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TREND EXTRACTION FROM
ECONOMIC TIME SERIES WITH
MISSING OBSERVATIONS BY

GENERALIZED HODRICK–PRESCOTT
FILTERS

HIROSHI YAMADA

Hiroshima University

The Hodrick–Prescott (HP) filter has been a popular method of trend extraction
from economic time series. However, it is impractical without modification if some
observations are not available. This paper improves the HP filter so that it can be
applied in such situations. More precisely, this paper introduces two alternative
generalized HP filters that are applicable for this purpose. We provide their properties
and a way of specifying those smoothing parameters that are required for their
application. In addition, we numerically examine their performance. Finally, based
on our analysis, we recommend one of them for applied studies.

1. INTRODUCTION

The Hodrick–Prescott (HP) (1997) filter has been a popular method of trend
extraction from economic time series such as real gross domestic product and has
attracted a lot of attention among econometricians.1 Recent studies of the filter
include de Jong and Sakarya (2016); Cornea-Madeira (2017); Hamilton (2018);
Phillips and Jin (2020); Phillips and Shi (2020); Sakarya and de Jong (2020);
Yamada (2012, 2015, 2018a, 2018b, 2020a, 2020b); Yamada and Du (2019), and
Yamada and Jahra (2019).

The HP filter is defined by the following penalized least-squares problem:

min
x1,...,xT∈R

T∑
t=1

(yt − xt)
2 +λ

T∑
t=3

(�2xt)
2, (1)

where y1, . . . ,yT are T observations of a univariate economic time series, �2xt =
(xt − xt−1)− (xt−1 − xt−2) = xt − 2xt−1 − xt−2 for t = 3, . . . ,T , and λ is a positive
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smoothing parameter that controls the trade-off between goodness of fit and
smoothness.

In this paper, we consider the situation such that some of y2, . . . ,yT−1 are
not available. The HP filter is clearly impractical without suitable modification
in such a situation. In this paper, we improve the HP filter so that we can
apply it even though some observations are not available. More precisely, we
introduce two generalized HP filters, denoted by gHPn filter and gHPT filter, that
are applicable for trend extraction of available observations. We provide their
properties and a way of specifying their smoothing parameters that are required for
their application. In addition, we numerically examine their performance. Finally,
based on our analysis, we recommend the latter filter for applied studies.

Figure 1. yT denotes the log of seasonally adjusted Japanese real gross domestic product (GDP) over
the sample period 1994:Q1 to 2020:Q2 (and accordingly, T = 106). yT (missing) denotes T/2 = 53
missing observations selected randomly. gHPT filter denotes the trend estimated by the gHPT filter
with λT = 1600.
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To illustrate the focus of this paper, see Figure 1. yT in the figure denotes the log
of seasonally adjusted Japanese real gross domestic product (GDP) over the sample
period 1994:Q1 to 2020:Q2 (and accordingly, T = 106).2 yT (missing) denotes
T/2 = 53 missing observations selected randomly from y2, . . . ,yT−1. gHPT filter
denotes the trend estimated by the gHPT filter. From Figure 1, it is observable that
the gHPT filter provides plausible trend estimates for the available observations
even though there are missing observations. Again, we want to emphasize that the
HP filter is not applicable in such a situation. Incidentally, we superimposed the
trend estimated by the HP filter onto Figure 1. We note that it is estimated from not
only available observations, but also missing observations (see Figure 2). From the
figure, we observe that the two estimated trend functions are very similar.

Figure 2. The trend estimated by the Hodrick–Prescott (HP) filter with λ = 1600, denoted by HP
filter , is superimposed onto Figure 1. Note that it is estimated from not only available observations,
but also missing observations.

2We obtained the data from the website of the Japanese Cabinet Office.
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The organization of this paper is as follows. We introduce the two generalized
HP filters mentioned in Section 2, following which we describe their algebraic
properties in detail in Section 3. Then, in Section 4, we provide a way of specifying
their smoothing parameters which are required for their application. In Section 5,
we numerically examine their performance. Section 6 concludes the paper. The
organization of the Appendix is as follows. In Section A.2 (resp. Sections A.3
and A.4), more details on the gHPn (resp. gHPT ) filter are given. In Section A.5,
another minimization problem that gives the same trend estimate as the gHPT

filter is presented. In Section A.6, more details on specifying the smoothing
parameter for the gHPn filter are provided. In Section A.7, miscellaneous proofs
are presented.

The organization of the Online Supplementary Material is as follows. In Section
B.2, several Matlab user-defined functions referred to in this paper are provided.
Section B.3 presents several figures referred to in Section 5 of this paper.

2. TWO GENERALIZED HP FILTERS

We denote available observations by yt1, . . . ,ytn , where yt1 = y1 and ytn = yT , and
missing observations by ys1, . . . ,ysT−n . For example, if y3 and yT−1 are missing and
y2, y4, and yT−2 are available, then it follows that yt1 = y1, yt2 = y2, ys1 = y3, yt3 = y4,
ytn−1 = yT−2, ysT−n = yT−1, and ytn = yT . See Figure 3. Note that, by definition,
{1, . . . ,T} = {t1, . . . ,tn}∪ {s1, . . . ,sT−n} and {t1, . . . ,tn}∩ {s1, . . . ,sT−n} = ∅.

In the rest of the paper, we suppose that the following assumption holds:

Assumption 1. (i) y1 and yT are available and (ii) T and n are such that
T > n ≥ 3.

Thus, we suppose that at least one observation other than y1 and yT is always
available and there must be at least one missing observation. We remark that a
modification of the HP filter for the case where yT is missing is proposed in Yamada
and Du (2019). (We note that a similar modification for the case where y1 is missing
is possible.) The idea of it is similar to that of the gHPT filter.

y1 y2 y3 y4 • • • yT−2 yT−1 yT

yt1 yt2

ys1

yt3 ytn−1

ysT −n

ytn

Figure 3. An illustration of missing observations.
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2.1. gHPn Filter

We now introduce the first of the two generalized HP filters. Given that∑T
t=3 (xt −2xt−1 + xt−2)

2 in (1) can be represented by

T∑
t=3

{
xt − xt−1

t − (t −1)
− xt−1 − xt−2

(t −1)− (t −2)

}2

,

it is natural to consider the following filter:

min
xt1,...,xtn ∈R

n∑
i=1

(yti − xti)
2 +λn

n∑
i=3

(
xti − xti−1

ti − ti−1
− xti−1 − xti−2

ti−1 − ti−2

)2

, (2)

where λn is a positive smoothing parameter. (2) is identical to the HP filter if n = T
and is thus a generalization of the HP filter. We refer to this generalized HP filter,
(2), as the “gHPn filter.” Under Assumption 1, the objective function has a unique
global minimizer. For more details, see Section 3. Notice that the second term of
the objective function of the gHPn filter is non-negative and equals 0 only when
xt1, . . . ,xtn are on the same straight line. In addition, the first term of the objective
function is also non-negative and equals 0 only when yti = xti for i = 1, . . . ,n.

2.2. gHPT Filter

The other generalized HP filter that will be introduced in this paper is as follows:

min
x1,...,xT∈R

∑
t∈{t1,...,tn}

(yt − xt)
2 +λT

T∑
t=3

(�2xt)
2, (3)

where λT is a positive smoothing parameter. Again, (3) is identical to the HP filter if
n = T and is thus another generalization of the HP filter. We refer to this generalized
HP filter, (3), as the “gHPT filter.” It is noteworthy that even though n < T , under
Assumption 1, it has a unique global minimizer. We will show this in the next
section (Lemma 4) and a related discussion is given in Remark 6. Notice that the
second term of the objective function of the gHPT filter is the same as that of the HP
filter and thus it is non-negative and equals 0 only when x1, . . . ,xT are on the same
straight line. In addition, the first term of the objective function is nonnegative and
equals 0 only when yti = xti for i = 1, . . . ,n.

3. PROPERTIES OF THE TWO GHP FILTERS

As in the case of the HP filter, the objective functions of both gHP filters are
quadratic. Thus, if their Hessian matrices are positive definite, each filter has a
unique global minimizer. We will show that under Assumption 1, their Hessian
matrices are positive definite and we present the solutions of the two gHP filters
explicitly. Subsequently, we describe their properties in detail. For this purpose,
let us set some notations.
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3.1. Notations

Let Im be the identity matrix of order m, �m = [1, . . . ,1]′ ∈ R
m, yT = [y1, . . . ,yT ]′,

xT = [x1, . . . ,xT ]′, �T = [1, . . . ,T]′, …T = [�T,�T ] ∈ R
T×2, Jm = [0,Im−2] ∈

R
(m−2)×m, yn = [yt1, . . . ,ytn ]′, xn = [xt1, . . . ,xtn ]′, �n = [t1, . . . ,tn]′, …n = [�n,�n] ∈

R
n×2, H = diag(t2 − t1, . . . ,tn − tn−1) ∈ R

(n−1)×(n−1), P =…n(…
′
n…n)

−1…′
n, Q =

In − P, ̂̌= (…′
n…n)

−1…′
nyn, and, for a vector a = [a1, . . . ,am]′, ‖a‖2 = a′a =∑m

i=1 a2
i . In addition, let S⊥ ∈ R

(T−n)×T and S ∈ R
n×T be selection matrices such

that S⊥yT = [ys1, . . . ,ysT−n ]′ and SyT = [yt1, . . . ,ytn ]′. Furthermore, let

D(m) =

⎡⎢⎢⎢⎢⎣
−1 1 0 · · · 0

0
. . .

. . .
. . .

...
...

. . .
. . .

. . . 0
0 · · · 0 −1 1

⎤⎥⎥⎥⎥⎦ ∈ R
(m−1)×m

and DT be a matrix such that DTx = [�2x3, . . . ,�
2xT ]′. Explicitly, DT ∈ R

(T−2)×T

is a tridiagonal Toeplitz matrix whose first row (resp. last row) equals [1, −
2,1,0, . . . ,0] (resp. [0, . . . ,0,1, −2,1]).

3.2. gHPn Filter

(2) can be represented in matrix notation as

min
xn∈Rn

fn(xn) = ‖yn −xn‖2 +λn‖Dnxn‖2, (4)

where

Dnxn = D(n−1)H−1D(n)xn =

⎡⎢⎢⎣
xt3 −xt2
t3−t2

− xt2 −xt1
t2−t1

...
xtn −xtn−1
tn−tn−1

− xtn−1 −xtn−2
tn−1−tn−2

⎤⎥⎥⎦ . (5)

Explicitly, Dn ∈ R
(n−2)×n defined above is expressed as

Dn =

⎡⎢⎢⎢⎢⎣
d−1

2 −d−1
2 −d−1

3 d−1
3 0 · · · 0

0 d−1
3 −d−1

3 −d−1
4 d−1

4

. . .
...

...
. . .

. . .
. . .

. . . 0
0 · · · 0 d−1

n−1 −d−1
n−1 −d−1

n d−1
n

⎤⎥⎥⎥⎥⎦, (6)

where di = ti − ti−1 for i = 2, . . . ,n. We remark that (i) Dn = DT if n = T and (ii)
D′

n is identical to Q in Green and Silverman (1994, pp. 12–13).
As fn(xn) in (4) is a quadratic function whose Hessian matrix, 2(In +λnD′

nDn),
is positive definite, there exists x̂n such that

fn(xn) > fn(̂xn) (7)
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if xn 
= x̂n. The unique global minimizer of fn(xn), denoted by x̂n, is explicitly
expressed as

x̂n = (In +λnD′
nDn)

−1yn. (8)

We refer to (In +λnD′
nDn)

−1 as the smoother matrix of the gHPn filter. A Matlab
user-defined function to calculate x̂n in (8) is provided in the online supplementary
material.

Including the above property, the gHPn filter has the following properties.

PROPOSITION 2. (i) x̂n is the unique global minimizer of fn(xn) and (ii) it
satisfies ‖Dnyn‖2 > ‖Dn̂xn‖2 if yn 
= x̂n. (iii) Each row of the smoother matrix of
the gHPn filter sums to unity, (iv) 1

n �
′
n̂xn = 1

n

∑n
i=1 yti , (v) �′n(yn − x̂n) = 0, (vi) if

yn belongs to the column space of …n, then x̂n = yn, and (vii) x̂n = Pyn + (In +
λnD′

nDn)
−1
(
yn −Pyn

)
. (viii) limλn→∞ x̂n = Pyn and (ix) limλn→0 x̂n = yn.

Proof. (i) follows from (7). (ii) follows from (A.3). (iii) follows from (A.16).
(iv) and (v) follow from (A.17). (vi) follows from (A.18). (vii) follows from (A.19).
(viii) follows from (A.14). (ix) follows from (A.23). Note that these equations
except for (7) are located in Section A.2 in the Appendix. �

Remark 3. (a) Proposition 2 corresponds to Proposition 2.2 of Yamada (2020),
which presents some basic properties of the HP filter. Proposition 2 shows that
the gHPn filter inherits characteristics from the HP filter. (b) Proposition 2(i) is
just like the property that the Ordinary Least Squares (OLS) estimation of a linear
regression satisfying the full rank assumption has. (c) (8) and Proposition 2(ii)
shows that the gHPn filter gives a linear smoother of yn. (d) Proposition 2(iii)–
(v) is just like the properties that the OLS estimation of a linear regression with
a constant term has. (e) Proposition 2(vi) implies that if all entries of yn are
on the same straight line, then x̂n equals yn. (f) Pyn in Proposition 2(vii)–(viii)
represents the orthogonal projection of yn onto the column space of…n and it thus
represents a linear trend. (g) Given that the gHPn filter is a low-pass filter, (In +
λnD′

nDn)
−1
(
yn −Pyn

)
in Proposition 2(vii) represents a low-frequency component

of
(
yn −Pyn

)
. (h) Proposition 2(viii) partly reflects that Dn̂xn must be zero for

minimization when λn goes to infinity and partly reflects ‖yn −xn‖2 ≥ ‖yn −Pyn‖2

if xn belongs to the column space of…n. (i) The result shown in Proposition 2(ix)
is quite reasonable if we consider the objective function of the gHPn filter.

3.3. gHPT Filter

(3) can be represented in matrix notation as

min
xT ∈RT

fT(xT) = ‖yn −SxT‖2 +λT‖DTxT‖2. (9)

Regarding fT(xT) in (9), we have the following result:

LEMMA 4. Under Assumption 1, 2(S′S + λTD′
TDT), which is the Hessian

matrix of fT(xT), is positive definite.
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Proof. See Section A.7.1. �

As fT(xT) in (9) is a quadratic function whose Hessian matrix is positive definite,
there exists x̂T such that

fT(xT) > fT (̂xT) (10)

if xT 
= x̂T . The unique global minimizer of fT(xT), denoted by x̂T , is explicitly
expressed as

x̂T = (S′S+λTD′
TDT)−1S′yn (11)

and accordingly we have

ŜxT = S(S′S+λTD′
TDT)−1S′yn, (12)

S⊥x̂T = S⊥(S′S+λTD′
TDT)−1S′yn. (13)

We refer to (S′S + λTD′
TDT)−1S′ and S(S′S + λTD′

TDT)−1S′ as the smoother
matrices of the gHPT filter. A Matlab user-defined function to calculate x̂T in (11)
and ŜxT in (12) is provided in the Online Supplementary Material.

Remark 5. (i) It is noteworthy that the gHPT filter provides not only ŜxT ∈
R

n, but also S⊥x̂T ∈ R
T−n, whereas the gHPn filter only provides x̂n ∈ R

n. The
reason why the gHPT filter can provide S⊥x̂T is that its objective function includes∑T

t=3(�
2xt)

2. Thereby, it is estimated so that x̂T will become smooth. See also
Remark 13. (ii) x̂T in (11) can be derived from another minimization problem. See
Section A.5 for details.

Remark 6. Although the gHPn filter requires n ≥ 3, the gHPT filter can be
defined even when only y1 and yT are available. In the extreme case, as expected,
we have the following result:

PROPOSITION 7. When only y1 and yT are observable, it follows that

x̂T =
(

Ty1 − yT

T −1

)
�T +

(
yT − y1

T −1

)
�T . (14)

Proof. See Section A.7.2. �
We remark that (14) represents the linear interpolant between two points (1,y1)

and (T,yT).

Including (10), the gHPT filter has the following properties.

PROPOSITION 8. (i) x̂T is the unique global minimizer of fT(xT) and (ii) it
satisfies ‖DTyT‖2 > ‖DT x̂T‖2 if yT 
= x̂T . (iii) Each row of the smoother matrices
of the gHPT filter sums to unity, (iv) 1

n �
′
nŜxT = 1

n

∑n
i=1 yti , (v) �′n(yn − ŜxT) = 0, (vi)

if yn belongs to the column space of …n, then ŜxT = yn, and (vii) ŜxT = Pyn +
S(S′S + λTD′

TDT)−1S′ (yn −Pyn

)
. (viii) limλT →∞ x̂T = …T ̂̌ and in particular

limλT→∞ ŜxT = Pyn. (ix) limλT →0 ŜxT = SyT(= yn), but limλT →0 S⊥x̂T is not
necessarily equal to S⊥yT .
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Proof. (i) follows from (10). (ii) follows from (A.24). (iii) follows from (A.25).
(iv) and (v) follow from (A.27). (vi) follows from (A.28). (vii) follows from (A.30).
(viii) follows from (A.37) and (A.57). (ix) follows from (A.53) and (A.59). Note
that these equations except for (10) are located in Sections A.3 and A.4. �

Remark 9. (a) As Proposition 2 corresponds to Proposition 2.2 of Yamada
(2020), Proposition 8 also corresponds to it. Proposition 8 shows that the gHPT

filter also inherits characteristics from the HP filter. (b) Proposition 8(i) is just like
the property that the OLS estimation of a linear regression satisfying the full rank
assumption has. (c) (11) and Proposition 8(ii) shows that the gHPT filter gives a
linear smoother of yT . (d) Proposition 8(iii)-(v) is just like the properties that the
OLS estimation of a linear regression with a constant term has. (e) Proposition 8(vi)
implies that if all entries of yn are on the same straight line, then ŜxT equals yn. (f)
Pyn in Proposition 8(vii)-(viii) represents the orthogonal projection of yn onto the
column space of …n and it thus represents a linear trend. (g) Given that the gHPT

filter is a low-pass filter, S(S′S + λTD′
TDT)−1S′ (yn −Pyn

)
in Proposition 8(vii)

represents a low-frequency component of
(
yn −Pyn

)
. (h) Proposition 8(viii) partly

reflects that DT x̂T must be zero for minimization when λT goes to infinity and
partly reflects ‖yn − SxT‖2 ≥ ‖yn − Pyn‖2 if xT belongs to the column space of
…T . (i) The results shown in Proposition 8(ix) is quite reasonable if we consider
the objective function of the gHPT filter.

4. SPECIFYING THE VALUE OF SMOOTHING PARAMETERS

As for the HP filter, applying the two gHP filters, gHPn and gHPT , requires
specification of their smoothing parameters, λn in (2) and λT in (3). In this section,
we discuss how to specify them.

Before the discussion, we review a way of specifying the smoothing parameter
of the HP filter, λ in (1), shown in King and Rebelo (1993), Gómez (2001), and
Harvey and Trimbur (2003).3 (1) can be represented in matrix notation as

min
xT ∈RT

f (xT) = ‖yT −xT‖2 +λ‖DTxT‖2 (15)

and there exists x̂ such that f (xT) > f (̂x) if xT 
= x̂. Explicitly,

x̂ = (IT +λD′
TDT)−1yT (16)

and thus x̂ satisfies

(IT +λD′
TDT )̂x = yT . (17)

(17) is a system of linear equations and the equations for t = 3, . . . ,T −2 are

ζ(L)̂xt = yt, (18)

3Because of their contributions, the HP filter has been used as a bandpass filter. See also Pedersen (2001), Mills
(2003), Iacobucci and Noullez (2005), OECD (2012), and Yamada (2012).
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where x̂ = [̂x1, . . . ,̂xT ]′ and

ζ(L) = 1+λ(L2 −4L+6−4L−1 +L−2) = 1+λ
{
(1−L)(1−L−1)

}2
. (19)

Here, L denotes the lag operator such that L̂xt = x̂t−1, L−1̂xt = x̂t+1, and LL−1 = 1.
Let W(ω; λ) denote the gain function corresponding to the lag polynomial 1 −
ζ(L)−1. Then, given (1 − e−iω)(1 − eiω) = 2(1 − cosω) = {

2sin
(

ω
2

)}2
, where i

denotes the imaginary unit, it follows that

W(ω; λ) = |1− ζ(e−iω)−1| = λ {2(1− cosω)}2

1+λ {2(1− cosω)}2

= λ
{
2sin

(
ω
2

)}4

1+λ
{
2sin

(
ω
2

)}4 . (20)

Figure 4 plots W(ω; 500), W(ω; 1600), and W(ω; 104), and it shows (i) how
W(ω; λ) depends on λ and (ii) W(ω; 1600), for example, approximates the ideal
high-pass filter whose cutoff frequency is 0.1538 (depicted by a thin dashed line).
Note that the period that corresponds to the cutoff frequency is 2π

0.1538 = 40.853,
which is about 10 years if the data frequency is quarterly.

1

0.1538

0.5

ω
0

λ = 500
λ = 1600
λ = 104

Figure 4. Graphs of the gain function W(ω; λ) in (20). The thin dashed line depicts the ideal high-
pass filter whose cutoff frequency equals 0.1538.
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Thinking similarly, for a given cutoff frequency, denoted by ωc, the correspond-
ing value of λ, denoted by λc, can be specified as W(ωc; λc) = 1

2 . Explicitly, λc is
expressed as

λc =
{

2sin
(ωc

2

)}−4
. (21)

By letting pc = 2π
ωc

, which is the period corresponding to ωc, λc is expressed with
pc as

λc =
{

2sin

(
π

pc

)}−4

. (22)

For example, λc = 133107.9 (resp. λc = 13.9) for pc = 120 (resp. pc = 12), which is
used for the Organisation for Economic Co-operation and Development (OECD)’s
composite leading indicators (see, OECD, 2012). We note that for monthly data,
pc = 120 (resp. pc = 12) corresponds to 10 years (resp. 1 year).

Remark 10. (20) is based on an infinite sample (Phillips and Jin, 2020).
As far as we know, any finite-sample correction of (21)/(22) has not been
proposed.

4.1. Specifying the Value of λT in (3)

Given yn = SyT , x̂T in (11) satisfies

(S′S+λTD′
TDT )̂xT = S′SyT . (23)

Let x̂T = [̂xT,1, . . . ,̂xT,T ]′. As in the case of the HP filter, (23) is a system of linear
equations, and the equations for t = 3, . . . ,T −2, t = ti, and i = 1, . . . ,n are

ζ(L)̂xT,t = yt. (24)

Taking the similarity between (18) and (24) into account, we consider that (21)/(22)
is also valid for the gHPT filter.

4.2. Specifying λn in (2)

For the gHPn filter, unfortunately, we cannot use the strategy that was used for
the gHPT filter, and thus, we must try an alternative strategy. Then, given x̂T , we
propose a method to estimate x̂n such that

‖yn − x̂n‖2 = ‖yn − ŜxT‖2.

This can be accomplished by setting

λn = x̂∗′
n (yn − x̂∗

n)

‖Dn̂x∗
n‖2

. (25)
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Here, x̂∗
n in (25) is the solution of the following convex problem:

min
xn∈Rn

‖Dnxn‖2, (26)

s.t. ‖yn −xn‖2 ≤ ‖yn − ŜxT‖2, (27)

where yn is assumed not to belong to the column space of…n.

Remark 11. (i) For more details, see Section A.6. (ii) A Matlab user-defined
function to calculate x̂∗

n, which requires CVX, a package for specifying and solving
convex programs (CVX Research, Inc., 2011; Grant and Boyd, 2008), is provided
in the Online Supplementary Material.

5. NUMERICAL EXAMINATIONS

In this section, we numerically illustrate the performance of the gHP filters, i.e.,
gHPn and gHPT . For this purpose, we generate yT as follows:

yT = xT +u, DTxT = v, (28)[
u
v

]
∼ N

([
0
0

]
,

[
σ 2

u IT 0
0 σ 2

v IT−2

])
, (29)

where σ 2
u > 0 and σ 2

v > 0. Note that DTxT = v in (28) can be represented by

�2xt = vt, t = 3, . . . ,T, (30)

where v = [v3, . . . ,vT ]′.
It is notable that (28) and (29) has a linear mixed model representation as follows

(see, e.g., Paige and Trindade, 2010):

yT = AT˛T +u =…Tˇ+UT�T +u, (31)[
u
�T

]
∼ N

([
0
0

]
,

[
σ 2

u IT 0
0 σ 2

v IT−2

])
, (32)

where AT ∈ R
T×T and UT ∈ R

T×(T−2) are matrices such that

AT =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 0 · · · 0 0
1 2 0 · · · 0 0

1 3 1
. . .

...
...

1 4 2
. . . 0

...
...

...
...

. . . 1 0
1 T T −2 · · · 2 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
= [

…T UT
]

. (33)

https://doi.org/10.1017/S0266466621000189 Published online by Cambridge University Press

https://doi.org/10.1017/S0266466621000189


GENERALIZED HODRICK–PRESCOTT FILTERS 431

Remark 12. Let λ = σ 2
u

σ 2
v

and recall that JT = [0,IT−2] ∈ R
(T−2)×T . It is known

that̨̂= arg min
˛T ∈RT

‖yT −AT˛T‖2 +λ‖JT˛T‖2

= (A′
TAT +λJ′

TJT)−1A′
TyT (34)

is the best linear unbiased predictor of ˛T in (31). See, e.g., Robinson
(1991). Likewise, x̂ = (IT + λD′

TDT)−1yT , which is the solution of (15), is

Figure 5. yT denotes data generated by (31) and (32) by setting T = 100, ˇ = [50,0.4]′, σu = 5,

and σv = 1
8 . Accordingly, λ = σ 2

u
σ 2

v
= 1600. Then, we selected the missing observations randomly from

{y2, . . . ,yT−1} by setting n = 70. Accordingly, there are 30(= 100 − 70) missing observations and

λ = σ 2
u

σ 2
v

= 1600. yT (missing) denotes 30 missing observations selected randomly from {y2, . . . ,yT−1}.
gHPT filter denotes ŜxT in (12) estimated with λT = 1600. gHPT filter denotes x̂n in (8) estimated with
λn = 1282.29, which is specified so that ‖yn − x̂n‖2 = ‖yn − ŜxT‖2.
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the BLUP of xT in (28). This can be shown from x̂ − xT = AT(̨̂− ˛T) and
|AT | = 1 
= 0.

We generated yT from (31) and (32) by setting T = 100, ˇ = [50,0.4]′, σu = 5,

and σv = 1
8 . Accordingly, λ = σ 2

u
σ 2

v
= 1600. Then, we selected the missing observa-

tions randomly from {y2, . . . ,yT−1} by setting n = 90,70,50,30. In the following,
we focus our attention on the case where n = 70 and show the corresponding
figures. However, the same qualitative results are observable for the other cases.
The corresponding 15 figures are provided in the Online Supplementary Material
(Figures B.1–B.15).

In Figure 5, yT denotes the generated data and yT (missing) denotes 30(= 100−
70) missing observations. In the figure, gHPT filter denotes ŜxT in (12) estimated
with λT = 1600. gHPT filter denotes x̂n in (8) estimated with λn = 1282.29, which
is specified so that ‖yn − x̂n‖2 = ‖yn − ŜxT‖2. Recall the discussions in the previous

Figure 6. Panel A (resp. Panel B) plots the smoother matrix corresponding to x̂n (resp. ŜxT ) in
Figure 5. Panel C plots their difference.
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section. Interestingly, from the figure, we observe that x̂n and ŜxT are almost the
same.

The above observation motivates us to plot the corresponding smoother matri-
ces. Panel A (resp. Panel B) in Figure 6 plots the smoother matrix corresponding
to x̂n (resp. ŜxT ) in Figure 5. Panel C in the figure plots their difference. From
Panel C, we notice that the smoother matrices are almost identical. Therefore, we
may consider that it leads to the above observation. Here, we remark that given
Proposition 2(iii) and Proposition 8(iii), we have

{
(In +λnD′

nDn)
−1 −S(S′S+λTD′

TDT)−1S′} �n = �n − �n = 0,

Figure 7. For the explanation of yT and yT (missing) , see Figure 5. gHPn filter denotes x̂n in (8)
estimated with λn = 108 and gHPT filter denotes ŜxT in (12) estimated with λT = 108. Linear trend
denotes Pyn[=…n(…

′
n…n)

−1…′
nyn].
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which implies that even though there are some discrepancies between the smoother
matrices, the sum of each row of their difference equals 0.

In Figure 7, gHPn filter denotes x̂n in (8) estimated with λn = 108 and gHPT
filter denotes ŜxT in (12) estimated with λT = 108. Linear trend denotes Pyn[=
…n(…

′
n…n)

−1…′
nyn]. From Propositions 2(viii) and 8(viii), we have the following

theoretical results:

lim
λn→∞ x̂n = lim

λT→∞ ŜxT = Pyn.

From the figure, these theoretical results are certainly confirmed.
In Figure 8, gHPn filter denotes x̂n in (8) estimated with λn = 10−4 and gHPT

filter denotes ŜxT in (12) estimated with λT = 10−4. Again, from Propositions 2(ix)

Figure 8. For the explanation of yT and yT (missing) , see Figure 5. gHPn filter denotes x̂n in (8)
estimated with λn = 10−4 and gHPT filter denotes ŜxT in (12) estimated with λT = 10−4.
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and 8(ix), we have the following theoretical results:

lim
λn→0

x̂n = lim
λT →0

ŜxT = yn.

The figure shows that the theoretically expected results are observable.
In Figure 9, HP filter denotes x̂ in (16), which is estimated with λ = 1600 from

not only available observations, but also missing observations. gHPT filter denotes
ŜxT in (12) estimated with λT = 1600, which is identical to gHPT filter shown in
Figure 5. gHPT filter(missing) denotes S⊥x̂T in (13) estimated with λT = 1600.
From the figure, it is observable that S⊥x̂T is estimated so that x̂T is smooth.

Figure 9. For the explanation of yT and yT (missing) , see Figure 5. Hodrick–Prescott (HP) filter
denotes x̂ in (16), which is estimated with λ = 1600 from not only available observations but
also missing observations. gHPT filter denotes ŜxT in (12) estimated with λT = 1600 and gHPT
filter(missing) denotes S⊥x̂T in (13) estimated with λT = 1600.
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Table 1. Simulation results on the two gHP filters

n/T

0.9 0.7 0.5 0.3

T = 100 gHPn filter 0.2803 0.5411 0.8129 1.1988

gHPT filter 0.2787 0.5373 0.8071 1.1880

T = 200 gHPn filter 0.2743 0.5350 0.8003 1.1644

gHPT filter 0.2726 0.5312 0.7927 1.1485

T = 400 gHPn filter 0.2755 0.5286 0.7808 1.1590

gHPT filter 0.2730 0.5238 0.7719 1.1423

T = 800 gHPn filter 0.2711 0.5262 0.7865 1.1471

gHPT filter 0.2687 0.5209 0.7770 1.1302

Note: The root-mean-square deviations defined by (36) are tabulated. Each value in the table is
calculated by generating 1000 yT ’s by (31) and (32).

These results are expected to some extent. This is because ‖DTxT‖2, which equals∑T
t=3(�

2xt)
2, is a part of fT(xT) in (9).

Remark 13. The entries of S⊥x̂T are not naive linear interpolations. We give
an example. Consider the case where y3 is missing among y1, . . . ,yT . Let x̂T =
[̂xT,1, . . . ,̂xT,T ]′. Then, it follows that

x̂T,3 = −̂xT,1 + 4̂xT,2 + 4̂xT,4 − x̂T,5

6

= x̂T,2 + x̂T,4

2
. (35)

A proof of (35) is given in Section A.7.4.

In addition, from Figure 9, it is also observable that the gHPT filter captures
the HP filter well even though 30% of the observations are missing. Regarding
this point, however, it is noteworthy that the deviations between the two filters
increase as n/T decreases. Compare Figure 9 with Figures B.5, B.10, and B.15 in
the Online Supplementary Material.

As stated, when 0 < λ = 1600 < ∞, it is observable that (i) x̂n and ŜxT are almost
the same and (ii) the deviations between the gHPT filter and the HP filter increase
as n/T decreases. To check the robustness of these two results, we conducted
additional examinations by generating 1000yT ’s by (31) and (32) with the same
parameter setting as before other than T and n. T and n used for the experiments
are such that n/T = 0.9,0.7,0.5,0.3 with T = 100,200,400,800. Then, for each yT,
we calculated the following root-mean-square deviation:√

1

n
‖Ŝx− z‖2, z = x̂n,ŜxT, (36)

where λ = λT = 1600 and λn is specified so that ‖yn − x̂n‖2 = ‖yn − ŜxT‖2. Table 1
tabulates the results. From the table, it is clearly observable that the two results
above are not specific for yT shown, e.g., in Figure 5.
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6. CONCLUDING REMARKS

Even though the HP filter has been a popular method of trend extraction from
economic time series, it is impractical without suitable modification if some
observations are missing. In this paper, we introduced two generalized HP filters
that are applicable in such situations. We provided their algebraic properties in
detail and a way of specifying the smoothing parameters that are required for
applications. In addition, we conducted numerical experiments.

Based on our analysis, among the two alternative generalized HP filters, the
gHPn filter and gHPT filter, we recommend the latter for applied studies. This
is because (i) if the smoothing parameters are specified as shown in Section 4,
both filters give almost the same trend estimates, (ii) specifying the smoothing
parameter of the gHPT filter is easier than that of the gHPn filter, and (iii) the
gHPT filter also provides trend estimates for missing observations, whereas the
gHPn filter does not.

We add a final remark. Numerical analysis reveals that the two alternative
generalized HP filters give almost the same trend estimates when the smoothing
parameter of the gHPn filter, λn, is specified as described in Section 4.2. As stated,
this observation may reflect the fact that the corresponding smoother matrices are
almost the same. Clarifying their relationship more deeply is an issue for future
research.

APPENDIX

A.1. Introduction

The Appendix is organized as follows. In Section A.2 (resp. Sections A.3 and A.4), more
details on the gHPn (resp. gHPT ) filter are given. In Section A.5, another minimization
problem that gives the same trend estimate as the gHPT filter is presented. In Section A.6,
more details on specifying λn in (2) are provided. In Section A.7, miscellaneous proofs are
presented.

A.1.1. Notations. We fix some additional notations. Let ‰ = [S′⊥,S′]′ ∈ R
T×T ,

E(m) =

⎡⎢⎢⎢⎢⎣
0 · · · 0

1
. . .

...
...

. . . 0
1 · · · 1

⎤⎥⎥⎥⎥⎦ ∈ R
m×(m−1),

and[
ˆ11 ˆ12
ˆ21 ˆ22

]
=‰D′

T DT‰
′
(

=
[

S⊥D′
T DT S′⊥ S⊥D′

T DT S′
SD′

T DT S′⊥ SD′
T DT S′

])
. (A.1)
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A.1.2. Some Preliminary Results. We list some preliminary results as follows. (i)
E(m) is a right inverse of D(m), i.e., D(m)E(m) = Im−1. (ii) By definition of DT , it follows
that DT = D(T−1)D(T). (iii) Given that ‰ = [S′⊥,S′]′ is a permutation matrix, ‰ is an
orthogonal matrix and we thus have ‰ ′‰ = S′⊥S⊥ +S′S = IT and

‰‰ ′ =
[

S⊥
S

]
[S′⊥,S′] =

[
S⊥S′⊥ S⊥S′
SS′⊥ SS′

]
=
[

IT−n 0
0 In

]
. (A.2)

(iv) Given that �n = S�T and �n = S�T , it follows that…n = S…T .

A.2. More Details on the gHPn Filter

In this subsection, we give more details on the gHPn filter.
Given (7), if yn 
= x̂n, it follows that

‖Dnyn‖2 = λ−1
n fn(yn) > λ−1

n fn(̂xn) > ‖Dn̂xn‖2. (A.3)

Then, given (8) and (A.3), x̂n is a linear smoother of yn.
Let

An = [
…n Un

] =

⎡⎢⎢⎢⎢⎢⎢⎣

1 t1 0 · · · 0
1 t2 0 · · · 0

1 t3 t3 − t2
. . .

...
...

...
...

. . . 0
1 tn tn − t2 · · · tn − tn−1

⎤⎥⎥⎥⎥⎥⎥⎦ ∈ R
n×n. (A.4)

Then, we have the following result:

LEMMA A.1. (i) The null space of Dn equals the column space of …n. (ii) Un in (A.4)
is a right inverse matrix of Dn, i.e., DnUn = In−2.

Proof. Recall that H = diag(t2 − t1, . . . ,tn − tn−1) ∈R
(n−1)×(n−1). (i) Given D(m)�m =

0 and D(n)�n = H�n−1, it immediately follows that

Dn�n = D(n−1)H
−1D(n)�n = 0, (A.5)

Dn�n = D(n−1)H
−1D(n)�n = D(n−1)H

−1H�n−1 = 0. (A.6)

In addition, given that ti − ti−1 > 0 for i = 2, . . . ,n, we see that rank(Dn) = n − 2
and rank(…n) = 2. Combining these results completes the proof. (ii) Given that Dn =
D(n−1)H

−1D(n), Un = E(n)HE(n−1), and E(m) is a right inverse of D(m), we obtain

DnUn = D(n−1)H
−1D(n)E(n)HE(n−1) = In−2.

�

By using Lemma A.1, we can show that the gHPn filter has the following alternate
representation.
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PROPOSITION A.2. x̂n in (8) equals An̨̂n, where An is defined in (A.4) and ̨̂n is
defined as follows:

̨̂n = arg min
˛n∈Rn

‖yn −An˛n‖2 +λn‖Jn˛n‖2

= (
A′

nAn +λnJ′
nJn

)−1 A′
nyn. (A.7)

Proof. From Lemma A.1, we obtain

DnAn = Dn[…n,Un] = [0,In−2] = Jn ∈ R
(n−2)×n. (A.8)

In addition, given t1 < · · · < tn, it follows that |An| =∏n
i=2(ti − ti−1) > 0, which indicates

that An is nonsingular. Combining these results yields

JnA−1
n = Dn. (A.9)

Given (A.9), it follows that

An̨̂n = An
(
A′

nAn +λnJ′
nJn

)−1 A′
nyn

=
{

In +λn

(
JnA−1

n

)′ (
JnA−1

n

)}−1
yn

= (In +λnD′
nDn)−1yn = x̂n.

�

Remark A.3. (i) The truncated power basis functions of degree 1 with knots located at
t2, . . . ,tn−1, denoted by g1(x), . . . ,gn(x), are continuous piecewise linear functions defined
by g1(x) = 1, g2(x) = x, and for i = 3, . . . ,n,

gi(x) =
{

x− ti−1 (x > ti−1),

0 (x ≤ ti−1).
(A.10)

Let

B =

⎡⎢⎢⎢⎢⎢⎢⎣

g1(t1) g2(t1) g3(t1) · · · gn(t1)

g1(t2) g2(t2) g3(t2) · · · gn(t2)

g1(t3) g2(t3) g3(t3)
. . .

...
...

...
...

. . . gn(tn−1)

g1(tn) g2(tn) g3(tn) · · · gn(tn)

⎤⎥⎥⎥⎥⎥⎥⎦ ∈ R
n×n.

Then, it is observable that An = B, and thus Proposition A.2 implies that the gHPn filter can
be regarded as a penalized truncated power basis spline of degree 1.4 (ii) Proposition A.2 is a
generalization of Paige and Trindade (2010, Theorem 4.1) because Proposition A.2 reduces
to it if n = T .

Recall that Q = In −P, where P =…n(…′
n…n)−1…′

n. Given Proposition A.2, from, e.g.,
Yamada (2017, Theorem 3.1), we have

x̂n = An̨̂n =…n ̂̌+QUn�̂n, (A.11)

4See, e.g., Ruppert, Wand, and Carroll (2003, pp. 69–70) for more details about penalized truncated power basis
splines.
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where ̂̌= arg minˇn∈R2 ‖yn −…nˇn‖2 = (…′
n…n)−1…′

nyn and

�̂n = arg min
�n∈Rn−2

‖Qyn −QUn�n‖2 +λn‖�n‖2

= (U′
nQUn +λnIn−2)−1U′

nQyn, (A.12)

which is a ridge regression estimate as in Hoerl and Kennard (1970).

Remark A.4. As stated, Un is a right inverse matrix of Dn such that DnUn = In−2.
Instead of Un, we may consider another right inverse matrix of Dn. Now, let us use
D−1

n,r = D′
n(DnD′

n)−1 ∈R
n×(n−2) as a right inverse matrix of Dn. D−1

n,r is attractive because

(D−1
n,r)

′…n = (DnD′
n)−1Dn…n = 0. In this case, we have

x̂n = Pyn + (D−1
n,r)

{
(D−1

n,r)
′(D−1

n,r)+λnIn−2

}−1
(D−1

n,r)
′yn

= Pyn +D′
n(DnD′

n)−1/2(In−2 +λnDnD′
n)−1(DnD′

n)−1/2Dnyn, (A.13)

which corresponds to Theorem 1 of Phillips and Jin (2020).5

Proof of (A.13). Let C = […n,D−1
n,r] ∈ R

n×n. Given (D−1
n,r)

′…n = 0, it follows that

(C′C +λnC′D′
nDnC)−1 =

([
…′

n…n 0
0 (D−1

n,r)
′(D−1

n,r)

]
+λnJ′

nJn

)−1

=
⎡⎣(…′

n…n)−1 0

0
{
(D−1

n,r)
′(D−1

n,r)+λnIn−2

}−1

⎤⎦ .

Thus, given that C is nonsingular, we have

x̂n = (In +λnD′
nDn)−1yn = C(C′C +λnC′D′

nDnC)−1C′yn

= Pyn + (D−1
n,r)

{
(D−1

n,r)
′(D−1

n,r)+λnIn−2

}−1
(D−1

n,r)
′yn

= Pyn +D′
n(DnD′

n)−1
{
(DnD′

n)−1 +λnIn−2

}−1
(DnD′

n)−1Dnyn

= Pyn +D′
n(DnD′

n)−1/2(In−2 +λnDnD′
n)−1(DnD′

n)−1/2Dnyn.

�

It follows from (A.12) that limλn→∞ �̂n = 0. Thus, from (A.11) and …n ̂̌= Pyn, we
have

lim
λn→∞ x̂n =…n ̂̌+QUn lim

λn→∞ �̂n = Pyn. (A.14)

Remark A.5. (A.14) is an expected result from the definition of the gHPn filter. This is
because, given Lemma A.1(i), when λn → ∞, (4) becomes

min
xn∈S(…n)

‖yn −xn‖2, (A.15)

5See also Yamada (2015, 2018c).
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where S(…n) denotes the column space of…n. By letting xn =…nˇ, (A.15) is represented
as minˇ∈R2 ‖yn −…nˇ‖2.

From Lemma A.1(i), we obtain the following result:

LEMMA A.6. (In +λnD′
nDn)−1…n =…n.

Proof. Given Dn…n = 0 from Lemma A.1(i), it follows that (In +λnD′
nDn)…n =…n.

Premultiplying it by (In +λnD′
nDn)−1 completes the proof. �

Given…n = [�n,�n], Lemma A.6 immediately leads to

(In +λnD′
nDn)−1�n = �n. (A.16)

(A.16) shows that each row of the smoother matrix, (In +λnD′
nDn)−1, sums to unity. Given

that (In +λnD′
nDn)−1 is symmetric, transposing (A.16) leads to

1

n
�′n̂xn = 1

n
�′n(In +λnD′

nDn)−1yn = 1

n
�′nyn = 1

n

n∑
i=1

yti (A.17)

and accordingly �′n(yn − x̂n) = 0.
Consider the case where yn belongs to the column space of…n. Then, there exists � such

that yn =…n�. Accordingly, from Lemma A.6, if yn belongs to the column space of…n, it
follows that

x̂n = (In +λnD′
nDn)−1yn = yn. (A.18)

Furthermore, again from Lemma A.6, we have (In +λnD′
nDn)−1P = P, which leads to

(In +λnD′
nDn)−1(yn −Pyn) = x̂n − (In +λnD′

nDn)−1Pyn

= x̂n −Pyn.

Thus, we obtain

x̂n = Pyn + (In +λnD′
nDn)−1(yn −Pyn). (A.19)

Remark A.7. (i) (A.19) implies that x̂n consists of Pyn, which is a linear trend estimated
by ordinary least squares, and (In + λnD′

nDn)−1(yn − Pyn), which represents a low-
frequency part of the residuals, yn −Pyn.

By applying the Sherman–Morrison–Woodbury (SMW) formula (Seber, 2008) to the
smoother matrix in (8), we obtain

(In +λnD′
nDn)−1 = In −D′

n

(
DnD′

n +λ−1
n In−2

)−1
Dn. (A.20)

Remark A.8. (i) Given Lemma A.1(i), we can also prove Lemma A.6 by postmultiplying
(A.20) by…n. (ii) An alternative somewhat long proof of (A.20) is given in Section A.7.3.

Given (A.20), it follows that

x̂n = yn −D′
n�̂n, (A.21)
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where

�̂n = arg min
�n∈Rn−2

‖yn −D′
n�n‖2 +λ−1

n ‖�n‖2

=
(

DnD′
n +λ−1

n In−2

)−1
Dnyn. (A.22)

We remark that (A.22) is also a ridge regression estimate. Given that λ−1
n → ∞ as λn → 0,

it follows from (A.22) that limλn→0 �̂n = 0. Thus, we have

lim
λn→0

x̂n = yn −D′
n lim

λn→0
�̂n = yn. (A.23)

A.3. More Details on the gHPT Filter (I)

In this subsection, we give more details on the gHPT filter.
Given (10) and SyT = yn, if yT 
= x̂T , it follows that

‖DT yT‖2 = λ−1
T fT (yT ) > λ−1

T fT (̂xT ) > ‖DT x̂T‖2. (A.24)

Then, given (11) and (A.24), x̂T is a linear smoother of yT .
Concerning the smoother matrices of the gHPT filter in (11) and (12), we obtain the

following result:

LEMMA A.9. (i) …T = (S′S+λT D′
T DT )−1S′…n and (ii) …n = S(S′S+λT D′

T DT )−1

S′…n.

Proof. Given DT…T = 0, S…T = …n, and Lemma 4, it follows that (S′S +
λT D′

T DT )…T = S′S…T = S′…n, which leads to…T = (S′S+λT D′
T DT )−1S′…n. By pre-

multiplying the above equation by S, we obtain …n = S…T = S(S′S +
λT D′

T DT )−1S′…n. �

Given…n = [�n,�n], Lemma A.9 immediately leads to

(S′S+λT D′
T DT )−1S′�n = �T, (A.25)

S(S′S+λT D′
T DT )−1S′�n = �n, (A.26)

which show that each row of the smoother matrices in (11) and (12) sums to unity. Given
that S(S′S+λT D′

T DT )−1S′ is symmetric, transposing (A.26) leads to

1

n
�′nŜxT = 1

n
�′nS(S′S+λT D′

T DT )−1S′yn = 1

n
�′nyn = 1

n

n∑
i=1

yti (A.27)

and accordingly �′n(yn − ŜxT ) = 0.
Consider the case where yn belongs to the column space of…n. Then, there exists � such

that yn =…n�. Accordingly, from Lemma A.9, if yn belongs to the column space of…n, it
follows that

ŜxT = S(S′S+λT D′
T DT )−1S′…n�=…n�= yn, (A.28)

which implies that if yn belongs to the column space of…n, then ŜxT = yn.
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Furthermore, from Lemma A.9, we obtain

x̂T =…T ̂̌+ (S′S+λT D′
T DT )−1S′(yn −Pyn), (A.29)

ŜxT = Pyn +S(S′S+λT D′
T DT )−1S′(yn −Pyn). (A.30)

Proofs of (A.29) and (A.30). Given Lemma A.9, we have

(S′S+λT D′
T DT )−1S′(yn −…n ̂̌)

= (S′S+λT D′
T DT )−1S′yn − (S′S+λT D′

T DT )−1S′…n ̂̌
= x̂T −…T ̂̌,

which proves (A.29). Next, premultiplying (A.29) by S leads to (A.30). �

(A.30) implies that ŜxT consists of Pyn, which is a linear trend estimated by ordinary
least squares, and S(S′S+λT D′

T DT )−1S′(yn −Pyn), which represent a low-frequency part
of the residuals, yn −Pyn.

Let AT ∈ R
T×T and UT ∈ R

T×(T−2) be matrices defined by (33) and

̨̂T = arg min
˛T∈RT

‖yn −SAT˛T‖2 +λT‖JT˛T‖2

= (A′
T S′SAT +λT J′

T JT )−1A′
T S′yn. (A.31)

Then, given |AT | = 1 
= 0, it follows that

x̂T = AT̨̂T, (A.32)

which immediately leads to

ŜxT = SAT̨̂T, (A.33)

S⊥x̂T = S⊥AT̨̂T . (A.34)

Proof of (A.32). Given |AT | = 1, AT is nonsingular. Then, given JT = DT AT (Paige and
Trindade, 2010), it follows that

AT̨̂T = AT (A′
T S′SAT +λT J′

T JT )−1A′
T S′yn

= AT (A′
T S′SAT +λT A′

T D′
T DT AT )−1A′

T S′yn

= (S′S+λT D′
T DT )−1S′yn = x̂T .

�

Given S…T =…n and (A.33), from, e.g., Yamada (2017, Theorem 3.1), it follows that

ŜxT = SAT̨̂T =…n ̂̌+QSUT �̂T, (A.35)

where ̂̌= (…′
n…n)−1…′

nyn and

�̂T = arg min
�T∈RT−2

‖Qyn −QSUT�T‖2 +λT‖�T‖2

= (U′
T S′QSUT +λT IT−2)−1U′

T S′Qyn, (A.36)
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which is a ridge regression estimate. Given limλT→∞ �̂T = 0 and…n ̂̌= Pyn, we have

lim
λT→∞ ŜxT = lim

λT→∞SAT̨̂T =…n ̂̌+QSUT lim
λT→∞ �̂T = Pyn. (A.37)

A.4. More Details on the gHPT Filter (II)

In this subsection, we give more details on the gHPT filter.
First, we give the following result, which is crucial for the later discussions.

LEMMA A.10. Under Assumption 1, ˆ11 = S⊥D′
T DT S′⊥ ∈ R

(T−n)×(T−n) is positive
definite.

Proof. Let � 
= 0 be a (T − n)-dimensional column vector. Given that S′⊥ ∈ R
T×(T−n)

is a matrix that consists of (T − n) columns of IT , S′⊥ is of full column rank and n rows
of S′⊥ are zero vectors. Under Assumption 1, because n ≥ 3, at least three rows of S′⊥ are
zero vectors. Thus, it follows that (i) S′⊥� 
= 0 and (ii) S′⊥� has at least three zeros. For that
reason, under Assumption 1, S′⊥� cannot belong to the column space of …T . Therefore,
given that the null space of DT equals the column space of …T , we have DT S′⊥� 
= 0,

which leads to ‖DT S′⊥�‖2 > 0. �

The following proposition gives another representation of the gHPT filter.

PROPOSITION A.11. ŜxT in (12) equals  ̂ which is defined as follows:

 ̂ = arg min
 ∈Rn

‖yn − ‖2 +λT‖F ‖2 = (In +λT F′F)−1yn, (A.38)

where F = RDT S′ ∈ R
(T−2)×n and

R = IT−2 −DT S′⊥ˆ−1
11 S⊥D′

T .

Proof. Given that ‰ = [S′⊥,S′]′ is an orthogonal matrix and ˆ11 is nonsingular from
Lemma A.10, it follows that

ŜxT = S(S′S+λT D′
T DT )−1S′yn

= S‰ ′(‰S′S‰ ′ +λT‰D′
T DT‰

′)−1‰S′yn

= [0,In]

([
0 0
0 In

]
+
[
λTˆ11 λTˆ12
λTˆ21 λTˆ22

])−1 [ 0
In

]
yn

= [0,In]

[
λTˆ11 λTˆ12
λTˆ21 In +λTˆ22

]−1 [ 0
In

]
yn

=
{
(In +λTˆ22)−λTˆ21(λTˆ11)−1λTˆ12

}−1
yn

=
{

In +λT

(
ˆ22 −ˆ21ˆ

−1
11 ˆ12

)}−1
yn. (A.39)

We note that ˆij for i,j = 1,2 are defined in (A.1). Here, given that R is an orthogonal

projection matrix, ˆ22 −ˆ21ˆ
−1
11 ˆ12 can be represented as follows:

ˆ22 −ˆ21ˆ
−1
11 ˆ12

= SD′
T DT S′ −SD′

T DT S′⊥(S⊥D′
T DT S′⊥)−1S⊥D′

T DT S′
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= SD′
T

{
IT−2 −DT S′⊥(S⊥D′

T DT S′⊥)−1S⊥D′
T

}
DT S′

= SD′
T RDT S′ = SD′

T R′RDT S′ = F′F. (A.40)

Substituting (A.40) into (A.39) leads to ŜxT = (In +λT F′F)−1yn =  ̂. �

Similarly to ŜxT =  ̂, we can show

S⊥x̂T = �̂, (A.41)

where

�̂ = −ˆ−1
11 ˆ12 ̂ = −(S⊥D′

T DT S′⊥)−1S⊥D′
T DT S′ ̂. (A.42)

Proof of (A.41). Given (A.1), (A.2), and Lemma A.10, it follows that

S⊥x̂T = S⊥(S′S+λT D′
T DT )−1S′yn

= S⊥‰ ′(‰S′S‰ ′ +λT‰D′
T DT‰

′)−1‰S′yn

= [IT−n,0]

([
0 0
0 In

]
+
[
λTˆ11 λTˆ12
λTˆ21 λTˆ22

])−1 [ 0
In

]
yn

= [IT−n,0]

[
λTˆ11 λTˆ12
λTˆ21 In +λTˆ22

]−1 [ 0
In

]
yn

= −(λTˆ11)−1λTˆ12

{
(In +λTˆ22)−λTˆ21(λTˆ11)−1λTˆ12

}−1
yn

= −ˆ−1
11 ˆ12 ̂.

�

Remark A.12. (i) Let � ∈ R
T−n and  ∈ R

n such that

‰xT =
[

S⊥
S

]
xT =

[
�

 

]
∈ R

T . (A.43)

Given that ‰ is an orthogonal matrix, we have xT = S′⊥� + S′ . Then, (9) can be
represented as follows:

min
�∈RT−n

 ∈Rn

‖yn − ‖2 +λT (�′ˆ11�+�′ˆ12 + ′ˆ21�+ ′ˆ22 ). (A.44)

Of course, ( ̂,�̂) minimizes the objective function in (A.44). Notice that the optimality
conditions for (A.44) are

−(yn −  ̂)+λT (ˆ21�̂+ˆ22 ̂) = 0, (A.45)

ˆ11�̂+ˆ12 ̂ = 0. (A.46)

(ii) The expression in (A.38) is called the Reinsch form (see, e.g., Hastie et al., 2009, p.
154). (iii) A Matlab user-defined function to calculate  ̂(= ŜxT ) in (A.38) and �̂(= S⊥x̂T )

in (A.42) is provided in the Online Supplementary Material.
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From Proposition A.11, we obtain the following result:

COROLLARY A.13.

S(S′S+λT D′
T DT )−1S′ = (In +λT F′F)−1 (A.47)

= In −F′ (FF′ +λ−1
T IT−2

)−1
F. (A.48)

Proof. (A.47) immediately follows from Proposition A.11. (A.48) follows from applying
the SMW formula to (In +λT F′F)−1. Of course, (A.48) can also be proved alternatively,
as shown in Section A.7.3. �

Concerning F, the next result holds.

LEMMA A.14. F…n = 0.

Proof. Given that …n = S…T , ‰ ′‰ = S′⊥S⊥ + S′S = IT , and DT…T = 0, it follows
that

F…n = RDT S′S…T = RDT (IT −S′⊥S⊥)…T = −RDT S′⊥S⊥…T

= −
{

IT−2 −DT S′⊥(S⊥D′
T DT S′⊥)−1S⊥D′

T

}
DT S′⊥S⊥…T

= −DT S′⊥S⊥…T +DT S′⊥S⊥…T = 0.

�

Then, given Lemma A.14, postmultiplying (A.48) by…n, we obtain

(In +λT F′F)−1…n =
{

In −F′ (FF′ +λ−1
T IT−2

)−1
F
}
…n =…n. (A.49)

Notice that (A.49) is an alternative representation of Lemma A.9(ii).
Also, from (A.48), it follows that

 ̂ = yn −F′	̂, (A.50)

where

	̂ = arg min
�∈RT−2

‖yn −F′	‖2 +λ−1
T ‖	‖2

=
(

FF′ +λ−1
T IT−2

)−1
Fyn. (A.51)

We remark that (A.51) is also a ridge regression estimate. Given that λ−1
T → ∞ as λT → 0,

it follows from (A.51) that limλT→0 	̂ = 0. Thus, we have

lim
λT→0

 ̂ = yn −F′ lim
λT→0

	̂ = yn, (A.52)

which implies that

lim
λT→0

ŜxT = yn. (A.53)
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Given (A.37), (A.41), (A.42), and DT…T = 0, we obtain

lim
λT→∞S⊥x̂T = S⊥…T (…′

n…n)−1…′
nyn = S⊥…T ̂̌. (A.54)

Proof of (A.54). Given (A.37), (A.41), and (A.42), we have

lim
λT→∞S⊥x̂T = −ˆ−1

11 ˆ12 lim
λT→∞ ̂ = −ˆ−1

11 ˆ12S…T (…′
n…n)−1…′

nyn

= −ˆ−1
11 ˆ12S…T ̂̌. (A.55)

Here, given S′S = IT −S′⊥S⊥ and DT…T = 0, it follows that

−ˆ−1
11 ˆ12S…T = −(S⊥D′

T DT S′⊥)−1S⊥D′
T DT S′S…T

= −(S⊥D′
T DT S′⊥)−1S⊥D′

T DT (IT −S′⊥S⊥)…T

= (S⊥D′
T DT S′⊥)−1(S⊥D′

T DT S′⊥)S⊥…T = S⊥…T . (A.56)

Substituting (A.56) into (A.55) yields (A.54). �

By combining (A.37) and (A.54), we obtain

lim
λT→∞‰ x̂T

(
=‰ lim

λT→∞ x̂T

)
= lim

λT→∞

[
S⊥
S

]
x̂T =

[
S⊥
S

]
…T ̂̌=‰…T ̂̌.

Premultiplying the above equation by ‰ ′ yields

lim
λT→∞ x̂T =…T ̂̌. (A.57)

On the other hand, even though limλT→0 ŜxT = SyT (= yn), limλT→0 S⊥x̂T is not neces-
sarily equal to S⊥yT . More precisely, given (A.52) and S′S = IT − S′⊥S⊥, it follows that

lim
λT→0

S⊥x̂T = −ˆ−1
11 ˆ12 lim

λT→0
 ̂ = −ˆ−1

11 ˆ12yn

= −(S⊥D′
T DT S′⊥)−1S⊥D′

T DT S′SyT (A.58)

= −(S⊥D′
T DT S′⊥)−1S⊥D′

T DT (IT −S′⊥S⊥)yT

= S⊥yT − (S⊥D′
T DT S′⊥)−1S⊥D′

T DT yT . (A.59)

Remark A.15. (i) One of the above results, (A.57), is expected from the definition of
the gHPT filter. This is because when λT → ∞, (9) becomes

min
xT∈S(…T )

‖yn −SxT‖2, (A.60)

where S(…T ) denotes the column space of …T . Given S…T =…n, by letting xT =…Tˇ,
(A.60) is represented as

min
ˇ∈R2

‖yn −…nˇ‖2. (A.61)

(ii) Likewise, the other result, (A.59), is somewhat expected from the definition of the gHPT
filter. This is because, given λT > 0, the gHPT filter can be alternatively represented as
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follows:

min
xT∈RT

λ−1
T ‖yn −SxT‖2 +‖DT xT‖2. (A.62)

When λ−1
T → ∞, (A.62) becomes

min
xT∈RT

‖DT xT‖2, s.t.SxT = yn. (A.63)

Given SxT = yn, ‖DT xT‖2 can be regarded as a function of S⊥xT . More precisely, given
SxT = yn, it follows that

DT xT = DT‰
′‰xT = DT S′⊥S⊥xT +DT S′SxT

= DT S′⊥S⊥xT +DT S′yn.

Therefore, instead of (A.63), we can consider the following minimization problem:

min
S⊥xT∈RT−n

‖DT S′⊥S⊥xT +DT S′yn‖2. (A.64)

The solution of (A.64) is −(S⊥D′
T DT S′⊥)−1S⊥D′

T DT S′SyT and, as shown in (A.58), it
equals limλT→0 S⊥x̂T .

A.5. Another Form of the gHPT Filter

Let y∗ ∈ R
T be the vector such that[

S⊥
S

]
y∗ =

[
0
yn

]
.

That is to say, y∗ is the column vector such that the missing observations of yT ∈ R
T are

replaced by zeros.
Consider the following minimization problem:

min
�∈RT−n

xT∈RT

f∗(
,xT ) = ‖y∗ +S′⊥
−xT‖2 +λT‖DT xT‖2. (A.65)

We remark that (i) considering (A.65) is inspired by Schlicht (2008), (ii) f∗ in (A.65) is a
quadratic function, and (iii) S′⊥
 ∈ R

T−n in (A.65) represents missing observations of yT
and S′⊥ may be regarded as a matrix of dummy variables.

Regarding f∗(
,xT ) in (A.65), we have the following result:

LEMMA A.16. Under Assumption 1, the Hessian matrix of f∗(
,xT ) in (A.65) is positive
definite.

Proof. The Hessian matrix of f∗(
,xT ) is:

2

[
IT−n −S⊥
−S′⊥ IT +λT D′

T DT

]
= 2

([−S⊥
IT

]
[−S′⊥,IT ]+λT

[
0

D′
T

]
[0,DT ]

)
.
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Since it is evidently non-negative definite, we will show that it is nonsingular. Given that
IT −S′⊥S⊥ = S′S and Lemma 4, we have∣∣∣∣IT−n −S⊥
−S′⊥ IT +λT D′

T DT

∣∣∣∣ = |IT−n||IT +λT D′
T DT −S′⊥S⊥|

= |S′S+λT D′
T DT | > 0,

which completes the proof. �

PROPOSITION A.17. Let 
̃ and x̃T denote the solutions of (A.65) such that f∗(
,xT ) ≥
f∗(
̃,̃xT ). Then, it follows that x̃T = x̂T and 
̃= S⊥x̂T .

Proof. Given that S′⊥S⊥ +S′S = IT , we have

‖y∗ +S′⊥
−xT‖2 =
∥∥∥∥[S⊥

S

]
(y∗ +S′⊥
−xT )

∥∥∥∥2
=
∥∥∥∥[
−S⊥xT

yn −SxT

]∥∥∥∥2
.

Thus, (A.65) may be represented as

min
�∈RT−n

xT∈RT

f∗(
,xT ) = ‖yn −SxT‖2 +‖
−S⊥xT‖2 +λT‖DT xT‖2. (A.66)

Then, x̃T and 
̃ satisfy the following equations:

−S′(yn − S̃xT )−S′⊥(
̃−S⊥x̃T )+λT D′
T DT x̃T = 0, 
̃−S⊥x̃T = 0,

which leads to x̃T = x̂T and 
̃= S⊥x̂T . �

A.6. More Details on Specifying λn in (2)

In this subsection, we give more details on specifying λn in (2).
Concerning the convex problem, (26) and (27), we have the following result.

LEMMA A.18. Consider the convex problem given by (26) and (27). (i) There exists a
global minimizer. (ii) Denote a global minimizer by x̂∗

n. Then, there exists μ ≥ 0 such that:

(stationarity) D′
nDn̂x∗

n −μ(yn − x̂∗
n) = 0,

(complementary slackness) μ(‖yn − x̂∗
n‖2 −‖yn − ŜxT‖2) = 0.

Proof. (i) The objective function of the problem, ‖Dnxn‖2, is a convex function over
R

n and thus it is a continuous function. In addition, the corresponding feasible set, {xn ∈
R

n|‖yn − xn‖2 ≤ ‖yn − ŜxT‖2}, is a nonempty, closed, and bounded set. Thus, by the
Weierstrass theorem, there exists a global minimizer [see, e.g., Theorem 2.30 of Beck
(2014)]. (ii) Both ‖Dnxn‖2 and ‖yn −xn‖2 are continuously differentiable convex functions
over Rn. In addition, given that ‖yn − xn‖2 −‖yn − ŜxT‖2 = −‖yn − ŜxT‖2 < 0 if xn =
yn, Slater’s condition is satisfied. Then, the lemma follows by Theorem 11.13 of Beck
(2014). �

Given Lemma A.18, we have:
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LEMMA A.19. If 0 < ‖yn − ŜxT‖2 < y′
nQyn, then (i) Dn̂x∗

n 
= 0, (ii) μ > 0, (iii) ‖yn −
x̂∗

n‖2 = ‖yn − ŜxT‖2, (iv) μ−1 = x̂∗′
n (yn−̂x∗

n)

‖Dnx̂∗
n‖2 , and (v) x̂∗

n = (In +μ−1D′
nDn)−1yn.

Proof. (i) Given (a) x̂∗
n is a solution of the convex problem given by (26) and (27), and

(b) |yn − ŜxT‖2 < y′
nQyn, we have

‖yn − x̂∗
n‖2 ≤ |yn − ŜxT‖2 < y′

nQyn. (A.67)

Suppose that x̂∗
n belongs to the column space of …n. Then, there exists � ∈ R

2 such that
x̂∗

n =…n� and accordingly, given y′
nQyn = ‖yn −…n ̂̌‖2, (A.67) becomes

‖yn −…n�‖2 ≤ ‖yn − ŜxT‖2 < ‖yn −…n ̂̌‖2,

which is a contradiction. Therefore, x̂∗
n does not belong to the column space of …n, and

hence, Dn̂x∗
n 
= 0. (ii) Given that Dn̂x∗

n 
= 0, premultiplying the stationarity condition by x̂∗′
n

yields

μ̂x∗′
n (yn − x̂∗

n) = ‖Dn̂x∗
n‖2 > 0. (A.68)

Given that μ ≥ 0, (A.68) leads to μ > 0. (iii) Given that μ > 0, by the complementary
slackness condition, we have ‖yn − x̂∗

n‖2 = ‖yn − ŜxT‖2. (iv) Given that μ > 0, by the
stationarity condition, we have x̂∗

n = (In +μ−1D′
nDn)−1yn. �

Moreover, we have the following result:

LEMMA A.20. If yn does not belong to the column space of…n, then (i) ‖yn − ŜxT‖2 > 0
and (ii) ‖yn − ŜxT‖2 < y′

nQyn.

Proof. (i) From (11), we have

S′yn = (S′S+λT D′
T DT )̂xT = S′ŜxT +λT D′

T DT x̂T .

Accordingly, if ŜxT = yn, then we have λT D′
T DT x̂T = 0. Given that λT > 0 and D′

T is

of full column rank, we have DT x̂T = 0, which implies that there exists � ∈ R
2 such that

x̂T =…T�. Premultiplying x̂T =…T� by S leads to

yn = ŜxT = S…T� =…n�.

Therefore, if yn does not belong to the column space of…n, then ŜxT 
= yn, which implies
‖yn − ŜxT‖2 > 0. (ii) Suppose that x̂T =…T ̂̌. Then, from (A.29), we obtain

(S′S+λT D′
T DT )−1S′(yn −Pyn) = 0. (A.69)

Given that (S′S+λT D′
T DT )−1S′ is of full column rank, (A.69) leads to (yn −Pyn) = Qyn =

0. Hence, yn belongs to the column space of …n. Therefore, if yn does not belong to the
column space of…n, it follows that x̂T 
=…T ̂̌, which leads to

fT (…T ̂̌) > fT (̂xT ) > ‖yn − ŜxT‖2. (A.70)

The first (resp. second) inequality in (A.70) follows from Proposition 8(i) (resp.
λT‖DT x̂T‖2 > 0). Accordingly, given that fT (…T ̂̌) = y′

nQyn, we have y′
nQyn > ‖yn −

ŜxT‖2. �

The above lemmata lead to the following result:
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PROPOSITION A.21. If yn does not belong to the column space of …n, then (i) x̂∗
n

satisfies the equality given by ‖yn − x̂∗
n‖2 = ‖yn − ŜxT‖2 and (ii) x̂∗

n equals x̂n that is
estimated with

λn = x̂∗′
n (yn − x̂∗

n)

‖Dn̂x∗
n‖2

. (A.71)

Proof. It follows from Lemmata A.19 and A.20. �

A.7. Miscellaneous Proofs

A.7.1. Proof of Lemma 4. Let � 
= 0 be a T-dimensional column vector. If � belongs
to the column space of …T , then ‖S�‖2 > 0, even though ‖DT�‖2 = 0. This is because,
under Assumption 1, S…T is of full column rank. Otherwise, ‖DT�‖2 > 0 and ‖S�‖2 ≥ 0.
Therefore, in both cases, �′(S′S+λT D′

T DT )� = ‖S�‖2 +λT‖DT�‖2 > 0, which indicates
that 2(S′S+λT D′

T DT ) is positive definite.

A.7.2. Proof of Proposition 7. Let e1 (resp. eT ) be the first (resp. last) column of IT .
Then, given that only y1 and yT are observable, it follows that S = [e1,eT ]′ and accordingly
we have

…n = S…T =
[

1 1
1 T

]
, yn = SyT =

[
y1
yT

]
.

Given (A.29) and P =…n(…′
n…n)−1…′

n = I2 when |…n| 
= 0, we have

x̂T =…T ̂̌+ (S′S+λT D′
T DT )−1S′(yn −Pyn) =…T ̂̌. (A.72)

In addition, again given |…n| 
= 0, we have

̂̌= (…′
n…n)−1…′

nyn =…−1
n yn =

[
1 1
1 T

]−1 [y1
yT

]
=
[

Ty1−yT
T−1

yT−y1
T−1

]
. (A.73)

Substituting (A.73) into (A.72) completes the proof.

A.7.3. Alternative Proof of (A.20). By premultiplying (8) by Dn(In + λnD′
nDn),

we have

Dn(In +λnD′
nDn)̂xn = (In−2 +λnDnD′

n)Dn̂xn = Dnyn.

In addition, premultiplying the above equation by −λnD′
n(In−2 + λnDnD′

n)−1 leads to
−λnD′

nDn̂xn = −λnD′
n(In−2 +λnDnD′

n)−1Dnyn. Finally, by adding yn to the above equa-
tion and taking x̂n = yn −λnD′

nDn̂xn into account, we obtain x̂n = (In +λnD′
nDn)−1yn =

{In −D′
n(DnD′

n +λ−1
n In−2)−1Dn}yn.

A.7.4. Proof of (35). From Proposition A.11, (A.41), and (A.42), it follows that

S⊥x̂T = −(S⊥D′
T DT S′⊥)−1S⊥D′

T DT S′ŜxT .
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When S⊥ equals [0,0,1,0, . . . ,0], which is the third row of IT , S⊥D′
T DT is the third row of

D′
T DT . Given (19), explicitly it equals [1, −4,6, −4,1,0, . . . ,0]. Then, we have

S⊥D′
T DT S′⊥ = 6, S⊥D′

T DT S′ = [1, −4, −4,1,0, . . . ,0].

In addition, ŜxT = [̂xT,1,̂xT,2,̂xT,4 . . . ,̂xT,T ]′. Combining these results yields (35).

SUPPLEMENTARY MATERIAL

To view the supplementary material for this article, please visit https://doi.org/
10.1017/S0266466621000189
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