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Examples of dHYM connections in a
variable background
Enrico Schlitzer and Jacopo Stoppa
Abstract. We study deformed Hermitian Yang–Mills (dHYM) connections on ruled surfaces
explicitly, using the momentum construction. As a main application, we provide many new examples
of dHYM connections coupled to a variable background Kähler metric. These are solutions of the
moment map partial differential equations given by the Hamiltonian action of the extended gauge
group, coupling the dHYM equation to the scalar curvature of the background. The large radius limit
of these coupled equations is the Kähler–Yang–Mills system of Álvarez-Cónsul, Garcia-Fernandez,
and García-Prada, and in this limit, our solutions converge smoothly to those constructed by
Keller and Tønnesen-Friedman. We also discuss other aspects of our examples including conical
singularities, realization as B-branes, the small radius limit, and canonical representatives of
complexified Kähler classes.

1 Background and main results

1.1 dHYM connections

Let L → X denote a holomorphic line bundle over a compact n-dimensional Kähler
manifold, with a fixed background Kähler form ω. A Hermitian metric h on the
fibers of L determines the two notions of Lagrangian phase and radius of the line
bundle. Namely, writing F(h) =

√
−1F, F ∈ A1,1(X ,R) for the curvature of the Chern

connection, one introduces the endomorphism of the tangent bundle given by ω−1F,
with eigenvalues λ i . Then we have

(ω −
√
−1F)n

ωn =
n
∏
i=1
(1 −
√
−1λ i) = rω(F)e

√
−1Θω(F) ,

where the Lagrangian phase and radius are defined (using the background metric ω),
respectively, as

Θω(F) = −
n
∑
i=1

arctan(λ i), rω(F) =
n
∏
i=1
(1 + λ2

i )1/2 .

The deformed Hermitian Yang–Mills (dHYM) equation (introduced in [17, 18] and
surveyed in [4, 5]) is the condition of having constant Lagrangian phase,
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2 E. Schlitzer and J. Stoppa

Θω(F) = θ̂ mod 2π.(1.1)

The work of Leung, Yau, and Zaslow [17] shows that, at least under suitable assump-
tions, the dHYM equation (1.1) is mapped to the special Lagrangian equation under
mirror symmetry. Therefore, this equation has attracted considerable interest in
mathematical physics and complex differential geometry (see, e.g., the foundational
works [3, 6, 15] and the recent contributions [11, 12, 20, 21]).

In the present paper, we study dHYM connections in the very special case when X
is a complex ruled surface. While this is a classical test bed for equations in complex
differential geometry, here we allow a rather general setup, as we now discuss.

1.2 Variable background dHYM

Most importantly, we couple the dHYM equation (1.1) to a variable background Kähler
metric ω, through the equations

⎧⎪⎪⎨⎪⎪⎩

Θω(F) = θ̂ mod 2π ,
s(ω) − αrω(F) = ŝ − αr̂,

(1.2)

where s(ω), ŝ, r̂ denote the scalar curvature and its average (resp. the average radius),
and α ∈ R is an arbitrary coupling constant. The quantities ŝ, r̂, and θ̂ are fixed by
cohomology, and in particular we have

r̂ = 1
n! Vol(X , ω) ∣∫X

(ω − F(h))n∣

and

e−
√
−1θ̂ = 1

n! Vol(X , ω)r̂ ∫X
(ω − F(h))n .

Equations (1.2) are obtained by combining the moment map pictures for dHYM
connections (due to Thomas and Collins-Yau, see [6, 22]) and for constant scalar
curvature Kähler (cscK) metrics (due to Donaldson and Fujiki, see [8, 10]) in a very
natural way, through the action of the extended gauge group (a canonical extension
of the group of unitary gauge transformations by Hamiltonian symplectomorphisms):
this is explained in [19], building on the results of [1]. The coupling constant α is a scale
parameter for the relevant symplectic form on the space of integrable connections.
Thus, only the case when α > 0 corresponds to a genuine Kähler reduction (rather
than just a symplectic reduction).

Let Σ be a compact Riemann surface of genus h, with Kähler metric gΣ of constant
scalar curvature 2sΣ , and let L

p→ Σ denote a holomorphic line bundle of degree k ∈
Z>0, with 2πc1 (L) = [ωΣ]. Since Vol (Σ) = 2πk, by the Gauss–Bonnet formula, we
have

sΣ =
1

Vol (Σ) ∫Σ
sΣωΣ =

1
Vol (Σ) ∫Σ

ρΣ =
2 (1 − h)

k
,

where ρΣ denotes the Ricci 2-form of gΣ .
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Examples of dHYM connections in a variable background 3

We will construct solutions of the coupled equations (1.2) on ruled surfaces of
Hirzebruch type, obtained by the projectivization

X = P (L⊕O) → Σ,

where O denotes the trivial holomorphic line bundle. (It is well known that such X
does not admit cscK metrics.) Our solutions are obtained by extending the classical
momentum construction (also known as the Calabi ansatz, see [14]) to equations (1.2)
(see (2.2) and (3.1) for our ansatz).

Let E0 = P (0⊕O) and E∞ = P (L⊕ 0) denote, respectively, the zero section and
the infinity section of the CP

1-bundle X over Σ, with general fiber C. We introduce
the real parameters k1 , k2, and k′ > 0, and consider the cohomology classes

[ω] = 2π[2E0 + k′C],
[F] = 2π[2(k1 − k2)E0 + (2kk2 + k′(k1 + k2)C],(1.3)

where we slightly abuse the notation and denote the Poincaré duals of E0 and C,
respectively, by [E0] and [C]. Then [ω] is a Kähler class and [F/(2π)] is integral,
provided k1 , k2 , k′ are integers and k′ > 0, so it is possible to find a holomorphic line
bundle L → X such that −2πc1(L) = [F].

Remark 1 Equation (1.1) is equivalent to

Im(e−
√
−1θ̂ (ω −

√
−1F)

n
) = 0,

and the latter condition is preserved when F → −F and θ̂ → −θ̂, which should be
interpreted geometrically as considering the dHYM equation on L−1 instead of L. With
our choice of parametrization, this implies that the set of parameters corresponding
to solutions of the system (1.2) is invariant under k i → −k i , for i = 1, 2. When k2 = 0, it
follows from (1.3) that, for any choice of Kähler class, the unique solution of the dHYM
equation (1.1) is given by F = k1ω (note that uniqueness for dHYM solutions is known
in general by the results of [15]). In this case, the Lagrangian radius is also constant
rω(k1ω) = (1 + k2

1 )2 and, since X does not admit cscK metrics, the system (1.2) has
no solution. In Section 2, it will be clear that also for k1 = 0 the dHYM equation has a
trivial solution; in this case, θ̂ = 0 and we can solve also (1.2). In the following, we will
focus on the less trivial choices of parameters, assuming

k1 < 0, k2 ≠ 0.

It is also convenient to introduce the quantity

x = k
k + k′

∈ (0, 1).

Theorem 2 Suppose the “stability condition”

(1 + (k1 + k2)2) > x(1 + (k1 − k2)2)(1.4)

holds. Then, there exist a unique Kähler form ω and a curvature form F, with cohomology
classes given by (1.3), such that they are obtained by the momentum construction (see

https://doi.org/10.4153/S0008414X23000561 Published online by Cambridge University Press

https://doi.org/10.4153/S0008414X23000561


4 E. Schlitzer and J. Stoppa

(2.2) and (3.1)) and solve the coupled equations (1.2) on the ruled surface X, for the unique
value of the coupling constant

α =
√

4k2
1 + (1 − k2

1 + k2
2)2

2(1 + (k1 − k2)2)k2
2
(−2 + sΣ x) .

If equality holds instead in (1.4), then there is a smooth solution on X/E∞, with
underlying metric ω ∈ C1,1/2(X) ∩ C∞(X/E∞).

Theorem 2 is proved in Section 4.

1.3 Solutions with conical singularities

The main limitation of Theorem 2 concerns the sign of the coupling constant: it is
straightforward to check that in the situation of that result, we always have α < 0, since
sΣ ≤ 2 and x < 1. In order to gain more flexibility, we allow the background metric ω
to develop conical singularities along the divisors E0, E∞. Fix 0 < β0 ≤ 1, and let

β∞ =
−2 + β0(1 + x)
−1 + x

≥ 1.

Theorem 3 Suppose the “stability condition” (1.4) holds. Then, there exist a unique
Kähler form ω and a curvature form F, such that they are obtained by the momentum
construction (see (2.2) and (3.1)), ω has conical singularities with cone angles 2πβ0 along
E0 and 2πβ∞ along E∞, the corresponding cohomology classes (in the sense of currents)
are given by (1.3), and they solve the coupled equations (1.2), for the unique value of the
coupling constant

α =
√

4k2
1 + (1 − k2

1 + k2
2)2

2(1 + (k1 − k2)2)k2
2

3 + x + sΣ x2 − 3(1 + x)β0

x
.

Theorem 3 is proved in Section 5. Note that this gives a generalization of Theorem 2:
when β0 = 1, we recover precisely the smooth solutions provided by that result.

Corollary 4 For sufficiently small cone angle 2πβ0 and sufficiently large k′ > 0, the
coupling constant α is positive.

1.4 Relation to twisted KE metrics

As usual, under a suitable cohomological condition, the equation in (1.2) involving the
scalar curvature may be reduced to a condition involving the Ricci curvature. In our
case, this condition is given by

[Ric(ω)] + α
2 sin θ̂

[F] = ŝ − αr̂
4
[ω].

Then, the equation

s(ω) − αrω(F) = ŝ − αr̂
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Examples of dHYM connections in a variable background 5

reduces to the twisted Kähler–Einstein equation

Ric(ω) + α
2 sin θ̂

F = ŝ − αr̂
4

ω.(1.5)

We provide an explicit criterion for when this reduction occurs for the class of
examples provided by Theorem 3 (in which case Ric(ω), F, and ω extend to closed
currents on X).

Proposition 5 The condition s(ω) − αrω(F) = ŝ − αr̂ reduces to the twisted Kähler–
Einstein equation (1.5) iff we have

(1 + k2
1 + k2

2)(x − 1) (sΣx2 − 3β0(x + 1) + x + 3)
= 2k1k2 (−3β0 + sΣ x3 − x2(β0 + sΣ − 1) + 3) .(1.6)

Moreover, there are infinitely many admissible values of k1 , k2, k′ which satisfy this
equality for some β0 and for which the “stability condition” (1.4) holds (so that the
corresponding coupled equations are solvable).

This result is proved in Section 6. Writing the dHYM equation on the surface X in
Monge–Ampère form (as in [3]), we see that in the twisted Kähler–Einstein case, the
coupled equations (1.2) become

⎧⎪⎪⎨⎪⎪⎩

(− sin(θ̂)F + cos(θ̂)ω)2 = ω2 ,
Ric(ω) + α

2 sin θ̂ F = ŝ−αr̂
4 ω,

and so they are closely related to the systems of coupled Monge–Ampère equations
studied by Hultgren and Wytt-Nyström [13].

1.5 Realization as B-branes

Given the origin of the dHYM equation in mirror symmetry, it seems interesting to
ask whether the special dHYM connections appearing in Theorem 2, i.e., solutions of
the coupled equations (1.2), can in fact be realized as B-branes (i.e., for our purposes,
holomorphic submanifolds endowed with a dHYM connection) in some ambient
Calabi–Yau manifold (this is how the dHYM equation appears in mathematical
physics; see, e.g., [5]). Thus, we are asking for a Calabi–Yau manifold M̌ with a Ricci
flat Kähler metric ωM̌ , and a holomorphic embedding ι ∶ X ↪ M̌, such that the Kähler
form ω constructed in Theorem 1.2 is given by the restriction ω = ι∗ωM̌ . We show that
this can be achieved at least locally around X, relying on the classical results on Feix
[9] on the hyperkähler extension of real analytic Kähler metrics.

Proposition 6 The Kähler form ω and curvature form F provided by Theorem 2 are real
analytic. Thus, ω extends to a hyperkähler metric defined on an open neighborhood of the
zero section in the holomorphic cotangent bundle T∗X, and F extends to the curvature
form of a hyperholomorphic line bundle defined on the same open neighborhood.

This result is proved in Section 4.
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6 E. Schlitzer and J. Stoppa

1.6 Large and small radius limits

In the mathematical physics literature (see, e.g., [2, Chapter 1]), the dHYM equation
involves a “slope” parameter α′ > 0 (related to the “string length” by α′ = l 2

s ), which
appears simply as a scale parameter for the curvature form, F ↦ α′F. The correspond-
ing coupled equations (1.2) are given by

⎧⎪⎪⎨⎪⎪⎩

Θω(α′F) = θ̂ mod 2π ,
s(ω) − αrω(α′F) = ŝ − αr̂.

(1.7)

The expressions “large radius limit” (or “zero slope limit”) refer to the behavior of the
dHYM equations and their solutions as α′ → 0. As explained in [19], the large radius
limit of our coupled equations is the (rank 1 case of) the Kähler–Yang–Mills system
introduced by Álvarez-Cónsul, Garcia-Fernandez, and García-Prada [1]. We can prove
a much stronger result, at the level of solutions, on the ruled surface X.

Theorem 7 For all sufficiently small α′, depending only on the fixed parameters k1 , k2,
k′, (i.e., on the fixed cohomology classes [ω] and [F]), the coupled equations (1.7) are
uniquely solvable on X with the momentum construction. Moreover, as α′ → 0, the
corresponding solutions ωα′ , Fα′ converge smoothly to a solution of the Kähler–Yang–
Mills system

⎧⎪⎪⎨⎪⎪⎩

ΛωF = μ,
s(ω) + α̃ Λ2

ω(F ∧ F) = c,
(1.8)

for some (explicit) coupling constant α̃.

The particular solutions of the Kähler–Yang–Mills system obtained in this limit are
due to Keller and Tønnesen-Friedman [16].

Similarly, the “small radius limit” (or “infinite slope limit”) concerns the behavior
of the coupled equations (1.7) as α′ →∞.

Theorem 8 Fix parameters k1 , k2, k′ (i.e., cohomology classes [ω] and [F]) such that
the “stability condition”

(k1 + k2)2 > x(k1 − k2)2

holds. Then the coupled equations (1.7) are uniquely solvable on X with the momentum
construction, for all α′ > 0. Moreover, as α′ →∞, the corresponding solutions ωα′ and
Fα′ converge smoothly to a solution of the system

⎧⎪⎪⎨⎪⎪⎩

F ∧ ω = c1F2 ,
s(ω) − α̂ ΛωF = c2 ,

for some (explicit) coupling constant α̂.

At least in the case when F is Kähler, this system couples the J-equation ΛF ω = c′1
for F to a twisted cscK equation for ω. In general, these limiting equations belong to a
class of coupled PDEs studied by Datar and Pingali [7].

Theorems 7 and 8 are proved in Section 7.
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1.7 Complexified Kähler classes

Complexified Kähler classes are expressions of the form [ω +
√
−1B], where ω is a

Kähler form and [B] ∈ H2(M ,R)/H2(M ,Z) is known as the B-field. They play an
important role in mirror symmetry (see, e.g., [23, Section 2]). Let M be a compact
Kähler manifold with no holomorphic 2-forms. Collins and Yau [6, Section 8] consider
a dHYM equation on M of the form

Θω(F + B) = θ̂ mod 2π,

where
√
−1F is the unknown curvature form of a Hermitian holomorphic line bundle

L → M and B is a fixed representative of a (lift of a) B-field. Arguing from mirror sym-
metry, they propose that the existence of a solution F should be related, conjecturally,
to a suitable notion of stability of the object L with respect to the complexified Kähler
class [ω +

√
−1B].

In the special case when L is the trivial bundle OM , the equation becomes

Θω(B +
√
−1∂∂u) = θ̂ mod 2π,

so we are effectively trying to find a canonical representative of the B-field [B] with
respect to a background Kähler form ω; the existence of such a representative should
be related to the stability of the object OM with respect to [ω +

√
−1B].

Our coupled equations
⎧⎪⎪⎨⎪⎪⎩

Θω(B) = θ̂ mod 2π ,
s(ω) − αrω(B) = ŝ − αr̂,

(1.9)

with [B] a (lift of a) class in H2(M ,R)/H2(M ,Z), can then be thought of as trying
to prescribe a canonical representative of the complexified Kähler class [ω +

√
−1B].

Note that in the Calabi–Yau case, at zero coupling α = 0 and in the large radius limit,
these equations for the complex form ω +

√
−1B reduce to the conditions

⎧⎪⎪⎨⎪⎪⎩

ΔωB = 0,
Ric(ω) = 0,

which are standard in the physics literature (see, e.g., [2, Section 1.1]).
As an example, we shall discuss the existence of such a canonical representative for

the complexified Kähler class

[ω +
√
−1B] = 2π(2E0 + (k′ +

√
−1k′′)C)

on our ruled surfaces X, where the Kähler condition is equivalent to k′ > 0. The key
observation is that this can be expressed in the form

[ω] = 2π[2E0 + k′C],
[B] = 2π[2(k1 − k2)E0 + (2kk2 + k′(k1 + k2)C]

with the special choices

k1 = k2 =
k′′

2(k + k′) ,
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8 E. Schlitzer and J. Stoppa

provided we have k′′ < 0. Thus, we may apply Theorem 2 (and, more generally,
Theorem 3 in the case of conical singularities) to show that the coupled equations (1.9)
are solvable, uniquely under the momentum construction, iff the “stability condition”

(1 + (k1 + k2)2) = 1 + ( k′′

k + k′
)

2

> x(1 + (k1 − k2)2) = k
k + k′

holds. But, clearly, this is automatically satisfied. By Remark 1, the same argument
works for the case k′′ > 0.

Corollary 9 The complexified Kähler class

[ω +
√
−1B] = 2π(2E0 + (k′ +

√
−1k′′)C),

where k′ > 0, k′′ ≠ 0, admits a canonical representative. This also holds allowing conical
singularities; the corresponding coupling constant is given by

α =
2
√
(k + k′)2 + (k′′)2 (k2(−6β0 + sΣ + 4) + (7 − 9β0)kk′ − 3(β0 − 1)(k′)2)

k(k′′)2 .

Note that a canonical representative with vanishing B-field B = 0 would correspond
to a cscK metric, which does not exist. The coupling constant α diverges as k′′ → 0. It
seems interesting that a nontrivial B-field can stabilize the unstable ruled surface X.

Plan of the paper. In Section 2, we set up the momentum construction on our ruled
surfaces. Section 3 solves the dHYM equation on our ruled surfaces explicitly using the
momentum construction, under the necessary “stability condition” (1.4). This result is
applied in Section 4 in order to solve the coupled equations (1.2). All of this is extended
to allow conical singularities in Section 5; the main advantage is that in this case there
exist solutions with positive coupling constants. Finally, Section 7 contains our results
on the large and small radius limits.

2 Momentum construction

Let X = P (L⊕O) → Σ be a ruled surface as in the Introduction. Let

E0 = P (0⊕O) , E∞ = P (L⊕ 0)

denote, respectively, the zero section and the infinity section of theCP1-bundle X over
Σ, with general fiber C. We have the straightforward intersection formulae:

E0 ⋅ E0 = −E∞ ⋅ E∞ = k, C ⋅ C = 0, C ⋅ E0 = C ⋅ E∞ = 1.(2.1)

We will follow the standard momentum construction (sometimes called the Calabi
ansatz; see, e.g., [14]) for metrics on the complement of the zero section X0 = L/E0,
which extend across the zero and infinity sections of X under suitable conditions.

Thus, we consider metrics of the form

ω = p∗ωΣ

x
+
√
−1∂∂ f (s),(2.2)

where x is a real parameter satisfying 0 < x < 1, while f is a strictly convex function,
such that f ′ ∶ X0 → (−1, 1). The real coordinate s is the log norm of the Hermitian met-
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ric h(z) onL for which−∂z ∂z log(h) = F(h) = −
√
−1ωΣ . Considering a trivialization

U ⊂ L with adapted bundle coordinates (z, w), s is given by

s = log∣ (z, w) ∣2h = log ∣w∣2 + log h(z),
and it follows that

√
−1∂w ∂w f (s) =

√
−1 f ′′(s)dw ∧ dw̄

∣w∣2

and
√
−1∂z ∂z f (s) = − f ′(s)ωΣ +

√
−1 f ′′(s)∂z h∂z h

h2 .

If we choose U such that dlog h(z0) = 0 in (z0 , w0), at this point, all the mixed
derivatives vanish and so we find

ω = 1 − x f ′(s)
x

ωΣ +
√
−1 f ′′(s)dw ∧ dw̄

∣w∣2 ;

moreover, we also have, globally,

ω2 = 2
∣w∣2

1 − x f ′(s)
x

f ′′(s)ωΣ ∧
√
−1dw ∧ dw̄ .

Since f (s) is strictly convex, we may consider its Legendre transform u(τ), a function
of the variable τ = f ′(s), and define the momentum profile

ϕ(τ) = 1
u′′(τ) = f ′′(s),

which must satisfy the condition

ϕ(τ) > 0, −1 < τ < 1,(2.3)

required for ω to be positive. Moreover, the momentum construction shows that in
order to extend ω across w = 0 and w = ∞, ϕ(τ)must satisfy the boundary conditions

lim
τ→±1

ϕ(τ) = 0, lim
τ→±1

ϕ′(τ) = ∓1.(2.4)

The space H2(X ,R) is generated by the Poincaré duals of E0 and C. Following [16],
we define the 2-form

β = x2

(1 − x f ′(s))2 (
1 − x f ′(s)

x
ωΣ −

√
−1 f ′′(s)dw ∧ dw̄

∣w∣2 ) .

A direct computation shows that β is a closed (1, 1)-form, traceless with respect to ω,
and {ω, β} is a basis for the space H2(X ,R). We consider now a real (1, 1) cohomology
class and its representative

F0 = c1ω + c2β.(2.5)

In order to identify
√
−1F0 with the curvature form of a connection on some line

bundle over X, [F0/(2π)] must be an integral class. For [F0] = a [E0] + b [C], using
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10 E. Schlitzer and J. Stoppa

the identities (2.1), we have

a = ∫
C

F , b = ∫
E0

F0 − k∫
C

F0 .(2.6)

Since E0 = ( f ′)−1(−1), we get

∫
E0

ω = (1 + x)
x ∫

Σ
ωΣ = 2πk (1 + x)

x

and

∫
E0

β = x
(1 + x) ∫Σ

ωΣ = 2πk x
(1 + x) .

For the general fiber C, let w denote the bundle adapted coordinate along the fiber and
define r = ∣w∣, such that s = 2 log r and d/ds = r

2 d/dr. Using the boundary conditions
(2.4), we have

∫
C

ω = ∫
C/{0}

√
−1 f ′′(s)dw ∧ dw̄

∣w∣2

= ∫
+∞

−∞ ∫
2π

0

d
dr

f ′(s)dr ∧ dθ

= 2π ( lim
s→∞

f ′(s) − lim
s→−∞

f ′(s))

= 4π

and similarly

∫
C

β = −4π x2

1 − x2 .

Using (2.6), we obtain

[ F0

2π
] = (2c1 − 2 x2

1 − x2 c2)E0 + (
1 − x

x
kc1 +

x
1 − x

kc2)C .

If we introduce the new parametrization

x = k
k + k′

, c1 = k1 , c2 =
1 − x2

x2 k2 ,(2.7)

for real k1, k2, and k′ > 0, then a direct calculation shows that the cohomology classes
of [ω] and [F0] are given by our previous formulae

[ω] = 2π[2E0 + k′C],
[F0] = 2π[2(k1 − k2)E0 + (2kk2 + k′(k1 + k2)C].

In particular, we see that the choices k′ ∈ Z>0 and k i ∈ Z, for i = 1, 2, correspond to
integral classes.
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Examples of dHYM connections in a variable background 11

3 dHYM on ruled surfaces

In this section, we will solve the dHYM equation (1.1) on X explicitly, with respect to
a fixed Kähler metric ω obtained by the momentum construction (2.2). Given a class
[F] satisfying the integrality conditions (2.7), we may fix a holomorphic line bundle
L → X with the first Chern class −2π [c1(L)] = [F].

Recall that the parameter θ̂ is a topological constant determined by the condition

∫
X
(ω −

√
−1F)2 ∈ R>0e

√
−1θ̂ .

Lemma 10 We have

e
√
−1θ̂ =

(1 − k2
1 + k2

2 − 2
√
−1k1)√

(1 − k2
1 + k2

2)
2 + (2k1)2

.

Proof Since β is traceless with respect to ω, we only need to compute the quantities
∫X ω2, ∫X β2. We have

∫
X

ω2 = 2∫
X

f ′′(s)(1 − x f ′(s))
x

ωΣ ∧
dw ∧ dw̄
∣w∣2

= 4π∫
Σ

ωΣ ∫
∞

0

d
dr
( f ′(s)

x
+ ( f ′(s))2

2
)dr

= 16π2k
x

and similarly

∫
X

β2 = − 16π2k
x

x4

(1 − x2)2 .

Using (2.7), we find

∫
X
(ω −

√
−1F)

2
= 16π2k

x
(1 − k2

1 + k2
2 − 2
√
−1k1) ,

from which the claim follows immediately. ∎

In order to solve the dHYM equation in the class [F0], we extend the momentum
construction by making the ansatz

F = Fg = F0 +
√
−1∂∂g(s).(3.1)

It will be convenient to introduce the function ν(τ) given by the image of g′(s) under
the Legendre transform diffeomorphism relative to f (s).

Lemma 11 The form
√
−1∂∂g(s) extends smoothly to an exact form on X iff ν(τ)

extends smoothly to the interval [−1, 1] and vanishes at the boundary points.

Proof The component of
√
−1∂∂g(s) in the fiber direction is

√
−1g′′(s)dw ∧ dw̄

∣w∣2 =
√
−1ν′(τ)ϕ(τ)dw ∧ dw̄

∣w∣2 .
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12 E. Schlitzer and J. Stoppa

So
√
−1∂∂g(s) extends smoothly to X iff ν(τ) extends smoothly to [−1, 1]. In order

to derive the appropriate boundary behavior so that this extension is still exact, we
compute

∫
E0

∂∂g = −2πk ( lim
s→−∞

g′(s))

and

∫
C

∂∂g = 2π ( lim
s→∞

g′(s) − lim
s→−∞

g′(s)) .

Using (2.6), the only conditions we need to impose are

lim
τ→±1

ν(τ) = 0.(3.2)

∎

Our next result shows how to reduce the dHYM equation to an ODE. It is
convenient to introduce the new variable

t = 1/x − τ

as well as the auxiliary function

H(t) = k1 t + k2

t
1 − x2

x2 − ν(t).(3.3)

Proposition 12 Under the momentum construction (2.2) and (3.1), the dHYM equation
is equivalent to the ODE

H′(t) = t sin θ̂ +H(t) cos θ̂
H(t) sin θ̂ − t cos θ̂

,(3.4)

together with the boundary conditions

H ( 1 + x
x
) = k1 (

1 + x
x
) + k2 (

1 − x
x
) ,

H ( 1 − x
x
) = k1 (

1 − x
x
) + k2 (

1 + x
x
) .(3.5)

Proof At a point (z0 , w0) such that dlog h(z0) = 0, we have

ω − iFg =

((1 −
√
−1k1)

1 − x f ′

x
−
√
−1 k2

x
1 − x2

1 − x f ′
+
√
−1g′)ωΣ+

( f ′′ (1 −
√
−1k1 +

√
−1k2

1 − x2

1 − x f ′
) −
√
−1g′′)

√
−1 dw ∧ dw̄

∣w∣2 ,

and we obtain the global identity
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Examples of dHYM connections in a variable background 13

1
2

Im(e−
√
−1θ̂ (ω −

√
−1Fg)

2
) /
√
−1 dw ∧ dw̄

∣w∣2 ∧ ωΣ =

− sin θ̂ ( f ′′ 1 − x f ′

x
+ (g′ − k2

x
1 − x2

1 − x f ′
− k1

x
+ k1 f ′)(g′′ + k1 f ′′ − k2 f ′′ 1 − x2

(1 − x f ′)2 ))

+ cos θ̂ ( 1−x f ′

x
(k2 f ′′ 1−x2

(1−x f ′)2 − g′′ − k1 f ′′) + f ′′ (g′− k2

x
1−x2

1 − x f ′
− k1

x
+ k1 f ′)).

(3.6)

This expression becomes much simpler under the Legendre transform diffeomor-
phism in terms of the variable τ = f ′(s), for which dτ/ds = ϕ(τ), and the additional
affine change of variable t = 1/x − τ. Setting

H(t) = k1 t + k2

t
1 − x2

x2 − ν(t),

the dHYM equation is equivalent to

2ϕ (cos θ̂ (H + tH′) + sin θ̂ (t −HH′)) = 0

and, since ϕ > 0, also to

H′ = t sin θ̂ +H cos θ̂
H sin θ̂ − t cos θ̂

.

A direct computation shows that the boundary conditions (3.2) for g(s), rephrased in
term of H(s), become the constraints (3.5). ∎

Corollary 13 The ODE (3.4) is solvable with the boundary conditions (3.5) iff the
“stability condition”

(1 + (k1 + k2)2) > x (1 + (k1 − k2)2)

holds.

Proof Setting tv = H, equation (3.4) becomes

tv′ = −2 ξ(v)
ξ′(v) ,(3.7)

with ξ(v) = v2 sin θ̂ − 2v cos θ̂ − sin θ̂. Solving (3.7) by separation of variables, we get

ξ(v) = C
t2 ,

which has two solutions given by

H±(t) = t cot θ̂ ±
√
(cot2 θ̂ + 1) (t2 + C′),(3.8)
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14 E. Schlitzer and J. Stoppa

with C′ = C sin θ̂. We need to impose the appropriate boundary conditions (3.5). The
first condition at 1/x + 1 holds iff we choose the solution H− in (3.8) and set

C =
−2k2 (1 + (k1 + k2)2 − x2 − (k1 − k2)2 x2)

x2
√
(1 − k2

1 + k2
2)

2 + (2k1)2
.

In this case, at 1/x − 1, we have

H− (
1 − x

x
) = 1

2xk1
(−k2

1 (−1 + x) + (1 + k2
2) (−1 + x))

+ ∣−1 − (k1 + k2)2 + x + (k1 − k2)2 x
2k1x

∣

=
⎧⎪⎪⎪⎨⎪⎪⎪⎩

k1 ( 1−x
x ) + k2 ( 1+x

x ) , if (1 + (k1 + k2)2) > x (1 + (k1 − k2)2) ,
(1+k2

2)(x−1)−k1 k2(1+x)
k1 x , if (1 + (k1 + k2)2) < x (1 + (k1 − k2)2) ,

so the second condition in (3.5) holds iff we have

(1 + (k1 + k2)2) > x (1 + (k1 − k2)2) . ∎

Remark 14 Jacob and Yau [15] showed that the solvability of the dHYM equation
on compact Kähler surfaces is equivalent to a certain numerical “stability condition.”
Considering the closed, real (1, 1)-form

Ω = cot θ̂ ω − F ,

the relevant condition is [Ω] > 0. In our setting, when we regard H2(X ,R) as R2 with
the basis provided by the Poincaré duals of E0 and C and coordinates (a1 , a2), the
Kähler cone is identified with the subset {a1 > 0, a2 > 0}. A computation shows that
the [Ω] is positive precisely when the condition (1.4) is satisfied.

Remark 15 Suppose equality holds instead in our “stability condition” (1.4),

(1 + (k1 + k2)2) = x (1 + (k1 − k2)2) .

A direct computation then shows that the quantity t2 + C′ vanishes at the endpoint
t = 1/x − 1. By our explicit formula (3.8), we see that the function H−(t) is smooth on
the interval (1/x − 1, 1/x + 1] and extends to a C1/2 function on its closure. Thus, for
fixed background ω, we obtain a corresponding solution to the dHYM equation which
is smooth on X/E∞ and extends to a form with C1/2 coefficients on X. This should be
compared with a result of Takahashi [21] which holds for a general compact Kähler
surface X, and states that under suitable assumptions, when the class [Ω] above is only
semipositive, then there exists a solution to the dHYM equation which is smooth on
the complement of finitely many holomorphic curves of negative self-intersection and
which extends to a closed current on X.
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Examples of dHYM connections in a variable background 15

4 Coupled equations

In the previous section, we solved the dHYM equation in suitable integral classes,
determining explicitly the Legendre transform of the curvature form F in terms of the
Kähler metric ω. More precisely, let us assume that the “stability condition”

(1 + (k1 + k2)2) > x (1 + (k1 − k2)2)

holds, and let us denote by F = F(ω) the unique curvature form constructed in the
previous section.

In this section, we will complete the proof of Theorem 2 by solving the second
equation in (1.2). We also establish the real analyticity of our solutions, Proposition 6.

Recall that we are concerned with the equation

s(ω) − α Re
⎛
⎜
⎝

e−
√
−1θ̂ (ω −

√
−1F)2

ω2

⎞
⎟
⎠
= ŝ − αr̂,(4.1)

where the constants ŝ and r̂ can be computed as

ŝ = 2xsΣ + 2, r̂ =
√
(1 − k2

1 + k2
2)

2 + 4k2
1 .

Lemma 16 In terms of the variable t = 1/x − τ and the function H(t) appearing in
(3.4), we have

Re
⎛
⎜
⎝

e−
√
−1θ̂ (ω −

√
−1F)2

ω2

⎞
⎟
⎠

= cos θ̂ (1 − H(t)H′(t)
t

) − sin θ̂ (H′(t) + H(t)
t
) .

Proof As in the proof of Proposition 12, at a point (z0 , w0) such that dlog h(z0) = 0,
we have the global identities

x 1
2

Re(e−
√
−1θ̂ (ω −

√
−1Fg)

2
) /
√
−1 dw ∧ dw̄

∣w∣2 ∧ ωΣ =

cos θ̂ ( f ′′ 1 − x f ′

x
+ (g′ − k2

x
1 − x2

1 − x f ′
− k1

x
+ k1 f ′)(g′′ + k1 f ′′ − k2 f ′′ 1 − x2

(1 − x f ′)2 ))

+ sin θ̂ ( 1 − x f ′

x
(k2 f ′′ 1 − x2

(1 − x f ′)2 − g′′ − k1 f ′′) + f ′′ (g′ − k2

x
1 − x2

1 − x f ′
− k1

x
+ k1 f ′))

and
ω2 = 2 f ′′ 1 − x f ′

x
√
−1 dw ∧ dw̄

∣w∣2 ∧ ωΣ .

In terms of the variable t and the auxiliary function H(t), we have

( f ′′ 1 − x f ′

x
+ (g′ − k2

x
1 − x2

1 − x f ′
− k1

x
+ k1 f ′)(g′′ + k1 f ′′ − k2 f ′′ 1 − x2

(1 − x f ′)2 ))

= 1 − H(t)H′(t)
t

,
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16 E. Schlitzer and J. Stoppa

respectively,

( 1 − x f ′

x
(k2 f ′′ 1 − x2

(1 − x f ′)2 − g′′ − k1 f ′′) + f ′′ (g′ − k2

x
1 − x2

1 − x f ′
− k1

x
+ k1 f ′))

= −H′(t) − H(t)
t

,

from which our claim follows immediately. ∎
Lemma 17 Equation (4.1) becomes the ODE for the momentum profile ϕ(t) given by

(2sΣ

t
− 1

t
(2tϕ(t))′′) + 2α cos θ̂

sin2 θ̂
− α

sin3 θ̂
t√

(cot2 θ̂ + 1) (t2 + C′)

− α
t sin θ̂

√
(cot2 θ̂ + 1) (t2 + C′) = ŝ − αr̂,

with the boundary conditions

lim
t→ 1

x ±1
ϕ(t) = 0, lim

t→ 1
x ±1

ϕ′(t) = ∓1.

Proof By a standard computation, the scalar curvature of ω can be expressed in
terms of the variable τ as

s(ω) = 2sΣ x
1 − xτ

− x
1 − xτ

(2ϕ(τ) 1 − xτ
x
)
′′

,

with ϕ(τ) satisfying (2.4). After the affine change of variable t = 1/x − τ, our claim
follows directly from Lemma 16 and the explicit formula (3.8) for H(t). ∎

Setting ψ(t) = 2tϕ(t), we obtain the ODE

ψ′′(t) = (2α cos θ̂
sin2 θ̂

− ŝ + αr̂) t − α
sin θ̂

√
(cot2 θ̂ + 1) (t2 + C′)

− α
sin3 θ̂

t2
√
(cot2 θ̂ + 1) (t2 + C′)

+ 2sΣ(4.2)

with the boundary conditions

lim
t→ 1

x ±1
ψ(t) = 0, lim

t→ 1
x ±1

ψ′(t) = ∓2( 1
x
± 1) ,(4.3)

and the positivity condition

ψ(t) > 0, 1
x
− 1 < t < 1

x
+ 1.(4.4)

By integrating twice, we get the general solution of (4.2) with integration constants
d0 , d1

ψ(t) = sΣ t2 + (α
3

cos θ̂
sin2 θ̂

− ŝ − αr̂
6
) t3 − α

3
sin θ̂ ((cot2 θ̂ + 1) (t2 + C′))

3
2

+ d0 + d1 t,(4.5)
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which satisfies (4.3) if and only if we set

d0 = −
(−2 + sΣ x) (−3 − 3k2

1 − 2k1k2 − 3k2
2 + 3(1 + (k1 − k2)2) x2)

3(1 + (k1 − k2)2) x3
,

d1 = −
(−2 (1 + k2

1 + k2
2) + (1 + (k1 − k2)2) sΣx) (−1 + x2)

4k1k2x2 ,

α =

√
4k2

1 + (1 − k2
1 + k2

2)
2

2 (1 + (k1 − k2)2) k2
2

(−2 + sΣx) .

In order to check the positivity condition (4.4), we observe that

d4ψ
dt4 = −

3
4

α (C′

k1
)

2

(t2 + C′)−
5
2 > 0.(4.6)

Moreover, setting t− = 1/x − 1 and t+ = 1/x + 1, we get

ψ′′(t−) − ψ′′(t+)

= 4
−3(1 + (k1 + k2)2)

2
+ (1 + (k1 − k2)2)

2
x2 (x + sΣ)

−(1 + (k1 + k2)2)
2
+ (1 + (k1 − k2)2)

2
x2

> 0,(4.7)

since sΣ + x < 3. Thus, ψ′′ is a convex function defined on the interval [t−, t+], such
that ψ′′(t−) > ψ′′(t+), and this, together with (4.3), implies the positivity condition
(4.4).

Finally, let us note that if equality holds in our “stability condition”

(1 + (k1 + k2)2) = x (1 + (k1 − k2)2) ,

then the quantity t2 + C′ vanishes at the endpoint t = 1/x − 1, and by our explicit
formulae (3.8) and (4.5), we obtain a solution ω, F which is smooth on X/E∞, and
such that F extends to a form with C1/2 coefficients on X, while ω extends with C1,1/2

coefficients. This completes the proof of Theorem 2.

Remark 18 As we will be interested in the small and large limits of the coupled
equations, we point out that (4.6) and (4.7) hold uniformly as the scaling parameter
α′ → 0 and, provided the “stability condition”

(k1 + k2)2 > x(k1 − k2)2

is satisfied, also for α′ →∞.

We can now prove Proposition 6. We first claim that the Kähler form ω constructed
above is real analytic. Recall that ω is obtained by the momentum construction (2.2),

ω = p∗ωΣ

x
+
√
−1∂∂ f (s),
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18 E. Schlitzer and J. Stoppa

for a suitable convex function f ∶ R→ R, where we have s = log ∣w∣2 + log h(z) with
respect to bundle adapted holomorphic coordinates (z, w). The hyperbolic metric
ωΣ is real analytic, so we can choose a local holomorphic coordinate z such that
its coefficients are real analytic. On the other hand, the real function h(z) satisfies
−
√
−1∂z ∂z log h(z) = ωΣ , with the same choice of local coordinate, and so it is also

real analytic. So our claim follows if we can show that the function f ∶ R→ R is real
analytic. But f is related to the momentum profile ϕ by the ODE

f ′′(s) = ϕ(τ) = ϕ( f ′(s)),

and the momentum profile ϕ(τ) or our solution is clearly a real analytic function of
the variable τ ∈ (−1, 1) by (4.5). Thus, f (s) is real analytic and our claim on ω follows.
In order to see that the curvature form F is also real analytic, recall that it is given by
our ansatz (3.1), F = F0 +

√
−1∂∂g(s), and that the dHYM equation satisfied by F can

be expressed in terms of g(s) as the vanishing of the right-hand side of the expression
(3.6). Thus, the real analyticity of g(s) follows from that of f (s).

5 Conical singularities

In the present section, we prove Theorem 3. This extends our existence result, Theorem
2, to allow a Kähler form ω with conical singularities. Our main motivation for this
extension is describing examples of solutions to the coupled equations (1.2) with
positive coupling constant α > 0.

We consider again Kähler forms ω given by the momentum construction (2.2),

ω = p∗ωΣ

x
+
√
−1∂∂ f (s),

with momentum profile ϕ(τ) > 0 defined on the interval (−1, 1).

Lemma 19 The Kähler form ω extends to a form with conical singularities on X, with
cone angle 2πβ0 along E0 (resp. 2πβ∞ along E∞), iff the momentum profile satisfies the
boundary conditions

lim
τ→±1

ϕ(τ) = 0, lim
τ→−1

ϕ′(τ) = β0 , lim
τ→1

ϕ′(τ) = −β∞.

Proof For any open neighborhood U ⊂ X, in terms of the bundle adapted coordi-
nates (z, w), E0 ∩U = {w = 0}. We assume that, near r = ∣w∣ = 0, f ′′ has the form

f ′′(s) = c0r2β0 + A(r)

with c0 ≠ 0 and A(r) = o(r2β0). Then we have

ωzz = (
1 − x f ′

x
)ωΣ,zz +

√
−1 f ′′ ∂h∂h

h2 = O(1),

ωwz = −
√
−1 1

w
f ′′(s)∂h = O(r2β0−1),

ωzw =
√
−1 1

w
f ′′(s)∂h = O(r2β0−1),

ωww =
√
−1r2β0−2 (1 + A(r)/r2β0) ;
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Examples of dHYM connections in a variable background 19

hence, the metric ω given by the momentum construction has a conical singularity
along E0 of angle 2πβ0. Since d/ds = r

2 d/dr, f ′′(s) = ϕ(τ), and f ′′′(s) = ϕ(τ)ϕ′(τ),
this implies

lim
τ→−1

ϕ(τ) = 0

and

lim
τ→−1

ϕ′(τ) = β0 .

To proof for E∞ is the same up to a change of variable. ∎
As in the previous section, it is convenient to consider the reparametrization

x = k
k + k′

for k′ > 0. Similarly, we introduce the (1, 1)-forms

β = x2

(1 − x f ′(s))2 (
1 − x f ′(s)

x
ωΣ −

√
−1 f ′′(s)dw ∧ dw̄

∣w∣2 ) ,

F = k1ω + 1 − x2

x2 k2β,

as well as the ansatz, extending the momentum construction

Fg = F +
√
−1∂∂g(s).

We also denote by ν(τ) the image of g′(s) under the Legendre transform diffeomor-
phism relative to f (s). The proof of the following result is almost identical to the
smooth case, and we leave it to the reader.

Lemma 20 A Kähler form ω with conical singularities as above is a closed (1, 1)-current
on X, with cohomology class

[ω] = 2π[2E0 + k′C].
Similarly, F is a closed (1, 1)-current on X with cohomology class

[F] = 2π[2(k1 − k2)E0 + (2kk2 + k′(k1 + k2)C].

Moreover,
√
−1∂∂g(s) extends to a closed (1, 1)-current on X, which has vanishing

cohomology class iff ν(τ) satisfies the boundary conditions

lim
τ→±1

ν(τ) = 0.

We are now in a position to complete the proof of Theorem 3. Let us first note that,
precisely as in the proof of Theorem 2, under the momentum construction, the dHYM
equation for ω and F becomes the ODE (3.4), together with the boundary conditions
(3.5). By Lemma 20, the cone angles do not play a role in this reduction. It follows that
the second of our coupled equations (1.2) also reduces to the same ODE (4.2) for a
single function ψ(t) > 0 of the variable

t = 1/x − τ
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appearing in the proof of Theorem 2. By Lemma 19, the boundary conditions corre-
sponding to general cone angles β0, β∞ are

lim
t→±1

ψ(t) = 0, lim
t→ 1

x +1
ψ′(t) = −2β0 (

1
x
+ 1) , lim

t→ 1
x −1

ψ′(t) = 2β∞ (
1
x
− 1) .

However, as (4.2) is second-order ODE, this problem is overdetermined. If we consider
the general solution (4.5) and impose the boundary condition

lim
t→ 1

x +1
ψ′(t) = −2β0 (

1
x
+ 1)

corresponding to a cone angle 2πβ0 along E0, we find that the integration constant d1
can be expressed in terms of β0 and the coupling constant α as

d1 =
(x + 1)(2k1(x(−2β0 + sΣ(x − 1) + 1) + 1)

2k1x2

− α
k2(x − 1)

√
k4

1 − 2k2
1 (k2

2 − 1) + (k2
2 + 1)2)

2k1x2 .(5.1)

Similarly, imposing the condition

lim
t→ 1

x +1
ψ(t) = 0

and using our expression for d1 gives the relation

d0 = 4α
k2

2 (x3(k1 − k2)2 + (k1 + k2)2 + x3 + 1)

3x3
√
(−k2

1 + k2
2 + 1)2 + 4k2

1

−
(x + 1)2

√
k4

1 − 2k2
1 (k2

2 − 1) + (k2
2 + 1)2(x(−6β0 + sΣ(2x − 1) + 2) + 2)

3x3
√
(−k2

1 + k2
2 + 1)2 + 4k2

1

.

Further, imposing the condition

lim
t→ 1

x −1
ψ(t) = 0

and using our expressions for d0, d1 determines the coupling constant uniquely as

α =

√
(−k2

1 + k2
2 + 1)2 + 4k2

1 (sΣx2 − 3β0(x + 1) + x + 3)
2k2

2 x ((k1 − k2)2 + 1) .(5.2)

We can now compute directly that a solution ψ(t) corresponding to a cone angle 2πβ0
along E0 satisfies

lim
t→ 1

x −1
ψ′(t) = −2(β0 + β0x − 2)

x
= 2−2 + β0(1 + x)

−1 + x
( 1

x
− 1) ,

which yields a cone angle 2πβ∞ along E∞, with

β∞ =
−2 + β0(1 + x)
−1 + x

.
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Figure 1. The momentum profile ϕ(t) of the solution when k2 = −k1 = 1, h = 0 and x = 1/6.

In order to prove the positivity of ψ(t), we consider again (4.6), with the coupling
constant α given by (5.2). When

3 (1 + x) β0 − 3 > x (1 + sΣx) ,

we construct solutions for α < 0 and hence d4ψ
dt4 > 0. Moreover,

ψ′′(t−) − ψ′′(t+)

= 4
(3 (1 + x) β0 − 3) (1 + (k1 + k2)2)

2
− x2 (1 + (k1 − k2)2)

2
(sΣx2 + x)

(1 + (k1 + k2)2)
2

x − (1 + (k1 − k2)2)
2

x3
> 0,

and we can use essentially the same argument given in the proof of Theorem 2. When
α > 0, an explicit analysis of the momentum profile is more complicated and the
positivity of ψ(t) is best checked with the assistance of a numerical software package
(see Figure 1). This completes the proof of Theorem 3.

6 Twisted Kähler–Einstein equation

This section is devoted to the proof of Proposition 5, which states explicitly when
the equation in (1.2) involving the scalar curvature of ω reduces to a twisted Kähler–
Einstein equation. For a general complex surface, we should require that

[Ric(ω)] + α
2 sin θ̂

[F] = ŝ − αr̂
4
[ω],(6.1)

and we will make this condition explicit in our current setting.

Lemma 21 For any Kähler form ω on X given by the momentum construction, with
cone angle 2πβ0 along E0 (resp. 2πβ∞ along E∞), the cohomology class of Ric(ω) is
given by

[Ric(ω)
2π

] = (β0 + β∞) [E0] + (2 (1 − h) − kβ∞) [C] .
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Proof We recall that

Ric(ω) = −
√
−1∂∂ log det ω

= −
√
−1∂∂ log det( 2

∣w∣2 (
1
x
− f ′) f ′′ωΣ)

= −
√
−1∂∂ log det(( 1

x
− f ′) f ′′ωΣ) ;

hence, by a straightforward calculation, we get

−
√
−1∂z ∂z log det(( 1

x
− f ′) f ′′ωΣ) = (

f ′′′

f ′′
+ ρΣ −

x
(1 − x f ′) f ′′)ωΣ

and

−
√
−1∂w ∂w log det(( 1

x
− f ′) f ′′ωΣ) =

√
−1 1
∣w∣2

d
ds
( x
(1 − x f ′) f ′′ − f ′′′

f ′′
) dw ∧ dw .

Using the identities f ′′′(s)/ f ′′(s) = ϕ′(τ), f ′′(s) = ϕ(τ) and the boundary conditions
required for the momentum profile and its derivative, we compute

∫
E0

Ric(ω) = (ϕ′(−1) + 2(1 − h)
k

− ϕ(−1)
x−1 − 1

)∫
Σ

ωΣdz ∧ dz

= 2π (2(1 − h) + kβ0)

and

∫
C

Ric(ω) = ∫
C/0

√
−1 dw ∧ dw

∣w∣2
d
ds
( x
(1 − x f ′) f ′′ − f ′′′

f ′′
)

= ∫
∞

−∞ ∫
2π

0

d
dr
( x
(1 − x f ′) f ′′ − f ′′′

f ′′
) dr ∧ dθ

= 2π (β0 + β∞) ,

so our claim follows directly from (2.6). ∎

For the following computations, it is convenient to introduce the quantity

Γ = 3 + x + sΣx2 − 3(1 + x)β0

x
= 4 − 6β0 + 3 k′

k
(1 − β0) + 2 1 − h

k + k′
.

Using Lemmas 20 and 21, we can then rephrase the general condition (6.1) as the
system of equations

⎧⎪⎪⎨⎪⎪⎩

1+(k1+k2)2

2k1 k2
Γ = 2 + 4 1−h

k+k′ − 2 (β0 + β∞) ,
1+(k1+k2)2

2k1 k2
Γ ( k′

2 + k) = 2 (1 − h) 2k+k′
k+k′ − 2kβ∞ − k′ .

(6.2)

Notice that the two equations in (6.2) actually coincide when

−2 (1 − h) 2k + k′

k + k′
+ 2kβ∞ + k′ = (2k + k′)(β0 + β∞ − 1 − 2 1 − h

k + k′
) ,
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or, equivalently,

2 (k′ + k) = (2k + k′) β0 + k′β∞.(6.3)

Recall, however, that in order to have solutions to our equations in the momentum
construction, the cone angle 2πβ0 is not arbitrary but must satisfy

β∞ =
−2 + β0(1 + x)
(−1 + x) ,

in which case (6.3) holds automatically. Then the general condition (6.1) corresponds
to

1 + (k1 + k2)2

2k1k2
Γ = 2 + 4 1 − h

k + k′
− 2 (β0 + β∞)

= 2(2 1 − h
k + k′

+ 2 k
k′
(β0 − 1) − 1) .(6.4)

In order to show that this coincides with the condition (1.6) spelled out in Proposition
5, we rewrite the latter as

(−1 + x) (1 + (k1 + k2)2) Γ − 4k1k2 (1 + sΣ − x (−1 + sΣ + 2β0)) = 0,

which implies

1 + (k1 + k2)2

2k1k2
Γ = 2 1

−1 + x
(1 + sΣ − x (−1 + sΣ + 2β0))

= 2(sΣ x + 2β0
x

1 − x
+ 1 + x
−1 + x

)

= 2(sΣ x + 2 x
1 − x

(β0 − 1) − 1)

= 2(2 1 − h
k + k′

+ 2 k
k′
(β0 − 1) − 1) .

Reading these identities backward shows that the two conditions (1.6) and (6.4) are
indeed equivalent.

It remains to establish the second claim of Proposition 5, namely that the condition
(6.4) actually holds for infinitely many solutions of the system (1.2). It is convenient to
rewrite (6.4) in the form

F(k1 , k2) = H(k, k′ , h, β0),(6.5)

with

F(k1 , k2) =
1 + (k1 + k2)2

2k1k2

and

H(k, k′ , h, β0) =
2
Γ
(2 1 − h

k + k′
+ 1 − β0 − β∞)

= 2
2 1−h

k+k′ + 2(β0 − 1) k
k′ − 1

2 1−h
k+k′ + 3 k′

k (1 − β0) + 4 − 6β0
.
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Figure 2. H(k, k′ , h, β) for k = k′ = 1 and h = 6.

We assume that k2 < 0, so the stability condition (1.4) is automatically satisfied, and
the system (1.2) is solvable. We observe that, under this assumption, the l.h.s. of (6.5)
satisfies

F(k1 , k2) > 2.

On the other hand, H(k, k′ , h, β), as a function of the single variable β, has a vertical
asymptote at

β =
4
3 k + k′ + 2(1−h)k

3(k+k′)

k′ + 2k

and it is easy to check that 0 < β < 1, for k′ > M(k, h) > 0. Moreover, at β = 1, we have

0 < H(k, k′ , h, 1) = k + k′ + 2 (h − 1)
k + k′ + h − 1

< 2

and

d
dβ

H(k, k′ , h, 1) = 4k
k′ (−2 + 2(1−h)

k+k′ )
+

2 (6 + 3k
k′ ) (−1 + 2(1−h)

k+k′ )

(−2 + 2(1−h)
k+k′ )

2 < 0

(Figure 2 shows the graph of H (β) for k = k′ = 1 and h = 6).
This implies that

F(k1 , k2) ∈ (2,∞) ⊂ im H∣β∈(0,1) ,

which completes the proof of Proposition 5.

Remark 22 A direct computation using (5.1) shows that the condition (1.6) holds
precisely when the coefficient of the linear term d1 in ψ(t) vanishes, i.e., a solution
ω is twisted Kähler–Einstein precisely when the linear term is missing from the
momentum profile.
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7 Large and small radius limits

Let us first prove Theorem 7. As we already observed, the “slope parameter” α′ appears
in the coupled equations (1.7) simply as a scale factor for the curvature form F. In
other words, a pair ω, F solves (1.7) iff the pair ω, α′F solves (1.2): the cohomology
parameters are simply rescaled (k1 , k2) ↦ (α′k1 , α′k2). Thus, according to Theorem
2, there exists a (unique) solution of (1.7) given by the momentum construction iff the
“stability condition”

1 + (α′)2 (k1 + k2)2 > x (1 + (α′)2 (k1 − k2)2)

holds. Since x < 1 by construction, this inequality holds for all sufficiently small α′,
depending only on k1 , k2, and k′. Let us write ωα′ , Fα′ for the corresponding family of
solutions.

The attached function Hα′(t) = H−(t) appearing in (3.4) is also obtained from
(3.8) simply by rescaling (k1 , k2) ↦ (α′k1 , α′k2), and so it can be computed explic-
itly as

Hα′(t) = t cot θ̂α′ −
√
(cot2 θ̂α′ + 1) (t2 + C′α′),

e
√
−1θ̂α′ =

(1 − (α′)2k2
1 + (α′)2k2

2 − 2
√
−1α′k1)√

(1 − (α′)2k2
1 + (α′)2k2

2)
2 + (2(α′)2k1)2

,

cot θ̂α′ = −
−(α′)2k2

1 + (α′)2k2
2 + 1

2α′k1
,

C′α = 4(α′)2k1k2 (
1

x2 ((α′k1 − α′k2)2 + 1) −
1

(α′k1 + α′k2)2 + 1
) .(7.1)

By elementary computations using these explicit formulae, recalling that we also have
k1 < 0, we find

Hα′(t) = (k1 t + k2

t
(−1 + 1

x2 )) α′ + (α′)2R(α′ , t)(7.2)

for some function R(α′ , t), smooth up to α′ = 0.
As a first consequence, we can show that the sequence of Kähler forms ωα′

converges smoothly to a Kähler form ω as α′ → 0. It will be enough to show the
smooth convergence of the momentum profiles ϕα′(t). According to Lemma 17 and
the subsequent explicit formulae for the coupling constant α and average radius r̂, the
profile ϕα′(t) is obtained by integrating twice the identity

2sΣ

t
− 1

t
(2tϕ(t))′′ = α (cos θ̂ (1 − H(t)H′(t)

t
) − sin θ̂ (H′(t) + H(t)

t
))

+ ŝ − αr̂,(7.3)
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where all quantities are understood as evaluated at (α′k1 , α′k2), and in particular

α =

√
4(α′)2k2

1 + (1 − (α′)2k2
1 + (α′)2k2

2)
2

2 (1 + (α′k1 − α′k2)2) (α′)2k2
2

(−2 + sΣ x) ,

r̂ =
√
(1 − (α′)2k2

1 + (α′)2k2
2)

2 + 4(α′)2k2
1 .(7.4)

By the latter explicit formulae and (7.2), the quantity

α (cos θ̂ (1 − H(t)H′(t)
t

) − sin θ̂ (H′(t) + H(t)
t
) − r̂)

has a smooth limit as α′ → 0, so the same holds for the right-hand side of (7.3) and for
the momentum profile ϕ(t) = ϕα′(t). The positivity of ϕα′(t) and its limit for α′ → 0
follows from Remark 18. We can now show that the curvature forms Fα′ also con-
verge smoothly as α′ → 0. By construction, we have Fα′ = F0,α′ +

√
−1∂∂(α′)−1 gα′(s),

where F0 = c1ωα′ + c2βα′ and the potential gα′(s) corresponds to the solution for
the parameters (α′k1 , α′k2) (i.e., for the cohomology class α′[F0]). By the smooth
convergence of the Kähler forms ωα′ , which we just established, it will be enough
to show that the potentials (α′)−1 gα′(s) converge smoothly. In fact, they converge
smoothly to the zero potential. Indeed, by (3.3) and (7.2), we have

(α′)−1 gα′(s) = (α′)−1να′(τ)

= (α′)−1 (α′k1 t + α′ k2

t
1 − x2

x2 −Hα′(t))

= α′R(α′ , t),
where R(α′ , t) is smooth in a neighborhood of α′ = 0. It follows that we have,
smoothly as α′ → 0,

Fα′ → F0 = c1ω + c2β,

which is indeed a solution of the HYM equation ΛωF = μ.
Finally, this allows to write down the equation satisfied by the limit Kähler form ω.

Recall that ωα′ solves the equation

s(ωα′) − αα′ Re
⎛
⎜
⎝

e−
√
−1θ̂α′

(ωα′ −
√
−1α′Fα′)

2

ω2
α′

⎞
⎟
⎠
= ŝ − αα′ r̂α′ .

Expanding around α′ = 0, we find

Re (e−
√
−1θ̂α′ (ωα′ −

√
−1α′Fα′)2)

= ω2
α′ − (Fα′ ∧ Fα′ − z1ωα′ ∧ Fα′ + z2ω2

α′) (α′)2 + O(α′4)
for certain cohomological constants z1, z2. Similarly,

αα′ =
1
(α′)2 (

−2 + sΣ x
2k2

2
+ O(α′)) ,

r̂α′ = 1 + O(α′).
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Thus, taking the smooth limit as α′ → 0, and using our result that the limit curvature
form satisfies ΛωF = μ, we see that ω satisfies

s(ω) + α̃Λ2
ω(F ∧ F) = c,

where

α̃ = −2 + sΣx
2k2

2

and c is a cohomological constant. This completes the proof of Theorem 7.
The proof of Theorem 8 is quite similar. Our assumption

(k1 + k2)2 > x(k1 − k2)2

implies that, for any α′ > 0, the “stability condition”

1 + (α′k1 + α′k2)2 > x(1 + (α′k1 − α′k2))2

holds. Thus, by Theorem 2, the coupled equations (1.7) are uniquely solvable with
the momentum construction. We denote the corresponding solutions by ωα′ , Fα′ as
before. By (7.1), as α′ →∞, we have an expansion

Hα′(t) =

√
(k2

1 − k2
2)

2 (k1k2 ( 4
x2(k1−k2)2 − 4

(k1+k2)2 ) + t2) + k2
1 t − k2

2 t

2k1
α′

+ S((α′)−1 , t),(7.5)

where S(y, t) is a smooth function near y = 0. By this expansion and (7.4), the quantity

α (cos θ̂ (1 − H(t)H′(t)
t

) − sin θ̂ (H′(t) + H(t)
t
) − r̂)

has a smooth limit as α′ →∞, so the same holds for the right-hand side of (7.3) and for
the momentum profile ϕ(t) = ϕα′(t). Since we are assuming (k1 + k2)2 > x(k1 − k2)2,
ϕα′(t) and its limit satisfy the positivity condition, by Remark 18. Thus, the sequence
of Kähler forms ωα′ converges smoothly to a Kähler form ω as α′ →∞.

Considering now the curvature forms Fα′ = F0,α′ +
√
−1∂∂(α′)−1 gα′(s) as before,

we find

(α′)−1 gα′(s) = (α′)−1να′(τ)

= (α′)−1 (α′k1 t + α′ k2

t
1 − x2

x2 −Hα′(t))

= k1 t + k2

t
1 − x2

x2 − (α′)−1Hα′(t),

where by (7.5) we have the smooth convergence, as α′ →∞,

(α′)−1Hα′(t) →
k2

1 − k2
2

2k1
K±(t),
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where

K±(t) = t ±
√

t2 + Ĉ ,

Ĉ = 4k1k2 (
1

x2(k1 − k2)2 −
1

(k1 + k2)2 ) ,

and the sign ± is that of the quantity k2
1 − k2

2 . Thus, by the convergence of the Kähler
forms ωα′ , the curvature forms Fα′ also have a smooth limit F as α′ →∞.

Finally, we may write down the equations satisfied by the limit Kähler form ω and
curvature form F. By our previous results, we have expansions, as α′ →∞,

Im (e−
√
−1θ̂α′ (ωα′ −

√
−1α′Fα′)2) = (Z1ωα′ ∧ Fα′ − Z2F2

α′) α′ + O(1),

Re (e−
√
−1θ̂α′ (ωα′ −

√
−1α′Fα′)2) = F2

α′(α′)2 + O(1),

for some cohomological constants Z1 , Z2. Similarly,

αα′ =
∣k2

1 − k2
2 ∣

2(k1 − k2)2k2
2

(−2 + sΣ x)
(α′)2 + O ( 1

(α′)3 ) ,

r̂α′ = ∣k2
1 − k2

2 ∣(α′)2 + O(α′).

Thus, passing to the limit as α′ →∞ in equations (1.7), we find that ω and F satisfy
the equations

⎧⎪⎪⎨⎪⎪⎩

F ∧ ω = c1F2

s(ω) − α∞ F2

ω2 = c2

for a unique α∞ and cohomological constants c1 and c2. Using the first equation, the
second can also be written in the twisted cscK form as

s(ω) − α̂ΛωF = c2

for some unique α̂. This completes the proof of Theorem 8.
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