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ON THE TWISTOR SPACE OF THE SIX-SPHERE

EMILIO MUSSO

The set of all complex lines of the right-handed Dirac spinor bundle of a standard six-
sphere is the total space of the twistor fibration. The twistor space, endowed with its
natural Kahler structure, is recognised to be a six-dimensional complex quadric. The
relevant group is Spin (7), which acts transitively on the six-quadric, as a group of fiber-
preserving isometries. We use a result due to Berard-Bergery and Matsuzawa to show the
existence of a non-Kahler, non symmetric, Hermitian-Einstein metric on the six-quadric,
which is Spin (7)-invariant.

1. INTRODUCTION

The present paper was motivated by the following result, which was obtained in-
dependently by Berard-Bergery and Matsuzawa (see [1, 9]): let F —> B —• M be
a Riemannian submersion with totally geodesic fibres. Assume that the metrics gp
gg and gm are Einstein, with Einstein constants Ep, Eg and EM respectively, and
Ep > 0. If gg is not locally a Riemannian product of gp and </M > then the metric gB

obtained by scaling the metric on B in the direction of F by a factor t > 0 is Einstein
if and only if t = 1 or t = -g— ĝ— .

Obviously the two metrics above are different if and only if Ep ^ \EM •
Wang and Ziller in [12], pointed out that the only known examples which satisfy

the assumptions of the theorem, with Ep ^ ^EM > are the Hopf fibrations:

5 3 _> 54n+3 __> H p n

c2 __. pp2n+l UP"
o —* i^r —r n r ,

57 cl5 r>8
' O T ij

The Riemannian metrics ^4n+3 ) S'cP2n+1 anc^ ^s16 a r e ̂ ^e s*an(iard symmetric
Einstein metrics. And g*sin+3 > 9cP2n+i , g^n , < = BM-EF > a r e t n e homogeneous, non
symmetric Einstein metrics found by Jensen ([8]), Bourguignon-Karcher ([3]) and Ziller
([14])-
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120 E. Musso [2]

In this paper we will give a new example where the theorem above applies. The
standard six-sphere with constant sectional curvature 4 is viewed as a homogeneous
space of the group Spin (7):

S8 =Spin(7) /5 t / (4) .

The twistor space of S6 is realised as the set of all complex lines of the right-handed

Dirac spinor bundle. Hence the twistor fibration is given by:

The normal homogeneous metric g on Spin (7)/(7(3) is a bundle metric, and is
Einstein with Einstein constant E = 12. It is well known that the natural almost
complex structure J is integrable, and (J, g) is a Kahler structure. The fibres are
totally geodesic complex submanifolds of constant sectional curvature and with Einstein
constant E = 8.

If we let Spin (7) act on R8 via its faithful 8 dimensional representation, then it
acts transitively on the Grassmannian of the oriented planes of R8 (see [5]), and J7(3) is
the isotropy subgroup (see [7]). Therefore the twistor space of S6 may be recognised to
be a six-dimensional quadric of a complex projective space CP7 of constant holomorphic
sectional curvature 4 .

Since the Einstein constant E of the base is 20, we see that the Riemannian
submersion

CP3 <-» Q6 -» 5 6

satisfies the assumptions of the theorem. Therefore: scaling the metric g on Qe in the

direction of CP3 by a factor t — 2/3 we get a Spin (7)-invariant, Hermitian-Einstein

metric g' on the six-quadric.

We compute the differential of the fundamental two form of (J, g'), and we show

that (J, g') is not Kahler. Since every symmetric Riemannian metric on Qe is a Kahler

metric we deduce that g' is not symmetric.

2. PRELIMINARIES

We let spin (7) be the Lie subalgebra of su (8) whose elements are skew-Hermitian

matrices of the form:

where: A £ su(4) and B is a 4 x 4 complex skew-symmetric matrix satisfying the

following conditions:

(9 11 7? — f?3
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The Lie subgroup Spin (7) —» SU (8) corresponding to the Lie subalgebra spin (7)
is isomorphic (see [4, 5]) to the universal covering group of SO (7).

The special unitary group SU (4) is regarded as a subgroup of Spin (7) by setting:

(2.2) 5 6 SU (4) -* S{X, O) = X 0
O X

Hence the Lie subalgebra su (4) —» spin (7) is given by all matrices of the form S(J4, O),
Ae su(4).

We let m be the vector subspace of spin (7), whose elements are of the form
S(O, B), and B € o(4, C) satisfies (2.1). In the following we will identify m with a
six-dimensional Euclidean R6 as follows:

(2.3)

0 -X1 + iX2 -X3 + iX4 -X5 + iX6

X1 - iX2 0 -X5 - iX6 X3 + iX4

X3 - iX4 X5 + iXe 0 -X 1 - iX2

X5 - iX6 -X3 - iX4 X1 + iX2 0

On m the inner product is obtained by using the Killing form. Then the adjoint
representation of Spin (7) restricted to the subgroup SU (4) splits as a direct sum of
two irreducible representations. The associated irreducible components of spin (7) are
su(4) and m; furthermore the representation of SU (4) in m is just the 2 : 1 spin
covering homomorphism of SU (4) ~ Spin (6) onto SO (6).

Now let us consider f/(3) as a subgroup of SU(4) given by:

(2.4) Y € U{3)
0 (dety)"1

Y2 0
Y3 0

IV

Y2
2 Y2

Y2
3 Y3

We thus have su (4) = w(3) © n , where n is identified with C3 by setting:

(2.5)

Z4

Z5

0 - Z

Z4 0

0 —Z

0 -z6

0

z5

0

0

0

z6

0

0

It is convenient now to identify TO with C3 by setting:

(2.6)

Z1

Z2

Z3

0 - z 1 - z 3

0

Z 3 -~i

- Z 2 - ]

0

z1

z2

z3

- Z 1

0
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Then the adjoint representation of Spin (7) restricted to the subgroup U(3) decomposes
as a direct sum of three irreducible representations, and u(3) @n(&m is the associated
irreducible decomposition of spin (7). The representation of U(3) in m is given by

(2.7) yeU(3)p—> det (Y)Y

and the representation of U(3) in n is:

(2.8) Y e U(3).—* det (Y)Y

Now let w denote the Maurer-Cartan form of Spin (7); we let 9 be the R6-valued one-
form obtained by using the decomposition spin (7) = su (4) ®m and the identification
(2.3). We let ip be the su (4)-component of w, and <j> be the u(3)-component of u>. We
denote by a' and a" be the C3-valued one-forms given by the m and n components of
u>, modulo the identifications (2.6) and (2.5). Then the structure equations of Spin (7)
can be written as follows:

da1 = (<t>\ + <j>\) A a1 + 4>\ A <x2 + ifi A a3 + a3 A a5 - a2 A a6,

(2.9) da2 = -<f>\ A a1 + (<j>\ + <j>\) A a2 - <j>\ A a3 - a3 A a4 + a1 A a6,

da3 = -4>\ A cr1 + 4>\ A <T2 + (<j>l + 4>\) A a3 + a2 A <r4 - a1 A a5,

a n d

da4 = a3 A a2 - cr2 A a3 + {<j>\ + <j}\ + 2<j>\) A <x4 + <j>\ A a5 + 4>\ A <r6,

(2.10) d a 5 = -a3 Acrx +01
 A<T3 -$\A<T4 + (<t>\ + 2<ft + 4>3

3) A a5 - $\ A <r5,

das = +<r2 A a1 - <rx A cr2 - j>\ A <r4 + 4>j A a5 + (<f>\ + <j>\ + 2<j>3
3) A <r6.

Finally

d<f>\ + 4>\ A <j>\ + (j>\ A <j>\ = a1 A a1 - a2 A a2 - a3 A a3 - a4 A ff4,

d<j>\ + <f>\ A <f>\ + <j>\ A 4>l = -a* A a1 + a2 A 92 - a3 A a3 - a5 A a5,

d<f>3
3 + <j>\ A 4>\ + <f>\ A </>l = -ff1 A &1 - cr2 A d2 + a3 A a3 - a6 A a6,

d<j>\ + <j>\ A 4>\ + <j>\ A <j>\ + <j>\ A<j>\ = -2a1 A (T2 + a5 A a4,

d<j>\ + <j>\ A <t>\ + <$>\ A 4>\ + <f>\ A (j>\ = -2a1 A a3 + a6 A a4,

d<j>\ + <p\ A <f>\ + <p\ A 4>\ + <p\ A 4>\ = -2a2 A a3 + ae A <r5,

where a' =T (a*a*a3) , a" =T (c rVV 6 ) and <f> = ( # ) B i 6 = J i 3 , ,
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3. T H E SPINOR STRUCTURE OF S6

Now let us consider the homogeneous space Spin (7)/SU (4) and the SU (4)-

principal fibre bundle:

(3.1) p : SU(4)<->Spin(7)-» Spin (7)/SU (4).

Then the R6-valued one form 6 =T (01 ... 06) is a tensorial one-form in Spin (7),

which transforms according to the representation SU (4) = Spin (6) —> SO (6). Hence

the quadratic form ds2 — J ] (#*) and the exterior form 01 A02 A.. .A$6 are projectable
t

on Spin(7)/5t/(4), and they define a Riemanniaii metric g and a volume form.
The su(4)-valued one form ^ defines a connection form in the bundle (3.1), and

the o(6)-valued one-form A(V') satisfies the following identity:

(3.2) d9 =

By using the structure equations (2.10) and (2.11) one has

(3.3) d\{i>)) + A(V»)1 A A(V-)* = 49* A 6>.

It follows that Spin (7)/SU (4), when endowed with the invariant metric g is a space
of constant curvature +4. We may go further and see that the principal fibre bun-
dle (3.1) is merely the spin double cover of the oriented orthonormal frame bundle of
Spin (7)/SU (4) under the metric.

For this reason, we will, from now on, speak interchangably of Spin (7)/ SU (4) and

56 , even though we have given no explicit isometry between them.

We now consider the right-handed Dirac spinor bundle of 56 . This is the rank-4

Hermitian complex vector bundle associated with the principal fibre bundle (3.1):

(3.4) £ = Spin(7).Ysu(4)C
4 -> S6.

Since the structure group is SU (4), then the Dirac spinor bundle is naturally
equipped together with a complex orientation. Furthermore, the connection ij> induces
a Hermitian covariant derivative acting on the cross sections of J^, and it preserves the
complex orientation.

4. THE TWISTOR FIBRATION OF S6

Let (M, g, Vol) be an even-dimensional oriented Riemannian manifold. Then the
set T(M) of all complex-orthogonal structures on the tangent spaces of Mn whose ori-
entation is compatible with the fixed volume form, endowed with the natural topology,
is the total space of the twistor bundle T: T(M) —» M.
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Eells and Salamon in [0] show that if (M, g, Vol) is a four-dimensional spin man-
ifold, then the twistor bundle may be viewed as the set of all complex lines of the
right-handed Dirac spinor bundle of any spinor structure. In [11] and [13] it is proven
that the same construction holds for six-dimensional spin manifolds.

For a 2n-dimensional sphere S2n the twistor bundle T ( 5 2 n ) is given by

UU SO(2n) SO(2n + l) 2n
{ > U(n) %j * •

Hence T(52 n) is the smooth algebraic variety of all n-dimensional totally isotropic
linear subspaces of C2n+1.

For n = 6, using the spinorial approach we get T(S6) = P ( ^ ) , and hence the
twistor fibration is given by

(4.2) T :CP^^U

It is well-known that Spin (7) acts transitively on the Grassmannian of the oriented
planes of R9 , via the faithful 8-dimensional representation of Spin (7) in SO (8) (see
[5]). The isotropy subgroup is exactly U(3) (see [7]), and hence we may recognise
7"(Se) to be the six-dimensional complex quadric (see [13], where the same result is
obtained with different methods).

We now study the geometry of Q$ determined by the following principal fibre
bundle:

(4.3) r: U(3)<-+Spin(7)-»Q6.

First we notice that a' and cr" are tensorial one forms with respect to (4.3), and
they transform according to the representations (2.7) and (2.8). Hence we define an
almost Hermitian Spin (7)-invariant structure on Qe by setting

**(A< 1 0 >Q 6 ) = Span (* ' . . . *"),

(4 4) * V

7T*($) = - i ] T V A &',

TX = \

6

n = l

where a1 — rj1 +irf , <r2 - TJ2 +irj8 , a3 = rj3 + irf, ..., a6 = if +irj12 , and $ denotes

the fundamental two form.
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The structure equations (2.9) and (2.10) imply that the almost-Hermitian structure
is a complex Kahler structure.

If we let («£)„ (,=3 6 the restriction of the curvature form of g' on Spin (7) , then
6

—2i 22 "a is a projectable two-form. Its projection p is the Ricci form, and an easy22
a=lcomputations shows that:

(4.5) -2i

Therefore g' is an Einstein metric with Einstein constant E' = 12. Since Q$ is
simply connected, then it admits a unique (up to homothety) invariant Kahler-Einstein
structure (see [10]). Therefore we have that (Q6, g', J) is the six-dimensional complex
quadric of a complex projective space CP7 of constant holomorphic sectional curvature
4.

The bundle A^10^(Q6) splits as a direct sum V©% , where "H is the rank- 3 complex
bundle of semi-basic (for T: Q$ —> Se) complex linear (1, 0)-fonns, and V = TCX. We
notice that

(4.6)

Equations (2.10) imply that the subbundle V —> A^10'(Q6) is a holomorphic, not inte-
grable distribution.

The fibres CP3 —> Q$ are the maximal connected integral submanifolds of the
exterior differential system

a = 0 V Q 6 W .

If we let j - CP3 -+ Q6 denote the inclusion, the j*(Spin(7)) -> CP3 is a U(3)-
6

principal fibre bundle, and 22 cA ^ ^A is a projectable bilinear form representing the

6

induced metric j*{g') • Furthermore, 22 a"A A oA gives rise to a well defined complex-

structure, and j'(g') is a Kaliler metric.
6

Notice that —2t 22 KA ls a projectible two-form, and its projection is the Ricci
form of the fibre.

Since

A=l
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we deduce that j*(g') is an Einstein metric with Einstein constant E = 8. Finally
we notice that (2.10) implies that the fibres are totally geodesic subnianifolds. Since
the Einstein constant of g is E = 20, and obviously the projection T is a Riemannian
submersion, then we may apply the theorem of Berard Bergery and Matzuzawa and we
get the following.

THEOREM. If we scale the standard metric on Qe in the direction of the fibres by
a factor t — | , then we have a Hermitian, Spin (7)-in variant Einstein metric g" on Q$ .

The principal fibre bundle

is a reduction of the isotropy bundle SO (2) x SO (6) —» SO (8) —> Q6 , whose elements
are the frames of SO (8) adapted to the twistor projection TT: Q9 —> S6.

Therefore, (4.3) is also a reduction of the unitary frame bundle of the Hermitian
manifold (Qet 9", J) • The restriction on Spin (7) of the canonical one-form of g" is
the C6-valued one form given by:

Then -ifa1 A a1 + <r2 A 92 + <T3 A a3 + §(r4 A v4 + \<J5 A a5 + f <r6 A ae) is a project-
ible two-form, representing the fundamental two-form $' of (g1, J). Using (2.10) we
obtain:

(4.8)

*••(<»') = - (<r2 A a-3 A ? 4 - (71 A (73 A a*

+CT1 A or2 A o-6 - a2 A a1 A a* + ax A &3 A crs - crl A 92 A <r5) .

Therefore d<j>' ^ 0, and hence g" is not a Kahler metric. A fortiori g" cannot be
symmetric or isometric with the standard metric of Qe •
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