w1, w2) = (1, 0, 0), that is, the weight is concentrated on the main diagonal. By taking positive val-
ues for w1 and w2, the μ-ATCM incorporates the limiting tail probabilities �(b, 1/b) and �(1/b, b),
which are in general different for non-exchangeable copulas.

Remark 3.3 (Attainability of the MTCM). The supremum in (3.1) is attainable in b ∈ (0, ∞) for
any � ∈L since limb↓0 � (b, 1/b) = limb→∞ � (b, 1/b) = 0 and the map b �→ � (b, 1/b) is continu-
ous and bounded; see Proposition A.1(7) and Proposition A.2(1). Therefore, one can write λ∗(�) =
maxb∈(0,∞) �(b, 1/b). Moreover, assuming that the maximum is uniquely attained at a single point, we
write

b∗ = argmax
b∈(0,∞)

�(b, 1/b).
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A deviation of b∗ from 1 may be an important sign of tail non-exchangeability under which the TDC
may not be a suitable measure to summarize tail dependence; see Section 4.2 for experiments.

Remark 3.4 Independently of the present paper, Siburg et al. (2022) introduced tail dependence
measures constructed as an average and maximum over the reference set {�(s, 1 − s) : s ∈ [0, 1]}.

As seen in the following examples, the angular measure μ of the μ-ATCM can be chosen for
mathematical tractability or for practical purposes.

Example 3.5 (Examples of μ-ATCMs).

(1) Generalized TDC: For b ∈ (0, ∞), let μ = δb in (3.2) be the Dirac measure on b. Then the
resulting μ-ATCM is given by

λδb (�) = �(b, 1/b)

�(b, 1/b)
= �

(
1 ∨ b2, 1 ∨ 1

b2

)
.

We call this measure the generalized tail dependence coefficient (GTDC); note that b = 1 leads
to the TDC.

(2) Uniform ATCM: Let w1 = w2 = 1/2, and μ1 = μ2 in (3.3) be probability measures whose
unit masses are uniformly put on (0,1). Then the corresponding μ-ATCM, denoted by λU, is
given by

λU(�) =
∫

(0,1)

{
�

(
b,

1

b

)
+ �

(
1

b
, b

)}
db.

We call this measure the uniform ATCM.

Example 3.6 (A practical choice of μ in credit risk modeling). Let X ∼ F and Y ∼ G be continuously
distributed random variables representing the values of two firms with default probability of the former
being estimated as 0.05 and that of the latter being estimated as an interval [0.001, 0.01] with some
levels of credibility. To model the dependence between X and Y , joint default events of the form

{X ≤ q0.05(X), Y ≤ qα(Y)} = {U ≤ 0.05, V ≤ α}, α ∈ [0.001, 0.01],

are of primary concern, where qα(X) and qα(Y), α ∈ (0, 1), are the α-quantiles of F and G, and (U, V) =
(F(X), G(Y)). Therefore, to quantify the tail dependence of (X, Y ), the values of the tail copulas

�(b, 1/b), b ∈
[(

0.001

0.05

)1/2

,

(
0.01

0.05

)1/2
]

= [0.141, 0.447],

may be more important than �(1, 1), where b ∈ [0.141, 0.447] is determined so that the ratio between
0.05 and α ∈ [0.001, 0.01] equals that of pb and p/b. Therefore, compared with the TDC, the tail depen-
dence of interest may be better summarized by a μ-ATCM with μ supported on [0.141, 0.447], and with
the weights possibly determined proportionally to the credibility of the estimated default probabilities.

The next proposition states that the MTCM and ATCMs are TCMs in the sense of Definition 2.5.

Proposition 3.7 (Axiomatic properties).

(1) The MTCM λ∗ is a strict and convex TCM.
(2) For μ ∈M, the μ-ATCM λμ is a linear TCM.
(3) A μ-ATCM is strict if μ ∈M satisfies the following condition:

μ((1 − ε, 1 + ε) ∩ (0, ∞)) > 0 for any ε > 0. (3.4)

Proposition 3.7(1) and (2) state that the proposed measures satisfy the axiomatic properties of
TCMs presented in Definition 2.5. According to Proposition 3.7(3), the uniform ATCM λU in
Example 3.5(2) and the TDC λ are strict ATCMs. However, as seen in the following example, the
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GTDC in Example 3.5(1) is not always a strict TCM as the corresponding angular measure μ may
violate Condition (3.4).

Example 3.8 (GTDCs of a singular copula). For θ ∈ (0, 1), let Cθ be a copula considered in Nelsen
(2006, Section 3.2.1), where the probability mass θ ∈ (0, 1) is uniformly distributed on the line segment
from (0,0) to (θ , 1), and the probability mass 1 − θ is uniformly distributed on the line segment from
(θ , 1) to (1,0). The tail copula of Cθ is given by �θ (u, v) = �(u, v; Cθ ) = min (u, θv), and thus the GTDC
for μ = δb is given by

λδb (�θ ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1, if b ≤ √
θ ,

θ/b2 ∈ (θ , 1), if
√

θ < b < 1,

θ , if 1 ≤ b.

Therefore, �θ �= � but it holds that λδ√
θ
(�θ ) = 1.

3.2 Bounds of average tail concordance measures
We next study bounds of μ-ATCMs for a fixed � ∈L over all angular measures μ ∈M. Namely, we
are interested in the minimal and maximal average tail concordance measures defined by

λ(�) = inf
μ∈M

λμ(�) and λ(�) = sup
μ∈M

λμ(�), � ∈L,

and their attaining angular measures. Characterizations of these extremal ATCMs and their connections
to the MTCM are provided in the following theorem.

Theorem 3.9 (Characterization of the minimal and maximal ATCMs). Let � ∈L.

(1) For every μ ∈M, it holds that

λ(�) ≤ λμ(�) ≤ 1 ∧ aλ(�) where a = a(μ) =
∫

(0,∞)
max (b, 1/b) dμ(b)∫

(0,∞)
�(b, 1/b) dμ(b)

∈ [1, ∞]. (3.5)

Therefore, the angular measure δ1 attains λ(�) = λ(�) = �(1, 1).
(2) It holds that

λ(�) = sup
b∈(0,∞)

� (b, 1/b)

� (b, 1/b)
(3.6)

= max

(
lim
b↓0

�

(
1,

1

b2

)
, lim

b→∞
�
(
b2, 1

))
. (3.7)

The supremum in (3.6) cannot be replaced by the maximum in general.
(3) It holds that λ(�) ≤ λ∗(�) ≤ λ(�).

Theorem 3.9(1) shows that the TDC is the minimal ATCM. By (3.5), the coefficient a = a(μ) quan-
tifies the gap between λ and λμ. For the GTDC in Example 3.5(1), we have that a(δb) = max (b2, 1/b2).
Therefore, a(δ1) = 1, and a(δb) tents to inifinity as b ↓ 0 or b → ∞. Moreover, a may admit the value ∞
when, for example, μ corresponds to the uniform ATCM in Example 3.5(2).

Theorem 3.9(2) provides formulas for the maximal ATCM. By Formula (3.6), the maximal ATCM
can be interpreted as finding a rectangle maximizing the limiting tail probability �(b, 1/b) normalized
by �(b, 1/b). Despite this intuitive interpretation, the maximal ATCM is not an appealing measure of
tail dependence as we will now explain. First and foremost, maximizing the ratio �(b, 1/b)/�(b, 1/b)
does not extract informative features of the underlying tail dependence since b �→ �(b, 1/b)/�(b, 1/b)
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is decreasing on (0,1) and increasing on (1, ∞); therefore, as seen in Formula (3.7), the maximal ATCM
can be interpreted as being attained at the y-axis (b ↓ 0) or the x-axis (b → ∞) regardless of �. In fact,
the maximal ATCM is typically independent of the parameters of tail dependence of various paramet-
ric copulas. For example, the maximal ATCMs of the survival Gumbel and Clayton copulas are all 1
regardless of their parameters; see Section 3.3. In summary, although the maximal ATCM provides
some insights on the choice of μ, it is not recommendable to use as a tail dependence measure.

Finally, Theorem 3.9(3) says that the MTCM λ∗ is also bounded by λ and λ although the MTCM is
not an ATCM.

In the next remark, we shall adopt the notation Djf (x) = ∂f (x)/∂xj for x = (x1, . . . , xd) and f : Rd →R,
provided the partial derivative exists.

Remark 3.10 (Attainability of the maximal ATCM). As seen in Propositions A.1(2) and A.2.(2), the
maps t �→ �(t, 1) and t �→ �(1, t), t ∈R+, are increasing. Therefore, by Theorem 3.9(2), the max-
imal ATCM is attained at μ = δb ∈M for some b ∈ (0, ∞) if and only if there exists t0 > 0 such
that D1�(t, 1) = 0 for t ≥ t0 when λ(�) = limt→∞ �(t, 1), and D2�(1, t) = 0 for t ≥ t0 when λ(�) =
limt→∞ �(1, t). An example of such an attainable case can be found in Example 3.11.

3.3 Illustrative examples
In this section, we derive the proposed TCMs for various parametric copulas.

Example 3.11 (Survival Marshall–Olkin copula). Let us consider the Marshall–Olkin copula Cα,β

defined by

CMO
α,β (u, v) = min

(
u1−αv, uv1−β

)
, α, β ∈ (0, 1], (u, v) ∈ [0, 1].

By calculation, the tail copula of the survival Marshall–Olkin copula is given by

�α,β(u, v) = �(u, v; Ĉα,β) = u + v − max (v + (1 − α)u, u + (1 − β)v) = min (αu, βv).

Therefore, the TDC is given by λ(�α,β) = �α,β(1, 1) = min (α, β). Moreover, since the function b �→
� (b, 1/b) = min (αb, β/b), b ∈ (0, ∞), is maximized at b∗ = √

β/α, we have that λ∗(�α,β) = √
αβ.

Finally, by (3.7), we have that λ(�α,β) = max (α, β), which is attainable at μ = δb for every b ∈(
0,

√
β/α

]
if α ≥ β, and for every b ∈ [√β/α, ∞)

if α ≤ β.

Example 3.12 (Archimedean copulas). Consider an Archimedean copula

Cϕ(u, v) = ϕ−1( min (ϕ(0), ϕ(u) + ϕ(v))), (u, v) ∈ [0, 1],

for an Archimedean generator ϕ : [0, 1] → [0, ∞) which is a convex, strictly decreasing and continu-
ous function with ϕ(1) = 0. It is shown in Jaworski (2004) that, if Eϕ(0) = limx↓0 xϕ ′(x)/ϕ(x) = −θ0,
0 < θ0 < ∞, then

�(u, v; Cϕ) = uv(uθ0 + vθ0 )−1/θ0 .

Therefore, we have that

�

(
b,

1

b
; Cϕ

)
= (b−θ0 + bθ0 )−1/θ0 , b ∈ (0, ∞).

Since �
(
b, 1/b; Cϕ

)
is maximized at b∗ = 1, we have that λ(�) = λ∗(�) = 2−1/θ0 . In addition, by

(3.7), we have that λ(�) = limb↓0 (1 + b2θ0 )−1/θ0 = 1. Examples of such Archimedean copulas include
a Clayton copula with the generator ϕθ (t) = (t−θ − 1)/θ , θ ∈ (0, ∞), which satisfies Eϕθ

(0) = −θ ; see
Figure 2 (i) for examples of the curve b �→ �

(
b, 1/b; Cϕθ

)
.
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Figure 2. The tail copulas b �→ � (b, 1/b) and b �→ � (1/b, b) for a (i) Clayton copula CCl
θ

; (ii) t copula
Ct

ν,ρ with ν = 5 (Nikoloulopoulos et al. 2009); (iii), (iv) survival asymmetric Gumbel copula CGu
α,β,θ with

α = 0.75 and β = 0.35; and (v), (vi) survival asymmetric Galambos copula CGa
α,β,θ with α = 0.35 and

β = 0.75. The parameters of the copulas vary from (i) θ = 0.075 to 68.967; (ii) ρ = −0.99 to 1; (iii),
(iv) θ = 1.00 to 69.661; and (v), (vi) θ = 0.075 to 68.967 as colors vary from blue to green to yellow,
and to red. For Clayton and t copulas, only b �→ � (b, 1/b), b ∈ [0, 1], is plotted since these copulas are
exchangeable.

It is also shown in Jaworski (2004) that, if Eϕ(1) = − limx↓0 xϕ ′(1 − x)/ϕ(1 − x) = θ1, 1 ≤ θ1 < ∞,
then the survival Archimedean copula has the tail copula

�(u, v; Ĉϕ) = u + v − (uθ1 + vθ1 )1/θ1 .

Therefore, we have that

�

(
b,

1

b
; Ĉϕ

)
= b + 1

b
− (

bθ1 + b−θ1
)1/θ1 .

This function is also maximized at b∗ = 1, and thus we have that λ(�) = λ∗(�) = 2 − 21/θ1 . In addi-
tion, (3.7) yields λ(�) = 1. Examples of such Archimedean copulas include a Gumbel copula with the
generator ϕθ (t) = ( − log t)θ , θ ∈ [1, ∞), which satisfies Eϕθ

(1) = θ .

Example 3.13 (Asymmetric Gumbel and Galambos copulas). The asymmetric Gumbel and Galambos
copulas are EV copulas with the respective Pickands dependence functions given by

AGu
α,β,θ (w) = (1 − α)w + (1 − β)(1 − w) + {(αw)θ + (β(1 − w))θ}1/θ , 1 ≤ θ < ∞, 0 < α, β ≤ 1,

AGa
α,β,θ (w) = 1 − {(αw)−θ + (β(1 − w))−θ}−1/θ , 0 < θ < ∞, 0 < α, β ≤ 1.
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Therefore, by (2.4), their survival copulas have the tail copulas

�Gu
α,β,θ

(
b,

1

b

)
= (α − β)b + β

b2 + 1

b
− b

{
αθ + βθb−2θ

}1/θ
,

�Ga
α,β,θ

(
b,

1

b

)
= b

{
α−θ + β−θb2θ

}−1/θ
,

where b ∈ (0, ∞); see Figure 2 (iii), (iv), (v), (vi) for examples of the corresponding curves. A rather
tedious calculation shows that both tail copulas are maximized at b∗ = √

β/α, and we obtain the
formulas

λ(�Gu
α,β,θ ) = α + β − (αθ + βθ )1/θ , λ(�Ga

α,β,θ ) = (α−θ + β−θ )−1/θ ,

λ∗(�Gu
α,β,θ ) = (

2 − 21/θ
) √

αβ, λ∗(�Ga
α,β,θ ) = 2−1/θ

√
αβ,

λ(�Gu
α,β,θ ) = λ(�Ga

α,β,θ ) = max (α, β).

4. Numerical experiments
In this section, we conduct numerical experiments to show the performance of the proposed tail
concordance measures for various copulas. The proposed measures are computed based on the
empirical tail copula constructed from n (pseudo-)observations of the underlying copula. Namely,
for a sequence k = k(n) such that k/n → 0 as n → ∞, an empirical tail copula is constructed by
�̃[n,k](u, v) = C̃[n](ku/n, kv/n)/(k/n), (u, v) ∈R

2
+, where C̃[n] is an empirical copula constructed from

(pseudo-)observations. Estimators of the proposed measures are then constructed by replacing � with
the empirical counterpart �̃[n,k]. The readers are referred to Appendix C for detailed construction and
results on statistical inference of the proposed measures.

4.1 Simulation study
We first conduct a simulation study to estimate the proposed measures for two parametric copulas; one
is a survival Marshall–Olkin copula ĈMO

α,β as in Example 3.11 for (α, β) = (0.353, 0.75), and another is
a skew t copula CST

ν,δ1,δ2,γ for (ν, δ1, δ2, γ ) = (5, 0.8, −0.8, 0.95) as in Smith et al. (2012). Figure 3 shows
scatter plots of these copulas.

We first simulate n = 106 samples from ĈMO
α,β and CST

ν,δ1,δ2,γ , and then evaluate the corresponding
empirical tail copulas at (b, 1/b) and (1/b, b) for b ∈ {1/L, . . . , 1}, where L = 100. The threshold
k ∈N is chosen to be kSMO = 0.015 × N = 15, 000 for the survival Marshall–Olkin copula and kST =
0.005 × N = 5000 for the skew t copula. These values are determined by a graphical plateau–finding
search where the estimates of the TDC are plotted against various values of k, and an optimal k is cho-
sen from an interval on which the estimated TDCs are roughly constant; see Schmidt and Stadtmüller
(2006) for details. Finally, based on the empirical tail copulas, we estimate the TDC λ, the discrete
uniform ATCM λUL , where the equal weights are put on (b, 1/b) and (1/b, b) for b ∈ {1/L, . . . , 1},
and the MTCM λ∗ with the estimators provided in Section C. To reduce the computational cost,
we maximize the empirical tail copulas only over {1/L, . . . , 1, L/(L − 1), . . . , L} when estimating the
MTCM. Note that the true tail copulas and TCMs are available for survival Marshall–Olkin copulas; see
Example 3.11. As mentioned in Smith et al. (2012), the analytical calculation of the TDC for skew t cop-
ulas may not be straightforward. In Figure 4 and Table 2, we report the estimates of the tail copulas and
the TCMs with the 95% bootstrap confidence intervals (CIs) based on B = 100 bootstrap replications. As
in Remark 3.3, we also report the maximizer b∗ of the MTCM as a measure of tail non-exchangeability.
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Figure 3. Scatter plots of the survival Marshall–Olkin copula ĈMO
α,β and the skew t copula CST

ν,δ1,δ2,γ

where the parameters are given by (α, β) = (0.353, 0.75) and (ν, δ1, δ2, γ ) = (5, 0.8, −0.8, 0.95).
The sample size is n = 104. The red line indicates the estimated line y = (1/b∗)2x such that
�(b∗, 1/b∗) = supb∈(0,∞) �(b, 1/b).

Figure 4. Plots of the estimates of the tail copulas b �→ � (b, 1/b) and b �→ � (1/b, b) for (i), (ii) a
survival Marshall–Olkin copula (left two plots); and (iii), (iv) a skew t copula (right two plots) based
on n = 106 samples. The black solid lines indicate bootstrap means of the empirical tail copulas and
the dashed lines are the 95% bootstrap confidence intervals based on B = 100 bootstrap replications.
The brown solid lines in (i) and (ii) are the true curves derived in Example 3.11. The colored horizontal
lines represent the bootstrap estimates of the TCMs.

To treat b∗ and 1/b∗ on the same scale, we report

〈b∗〉 =
⎧⎨
⎩

b∗, if 0 < b∗ ≤ 1,

2 − 1/b∗ ∈ [1, 2), if 1 < b∗,
(4.1)

instead of b∗. As a result, the square attains the MTCM if 〈b∗〉 = 1, and a more elongated rectangle
attains the MTCM as 〈b∗〉 goes to 0 or 2.

From Figure 4 and Table 2, we observe that the bootstrap CIs for the tail copulas and the proposed
TCMs are sufficiently narrow. In particular, the estimated curves of b → �(b, 1/b) are sufficiently close
to the true ones in Figure 4 (i) and (ii). As we can see, both the survival Marshall–Olkin and the skew t
copula have non-exchangeable tail dependence. The two copulas, however, have different features of tail
dependence since the tail copula in Figure 4 (ii) has a sharp kink around b = 0.7 whereas the tail copula
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Table 2. Bootstrap estimates and 95% CIs of the TDC (λ), the discrete uniform ATCM (λUL ), the MTCM
(λ∗) and its maximizer 〈b∗〉 in (4.1) of the survival Marshall–Olkin copula and the skew t copula with
B = 100 bootstrap replications.

λ λ∗ λUL 〈b∗〉
(1) Survival Marshall–Olkin copula ĈMO

α,β

Estimate 0.367 0.523 0.504 1.310
95% CI (0.359, 0.374) (0.514, 0.529) (0.493, 0.512) (1.300, 1.320)

(2) Skew t copula CST
ν,δ1,δ2,γ

Estimate 0.407 0.417 0.581 0.779
95% CI (0.396, 0.416) (0.407, 0.430) (0.565, 0.596) (0.650, 0.895)

Figure 5. Plots of the estimates of the proposed TCMs for filtered stock returns of (i), (v) (DJ, NASDAQ);
(ii), (vi) (DJ, FTSE); (iii), (vii) (DJ, HSI); and (iv), (viii) (DJ, NIKKEI). The solid lines indicate bootstrap
means and the dashed lines are the 90% bootstrap confidence intervals based on B = 100 bootstrap
replications.

in Figure 4 (iii) constantly takes on large values for 0.6 ≤ b ≤ 1. Since the former feature is captured by
the MTCM and the latter one by the ATCM, the gap between the TDC and the MTCM is large for the
survival Marshall–Olkin copula and the ATCM of the skew t copula is larger than that of the survival
Marshall–Olkin copula.

4.2 Real data analysis
To investigate financial interconnectedness between different countries in times of a stressed economy,
we compare the proposed TCMs for the returns of the stock indices DJ, NASDAQ, FTSE, HSI, and
NIKKEI from 1987-01-05 to 2015-12-30. We particularly focus on the relationship of the DJ to the
other indices to compare the corresponding domestic and international relationships within and to the
US market, respectively. To this end, a rolling window analysis is conducted on which, for each year from
1989 to 2013, the last and next 2 years of data are included in the window, resulting in 5 year windows
with sample size n ≈ 250 × 5 = 1250 each. For each window, we filter the marginal return series by
GARCH(1,1) models with skew t innovations. The residuals are then rank-transformed to obtain the
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pseudo–observations of the underlying copula. Based on the pseudo–observations, we conduct the same
analysis as in Section 4.1, where L = 100 and the threshold k is chosen to be 0.2 times the sample size
following Bormann and Schienle (2020, Section 5). The results are summarized in Figure 5.

In Figure 5 (i)–(iv), we observe that the overall level of tail dependence is high for the pairs (DJ,
NASDAQ) and (DJ, FTSE) and is relatively low for the pairs (DJ, HSI) and (DJ, NIKKEI). For all the
pairs, the gap between the TDC and the MTCM is not significant. For the cases (i) and (ii), an increasing
trend of tail dependence can be observed since around the financial crisis of 2007–2009. Such a trend
is barely observable for the cases (iii) and (iv). In Figure 5 (v)–(viii), the maximizer 〈b∗〉 of the MTCM
fluctuates over time around 1 for all the cases, but some bumps are visible during financial crises, such
as the collapse of the Japanese asset price bubble in 1992 as seen in Figure 5 (viii), the Asian and
millennium crisis accumulating into the Dot-Com crisis in 1995–2003 as seen in Figure 5 (v), (vii)
and (viii), and the subprime mortgage crisis in 2007–2009 as seen in Figure 5 (vi), (vii) and (viii). The
comparably small fluctuation in Figure 5 (v) implies tail exchangeability between two US stock indices.

5. Conclusion
We proposed two novel tail dependence measures which we call the maximal tail concordance measure
(MTCM) and the μ-average tail concordance measure (ATCM). Both measures are based on tail copulas
and possess clear probabilistic interpretations. The MTCM evaluates the largest limiting tail probability
over all comparable rectangles in the tail, and the ATCM is a normalized average of these limiting tail
probabilities. With these interpretations, the MTCM is useful for extracting the most distinctive feature
of tail dependence, and ATCMs can be applied when specific joint tail events are of particular importance
from a practical point of view. We showed that the two measures satisfy axiomatic properties naturally
required for quantifying tail dependence. In contrast to the TDC, both proposed measures also capture
non-exchangeable tail dependence. The choice of the angular measure μ of the ATCM was addressed
via practical examples. Bounds of μ-ATCMs were also explored. We showed that the minimal ATCM
is the TDC, and that, unlike the MTCM, the maximal ATCM does not extract informative features
of tail dependence. Furthermore, we provided analytical formulas for various parametric copulas and
simulation studies to support the use of the proposed measures. Finally, a real data analysis revealed tail
dependence and tail non-exchangeability of the return series of stock indices, particularly in periods of
financial distress.

Further investigation is needed for statistical inference of the proposed measures and for the relation-
ship between the MTCM and the tail indices proposed by Furman et al. (2015) and Genest and Jaworski
(2021). Moreover, multivariate extensions and compatibility problems of the proposed TCMs are also
interesting avenues of future research; see Frahm (2006), Schmid and Schmidt (2007), Li (2009) and
Gijbels et al. (2020) for the former problem and Embrechts et al. (2016) and Hofert and Koike (2019)
for the latter.
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Appendices
A. Basic properties of tail copulas
Tail copulas play an important role for quantifying extremal co-movements between random variables.
In this section, we summarize basic properties of tail copulas. To this end, let L be the set of all tail
copulas.

Proposition A.1 (Basic properties of tail copulas). Let � ∈L.

(1) (2-increasingness): � is 2-increasing, that is, �(u′, v′) − �(u′, v) − �(u, v′) + �(u, v) ≥ 0 for
every 0 ≤ u ≤ u′ and 0 ≤ v ≤ v′.

(2) (Monotonicity): �(u, v) ≤ �(u′, v′) for every 0 ≤ u ≤ u′ and 0 ≤ v ≤ v′. If � �≡ 0, then �(u, v) <

�(u′, v′) for every 0 < u < u′ and 0 < v < v′.
(3) (Groundedness): � is grounded, that is, �(u, v) = 0 if u = 0 or v = 0.
(4) (Positive homogeneity): �(tu, tv) = t�(u, v) for every t ≥ 0 and (u, v) ∈R

2
+.

(5) (Degeneracy): �(u, v) = 0 for all (u, v) ∈R
2
+ if and only if �(u0, v0) = 0 for some u0, v0 > 0.

(6) (Coherence): If C � C′ for C, C′ ∈ CL
2 , then �(u, v; C) ≤ �(u, v; C′) for all (u, v) ∈R

2
+.

(7) (Bounds): 0 ≤ �(u, v) ≤ min (u, v) for all (u, v) ∈R
2
+ and the bounds are attainable.

(8) (Max-min inequalities): (s ∧ t)�(u, v) ≤ �(su, tv) ≤ (s ∨ t)�(u, v) for every s, t ≥ 0 and
(u, v) ∈R

2
+.

Proof. (1), (3), (4) and (5) can be found in Joe et al. (2010, Propositions 2.1 and 2.2). (2) is shown
in Schmidt and Stadtmüller (2006, Theorems 1 and 2). (6) follows directly from the definition of �. (7)
is implied by (6). (8) follows from (2) and (4). �
Proposition A.2 (Continuity and derivatives of tail copulas). Let � ∈L.

(1) (Continuity): |�(u, v) − �(u′, v′)| ≤ |u − u′| + |v − v′| for every (u, v), (u′, v′) ∈R
2
+, and thus �

is Lipschitz continuous.
(2) (Partial derivatives): The partial derivatives D1�(u, v) and D2�(u, v) exist almost everywhere

on (u, v) ∈R
2
+. Moreover, 0 ≤ D1�(u, v), D2�(u, v) ≤ 1 and the functions

v �→ D1�(u, v) and u �→ D2�(u, v)

are increasing almost everywhere on R+.
(3) (Euler’s theorem): �(u, v) = uD1�(u, v) + vD2�(u, v) for every (u, v) ∈R

2
+.

Proof. (1) and (2) are shown in Schmidt and Stadtmüller (2006, Theorems 1 and 3), respectively. (3)
is the well-known Euler’s homogeneous function theorem. �

B. Proofs
B.1 Proof of Proposition 2.2

(1) Let us write a point (u, v) ∈ (0, ∞)2 in polar coordinates via (u, v) = r( cos θ , sin θ ) for r > 0
and θ ∈ (0, π/2). By positive homogeneity of �, we have that

�(u, v) = r

rθ

� (rθ cos (θ ), rθ sin (θ )) ,

and thus � � �′ is equivalent to (2.3).
(2) Notice that �(u, 1) = limp↓0 P(U ≤ pu | V ≤ p) and �(1, v) = limp↓0 P(V ≤ pv | U ≤ p) for

u, v ∈ (0, 1]. Therefore, the desired equivalence holds from Part (1) of this proposition by taking
rθ = 1/ max ( cos θ , sin θ ).
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B.2 Proof of Proposition 3.2
Representation (3.3) is obtained by taking w0 = μ({1}), w1 = μ((0, 1)), w2 = μ((1, ∞)) and μ1(A) =
μ(A ∩ (0, 1))/w1 and μ2(A) = μ({1/b; b ∈ A} ∩ (0, 1))/w2, A ∈B((0, ∞)), if w1 > 0 and w2 > 0,
respectively.

B.3 Proof of Proposition 3.7
(1) The first three axioms and convexity are straightforward to check and thus it remains to show the
continuity axiom and the strictness. Suppose that �[n] ∈L, n = 1, 2, . . . , converge to � ∈L pointwise
as n → ∞. Then, the convergence is uniform by Proposition A.2(1), Therefore, we have that

lim
n→∞

λ∗(�[n]) = lim
n→∞

max
b∈(0,∞)

�[n]

(
b,

1

b

)
= max

b∈(0,∞)
�

(
b,

1

b

)
= λ∗(�),

where the supremum in λ∗ can be replaced by the maximum as mentioned in Remark 3.3. To show the
strictness of λ∗, we first show the following corollary.

Corollary B.1 (Tail independence and tail comonotonicity for the TDC). A tail copula � ∈L is tail
independent if and only if λ(�) = 0, and � is tail comonotonic if and only if λ(�) = 1.

Proof. The equivalence in the tail independent case follows directly from Proposition A.1(5). If �

is tail comonotonic, then λ(�) = λ(�) = 1. To show the converse, suppose by way of contradiction that
λ(�) = 1 but that there exists (u0, v0) ∈R

2
+ such that �(u0, v0) �= �(u0, v0). Note that u0, v0 > 0, otherwise

�(u0, v0) = �(u0, v0) = 0. By (3.5), we have that

1 = λ(�) ≤ λδ√u0/v0
(�) = �(u0, v0)

�(u0, v0)
< 1,

which is a contradiction. �
By Corollary B.1, it suffices to show that λ∗(�) = 1 implies λ(�) = 1. Suppose λ∗(�) = 1. As men-

tioned in Remark 3.3, there exists b∗ ∈ (0, ∞) such that λ∗(�) = � (b∗, 1/b∗). Suppose that 0 < b∗ < 1.
Then, by Proposition A.1(7), we have that

1 = �

(
b∗,

1

b∗

)
≤ �

(
b∗,

1

b∗

)
= b∗

and thus that 1 ≤ b∗, which is a contradiction. Similarly, if we assume that 1 < b∗, then we have that
1 = � (b∗, 1/b∗) ≤ M (b∗, 1/b∗) = 1/b∗ and thus that b∗ ≤ 1, which is again a contradiction. Therefore,
we have that b∗ = 1, which yields λ(�) = �(1, 1) = � (b∗, 1/b∗) = λ∗(�) = 1.

(2) Linearity and Axioms (3) and (4) immediately follow by definition of λμ. Axioms (1) and (2)
are straightforward to show by (3.5) and Corollary B.1.

(3) By Corollary B.1, it suffices to show that λμ(�) = 1 implies λ(�) = 1. Suppose, by way of
contradiction, that λ = λ(�) ≤ 1 − δ < 1 for some δ > 0. By Condition (3.4), at least one of the
following two cases holds: μ((1 − ε, 1]) > 0 for any ε > 0 or μ([1, 1 + ε)) > 0 for any ε > 0.
Assume that the former case is fulfilled; the latter case can be shown similarly. Let

c(δ) = 1 − δ

1 − δ/2
∈ (0, 1) and Rδ =

[√
c(δ), 1

]
.

Then 1/b ≤ b/c(δ) for b ∈ Rδ. Together with �(1, 1) = λ(�) ≤ 1 − δ, we have that, for b ∈ Rδ,

�

(
b,

1

b

)
≤ �

(
1

b
,

1

b

)
= 1

b
�(1, 1) ≤ 1

c(δ)
b(1 − δ) =

(
1 − δ

2

)
b =

(
1 − δ

2

)
�

(
b,

1

b

)
.
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Since �(b, 1/b) ≤ �(b, 1/b) for b ∈ (0, ∞)\Rδ, we have that

λμ(�) =
∫

(0,∞)
�(b, 1/b) dμ(b)∫

(0,∞)
�(b, 1/b) dμ(b)

≤
∫

(0,∞)
�(b, 1/b) dμ(b) − δ

2

∫
Rδ

�(b, 1/b) dμ(b)∫
(0,∞)

�(b, 1/b) dμ(b)

= 1 − δ

2

∫
Rδ

�(b, 1/b) dμ(b)∫
(0,∞)

�(b, 1/b) dμ(b)
.

Moreover, we have that∫
Rδ

�(b, 1/b) dμ(b) =
∫

Rδ

b dμ(b) ≥√c(δ)μ(Rδ) > 0,

and hence λμ(�) < 1, which contradicts the assumption that λμ(�) = 1.

B.4 Proof of Theorem 3.9

(1) Inequalities (3.5) directly follow from Proposition A.1(8).
(2) To show Equation (3.6), the inequality λ(�) ≤ supb∈(0,∞) � (b, 1/b) /� (b, 1/b) follows since∫

(0,∞)

�(b, 1/b) dμ(b) =
∫

(0,∞)

�(b, 1/b)
�(b, 1/b)

�(b, 1/b)
dμ(b)

≤ sup
b∈(0,∞)

� (b, 1/b)

� (b, 1/b)

∫
(0,∞)

�(b, 1/b) dμ(b).

Now let ��(b) = �(b, 1/b)/�(b, 1/b). By Propositions A.1(2) and A.2(1), the map b �→ ��(b)
is continuous, decreasing on (0,1] and increasing on [1, ∞) almost everywhere. Therefore,
for any ε > 0, there exists b� ∈ (0, ∞) such that sup(0,∞) �

�(b) − ε < ��(b�). Since ��(b�) =
λδb� (�) for δb� ∈M, we obtain Equation (3.6). Equality (3.7) immediately follows from the
monotonicity property of b �→ ��(b). Since δ0 and δ∞ are not in M, the supremum in (3.6) is
not attainable in general.

(3) The inequality λ(�) ≤ λ∗(�) follows since λ(�) = �(1, 1) ≤ supb∈(0,∞) � (b, 1/b) = λ∗(�).
As mentioned in Remark 3.3, there exists b∗ ∈ (0, ∞) such that λ∗(�) = �(b∗, 1/b∗). Since
�(b∗, 1/b∗) ≤ 1, we have, by (3.6), that

λ∗(�) = �

(
b∗,

1

b∗

)
≤ �(b∗, 1/b∗)

�(b∗, 1/b∗)
≤ λ(�),

which completes the proof.

C. Estimation of the proposed measures
In this section, we construct nonparametric estimatiors of the proposed TCMs based on the asymptotic
results of empirical tail copulas developed in Schmidt and Stadtmüller (2006) and Bücher and Dette
(2013). To this end, let (Xi, Yi), i = 1, . . . , n, n ∈N, be an i.i.d. sample from a joint distribution function
H with continuous marginal distributions X ∼ F and Y ∼ G, and copula C ∈ CL

2 . If F and G are known,
then (Ui, Vi) = (F(Xi), G(Yi)), i = 1, . . . , n, is an i.i.d. sample from C. If F and G are unknown, then

(Ûi, V̂i) = (F̂[n](Xi), Ĝ[n](Yi)) where F̂[n](x) = 1

n + 1

n∑
i=1

1{Xi≤x}, Ĝ[n](x) = 1

n + 1

n∑
i=1

1{Yi≤x},
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are the pseudo–observations from C. Denote by

C̃[n](u, v) = 1

n

n∑
i=1

1{Ui≤u,Vi≤v} and Ĉ[n](u, v) = 1

n

n∑
i=1

1{Ûi≤u,V̂i≤v}

the empirical copulas based on the samples (Ui, Vi) and (Ûi, V̂i), respectively. Define the empirical tail
copulas

�̃[n,k](u, v) = n

k
C̃[n]

(
ku

n
,

kv

n

)
and �̂[n,k](u, v) = n

k
Ĉ[n]

(
ku

n
,

kv

n

)
,

where k = k(n) is such that k(n) → ∞ and k = o (n) as n → ∞.
For n, k ∈N and L > 1, define the estimators of λ∗ by

λ̃∗[n,k,L] = max
b∈[1/L,L]

�̃[n,k]

(
b,

1

b

)
and λ̂∗[n,k,L] = max

b∈[1/L,L]
�̂[n,k]

(
b,

1

b

)
(C1)

and the estimators of λμ, μ ∈M, by

λ̃[n,k]
μ

=
∫

(0,∞)
�̃[n,k](b, 1/b) dμ(b)∫

(0,∞)
�(b, 1/b) dμ(b)

= 1∫
(0,∞)

�(b, 1/b) dμ(b)

1

k

n∑
i=1

μ

([
nUi

k
,

k

nVi

])
, (C2)

λ̂[n,k]
μ

=
∫

(0,∞)
�̂[n,k](b, 1/b) dμ(b)∫

(0,∞)
�(b, 1/b) dμ(b)

= 1∫
(0,∞)

�(b, 1/b) dμ(b)

1

k

n∑
i=1

μ

([
nÛi

k
,

k

nV̂i

])
. (C3)

Since �̃[n,k] and �̂[n,k] are step functions, the estimators in (C1) can be computed by maximizing �̃[n,k]

and �̂[n,k] over a finite number of points in [1/L, L]2. The estimators in (C2) and (C3) can be computed
under the assumptions that μ([s, t]), 0 < s ≤ t < ∞, and the denominator

∫
(0,∞)

�(b, 1/b) dμ(b) can be
calculated analytically.

Asymptotic results for empirical tail copulas are derived under the following assumptions:

(1) �(·) = �(· ; C) �≡ 0;
(2) there exists a function A : R+ →R+ such that limt→∞ A(t) = 0 and that |�(u, v) −

tC(u/t, v/t)| = O (A(t)), t → ∞, locally uniformly for (u, v) ∈R
2
+;

(3) there exists a sequence k = k(n) ∈N such that k → ∞, k = o (n) and
√

kA (n/k) → 0; and
(4) the partial derivative Dj� exists and is continuous on {(x1, x2) ∈R

2
+:0 < xj < ∞} for j = 1, 2;

see Bücher and Dette (2013) and Bormann and Schienle (2020) for more details. Under these
assumptions, asymptotic results for the estimators in (C1), (C2) and (C3) can be derived as follows.

Theorem C.1 (Asymptotic normality for the MTCM). Suppose that the map b �→ �(b, 1/b) admits a
unique maximum attained at b∗ ∈ [1/L, L] for some L > 1. If Assumptions (1), (2) and (3) hold, then

√
k
(
λ̃∗[n,k,L] − λ∗(�)

)
d−→ N (0, τ̃�(b∗)), τ̃�(b∗) = �

(
b∗,

1

b∗

)
.

If, in addition, Assumption (4) is satisfied, then
√

k
(
λ̂∗[n,k,L] − λ∗(�)

)
d−→ N (0, τ̂�(b∗)), τ̂�(b∗) = Var

(
Ĝ�

(
b∗,

1

b∗

))
,

where the process Ĝ� is defined by

Ĝ�(u, v) = G̃�(u, v) − D1�(u, v)G̃�(u, ∞) − D2�(u, v)G̃�(∞, v), (C4)

with Dj�(u, v), j = 1, 2, being defined as 0 if u = 0 or v = 0, and with G̃� being a centered tight
continuous Gaussian random field with the covariance structure given by E[G̃�(u, v)G̃�(u′, v′)] =
�(u ∧ u′, v ∧ v′).
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Theorem C.2 (Asymptotic normality for μ-ATCMs). Suppose that the support of μ ∈M is contained
in [1/L, L] for some L > 1. If Assumptions (1), (2) and (3) hold, then

√
k
(
λ̃[n,k]

μ
− λμ(�)

)
d−→ N (0, σ̃ 2

μ
(�)),

where

σ̃ 2
μ
(�) =

∫
(0,∞)

∫
(0,∞)

�( min (b, b′), min (1/b, 1/b′)) dμ(b)dμ(b′)(∫
(0,∞)

�(b, 1/b) dμ(b)
)2 .

If, in addition, Assumption (4) is satisfied, then
√

k
(
λ̂[n,k]

μ
− λμ(�)

)
d−→ N (0, σ̂ 2

μ
(�)),

where

σ̂ 2
μ
(�) =

∫
(0,∞)

∫
(0,∞)

E[Ĝ�(b, 1/b)Ĝ�(b′, 1/b′)] dμ(b)dμ(b′)(∫
(0,∞)

�(b, 1/b) dμ(b)
)2 ,

where Ĝ is as defined in (C4).

Remark C.3. In Theorems C.1 and C.2, the estimators (C1), (C2) and (C3) are constructed based on
the restricted part of the tail copula

{
� (b, 1/b) : b ∈ [1/L, L

]}
. This restriction simplifies the technical

discussion in the proof of the above theorems, and more advanced analysis is left for future research.

Proofs of Theorems C.1 and C.2
Let B∞(R̄2

+) denote the space of all R-valued functions on R̄
2
+ which are locally uniformly bounded on

every compact subset of [0, ∞]2\{(0, 0)}. The set B∞(R̄2
+) is a complete metric space with the metric

d(f , g) =
∞∑

l=1

1 ∧ ||f − g||Tl

2l
, f , g ∈B∞(R̄2

+),

where Tl = [0, l]2 ∪ [0, l] × {∞} ∪ {∞} ∪ [0, l] and ||f ||Tl = supx∈Tl
|f (x)|; see Van der Vaart and Wellner

(1996, Chapter 1.6). Note that a sequence inB∞(R̄2
+) converges with respect to this metric if and only if it

converges uniformly on every Tl. Let� denote weak convergence in the sense of Hoffmann–Jørgensen;
see the aforementioned reference for details. Then, the following asymptotic results hold for empirical
tail copulas; see Bücher and Dette (2013, Lemma 2.1 and Theorem 2.2).

Proposition C.4. Suppose that Assumptions (1), (2) and (3) hold. Then, as n → ∞, we have that
√

k
(
�̃[n,k](u, v) − �(u, v)

)
� G̃�(u, v), (C5)

in B∞(R̄2
+), where G̃� is a centered tight continuous Gaussian random field with covariance structure

E[G̃�(u, v)G̃�(u′, v′)] = �(u ∧ u′, v ∧ v′).

Proposition C.5. Suppose that Assumptions (1), (2), (3) and (4) hold. Then, as n → ∞, we have that
√

k
(
�̂[n,k](u, v) − �(u, v)

)
� Ĝ�(u, v), (C6)

in B∞(R̄2
+), where Ĝ� is a centered tight continuous Gaussian random field represented by

Ĝ�(u, v) = G̃�(u, v) − D1�(u, v)G̃�(u, ∞) − D2�(u, v)G̃�(∞, v),

and Dj�(u, v), j = 1, 2, is defined as 0 if u = 0 or v = 0.
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By Van der Vaart and Wellner (1996, Theorem 1.6.1), the above weak convergence results hold in
the set of uniformly bounded functions l∞(TL) on TL = [0, L]2 ∪ [0, L] × {∞} ∪ {∞} × [0, L]. Therefore,
(C5) and (C6) hold in l∞([1/L, L]) with (u, v) ∈ [1/L, L]2 replaced by (b, 1/b), b ∈ [1/L, L], and the
domain of all the appearing functions is regarded as [1/L, L]; this statement is a consequence of the
continuous mapping theorem (Van der Vaart and Wellner 1996, Theorem 1.3.6) by taking g : l∞(TL) →
l∞([1/L, L]) as g(f ) = f (b, 1/b), b ∈ [1/L, L].

Now Theorem C.1 is derived directly from Propositions C.4 and C.5 and the extended Delta Method
of Cárcamo et al. (2020, Theorem 2.2) under the assumption that the unique maximizer b∗ of b →
�(b, 1/b) is in [1/L, L]. Namely, for λ̃∗[n,k,L], we have that

√
k
(
λ̃∗[n,k,L] − λ∗(�)

)
= √

k

(
max

b∈[1/L,L]
�̃[n,k]

(
b,

1

b

)
− max

b∈[1/L,L]
�

(
b,

1

b

))

d−→ sup

{
G̃�

(
b,

1

b

)
: b ∈

[
1

L
, L

]
such that �

(
b,

1

b

)
= �

(
b∗,

1

b∗

)}

= G̃�

(
b∗,

1

b∗

)
,

where the limit is obtained by Cárcamo et al. (2020, Corollary 2.3). The case of λ̂∗[n,k,L] is shown
analogously.

Next, the weak convergence results in Theorem C.2 hold directly by Propositions C.4 and C.5 and
the continuous mapping theorem. Namely, since the map φ[L] : l∞([1/L, L]) →R defined by

φ[L](f ) =
∫

(0,∞)
f (b) dμ(b)∫

(0,∞)
�(b, 1/b) dμ(b)

is linear, we have, for λ̃[n,k]
μ

, that
√

k
(
λ̃[n,k]

μ
− λμ(�)

)
= √

k
(
λ̃[n,k]

μ
− λμ(�)

)

= 1∫
(0,∞)

�(b, 1/b) dμ(b)

∫
(0,∞)

√
k

(
�̃[n,k]

(
b,

1

b

)
− �

(
b,

1

b

))
dμ(b)

d−→ 1∫
(0,∞)

�(b, 1/b) dμ(b)

∫
(0,∞)

G̃�

(
b,

1

b

)
dμ(b).

By Van der Vaart and Wellner (1996, Lemma 3.9.8), the limit is normally distributed with mean∫
(0,∞)

E

[
G̃�

(
b, 1

b

)]
dμ(b)∫

(0,∞)
�(b, 1/b) dμ(b)

= 0

and variance ∫
(0,∞)

∫
(0,∞)

E

[
G̃�

(
b, 1

b

)
G̃�

(
b′, 1

b
′
)]

dμ(b) dμ(b′)(∫
(0,∞)

�(b, 1/b) dμ(b)
)2

=
∫

(0,∞)

∫
(0,∞)

�
(

min (b, b′), min
(

1
b
, 1

b
′
))

dμ(b) dμ(b′)(∫
(0,∞)

�(b, 1/b) dμ(b)
)2 .

The case of λ̂[n,k]
μ

is shown analogously.
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