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Item response theory scoring based on summed scores is employed frequently in the practice of edu-
cational and psychological measurement. Lord and Wingersky (Appl Psychol Meas 8(4):453–461, 1984)
proposed a recursive algorithm to compute the summed score likelihood. Cai (Psychometrika 80(2):535–
559, 2015) extended the original Lord–Wingersky algorithm to the case of two-tier multidimensional item
factor models and called it Lord–Wingersky algorithm Version 2.0. The 2.0 algorithm utilizes dimension
reduction to efficiently compute summed score likelihoods associated with the general dimensions in the
model. The output of the algorithm is useful for various purposes, for example, scoring, scale alignment,
and model fit checking. In the research reported here, a further extension to the Lord–Wingersky algorithm
2.0 is proposed. The new algorithm, which we call Lord–Wingersky algorithm Version 2.5, yields the
summed score likelihoods for all latent variables in the model conditional on observed score combinations.
The proposed algorithm is illustrated with empirical data for three potential application areas: (a) describ-
ing achievement growth using score combinations across adjacent grades, (b) identification of noteworthy
subscores for reporting, and (c) detection of aberrant responses.
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1. Introduction

Generalizing the seminal Lord–Wingersky (1984) algorithm to other settings has been a reg-
ular topic in item response theory (IRT) research since its initial publication more than 35 years
ago. Alsowell known in the Raschmodeling community (Andersen, 1972; Gustafsson, 1980), this
simple recursive algorithm’s wide-reaching impact in psychometrics is impressive to behold. For
example, Hanson (1994), Thissen et al. (1995), as well as vonDavier andRost (1995), were among
the first to expand the algorithm to polytomous IRT models. Chen and Thissen (1999) derived
an item calibration algorithm based on summed scores. Thissen and Wainer’s (2001) influential
text on test scoring presented extensive methods for handling mixed-format tests, including an
approach to handle score combinations (Rosa et al., 2001) that heavily influenced our thinking in
the study reported here. Orlando et al. (2000) applied the Lord–Wingersky algorithm to illustrate
summed score-based test linking, another area consistently of interest to psychometricians (e.g.,
Zeng &Kolen, 1995; Thissen et al., 2011). Orlando and Thissen (2000) proposed a solution to the
item fit testing problem with a slight alteration of the original Lord–Wingersky algorithm. Li and
Cai (2018) further extended the algorithm to create more accurate distributional approximations
for test statistics sensitive to latent variable distributional assumptions. Stucky (2009), and inde-
pendently Kim (2013), developed the weighted version of the algorithm wherein the item scores
can take non-integer values.
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Cai (2015) extended the algorithm to the case of hierarchical item factor models, specifically
the two-tier model (Cai, 2010b). He named it Lord–Wingersky algorithm 2.0. In brief, a two-tier
model consists of M primary latent dimensions (η) and N specific latent dimensions (ξn , n =
1, . . . N ). The specific dimensions are independent conditional on the primary latent dimensions.
Each item can load on at most one specific latent dimension, creating N non-overlapping item
clusters. The item bifactor model (Gibbons & Hedeker, 1992), a member of the two-tier family
(where M = 1), has experienced particular theoretical and empirical success recently (see Cai et
al., 2011; Reise et al., 2007, 2018; Reise, 2012). In addition, the standard correlated-traits MIRT
model (Reckase, 2009) and the testlet response theory model (Wainer et al., 2007) are constrained
versions of the two-tier model. The two-tier structure permits the implementation of a dimension
reduction technique (Rijmen, 2009) for computationally efficient maximum marginal likelihood
parameter estimation with quadrature.

The dominating insight of Cai (2015) is that the non-overlapping item clusters are exchange-
able conditional on the primary latent dimensions. In the original Lord–Wingersky algorithm,
the items and their item scores are the basic building blocks. In the Lord–Wingersky algorithm
2.0, item clusters take the place of items and become the fungible units of model building and
computation. Once again, dimension reduction can efficiently handle the numerical integration
with quadrature. The algorithm yields summed score to scaled score conversions for the pri-
mary dimension(s), along with other associated statistical indices, with (M + 1)-fold integration
regardless of the total number of factors in the model.

The present study extends the Lord–Wingersky algorithm 2.0. The new algorithm (Lord–
Wingersky algorithm 2.5) uses patterns of item cluster summed scores instead of the overall
summed score in Lord–Wingersky algorithm 2.0. Specifically, the item cluster summed score
patterns are combinations of the observed score from one cluster and the summed score of the
rest of the item clusters. It reduces to cluster score combinations when there are only two item
clusters. It is worth noting here that the idea of using observed scores patterns to score individuals
in unidimensional IRT is not new (e.g., Rosa et al., 2001). The algorithm proposed in this study
generalizes this idea to scenarios where the underlying IRT models are hierarchical item factor
models. Lord–Wingersky algorithm 2.5 leads to multidimensional posteriors of the primary latent
dimension(s) with each specific latent dimension. The posterior probability of each observed score
combination is a natural by-product. We illustrate applications of the proposed algorithm with
three examples.

In the first example, we fit a longitudinal IRT model and use the Lord–Wingersky algorithm
2.5 to enhance the growth interpretation of score scales across adjacent grades in an operational
large-scale English language proficiency assessment program, all without having to set a “vertical”
scale. Second, the bivariate posteriors and score combination probabilities are used to facilitate
the decision-making on subscore reporting. Finally, we construct posterior high-density region
(HDR) for observed score combinations to help detect aberrant responses.

2. Lord–Wingersky Algorithm 2.0

We briefly review Cai’s (2015) Lord–Wingersky algorithm 2.0 to establish notation.
With no loss of generality, consider a bifactor model with N specific latent dimensions,

wherein each ξn is measured by In dichotomously scored items, and n = 1, . . . , N . Let the
prior (population) distribution of the general dimension η be denoted h(η). To avoid notational
clutter, instead of assuming conditional independence of the prior distributions of the specific
dimensions g(ξn|η) on η, we will assume, again with no loss of generality, fully independent
specific dimensions. In other words, we shall write g(ξn) as the prior of ξn . Define Ti (1|η, ξn) as
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the item response function of the i th item (i = 1, . . . In) in cluster n, such that

Ti (1|η, ξn) = 1

1 + exp
[− (

ci + a0
i η + an

i ξn
)] (1)

where a0
i and an

i are the primary latent dimension and specific latent dimension item slopes,
respectively, and ci is the item intercept. The item parameters are assumed to be known and fixed,
usually from a calibration study.

2.1. Stage I

In the first stage of Lord–Wingersky algorithm 2.0, for each item cluster, the within-cluster
summed score likelihoods are accumulated over the latent space spanned by the primary latent
dimension and the specific latent dimension. Let Pn

i (x |η, ξn) denote the likelihood of summed
score x after including the i th item in item cluster n in the recursive computation to be described
below. Consider the nth item cluster, the algorithm initializes with the first item by starting the
likelihood of summed score 0 Pn

1 (0|η, ξn) at the item response probabilities T1 (0|η, ξn), and
Pn
1 (1|η, ξn) = T1 (1|η, ξn). Then, the second item is added, resulting in three available summed

scores: 0, 1, and 2. The corresponding summed score likelihoods after adding item 2 are:

Pn
2 (0|η, ξn) = Pn

1 (0|η, ξn) T2 (0|η, ξn) ,

Pn
2 (1|η, ξn) = Pn

1 (1|η, ξn) T2 (0|η, ξn) + Pn
1 (0|η, ξn) T2 (1|η, ξn)

Pn
2 (2|η, ξn) = Pn

1 (1|η, ξn) T2 (1|η, ξn) . (2)

After this, each of the remaining items in item cluster n is included in the computation to form
the desired within-cluster summed score likelihoods. Specifically, in step i(2 < i ≤ In) of the
recursive algorithm, the i th item is added as follows:

Pn
i (0|η, ξn) = Pn

i−1 (0|η, ξn) Ti (0|η, ξn)

Pn
i (x |η, ξn) = Pn

i−1 (x |η, ξn) Ti (0|η, ξn) + Pn
i−1 (x − 1|η, ξn) Ti (1|η, ξn)

Pn
i (i |η, ξn) = Pn

i (i − 1|η, ξn) Ti (1|η, ξn) . (3)

The middle equation in (3) is repeated over values of x between 1 and i − 1.
To avoid notational clutter, let Pn (sn|η,ξn) = Pn

In
(sn|η, ξn) denote the likelihood associated

with the within-cluster summed score sn = 0, . . . , In , after all In items in cluster n have been
added according to the recursions defined in Eq. (3). At this point, an extra step is performed.
The specific latent dimension, ξn , is integrated out, leaving the summed score likelihoods solely
a function of the primary latent dimension, η. For simplicity, we can approximate this integral
with rectangular quadrature:

Pn (sn|η) =
∫

Pn (sn|η,ξn)g (ξn) dξn ≈
Q∑

q=1

Pn
(
sn|η,Yq

)
Wn(Yq), (4)

where Q is the number of quadrature points, Yq the qth quadrature point, and Wn(Yq) is the
corresponding quadrature weight, computed as normalized ordinates of g (ξn).
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2.2. Stage II

At the end of the first stage, available to us are N sets of within-cluster summed score
likelihoods {Pn (sn|η) ; sn = 0, . . . , In}, for n = 1, . . . , N . These quantities depend only on the
primary latent dimension η. Each item cluster can now be treated as if it were a polytomous item
with In + 1 categories, and the “item scores” range from 0 to In .

Denote Ln(s|η) as the likelihood of summed score s after adding item cluster n to the
existing summed score likelihoods in the recursive computation described below. Let Sn be the
maximum obtainable summed score after adding item cluster n. In our context when the items
are all dichotomous, Sn = ∑n

j=1 I j . Obviously SN would be the maximum summed score. At
this point, the standard Lord–Wingersky algorithm for polytomous items can be applied.

Let L1 (s1|η) = P1 (s1|η) ,∀s1 = 0, . . . , I1, for the purpose of initialization. Then in step
n(2 < n ≤ N ), the likelihoods Pn (sn|η) from item cluster n are added to the likelihoods from
previous step to form the desired summed score likelihoods. For each possible summed score
0 ≤ s ≤ Sn , we let

Ln (s|η) =
Sn−1∑

sn−1=0

In∑

sn=0

Ln−1 (sn−1|η) Pn (sn|η)1s (sn−1 + sn) , (5)

where 1s(sn−1 + sn) is an indicator function and takes the value of 1 if sn−1 + sn = s and 0
otherwise. Equation (5) essentially involves the booking keeping for a pair of scores sn−1 (from
all item clusters added previously) and sn (from the current item cluster) that adds up to the
summed score s. When all N item clusters are included L N (s|η)—or simply L(s|η) to reduce
clutter—contains the summed score likelihoods for the primary dimensions for 0 ≤ s ≤ SN .

2.3. Posterior Summaries

Recall that h(η) is the prior distribution of the primary latent dimension. The normalized
posterior of η associated with summed score s is

p (η|s) = L (s|η) h (η)

p (s)
(6)

where p (s) is the (marginal) probability of summed score s:

p (s) =
∫

L (s|η) h(η)dη ≈
Q∑

q=1

L
(
s|Yq

)
W

(
Yq

)
, (7)

and Q rectangular quadrature points Xq are used to approximate the posterior, with W
(
Xq

)
the

normalized ordinates of h(η). The posterior mean E (η|s) and posterior variance V ar (η|s) =
E

(
η2|s) − E2 (η|s) are useful summaries, where

E (η|s) = 1

p (s)

∫
ηL (s|η) h (η)dη ≈ 1

p (s)

Q∑

q=1

Xq L
(
s|Xq

)
W

(
Xq

)
,

E
(
η2|s

)
= 1

p (s)

∫
η2L (s|η) h (η)dη ≈ 1

p (s)

Q∑

q=1

X2
q L

(
s|Xq

)
W

(
Xq

)
. (8)
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A normal approximation of the posterior based on the posterior mean and variance often works
quite well even when the number of items is moderate. The posterior mean can be used as the
summed score-based IRT scaled score estimate and the posterior variance as the error variance
estimate for the scaled score. The marginal probability p (s) itself can be useful either as a model-
based (pre-operational) estimated of the expected summed score group probability or as an aid in
IRT model fit checking.

3. Lord–Wingersky Algorithm 2.5

3.1. General Approach

Recall the bifactor model with N specific latent dimensions defined in Sect. 2. Each of the N
item clusters includes In items. The Lord–Wingersky algorithm 2.0 is focused on obtaining the
posterior distribution of the primary dimension η, conditioned on the overall summed score. The
specific latent dimensions are integrated out at the end of Stage I (see Sect. 2.1). In the proposed
algorithm, we obtain bivariate posteriors of the primary latent dimension η and the specific latent
dimension ξn .

Instead of the overall summed score, each bivariate posterior is conditioned on a pair of scores.
We continue to use sn to denote the summed scores from item cluster n, where sn = 0, . . . , In ,
and introduce here new notation for the rest score s(n), i.e., the summed score from all clusters
except item cluster n. Let S(n) = ∑N

j=1, j �=n I j be the maximum summed score from the rest of
the item clusters so s(n) = 0, . . . , S(n). Cai (2015) in fact alluded to the possibility of using the
summed vs. rest score combination (sn, s(n)), but stopped shy of actually computing the bivariate
posterior, as we now outline below.

3.2. Stage I

In the first stage, for each item cluster, the within-cluster summed score likelihoods are
accumulated over the space spanned by η and ξn, n = 1, . . . N , just as in Lord–Wingersky
algorithm2.0.At the end of this stage,we retain and store the likelihoods for the primary dimension
{Pn (sn|η) ;sn = 0, . . . , In} ,∀n = 1, . . . , N . The critical added requirement is that we also retain
and store all the within-cluster summed score likelihoods {Pn (sn|η, ξn) ; sn = 0, . . . , In} ,∀n =
1, . . . , N . In a quadrature representation of the likelihoods, at most Q × Q floating point values
are stored per cluster, per score, if Q quadrature points per dimension are used.

3.3. Stage II

We will now cycle through the item clusters to compute the desired bivariate posteriors. In
general, for item cluster n, we wish to construct bivariate posteriors for η and ξn . Recall that the
other item clusters do not depend on ξn , so we proceed by treating the cluster summed score
likelihood values P1 (s1|η) , . . . , Pn−1 (sn−1|η) , Pn+1 (sn+1|η) , . . . , PN (sN |η) as though they
were polytomous items that depend on η. The standard Lord–Wingersky algorithm can now be
applied readily to produce itemcluster n’s rest score likelihoods Rn

(
s(n)|η

)
, for s(n) = 0, . . . , S(n).

In other words, the recursions work in exactly the same manner as Sect. 2.2, except that we omit
the likelihood contributions from Pn (sn|η).

The rest score likelihoods Rn
(
s(n)|η

)
are then combined with the summed score likelihoods

from item cluster n, Pn (sn|η, ξn), s = 0, . . . , In , as well as the prior distributions for η and ξn , to
yield the bivariate posterior distributions of η and ξn associated with the summed vs. rest score
combination (sn, s(n)):

Downloaded from https://www.cambridge.org/core. 09 Jan 2025 at 03:55:01, subject to the Cambridge Core terms of use.

https://www.cambridge.org/core


978 PSYCHOMETRIKA

Table 1.
Item parameters of the six-item scale

Item a0 a1 a2 a3 c

1 1.2 1.0 − 1.0
2 1.2 1.0 − .6
3 1.0 .8 − .2
4 1.0 .8 .2
5 .8 1.2 .6
6 .8 1.2 1.0

p
(
η, ξn|sn, s(n)

) = Pn (sn|η, ξn) Rn
(
s(n)|η

)
g (ξn) h (η)

p
(
sn, s(n)

) , (9)

where the marginal probability p
(
sn, s(n)

)
is

p
(
sn, s(n)

) =
∫∫

Pn (sn|η, ξn) Rn
(
s(n)|η

)
g (ξn) h (η) dξndη. (10)

Again, the posterior above can be easily approximated with rectangular quadrature:

p
(
sn, s(n)

) ≈
Q∑

r=1

Q∑

q=1

Pn
(
sn|Xr , Yq

)
Rn

(
s(n)|Xr

)
Wn

(
Yq

)
W (Xr ). (11)

Aside from the marginal probability in Eq. (10), other useful summaries of the posterior distribu-
tion include themean vectorμ the covariancematrix�, which facilitate a bivariate normal approx-
imation to the posterior that can be quite effective in practice, as we shall demonstrate later. The
marginal posterior means μ0 = E

(
η|sn, s(n)

)
and μn = E

(
ξn|sn, s(n)

)
, and the error variances

and covariance σ00 = V ar
(
η|sn, s(n)

)
, σ0n = Cov

(
η, ξn|sn, s(n)

)
, and σnn = V ar

(
ξn|sn, s(n)

)

provide reasonable point estimates and error (co)variance estimates for all the latent variables in
the model. These means and covariance matrix elements can be approximated with quadrature
along similar lines as Eq. (11).

3.4. An Illustrative Example

Consider the same hypothetical six-item scale with bifactor structure as discussed in Cai
(2015). These six dichotomous items form three item clusters, each consisting of two items. Priors
of all four latent dimensions (one primary latent dimension and three specific latent dimensions)
are assumed independent and standard normal. Table 1 shows the item parameters and the factor
pattern.

For each dimension, Q = 5 equally spaced quadrature points at −2, −1, 0, 1, and 2 are used
for demonstrate purposes only (practical usage of the algorithm requires much larger values of
Q). Thus, a 5 × 5 grid is formed as the direct product of η and each of the three specific latent
dimensions when appropriate. Summed score likelihoods are evaluated over these grid points.

Tables 2 and 3 show the first stage of the Lord–Wingersky algorithm 2.5 to compute the
bivariate posterior of η and ξ1. In Table 2, the within-cluster summed score likelihoods of the three
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Table 2.
Accumulating within-in summed score likelihoods for item cluster 1, 2, and 3

Quadrature grid for (η, ξ1)

Initializing with item 1 in cluster 1, having two available summed scores
η −2 −2 −2 · · · 0 · · · 2 2 2
ξ1 −2 −1 0 · · · 0 · · · 0 1 2
P1
1 (0|η, ξ1) = T1 (0|η, ξ1) .996 .988 .968 · · · .731 · · · .198 .083 .032

P1
1 (1|η, ξ1) = T1 (1|η, ξ1) .004 .012 .032 · · · .269 · · · .802 .917 .968

Adding item 2 to the computation
P1
2 (0|η, ξ1) =
P1
1 (0|η, ξ1) T2 (0|η, ξ1)

.989 .970 .922 · · · .472 · · · .028 .005 .001

P1
2 (1|η, ξ1) =
P1
1 (0|η, ξ1) T2 (1|η, ξ1) +

P1
1 (1|η, ξ1) T2 (0|η, ξ1)

.011 .030 .077 · · · .433 · · · .284 .131 .053

P1
2 (2|η, ξ1) =
P1
1 (1|η, ξ1) T2 (1|η, ξ1)

.000 .000 .002 · · · .095 · · · .688 .864 .947

Quadrature grid for (η, ξ2)

Initializing with item 1 in cluster 2, having two available summed scores
η −2 −2 −2 · · · 0 · · · 2 2 2
ξ2 −2 −1 0 · · · 0 · · · 0 1 2
P2
1 (0|η, ξ2) = T1 (0|η, ξ2) .978 .953 .900 · · · .550 · · · .142 .069 .032

P2
1 (1|η, ξ2) = T1 (1|η, ξ2) .022 .047 .100 · · · .450 · · · .858 .931 .968

Adding item 2 to the computation
P2
2 (0|η, ξ2) =
P2
1 (0|η, ξ2) T2 (0|η, ξ2)

.947 .887 .773 · · · .248 · · · .014 .003 .001

P2
2 (1|η, ξ2) =
P2
1 (0|η, ξ2) T2 (1|η, ξ2) +

P2
1 (1|η, ξ2) T2 (0|η, ξ2)

.053 .110 .213 · · · .505 · · · .213 .110 .053

P2
2 (2|η, ξ2) =
P2
1 (1|η, ξ2) T2 (1|η, ξ2)

.001 .003 .014 · · · .248 · · · .773 .887 .947

Quadrature grid for (η, ξ3)

Initializing with item 1 in cluster 3, having two available summed scores
η −2 −2 −2 · · · 0 · · · 2 2 2
ξ3 −2 −1 0 · · · 0 · · · 0 1 2
P3
1 (0|η, ξ3) = T1 (0|η, ξ3) .968 .900 .731 · · · .354 · · · .100 .032 .010

P3
1 (1|η, ξ3) = T1 (1|η, ξ3) .032 .100 .269 · · · .646 · · · .900 .968 .990

Adding item 2 to the computation
P3
2 (0|η, ξ3) =
P3
1 (0|η, ξ3) T2 (0|η, ξ3)

.922 .773 .472 · · · .095 · · · .007 .001 .000

P3
2 (1|η, ξ3) =
P3
1 (0|η, ξ3) T2 (1|η, ξ3) +

P3
1 (1|η, ξ3) T2 (0|η, ξ3)

.077 .213 .433 · · · .433 · · · .155 .053 .017

P3
2 (2|η, ξ3) =
P3
1 (1|η, ξ3) T2 (1|η, ξ3)

.002 .014 .095 · · · .472 · · · .838 .947 .983
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Table 3.
Integrating the specific dimensions ξ2 and ξ3 out of the summed score likelihoods

Quadrature grid for (η, ξ2)

η −2 −2 −2 . . . 0 . . . 2 2 2
ξ2 −2 −1 0 . . . 0 . . . 0 1 2
W2(ξ2) .054 .244 .403 . . . .403 . . . .403 .244 .054

Multiplying cluster 2’s summed score likelihoods by W2 (ξ2)

P2 (0|η, ξ2) W2 (ξ2) = P2
2 (0|η, ξ2) W2 (ξ2) 052 .217 .311 . . . .100 . . . .006 .001 .000

P2 (1|η, ξ2) W2 (ξ2) = P2
2 (1|η, ξ2) W2 (ξ2) .003 .027 .086 . . . .203 . . . .086 .027 .003

P2 (2|η, ξ2) W2 (ξ2) = P2
2 (2|η, ξ2) W2 (ξ2) .000 .001 .006 . . . .100 . . . .311 .217 .052

Quadrature grid for η

−2 −1 0 1 2

Leaving cluster’2 summed score as a function of η, by integrating out ξ2 (summing over Xq )

P2 (0|η) = ∑

ξ2

P2 (0|η, ξ2) W2 (ξ2) .742 .519 .277 .106 .028

P2 (1|η) = ∑

ξ2

P2 (0|η, ξ2) W2 (ξ2) .230 .375 .446 .375 .230

P2 (2|η) = ∑

ξ2

P2 (0|η, ξ2) W2 (ξ2) .028 .106 .277 .519 .742

Quadrature grid for (η, ξ3)

η −2 −2 −2 · · · 0 · · · 2 2 2
ξ3 −2 −1 0 · · · 0 · · · 0 1 2
W3(ξ3) .054 .244 .403 · · · .403 · · · .403 .244 .054

Multiplying cluster 3’s summed score likelihoods by W3(ξ3)

P3 (0|η, ξ3) W3(ξ3) = P3
2 (0|η, ξ3) W3(ξ3) .050 .189 .190 · · · .038 · · · .003 .000 .000

P3 (1|η, ξ3) W3(ξ3) = P3
2 (1|η, ξ3) W3(ξ3) .004 .052 .174 · · · .174 · · · .062 .013 .001

P3 (2|η, ξ3) W3(ξ3) = P3
2 (2|η, ξ3) W3(ξ3) .000 .003 .038 · · · .190 · · · .337 .231 .054

Quadrature grid for η

−2 −1 0 1 2

Leaving cluster’3 summed score as a function of η, by integrating out ξ3 (summing over ξ3)

P3 (0|η) = ∑

ξ3

P3 (0|η, ξ3) W3(ξ3) .469 .302 .166 .077 .029

P3 (1|η) = ∑

ξ3

P3 (1|η, ξ3) W3(ξ3) .364 .396 .364 .285 .192

P3 (2|η) = ∑

ξ3

P3 (2|η, ξ3) W3(ξ3) .166 .302 .469 .638 .779

item clusters are computed. In Table 3, specific dimensions ξ2 and ξ3 are integrated out, leaving
the observed summed score of item cluster 2 and 3 as a function of η. Table 4 shows the second
stage of the algorithm, where item clusters 2 and 3 are treated as polytomous items (both with 3
categories), while the rest score likelihoods for item cluster 1 are calculated. Table 5 shows how the
bivariate posteriors associated with each summed vs. rest score pattern are computed. Summaries
of the bivariate normal approximations of posteriors associated with the score combinations are
shown in Table 6.

Figure 1 shows the equal probability contours of the bivariate normal approximated posteriors
for five score combinations (with the mean vectors and covariance matrices in Table 6). Each
contour includes 25% of the volume under the posterior density. The five score combinations
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Table 4.
Forming the rest score likelihoods (summed score likelihoods for item clusters 2 and 3)

Quadrature Grid for η

−2 −1 0 1 2

Initializing with cluster 2, having 3 available summed scores
L2 (0|η) = P2(0|η) .742 .519 .277 .106 .028
L2 (1|η) = P2(1|η) .230 .375 .446 .375 .230
L2 (2|η) = P2(2|η) .028 .106 .277 .519 .742
Adding cluster 3’ summed scores to item cluster 1’s rest score likelihoods
R1 (0|η) = L3 (0|η) = L2(0|η)P3(0|η) .348 .157 .046 .008 .001
R1 (1|η) = L3 (1|η) = L2 (0|η) P3 (1|η) + L2 (1|η) P3 (0|η) .378 .319 .175 .059 .012
R1 (2|η) = L3 (2|η) = L2 (0|η) P3 (2|η) +L2 (1|η) P3 (1|η) + L2(2|η)P3(0|η) .220 .337 .339 .214 .088
R1 (3|η) = L3 (3|η) = L2 (1|η) P3 (2|η) + L2(2|η)P3(1|η) .049 .155 .310 .387 .321
R1 (4|η) = L3 (4|η) = L2(2|η)P3(2|η) .005 .032 .130 .331 .578

Table 5.
Forming posteriors for score combinations related to item cluster 1

Quadrature grid for (η, ξ1)

η −2 −2 −2 · · · 0 · · · 2 2 2
ξ1 −2 −1 0 · · · 0 · · · 0 1 2
W (η) .054 .054 .054 · · · .403 · · · .054 .054 .054

W1(ξ1) .054 .244 .403 · · · .403 · · · .403 .244 .054
p (0, 0|η, ξ1) ∝ P1(0|η, ξ1)R1 (0|η) W (η)W1(ξ1) .0010 .0045 .0070 · · · .0035 · · · .0000 .0000 .0000
p (1, 0|η, ξ1) ∝ P1(1|η, ξ1)R1 (0|η) W (η)W1(ξ1) .0000 .0001 .0006 · · · .0032 · · · .0000 .0000 .0000
p (2, 0|η, ξ1) ∝ P1(2|η, ξ1)R1 (0|η) W (η)W1(ξ1) .0000 .0000 .0000 · · · .0007 · · · .0000 .0000 .0000
p (0, 1|η, ξ1) ∝ P1(0|η, ξ1)R1 (1|η) W (η)W1(ξ1) .0011 .0049 .0077 · · · .0134 · · · .0000 .0000 .0000
p (1, 1|η, ξ1) ∝ P1(1|η, ξ1)R1 (1|η) W (η)W1(ξ1) .0000 .0001 .0006 · · · .0123 · · · .0001 .0000 .0000
p (2, 1|η, ξ1) ∝ P1(2|η, ξ1)R1 (1|η) W (η)W1(ξ1) .0000 .0000 .0000 · · · .0027 · · · .0002 .0001 .0000
p (0, 2|η, ξ1) ∝ P1(0|η, ξ1)R1 (2|η) W (η)W1(ξ1) .0006 .0028 .0045 · · · .0259 · · · .0001 .0000 .0000
p (1, 2|η, ξ1) ∝ P1(1|η, ξ1)R1 (2|η) W (η)W1(ξ1) .0000 .0001 .0004 · · · .0237 · · · .0005 .0002 .0000
p (2, 2|η, ξ1) ∝ P1(2|η, ξ1)R1 (2|η) W (η)W1(ξ1) .0000 .0000 .0000 · · · .0052 · · · .0013 .0010 .0002
p (0, 3|η, ξ1) ∝ P1(0|η, ξ1)R1 (3|η) W (η)W1(ξ1) .0001 .0006 .0010 · · · .0237 · · · .0002 .0000 .0000
p (1, 3|η, ξ1) ∝ P1(1|η, ξ1)R1 (3|η) W (η)W1(ξ1) .0000 .0000 .0001 · · · .0218 · · · .0020 .0006 .0001
p (2, 3|η, ξ1) ∝ P1(2|η, ξ1)R1 (3|η) W (η)W1(ξ1) .0000 .0000 .0000 · · · .0048 · · · .0049 .0037 .0009
p (0, 4|η, ξ1) ∝ P1(0|η, ξ1)R1 (4|η) W (η)W1(ξ1) .0000 .0001 .0001 · · · .0100 · · · .0004 .0000 .0000
p (1, 4|η, ξ1) ∝ P1(1|η, ξ1)R1 (4|η) W (η)W1(ξ1) .0000 .0000 .0000 · · · .0091 · · · .0036 .0010 .0001
p (2, 4|η, ξ1) ∝ P1(2|η, ξ1)R1 (4|η) W (η)W1(ξ1) .0000 .0000 .0000 · · · .0020 · · · .0087 .0066 .0016

(
s1, s(1)

)
are (0, 0), (0, 2),(0,4),(1,2) and (2,2), and the corresponding posterior means of ξ1 are:

− .232, − .370, − .573, .212, and .732, and those of η are: −1.136, − .477, .302, .025, and .492.
Examining the means and variances reveals some interesting patterns. First, all the posterior

covariances between the primary and specific dimension are negative, even when they are a priori
uncorrelated. Second, when the rest score remains the same (2), the specific dimension score
increases from − .370 to .212 and .732 as the summed score for item cluster 1 increases from 0
to 1 and 2, which is to be expected. Third, because the total summed score for the combination
(0,4) is 4, and for the combination (1, 2) is 3, we intuit that the second combination should imply
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Table 6.
Summaries of posteriors associated with each score combination

Prob. μ0 σ00 μ1 σ11 σ01

s1= 0,s(1)= 0 .054 − 1.136 .488 − .232 .815 − .091
s1= 1,s(1)= 0 .019 − .640 .528 .413 .756 − .148
s1= 2,s(1)= 0 .005 − .168 .513 .930 .640 − .150
s1= 0,s(1)= 1 .111 − .812 .540 − .296 .796 − .113
s1= 1,s(1)= 1 .053 − .304 .533 .315 .754 − .162
s1= 2,s(1)= 1 .019 .162 .519 .832 .664 − .156
s1= 0,s(1)= 2 .146 − .477 .560 − .370 .775 − .131
s1= 1,s(1)= 2 .096 .025 .536 .212 .753 − .172
s1= 2,s(1)= 2 .046 .492 .527 .732 .688 − .159
s1= 0,s(1)= 3 .110 − .091 .552 − .466 .750 − .144
s1= 1,s(1)= 3 .101 .392 .531 .092 .752 − .177
s1= 2,s(1)= 3 .067 .850 .511 .624 .711 − .151
s1= 0,s(1)= 4 .050 .302 .545 − .573 .725 − .155
s1= 1,s(1)= 4 .064 .771 .519 − .036 .751 − .175
s1= 2,s(1)= 4 .059 1.205 .456 .521 .731 − .131

a lower primary dimensional score (.302 vs. .025), as expected. Fourth, holding item cluster 1
score constant (0), the primary dimension score is increasing (from−1.136 to− .477 and to .302)
as the rest score moves from 0 to 1 and 2, again as expected. Fifth, the posterior means of the
specific dimension, on the other hand, decreases from− .232, to− .370, and ultimately to− .573,
consistent with the negative posterior correlations between the primary and specific dimensions.
In this case, the posterior variance shrinks from .815 to .775 to .725, indicating increasing certainty
in the specific dimension score. Finally, the posterior variance for the general dimension is .536
for the score combination (1, 2). This is slightly smaller than the reported posterior variance (.55)
of the general dimension in Cai (2015) for same total score (3), because the latter variance is
conditional on the total summed score alone, a further reduction of the observed data.

3.5. The More General Case

The algorithm generalizes naturally when the number of general dimensions exceeds 1 (M >

1). In this case, the single set of rectangular quadrature points Yq that cover the latent variable
space of η becomes a direct product of M sets of quadrature points. The marginal posterior
means μ0 = E

(
η|sn, s(n)

)
is now a M × 1 vector, the primary dimension error covariance matrix

�00 = V ar
(
η|sn, s(n)

)
is M ×M , and the covariance terms in σ 0n = Cov

(
η, ξn|sn, s(n)

)
become

a M × 1 vector.
It is worth noting if there are more than two item clusters, the estimates of η will change

depending on which item cluster is treated as the focal cluster (e.g., cluster 1 vs. the rest, or cluster
2 vs. the rest, etc.). This phenomenon is analogous to the difference between response pattern-
based scaled scores and summed scores-based scaled scores in unidimensional IRT models that
do not assume equal item slope parameters. Items with varying slope parameters are not equally
discriminating, and different response patterns with the same summed score will necessarily lead
to different scaled score estimates. This is well understood. In hierarchical item factor models,
item clusters take the place of items. The item clusters may have different difficulty and discrim-
inability as far as η is concerned, and therefore different ways of decomposing the total summed
score will lead to different η estimates. For a reader whose only concern is scoring for η, Cai’s
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Figure 1.
Normal approximations to the posteriors of η and ξ1 for five score combinations

(2015) algorithm may be simpler and more easily interpretable, though of course, cluster score
combinations do condition on varied patterns of responses and contain more information than the
total score.

4. Illustrative Applications of Lord–Wingersky Algorithm 2.5

4.1. Growth Interpretation of Observed Score Combinations

ELPA21 is a multi-state assessment program that provides measures of English language pro-
ficiency of English Learners (ELs) in K-12 educational systems in the participating states. It mea-
sures ELs’ proficiencies in four language domains—reading, listening, writing, and speaking—
from kindergarten to high school (i.e., kindergarten, grade 1, grade band 2–3, grade band 4–5,
grade band 6–8, and grade band 9–12). Cut scores were established from standard setting studies
in each domain and grade band so that students are classified as emerging, progressing, or profi-
cient. Parameters of items in tests of different grade bands were calibrated separately (CRESST,
2017). Thus, the latent ability scales of two adjacent grade bands are different and the scale scores
of tests of different grade bands cannot be compared directly.

A convenient and transparent way to report students’ growth is desired, but ELPA21 took the
position that vertical scaling, a technique popular in statewide accountability testing, should not
employed. The major reason for the choice was that language learning and proficiency develop-
ment change rapidly over time, especially in the early stage (e.g., PK to 2), potentially shifting
the construct being measured considerably. Measures of proficiency such as ELPA21 test scores
probably should not be compared directly (or forced on the same scale) for a PK English Learner
vs. an English Learner in upper elementary. Hansen andMonroe (2018) provide additional discus-
sions of this topic. Here, we explore the possible use of observed score combinations to describe
student growth through the application of Lord–Wingersky algorithm 2.5.

Consider two fixed-form tests of in adjacent grade bands—one in the lower-grade band and
one in the upper-grade band. The example here is the listening tests from grade bands 4–5 and 6–8.
The lower-grade band test consists of 24 dichotomous items, and upper-grade band test includes 30
dichotomous items. A random sample of 300 students who took both tests was used to estimate
the population distribution, while item parameters were held at the pre-calibrated values (see
Table 7). Items in each test form are thought to load on either the lower- or upper-grade band
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Figure 2.
MIRT model to aid ELPA21 growth score interpretation

listening proficiency latent variables, depending on which form they come from. The two latent
variables are correlated, resulting in a classical correlated-traitsMIRTmodel for longitudinal data.
The estimated population means of the lower- and upper-grade band latent proficiency variables
is .09 (SE = .08) and − .05 (SE = .06), respectively. Estimated population variances of the two
grade bands are 1.25 (SE = .15) and .62 (SE = .07), and their covariance is .80 (SE = .09),
yielding a correlation of .91.

The x-axis of Fig. 2 is the latent proficiency scale of the lower-grade band, and the y-axis is
the latent proficiency scale of the upper-grade band. The estimated (bivariate normal) population
distribution is overlaid in light gray. Four cut scores—two for the lower-grade band (−1.1875
and −0.65) and two for the upper-grade band (−1.375 and −0.65)—divide the space into nine
regions. Bivariate normal approximations of posteriors associated with two score combinations
are plotted. The two-dimensional MIRT model is treated as a two-tier model with empty specific
latent dimensions (no item loading) so that the score combination posteriors can be computed via
the Lord–Wingersky algorithm 2.5 implemented in flexMIRT� (Cai, 2017) without additional
programming. This is analogous to Cai’s (2015) Example 4.2 that replicates more specialized
score combination computations, wherein the bifactor model was strictly not needed. The clas-
sification of emerging, progressing, or proficient are made out of the volume of the marginal
posterior distribution that falls between the cut scores. For example, the probabilities of emerg-
ing, progressing, or proficient of students with observed score combination (13, 18) are .84, .16,
and 0 in the lower-grade band and .24, .75, and .01 in the upper-grade band. We may then com-
municate clearly to the users of the score reports that this particular combination of 13 (out of
24) on the lower-grade band test and 18 (out of 30) on the upper-grade band test indicates an
improvement from emerging to progressing. In a similar fashion, the score combination (13, 29)
represents an improvement from progressing to proficient.

The probabilities of each of the combinations are also natural by-products of our recursive
algorithm. Among students who received a score of 13 on the lower-grade band test (expected to
be roughly 1.89% of the student population, based on the model), a score of 24 on the upper-grade
band test places the student at the 74% percentile, which is akin to a student growth percentile
(SGP; Betebenner, 2009) but entirely based on observed scores. In addition, although not pursued
here, the Lord–Wingersky algorithm 2.5, coupled with the calibrated projection method (Thissen
et al., 2011), can be applied to predict scores of the upper grade-band test based on the lower-
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Table 7.
Item parameters of the ELPA 21 test forms in two consecutive years

Grade band Item ID Intercept Slopes
η1 η2 ξ1 ξ2

Lower 1 3.26 1.43 0.00 0.00
Lower 2 2.95 1.53 0.00 0.00
Lower 3 1.10 0.46 0.00 0.00
Lower 4 2.85 1.88 0.00 0.00
Lower 5 1.95 1.51 0.00 0.00
Lower 6 1.59 1.10 0.00 0.00
Lower 7 2.82 1.50 0.00 0.00
Lower 8 4.02 1.64 0.00 0.00
Lower 9 0.18 0.29 0.00 0.00
Lower 10 2.08 1.27 0.00 0.00
Lower 11 2.24 1.28 0.00 0.00
Lower 12 1.70 0.95 0.00 0.00
Lower 13 4.34 1.71 0.00 0.00
Lower 14 2.80 1.52 0.00 0.00
Lower 15 3.77 2.10 0.00 0.00
Lower 16 2.96 1.80 0.00 0.00
Lower 17 3.33 1.79 0.00 0.00
Lower 18 0.33 0.76 0.00 0.00
Lower 19 −0.95 0.57 0.00 0.00
Lower 20 2.18 1.46 0.00 0.00
Lower 21 1.79 1.20 0.00 0.00
Lower 22 1.78 1.57 0.00 0.00
Lower 23 2.49 1.65 0.00 0.00
Lower 24 1.38 1.01 0.00 0.00
Upper 1 1.60 0.00 1.48 0.00
Upper 2 0.98 0.00 1.54 0.00
Upper 3 2.34 0.00 1.73 0.00
Upper 4 1.65 0.00 1.42 0.00
Upper 5 2.20 0.00 1.64 0.00
Upper 6 0.89 0.00 1.10 0.00
Upper 7 2.94 0.00 2.03 0.00
Upper 8 2.70 0.00 1.32 0.00
Upper 9 5.40 0.00 2.64 0.00
Upper 10 3.51 0.00 2.24 0.00
Upper 11 5.40 0.00 2.73 0.00
Upper 12 4.34 0.00 2.16 0.00
Upper 13 4.09 0.00 2.14 0.00
Upper 14 6.03 0.00 2.04 0.00
Upper 15 5.76 0.00 2.95 0.00
Upper 16 4.94 0.00 2.10 0.00
Upper 17 4.71 0.00 2.56 0.00
Upper 18 7.92 0.00 2.95 0.00
Upper 19 2.67 0.00 1.66 0.00
Upper 20 2.45 0.00 1.81 0.00
Upper 21 0.66 0.00 1.49 0.00
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Table 7.
continued

Grade band Item ID Intercept Slopes
η1 η2 ξ1 ξ2

Upper 22 2.14 0.00 1.74 0.00
Upper 23 1.51 0.00 1.81 0.00
Upper 24 1.93 0.00 1.39 0.00
Upper 25 2.51 0.00 1.90 0.00
Upper 26 2.72 0.00 1.86 0.00
Upper 27 3.85 0.00 2.31 0.00
Upper 28 0.35 0.00 0.73 0.00
Upper 29 2.28 0.00 1.65 0.00
Upper 30 1.39 0.00 1.26 0.00

grade band test scores. In sum, Lord–Wingersky algorithm 2.5 serves as a useful tool to facilitate
reporting of student growth in the multi-state EL assessment program.

4.2. Facilitating Subscore Reporting

Educational and psychological assessments usually consist of several item clusters, yielding
the so-called subscores. Within the IRT framework, several subscoring approaches, including the
bifactor model approach and the correlated-traits MIRT model approach, are available. Subscore
reporting is another recurrent topic in recent psychometrics literature (e.g., Sinharay et al., 2007;
Haberman, 2008; Haberman et al. 2009; Feinberg & Wainer, 2014) because of the increasing
demand for more detailed information about individuals. Two issues must be considered when
deciding whether to report subscores obtained through a bifactor model (i.e., the ξn estimates)
in addition to the overall score (i.e., the η estimate). The first question—if these subscores are
reliable enough—is the easier one to address within the IRT framework. Here we focus on the
second question—whether the information the subscores provide is distinct enough from the
overall score.

We believe that if a subscore is considered to be surprising given an individual’s overall score
(i.e., if the ξn estimate cannot be well predicted by the η estimate), it should be reported for it
is adding information. This is similar in spirit to Feinberg and von Davier’s (2020) idea of iden-
tifying unexpectedly high or low subscores by comparing observed subscores against a discrete
distribution of subscores conditional on the overall proficiency variable in a unidimensional IRT
model, but the computations and approach are different.

Our context is a psychiatric assessment tool—the Psychiatric Diagnostic Screening Ques-
tionnaire (PDSQ; Zimmerman & Mattia, 2001). PDSQ is a widely used self-report instrument.
In particular, it is used in the well-known Sequenced Treatment Alternatives to Relieve Depres-
sion (STAR*D) trial, a federally funded large-scale study comparing depression treatments. The
instrument consists of 139 dichotomous items that cover 15 most prevalent DSM-IV (American
Psychiatric Association, 1994) Axis I disorders. Using STAR*D data, which we also use here,
Gibbons et al. (2009) showed that a bifactor model, which includes a general psychiatric dis-
tress dimension and 15 domain-specific latent dimensions, provides a plausible theoretical and
statistical structure for the instrument.

In our preliminary analysis, three symptomdomains—alcohol abuse dependence (ALC), drug
abuse dependence (DRUG), and Psychosis (PSYCH)—are excluded. The exclusion of the first two
is based on the empirical observation that the substance abuse domains were rather distinct from
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Figure 3.
95% prediction interval of η-ξ1 regression

the other domains, as judged from the item slopes. The Psychosis domain is excluded because
the STAR*D participants are screened positive for non-psychotic major depressive disorder. Two
more items in the major depressive disorder (MDD) domain were further excluded due to their
ill fit. Therefore, the MDD domain is measured by 19 dichotomous items, while the rest score on
the other 11 domains can range from 0 to 100. Item parameters are calibrated based on a sample
of 3999 participants and are assumed to be fixed in the subsequent analysis. The illustrative task
is to identify combinations of observed scores on the MDD domain (i.e., s1) versus the rest (i.e.,
s(1)) that signal the reporting of the MDD subscore would add information to the overall score.

We note that the summaries of the posterior distribution (i.e., μ and �) along with the prob-
ability associated with each observed score combination, obtainable from the Lord–Wingersky
algorithm 2.5, could be utilized to capture the statistical relationship between ξn and η and there-
after facilitate subscore reporting. In the simplest instantiation, we regress the estimate of ξ1
of each score combination (s1, s(1)) on the η estimate, weighted by the corresponding marginal
probability, p

(
s1, s(1)

)
. A 95% prediction interval from this weighted least squares regression can

be calculated (Fig. 3) with the regression parameter estimates and serves as the basis to evaluate
the bivariate normal approximated posterior of each (s1, s(1)). For each score combination, the
proportion of the posterior density volume that falls within the prediction interval is computed,
akin to a p-value. The smaller the proportion, the more necessity there is to report the ξ1 estimate
associated with the score combination. For example, as in Fig. 3, the MDD subscore associated
with (7, 71) should be reported, while for another combination, (7, 9), it may not be necessary.
Table 9 shows proportions of posterior volumes that fall in the prediction interval, with darker
cells indicating lower proportions.

Downloaded from https://www.cambridge.org/core. 09 Jan 2025 at 03:55:01, subject to the Cambridge Core terms of use.

https://www.cambridge.org/core


SIJIA HUANG AND LI CAI 989

Table 9.
Proportions of posterior volume that falls in prediction interval

4.3. Detecting Aberrant Score Combination Pattern

Asmentioned in Sect. 4.1, the probability of each observed score combination is a by-product
of the Lord–Wingersky algorithm 2.5. When arranged in a contingency table, the probability
of observed subscore combination (sn, s(n)) can be used to detect aberrant score combinations
through the construction of posterior high-density region (HDR; Novick & Jackson, 1974). A low
probability indicates that the co-occurrence of corresponding summed scores is rare. Depending
on context, this approach can be useful for diagnosis of lack of person fit or for forensic data
analysis in test security.

We illustrate this application of Lord–Wingersky algorithm 2.5with theQuality of Life (QoL)
Scale for the Chronically Mentally Ill (Lehman, 1988). Many previous studies indicate a bifactor
model fits the 35-item QoL scale extremely well (e.g., Gibbons et al., 2007; Cai & Hansen, 2013).
Beyond an overall quality of life item, there are 7 subscales (Family, Finance, Health, Leisure,
Living, Safety, and Social), each of which includes 4 to 6 items. The dataset used here includes
responses from 586 patients. To aid presentation, the original 7-category rating scale items are
recoded to have two categories (i.e., 0, 1, and 2 in the original scale are recoded as 0; 3, 4, 5, and 6
as 2). Here, we construct the high-density region (HDR) of combinations of the score on Health
(s1) and the rest score (s(1)) using the Lord–Wingersky algorithm 2.5. s1 ranges from 0 to 6, and
s(1) ranges from 0 to 29.

To construct a HDR of level α, we first stack the p(s1, s(1)) of each score combination into
a single column, sort all the probabilities from the largest to the smallest, and then compute the
cumulative distribution of these probabilities. Observed score combinations that contribute to the
first 100α% of the cumulative distribution are identified as the 100α% HDR.

Figure 4 shows the HDR for the illustrative task. The unshaded cells represent the 95%HDR.
The light gray cells together with the unshaded cells represent the 99% HDR. The dark gray cells
represent observed subscore patterns that rarely occur. For example, the score combinations (0,
29) and (6, 0) rarely occur. Individuals with such score combinations deserve further attention.
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5. Discussion

The original Lord–Wingersky (1984) algorithm was developed for binary items under uni-
dimensional IRT models. Then the algorithm was expanded to polytomous unidimensional IRT
models (Hanson, 1994; Thissen et al., 1995; von Davier & Rost, 1995). The Lord–Wingersky
algorithm version 2.0 (Cai, 2015) was proposed to computed likelihoods associated with overall
summed scores in the context of hierarchical item factor models. In the present article, we pro-
posed the Lord–Wingersky algorithm 2.5 as an extension of the Cai’s (2015) Lord–Wingersky
algorithm 2.0. The algorithm yields the characterization of the bivariate posterior associated with
observed score combinations from the mutually exclusive clusters of items in the model. The
algorithm uses more observed information than the Lord–Wingersky Algorithm 2.0 (observed
score combinations instead of one overall summed score). Thus it can provide additional infor-
mation that is useful in practice (summed score likelihoods for all latent dimension instead of
the likelihood for the primary latent dimension only). The Lord–Wingersky algorithm 2.5 also
remains computationally efficient due to the continued use of dimension reduction. With the
Lord–Wingersky algorithm 2.5, likelihoods of observed score combinations under several IRT
models, including the two-tier model, the bifactor model and the standard MIRT model, can be
computed directly under one algorithm.

The bivariate normal approximation (summarized by μ and �) to the posterior associated
with each observed score combination, as one of the outputs of the Lord–Wingersky algorithm
2.5, is a reasonable alternative to the actual (intractable) posterior distribution and can serve
multiple purposes in educational and psychological measurement. The marginal probability of
each observed score combination, which comes as a by-product of the proposed algorithm, is also
useful in practice. We use three empirical applications to illustrate the range of possible use of
this new algorithm—(a) translating observed score combinations to aid growth interpretations in
educational measurement, (b) facilitating subscore reporting in psychiatric assessment, and (c)
detecting aberrant observed subscore combinations in health-related outcome research.

While applying the proposed algorithm,we assume the IRTmodel is correct. It is also assumed
that item parameters are known and fixed, since in practice the parameter calibration stage and
scoring stage are often conducted sequentially. To take into account the uncertainty around item
parameters (i.e., standard errors in the calibration stage), we suggest using multiple imputation
(MI; Rubin, 1987)-based approach (e.g., Yang et al., 2012).

Hierarchical item factor models, especially the bifactor model, saw increasing use in psycho-
logical and educational assessment. Recent development in computational algorithms for estimat-
ing multidimensional IRT models (Cai, 2010a; Edwards, 2010) and software, e.g., flexMIRT�
(Cai, 2017), has brought the usage of MIRT models within reach for routine data analysis. We
posit that providing scores that are based on observed statistics (e.g., summed scores, observed
subscale scores) will continue to be desired and useful in practice, and the current study is a further
contribution to the IRT scoring literature.

OpenAccess This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright
holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

Downloaded from https://www.cambridge.org/core. 09 Jan 2025 at 03:55:01, subject to the Cambridge Core terms of use.

http://creativecommons.org/licenses/by/4.0/
https://www.cambridge.org/core


992 PSYCHOMETRIKA

References

American Psychiatric Association. (1994). Diagnostic and statistical manual of mental disorders (4th ed.). Author.
Andersen, E. B. (1972). The numerical solution of a set of conditional estimation equations. The Journal of the Royal

Statistical Society-Series B, 34, 42–54.
Betebenner, D. (2009). Norm- and criterion-referenced student growth. Educational Measurement: Issues and Practice,

28(4), 42–51.
Cai, L. (2010a). High-dimensional exploratory item factor analysis by a Metropolis–Hastings Robbins–Monro algorithm.

Psychometrika, 75(1), 33–57.
Cai, L. (2010b). A two-tier full-information item factor analysis model with applications. Psychometrika, 75(4), 581–612.
Cai, L. (2015). Lord–Wingersky algorithm version 2.0 for hierarchical item factor models with applications in test scoring,

scale alignment, and model fit testing. Psychometrika, 80(2), 535–559.
Cai, L. (2017). flexMIRT® : Flexible multilevel multidimensional item analysis and test scoring. (version 3.51) [Computer

software]. Vector Psychometric Group.
Cai, L., & Hansen, M. (2013). Limited-information goodness-of-fit testing of hierarchical item factor models. British

Journal of Mathematical and Statistical Psychology, 66(2), 245–276.
Cai, L., Yang, J. S., & Hansen, M. (2011). Generalized full-information item bifactor analysis. Psychological Methods,

16, 221–248.
Chen, W. H., & Thissen, D. (1999). Estimation of item parameters for the three-parameter logistic model using the

marginal likelihood of summed scores. British Journal of Mathematical and Statistical Psychology, 52(1), 19–37.
Edwards, M. C. (2010). A Markov chain Monte Carlo approach to confirmatory item factor analysis. Psychometrika,

75(3), 474–497.
English Language Proficiency Assessment for the 21st Century. (2017). Item analysis and calibration. University of

California, National Center for Research on Evaluation, Standards, and Student Testing (CRESST).
Feinberg, R. A., & von Davier, M. (2020). Conditional subscore reporting using iterated discrete convolutions. Journal

of Educational and Behavioral Statistics, 45(5), 515–533.
Feinberg, R. A., & Wainer, H. (2014). A simple equation to predict a subscore’s value. Educational Measurement: Issues

and Practice, 33(3), 55–56.
Gibbons, R. D., Bock, R. D., Hedeker, D., Weiss, D. J., Segawa, E., Bhaumik, D. K., et al. (2007). Full-information item

bifactor analysis of graded response data. Applied Psychological Measurement, 31(1), 4–19.
Gibbons, R. D., & Hedeker, D. R. (1992). Full-information item bi-factor analysis. Psychometrika, 57(3), 423–436.
Gibbons, R. D., Rush, A. J., & Immekus, J. C. (2009). On the psychometric validity of the domains of the PDSQ: An

illustration of the bi-factor item response theory model. Journal of psychiatric research, 43(4), 401–410.
Gustafsson, J. E. (1980).A solution of the conditional estimation problem for long tests in theRaschmodel for dichotomous

items. Educational and Psychological Measurement, 40, 327–385.
Haberman, S. J. (2008).When can subscores have value? Journal of Educational and Behavioral Statistics, 33(2), 204–229.
Haberman, S., Sinharay, S., & Puhan, G. (2009). Reporting subscores for institutions. British Journal of Mathematical

and Statistical Psychology, 62(1), 79–95.
Hansen, M., & Monroe, S. (2018). Linking not-quite-vertical scales through multidimensional item response theory.

Measurement: Interdisciplinary Research and Perspectives, 16(3), 155–167.
Hanson B. A. (1994). Extension of Lord–Wingersky algorithm to computing test score distributions for polytomous items.

Unpublished manuscript. Retrieved Jan 1, 2016, from? from http://www.b-a-h.com/papers/note9401.pdf
Kim, S. (2013). Generalization of the Lord–Wingersky algorithm to computing the distribution of summed test scores

based on real-number item scores. Journal of Educational Measurement, 50(4), 381–389.
Lehman, A. F. (1988). A quality of life interview for the chronically mentally ill. Evaluation and Program Planning,

11(1), 51–62.
Li, Z., & Cai, L. (2018). Summed score likelihood-based indices for testing latent variable distribution fit in item response

theory. Educational and Psychological Measurement, 78(5), 857–886.
Lord, F. M., & Wingersky, M. S. (1984). Comparison of IRT true-score and equipercentile observed-score" equatings".

Applied Psychological Measurement, 8(4), 453–461.
Novick, M. R., & Jackson, P. H. (1974). Statistical methods for educational and psychological research. McGraw-Hill.
Orlando, M., Sherbourne, C. D., & Thissen, D. (2000). Summed-score linking using item response theory: Application

to depression measurement. Psychological Assessment, 12(3), 354.
Orlando, M., & Thissen, D. (2000). Likelihood-based item-fit indices for dichotomous item response theory models.

Applied Psychological Measurement, 24(1), 50–64.
Reckase, M. (2009). Multidimensional item response theory (statistics for social and behavioral sciences). Springer.
Reise, S. P. (2012). The rediscovery of bifactor measurement models. Multivariate Behavioral Research, 47(5), 667–696.
Reise, S. P., Bonifay, W., & Haviland, M. G. (2018). Bifactor modelling and the evaluation of scale scores. In P. Irwing, T.

Booth & D. J. Hughes (Eds.) The Wiley handbook of psychometric testing: A multidisciplinary reference on survey,
scale and test development (pp. 675–707). John Wiley & Sons Ltd.

Reise, S. P., Morizot, J., & Hays, R. D. (2007). The role of the bifactor model in resolving dimensionality issues in health
outcomes measures. Quality of Life Research, 16, 19–31.

Rijmen, F. (2009). Efficient full information maximum likelihood estimation for multidimensional IRT models. ETS
Research Report Series, 2009(1), i–31.

Rosa,K., Swygert, K.A.,Nelson, L.,&Thissen,D. (2001). Item response theory applied to combinations ofmultiplechoice
and constructed-response items-scale scores for patterns of summed scores. In D. Thissen & H. Wainer (Eds.), Test

Downloaded from https://www.cambridge.org/core. 09 Jan 2025 at 03:55:01, subject to the Cambridge Core terms of use.

http://www.b-a-h.com/papers/note9401.pdf
https://www.cambridge.org/core


SIJIA HUANG AND LI CAI 993

scoring (pp. 253–292). Lawrence Erlbaum.
Rubin, D. B. (1987). Multiple imputations for nonresponse in surveys. Wiley.
Sinharay, S., Haberman, S., & Puhan, G. (2007). Subscores based on classical test theory: To report or not to report.

Educational Measurement: Issues and Practice, 26, 21–28.
Stucky, B. D. (2009). Item response theory for weighted summed scores, Doctoral dissertation, The University of North

Carolina at Chapel Hill.
Thissen, D., Pommerich, M., Billeaud, K., & Williams, V. S. (1995). Item response theory for scores on tests including

polytomous items with ordered responses. Applied Psychological Measurement, 19(1), 39–49.
Thissen, D., Varni, J. W., Stucky, B. D., Liu, Y., Irwin, D. E., & DeWalt, D. A. (2011). Using the PedsQLTM asthma

module to obtain scores comparable with those of the PROMIS pediatric asthma impact scale (PAIS). Quality of Life
Research, 20, 1497–1505.

Thissen, D., & Wainer, H. (Eds.). (2001). Test scoring. Routledge.
von Davier, M. & Rost, J. (1995) Polytomous mixed Rasch models. In G. H. Fischer & I. W. Molenaar (Eds.) Rasch

models: Foundations, recent developments and applications (pp. 371–379). Springer.
Wainer, H., Bradlow, E. T., &Wang, X. (2007). Testlet response theory and its applications. Cambridge University Press.
Yang, J. S., Hansen, M., & Cai, L. (2012). Characterizing sources of uncertainty in item response theory scale scores.

Educational and Psychological Measurement, 72(2), 264–290.
Zeng, L., & Kolen, M. J. (1995). An alternative approach for IRT observed-score equating of number-correct scores.

Applied Psychological Measurement, 19(3), 231–240.
Zimmerman,M., &Mattia, J. I. (2001). A self-report scale to help make psychiatric diagnoses: The Psychiatric Diagnostic

Screening Questionnaire. Archives of General Psychiatry, 58(8), 787–794.

Manuscript Received: 19 OCT 2020
Final Version Received: 18 JUN 2021
Accepted: 25 JUN 2021
Published Online Date: 27 JUL 2021

Downloaded from https://www.cambridge.org/core. 09 Jan 2025 at 03:55:01, subject to the Cambridge Core terms of use.

https://www.cambridge.org/core

	Lord–Wingersky Algorithm Version 2.5 with Applications
	Abstract
	1 Introduction
	2 Lord–Wingersky Algorithm 2.0
	2.1 Stage I 
	2.2 Stage II 
	2.3 Posterior Summaries

	3 Lord–Wingersky Algorithm 2.5
	3.1 General Approach
	3.2 Stage I
	3.3 Stage II
	3.4 An Illustrative Example 
	3.5 The More General Case

	4 Illustrative Applications of Lord–Wingersky Algorithm 2.5
	4.1 Growth Interpretation of Observed Score Combinations
	4.2 Facilitating Subscore Reporting
	4.3 Detecting Aberrant Score Combination Pattern

	5 Discussion
	References




