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Electron tomography has matured over the past decade to become a technique used in both the life 
sciences and materials science almost on a routine basis. In materials science, the ability of most 
samples to withstand relatively large electron doses has seen the development of many tomographic 
imaging modes. The ubiquitous nature of bright-field imaging has led to its use in electron 
tomography across many fields of materials science, but especially in the study of soft matter where 
dynamical effects and diffraction contrast is often minimal [1]. For many materials however, STEM 
HAADF tomography remains the mode of choice, yielding high contrast images which are relatively 
free of crystallographic artefacts [2]. A combination of STEM tomography and EELS has seen the 
first examples of 3D chemical mapping [3] and, similarly, EFTEM tomography can produce 
volume-specific compositional information [4]. Defects and secondary phases can be mapped using 
diffraction contrast tomography, if the diffraction conditions do not change significantly across the 
tilt series [5]. Recent work has shown that time-resolved electron tomography is possible, with 
femtosecond pulsing of nanostructures showing vibrational characteristics in 3D [6]. With all these 
modes, however, there remains a pressing need to extract reliable, quantitative information from 3D 
reconstructions. This information can be subject to many sources of error, at image acquisition, 
during the reconstruction process, through to segmentation, visualization and during additional 
tomogram processing. In order to be more confident in the information garnered from tomograms we 
need methods to improve the fidelity of the reconstruction (e.g. minimizing missing wedge artefacts) 
and more automated and objective ways to best process the tomograms to recover key information.  

Reconstruction. We have initiated recently a project of work to determine methods to apply 
additional constraints in the reconstruction process. Although SIRT has become a popular 
reconstruction method it is well known that after perhaps 30-40 iterations the apparent match 
between the reconstruction and the original set of images can get progressively worse. One possible 
explanation is that the method does not take into account the fact that the re-projected image (from 
the tomogram) has a better signal-to-noise ratio than the original image. This mismatch in noise 
content is not accounted for in conventional SIRT routines and can lead to a divergence away from 
the ‘best’ solution. Recent work [7] studying the SIRT method has shown that smaller objects tend 
to be reconstructed less well than larger objects in the tomogram. In a similar vein, Norton [8] has 
shown that a larger number of iterations are required for objects with proportionally higher spatial 
frequencies. Such imperfections have led a number of groups to consider alternative reconstruction 
methods. 
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One of these, discrete tomography [9], has in recent years been successful in improving the quality 
of the reconstruction by incorporating a priori knowledge about the sample. This has been used in 
two ways: either that the object itself is made up of discrete entities (for example atoms in a 
nanoparticle) or that the object has a discrete number of densities (i.e. a tomographic slice would be 
composed of a discrete number of grey levels). This ability to build in prior information is also true 
for compressed sensing (CS) approaches to tomography [10]. Here a transform is used to convert the 
set of images to a space that is ‘sparse’, i.e. in which there are relatively few non-zero pixels. The 
reconstruction then becomes an optimization problem where minimizing the number of non-zero 
pixels is the objective. This can be solved by minimizing the l1 norm. Thus, if one can transform the 
set of images into a sparse space, this approach should be successful at improving the reconstruction. 
Discrete tomography can be thought of as related to CS by considering the grey levels, or discrete 
entities, as being ‘sparse’. It seems possible to improve the reconstruction further by taking into 
account the ‘total variation’ of each image. Minimizing this appears to help to reduce the effects of 
noise in the tomogram. In this paper we will highlight how this approach can be used on typical 
materials tomographic data sets where the constraint of sparseness is satisfied. 

Tomogram Processing. Once the tomogram is reconstructed there is often a pressing need to extract 
information in an automated, objective and unbiased fashion. Many of the samples studied with 
electron tomography are nanoscale particles (rods, spheres, etc) which appear either in isolation or as 
part of a composite object. In these cases, we can use a new approach and describe these objects in 
terms of spheres whose radii and positions are known accurately in 3D [11]. This approach requires 
individual particles to be identified in the tomogram (using a number of image processing steps) and 
identifying sphere positions and sizes that best match the objects in the tomogram. Once that best-fit 
is achieved, the size and co-ordinates of the spheres can be used for a variety of statistical analyses. 
In particular, we have applied this approach recently to a study of a novel solar cell material 
composed of CdSe nanoparticles dispersed in a OC1C10-PPV polymer matrix [12]. After the 
extraction of spheres, neighbouring particles can be connected to form a network whose spatial 
distribution, in this case, can be related to the transport of electrons through the solar cell [13]. 
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