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ABSTRACT Energy is transported from the central regions of a star 
to its surface. Generally this transport is in certain layers carried on by 
convective motions. Because of the structure, which these motions have 
due to the influence of the overall rotation, the star becomes electromag-
netically unstable, i.e. a large magnetic field grows from small seed fields 
as a result of the dynamo process. The internal structure, especially the 
symmetries of a star, will be, at least to some extend, reflected by the 
spatial structure and the time behaviour of the excited magnetic field. 
In this sense observations of the magnetic field on a surface of a star 
and the related activity phenomena can provide insight in the internal 
structure of the star, since characteristic parameters like thickness of the 
convection zone, mixing length, turnover time, profile of the differential 
rotation, etc. strongly influence the dynamo process. 

The actual magnetic field of a star is a product of a nonlinear process. 
Models elaborated on the kinematical (i.e. linear) level provide insight 
in the excitation conditions and the linear field modes. The marginal 
mode, i.e. the mode which is easiest to excite, reflects properties of the 
nonlinear solution in case the system operates not far from the margin to 
the dynamo unstable region. Here the solutions show symmetries with 
respect to the axis of rotation and the equatorial plane, properties which 
are, for example, to a large extend fulfilled for the solar average magnetic 
field. For systems operating far from this margin irregular or even chaotic 
behaviour has to be expected. From observations there is a strong indica­
tion that these theoretical possibilities find their realizations within the 
sample of late-type stars. 

INTRODUCTION 

Observations of the solar surface reveal a manifoldness of phenomena closely 
connected with magnetic fields. At first glance these phenomena are of a small 
scale nature in space as well as in time. However, long time statistical studies 
suggest the existence of a large scale background field. This is best known 
from the sunspot phenomenon which has now been studied in detail over more 
than one century. It suggested an odd parity magnetic field - antisymmetric 
with respect to the equatorial plane - which consists of ring fields of opposite 
orientation on both sides of the equatorial plane. This toroidal magnetic field is 
accompanied by a dipol-type poloidal field indicated by magnetograph records 
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of the polar caps and by structures in the corona which can be seen at solar 
eclipses. Both field parts form the large scale magnetic held of the Sun which 
oscillates with a period of about 22 years. 

The oscillatory character of this magnetic field of the Sun exludes a fossil 
origin. An explanation has to present a mechanism which continously provides 
for a supply of energy. Already J. Larmor (1919), who thoroughly analyzed 
possible explanations in his famous paper "How could a rotating body such as 
the Sun become a magnet?", ruled out all alternatives and leaves the dynamo 
as the only one. 

Since the presentation of the first conclusive spherical model of the Solar 
dynamo by Steenbeck and Krause in 1969 a great number of such models have 
been elaborated by several authors. On proper assumptions concerning the 
internal motions inside the Sun (i.e. convection, differential rotation, meridional 
motions) all relevant observational facts find an explanation. 

It should, however, be noted here that the internal motions inside the Sun 
originate in the transport process by which the energy released in the core is 
brought to the solar surface. The magnetic field being produced by the induction 
action of these internal motions appears thus embedded in the whole complex 
of stellar constitution. In this general sense the dynamo problem proves to be 
a highly nonlinear problem which is beyond of acces even to the best to-days 
computers. The problem "simulating the solar dynamo" is still unsufficiently 
solved. 

From the above adopted standpoint the global magnetic field of a star proves 
to be an entity which reflects by its spatial structure and its temporal behaviour 
the individual features of this star. Consequently, it has to be expected that 
stars of the same stellar type must have about the same magnetic field, if we, 
for the moment, refrain from the fact that the stars may differ with respect to 
their rotational velocities, which have a rather strong influence on the internal 
motions. 

In this sense is the idea of the dynamo origin of the solar magnetic field 
strongly supported by the observational fact that late type stars also show ac­
tivity cycles, i.e. they show the same magnetic activity phenomena as the Sun, 
in many cases also with a certain periodicity. 

The situation is different for the magnetic Ap-stars: These stars have fields 
which significantly deviate from axial symmetry with respect to the axis of 
rotation, i.e. the magnetic signals recorded on the Earth are strictly periodic, 
thus reflecting the rotational period. Till now there are no clear indications of 
time variations of these fields in a co-rotating coordinate system, even if the 
observations of certain peculiar surface structures, which exist since the begin of 
this century, are included in the considerations. Thus the possibility of a frozen-
in field from the birth of a star cannot be ruled out, although dynamo excitation 
in the star's convective core offers an alternative process (Krause 1983). 

The peculiar A-stars are a small group of stars which might have a frozen-in 
field, the overwhelming number of stars do not show a sign of such fields. Thus it 
is not probable that stars get a field from the interstellar field by the condensing 
matter, or, if they do, the field will be destroyed by the strong turbulence during 
the star forming processes. However, dynamo theory revealed that turbulence 
and rotation make a star (or a protostar) to work as a dynamo. Consequently a 
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star can hardly escape from being a dynamo, at least during some evolutionary 
phase, and will thus form its own individual magnetic field. 

Magnetic fields of stars will so reflect certain internal structures, the most 
obvious of which is the convection zone, its thickness and its position. Further 
the differential rotation is of influence because of its strong amplification action. 
Details have to be studied with models which are as close to reality as possible. 

THE BASIC PROBLEM 

According to our view is the ability of a star to work as a dynamo due to 
internal motions which originate in the transport process which brings the energy 
produced in the star's core to the surface. The basic equations for describing 
this process are given by the conservation laws of mass, momentum and energy 

—£-£ + (u- V)lnp+divu = 0 (1) 

dti v 1 1 
— + ( u - V W = - - V l n p + 0 - 2/2 X u+ - j X B + - div r , (2) 
at p p p 

— + (u • V) e = - £ div u + -Ae + Qvisc + Qjou, , (3) 
at p p 

and the induction equation 

dB 
— = curl (ux B) + T\AB . (4) 

Here denotes p the mass density, u the velocity, p the pressure, g the gravity, fl 
the angular velocity, B the magnetic field, j the current density, e the specific 
internal energy, K the heat conduction, r the viscosity tensor and r\ the magnetic 
diffusivity. Finally define Qvisc and Qjouu the heat production by viscosity and 
electric resistivity. These quantities are quadratic expressions in the velocity 
gradient and the current density. 

The equations (1) to (4) have to be completed by an equation of state. 
Furthermore, appropriate boundary conditions have to be formulated. Physi­
cally clear conditions we have in the case where the star is considered as em­
bedded in an empty, electrically insulating space, although this does not fully 
correspond to the real conditions: stars generally have a corona, i.e. the envi­
ronment is electrically well conducting. 

Difficulties originate in the boundary conditions since the magnetic field 
as a far reaching quantity cannot be described by local conditions in a correct 
way. Nevertheless, a certain number of models were based on the local boundary 
condition Blan — 0. It provides for some mathematical simplification, however, 
it has to be noted that a physical justification is not possible. Especially, no 
electromagnetic energy, which is produced inside by the dynamo, is transported 
through the surface in the environment: The pointing vector E X B is tangen­
tial. 
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FIGURE I Stability diagram of a convection-driven dynamo. The axis to 
the right characterizes the temperature difference in units of the Rayleigh 
number Ra, the axis to the back the dynamo-active part of the convective 
motion by the dynamo number C. The arrows indicate the attractors, to 
which an arbitrary initial field developes. 

In addition specify the boundary conditions that heat energy flows from 
the cental part of the star to the surface and leaves there by the emission of 
radiation. 

The above presented equations have the simple solution 

u = B = j = 0 , 
dp 
dt 

= 0 , 

with e determined by 

de 
dt 
— = - Ae 

(5) 

(6) 

In this case the transport of energy is simply carried on by molecular conduction. 
However, this solution generally proves to be unstable. First the velocity 

field u = 0 becomes unstable, and energy transport occurs by convective motions 
- hot material rises towards the surface, cold material sinks down. In addition, 
since the medium in the convection zone of the Sun or a star is electrically con­
ducting, the magnetic field B = 0 also becomes unstable and dynamo excitation 
of a magnetic field sets in. 

The 3-D-scheme in Fig. 1 shall illustrate the physical situation: The axis 
directed to the right characterizes the heat conduction process by the Rayleigh 
number Ra. At a critical value of Ra we have the first bifurcation at the thermal 
instability, a velocity field u ^ 0 is formed, the magnitude is indicated by the 
axis, which is directed to the background. The representation shall illustrate 
that first, i.e. close to the bifurcation point, the velocity shows a rather regular, 
periodic structure, in a greater distance it generally becomes turbulent. The 
dynamo number C now characterizes the electromagnetic action of this velocity 
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field: At a critical value we have the second basic bifurcation where the magnetic 
field B = 0 becomes unstable and dynamo excitation sets in. 

It is now well known that systems like the Sun or stars generally ly beyond 
the critical values of the parameters Ra and C. It is so clearly to be seen that 
the considered problem requires the solution of the full set (1) - (4) of nonlinear 
equations, and that we especially have to consider their irregular solutions, which 
describe the turbulence phenomena. 

The problem appears so to be of unmanagable complexity. During the last 
three decennia succesfull research has been carried out on the basis of the mean-
field concept (Krause and Radler 1980). Equations for the mean fields have been 
developed which describe the collective phenomena of the fluctuating fields by 
certain averages. Parallel to this development there was also the try to calculate 
dynamo processes by numeric simulations (e.g. Gilman 1972, 1983, Glatzmaier 
1984, 1985a,b, Chan et al. 1982, Nordlund and Stein 1989, Brandenburg et 
al. 1990b). Although models which describe situations close to reality are not 
achieved till now these investigations will be promising for the future with more 
and more powerfull computers (Krause 1991). 

In the following we will present an overview of the results which have been 
achieved by the research of stellar dynamos. Most of them have been gained 
by using the fact that the backreaction of the magnetic field on the motion -
the Lorentz force j X B - is of second order. Consequently, it makes sense first 
to consider the kinematical problem, especially, if the question for the origin is 
raised. From that platform a certain insight in the highly nonlinear dynamo 
problem has been elaborated in the recent years. 

THE KINEMATIC PROBLEM 

We will now specify the problem according to the natural conditions. As a model 
of a star we consider a sphere which consists of an electrically conducting fluid 
(ionized gas). It rotates about a certain axis. Due to gravity and the overall 
rotation the model shall show symmetry with respect to the equatorial plane 
and the axis of rotation in all non-magnetic properties. As far as it concerns 
turbulent quantities this requirement shall be fulfilled in the average. 

The following considerations rest on the assumption of a prescribed velocity 
field. We study the fate of a magnetic field which exists at a certain time (t = 0) 
in the star for some reason by solving the initial value problem of the induction 
equation (4). We have so to determine a magnetic field B(x,t) as a solution of 
the equations 

dB 
— = curl (u x B) + x)AB , div B = 0 (7) 

for r < R and 

curlB = 0, divB = Q, B = 0 ( l / r 3 ) if r -* co , (8) 

for r > R . r denotes the distance from the centre and R the radius of the 
sphere which represents the star. 

We enter with the ansatz 
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B(x,t) = e11 B{x) , (10) 

into the equations (7), (8). According to general mathematical rules we find a 
denumerable set of eigen modes which are characterized by a set of eigen values 
7i> 72,---, "in,-- a"d corresponding eigen fields B\(x), B2(x),..., Bn(x),... . 
The real parts of the eigen values -yn, 7le{7„}, describe growth, resp. decay of 
the eigen modes. Generally we have 

Re{jn} —> —oo if n —> oo (11) 

i.e. nearly all eigen modes decay due to Ohm's dissipation. Only a finite number 
of them may have non-negative growth rates: in this case the system represents 
a dynamo. The imaginary part of a fn characterizes a periodic behaviour if 
unequal zero. 

There are in astrophysics important types of motions like differential rota­
tion and compression (e.g. due to accretion) which provide for amplification but 
not for dynamo excition. In this cases the system (7), (8) degenerates and we 
have to consider also the ansatz 

B(x,t) = te>i B(x) , (12) 

in order to complete the system of eigen modes. For the motions mentioned 
above Re{l) would be negative: the field decays, however, first it grows propor­
tional to time. 

Research in dynamo theory over the last three decennia revealed that basi­
cally any rotating cosmical object should be a dynamo in case it shows internal 
motions like convection. This statement is crucial: As a consequence the large 
scale part of a magnetic seed field grows exponentially and the cosmic object 
forms its own individual magnetic field, the memory of the seed fields got lost. 

The ability of being a dynamo is due to the influence of the Coriolis forces 
on the internal motions. They get a helical structure where generally in a cer­
tain region one kind of helicity, either lefthanded or righthanded, dominates. 
For example, in the convection zone of the Sun are lefthanded helical motions 
dominating in the northern hemisphere and righthanded in the southern. 

The induction action of these motions used to be described in the frame 
of mean-field magnetohydrodynamics. The correlated action of the small-scale 
fields « ' , B is described by the turbulent electromotive force S defined by 

€ = u< x B' , (13) 

where the overbar denotes the average. Ohm's law for the mean fields reads so 

j = CT(E + UXB + £) , (14) 

where from now j , E, u, B describe the mean values of these fields. 
The induction action of small-scale motions with helicity leads to a turbulent 

emf € of the form 

£ = aB - Pcurl B , (15) 
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The first term on the righthand side represents the a-effect, i.e. an emf parallel to 
the magnetic field. The second one provides for an enhanced decay by turbulent 
diffusion. It describes the cascade of magnetic energy down to smaller and 
smaller scales due to the turbulent motions. 

Relation (15) corresponds in this form to the idealized case of a homoge­
neous isotropic turbulence, a is connected with the helicity, the average of the 
scalar product of the fluctuating velocity field v! with its curl: 

Te, a = — — u' curl u' , (16) 

where rCOT denotes the correlation (overturn) time (Steenbeck and Krause 1969) 
and (3 is connected with the turbulence intensity by 

P =TY^- (17) 
In real conditions the dominance of one kind of helical motions is due to 

the stratification by gravity g and the influence of the rotation represented by 
the angular velocity fl. According to these highly anisotropic conditions (15) 
has to be exchanged by the tensorial connection. 

b =aijBj+pijkir
J- , (18) 

where the tensor atJ has the form 

aH = «i(fl • fi)f>ij + <*2{gift} + 9}fti) • (19) 

Especially recent investigations revealed that the contributions by the a-i- term 
in (19) may be remarkable (Radler 1983). From a discussion of an anisotropic 
diffusivity tensor we will refrain here. 

Numerous investigations have been carried out of models which are based 
on the induction equation 

dB 
--- = curl (uxB + £) + TJAB , (20) 
at 

where u describes motions like differential rotation and/or meridional motions 
and £ the influence of turbulent convection according to (15) or (18), (19) or 
even more complicated. Often simply (15) combined with a differential rotation 
has been considered which is general named afi-dynamo. 

The results show that generally a few growing eigen modes, i.e. those with 
positive Re{f}, do exist. They differ especially with respect to their symmetry 
properties: They are either symmetric (even parity) or antisymmetric (odd par­
ity) with respect to the equatorial plane and axisymmetric with respect to the 
axis of rotation or depend on the azimuth p according to e'm,p . The symmetry 
type will accordingly be designed by Sm or Am. For the three most important 
types .40, 50, 51 the shape is illustrated in Fig. 2. 

The Sun's magnetic field has, especially because of the polarity laws of the 
sunspots.to be classified as AQ. For magnetic Ap-stars it is not clear whether or 
not the fields show a dominating symmetric part, however, if they do, they with 
high probality belong to the type 51 (Oetken 1977,1979). Also for late type stars 
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FIGURE II The three most important symmetry types of magnetic fields, 
which may be excited by a spherical dynamo showing symmetries with re­
spect to the axis of rotation and the equatorial plane. In a multipole ex­
pansion the leading terms will be a dipole parallel to the axis of rotation for 
AO, a quadrupole for 50 and a dipole with its moment within the equatorial 
plane for 51. 

the symmetry type is not clear, but significant deviations from the symmetry 
with respect to the axis of rotation seems to exist in some cases (Piskunov et al. 
1990, Jetsu et al. 1990, Moss 1991). 

Calculations of dynamo models within the kinematic theory show that fields 
of the three types AO, 50, 51 may have positive growth rates, or to say it in 
a different way, they take the places B\{x,t), B2{x,t), Bz(x,t) within the 
sequence of eigen modes. So fields of these three symmetry types compete in 
being realized by a certain model, or a certain star. 

In the frame of the kinematic theory one can find two marks for differenti­
ating between the eigen modes: For the intensity of the induction action char­
acterized by the dynamo number C exist a critical value, the marginal dynamo 
number Ccrit, which is the border beyond of which the system is electromagneti-
cally unstable. The related eigen mode, for which the growth rate Re{-y) = 0 if 
C = Ccrit, we call the marginal mode. It is the mode which is easiest to excite. 
As a further mark we can use the largest growth rate. If C is in an immidiate 
neighbourhood of Ca-u both these eigen modes are identical. However, for values 
of C which substantially exceed CCrit they may be different. 

Our present findings allow for a solution of the initial value problem, i.e. we 
can describe the growth of a weak seed field. Clearly the eigen mode with the 
largest growth rate will dominate in a short time. That may be the marginal 
mode or not. 

The actual magnetic fields we observe on the Sun and stars are clearly in a 
well developed state, in a state of saturation. This state cannot be described in 
the frame of a linear theory, we need information from the nonlinear investiga­
tions in order to understand the actual situation. 
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THE NONLINEAR DYNAMO PROBLEM 

The treatment of the full dynamo problem needs the solution of the system of 
partial differential equations (1),.., (4), or, at least, the solution of the coupled 
system,consisting of the Navier-Stokes equation and the induction equation. In 
order to avoid the mathematical difficulties simple modelling of the backreaction 
on the induction action of the motions have been introduced. The most common 
one is the so-called a-quenching, where a reduction of the a-effect is simply 
achieved by the ansatz 

with a certain exponent k. In this way the induction action of the a- effect is 
reduced with the growing magnetic field. 

Models of this kind allow the study of the extension of the eigen modes to 
the nonlinear regime in dependence on the dynamo number. The results allow 
for some general statements (Krause and Meinel 1989): 

i The stability of a solution is decisive of which magnetic field will be main­
tained by the dynamo, 

ii The extension of the marginal mode is stable in a certain neighbourhood 
of the marginal dynamo number, 

iii The extension of a higher mode is first, i.e. in a neighbourhood of their 
bifurcation, unstable, 

iv For values of the dynamo number that substantially exceed the marginal 
dynamo number bifurcations in the nonlinear regime lead to solutions of 
a complex structure. 

According to (ii), (iii) the significance of the marginal mode is clearly to be 
seen. 

To some extend the nonlinear extensions of the eigen modes possess the 
same symmetry properties, i.e. the extension is of even (odd) parity if the eigen 
mode is of even (odd) parity. The same is true for the symmetry with respect 
to the axis of rotation. 

In this way the investigation of the linear problem provides insight in the 
symmetry properties of the nonlinear solutions, at least in some neighbourhood 
of the marginal dynamo number. The higher eigen modes are unstable, however, 
it may happen that some of them first dominate, because of their higher growth 
rates. Finally they decay thus demonstrating an inverse cascade of the energy 
(Gilbert and Sulem 1990). According to (iv) additional bifurcations leed to a 
break of symmetry in a certain distance from the marginal dynamo number and 
more irregular solutions will appear. 

These findings allow for a possible scenario that predicts stable regular 
magnetic fields with certain symmetries (axisymmetry, equatorial symmetry) 
just beyond the marginal dynamo number, but for values of C that substantially 
exceed the marginal number, non-symmetric or even irregular fields have to be 
expected. 
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THE CONFRONTATION WITH OBSERVATIONS 

The foregoing discussion revealed that it makes sense to investigate kinematic 
models even if the final state is investigated. Many models have so been con­
sidered (e.g. Roberts 1972, Roberts and Stix 1972, Yoshimura 1975a,b, Radler 
1980, 1986, see also the monographs Moffatt 1978, Krause and Radler 1980, 
Zeldovich et al. 1983). 

In connection with the explanation of the solar magnetic field many in­
vestigations concentrated on the aft-dynamo. In most cases an .AO-type field 
was found as the marginal one. We thus understand the observed large-scale 
magnetic field of the Sun. 

On the other side by changes of the internal structure also models have 
been found where a 50-type field, i.e. one with a quadrupol as leading term, 
are marginal (e.g. Roberts 1972). Such models may indicate that the magnetic 
field of the Sun not always during its history must have been of odd parity. 

Furthermore, even models have been found, where fields of type 51 are 
marginal (Krause 1971, Stix 1971, Riidiger 1980). These models provide the 
possibility to interprete the observational results concerning the magnetic Ap-
stars in terms of dynamo theory (Krause 1983). Worth to note here that a field 
pattern as realized by meridional motions can excite a magnetic field of type 51 
(Gailitis 1970, Moss 1990). 

Very detailled investigations of spherical dynamo models have been carried 
out by Radler (1980, see also Krause and Radler 1980). Here stability maps are 
presented which provide insight how the magnetic fields of the different symme­
try types become marginal in dependence on different influences like differential 
rotation, meridional motions and such turbulence parameters like 0:1,0:2 in (18) 
and others. 

A comparision with the solar magnetic field provides for a challenge to fit 
models best to the observed patterns. As well the modelling of the differen­
tial rotation as the different turbulence parameters provides for a diversity of 
possibilities. 

However, things become more complicated since the differential rotation 
is also caused by the turbulent convection by the so-called yl-effect (Riidiger 
1989). In this sense conclusive models require to determine all quantities like 
a, 011,012,... and those describing the /1-effect out of the same root: the turbulent 
convection. In connection with reconciling the different aspects a number of 
difficile problems emerge (Brandenburg et al. 1990a). 

Apart from theoretical determinations modern observations of solar oscilla­
tions provide for a possibility to derive the profile of differential rotation inside 
the Sun (Harvey 1988, Libbrecht 1988). In this way further constraints as well 
on the theory of the differential rotation as on the dynamo theory do now exists 
(Paterno, 1991). One misses the confirmation of the, already a long time exist­
ing forecasting of an increasing angular velocity with depth, which fits best to 
the polarity rules of the observed magnetic field. However, the oscillation data 
apparently allow for a radial jump of the angular velocity at the base of the con­
vection zone. This already is sufficient for having the correct polarity relations 
and the migration of the toroidal field belts towards the equator (Steenbeck and 
Krause 1969, Roberts and Stix 1972, Belvedere et al. 1991). 
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BEYOND THE BREAK OF SYMMETRY 

So far we discussed the dynamo from the view based on the linear theory, what 
means we considered the object in a state close to the dynamo instability, the 
realized field shows to a far extend the same properties as the marginal mode. 
In the following we will discuss results of nonlinear investigations and some 
relations to observational findings. 

The break of symmetry at a certain dynamo number may appear in a way 
that the marginal mode of odd parity becomes unstable and the system migrates 
on a certain time scale to an even parity configuration, which again is unstable. 
This time scale proves to be much larger than the period of oscillation (i.e. the 
(solar) cycle period). The magnetic field has so the appearance of an odd parity 
oscillating field which changes after a large number of oscillations for some time 
the parity (Brandenburg et al., 1989a). A consideration of the energy of the 
excited field reveals a "grand minimum" just at the transition from one parity 
to the other (Brandenburg et al., 1989c). Hence one is tempted to relate this 
property of the model to periods of no, or minor solar activity in the past history, 
i.e. to the Maunder minimum. 

Investigations of nonlinear models reveal a picture of high complexity 
(Radler et al. 1990, Brandenburg et al. 1989b, Jennings and Weiss 1991, Jen­
nings 1991). Jennings et al. (1990) found a model where the .AO-type solution 
lose their stability to a mixed one with A0 and 51 contributions. So the possi­
bility of modelling the observed sector structure on the Sun is feasible. 

Apart from the observed field pattern there are characteristic observable 
parameters which may be studied in their mutual dependence. These investiga­
tions gain the more interest, since the observations of solar-type and late-type 
stars offer possibilities to study these dependences in a sample of objects. Those 
parameters are, for example, the rotational period, the cycle period and the in­
tensity of the activity as a measure of the field strength of the excited magnetic 
field (Baliunas 1985, Schrijver 1991). It may so be possible in future to dif­
ferentiate between different nonlinear models on a broad basis of observational 
data. 

CONCLUSIONS 

This is a try to present an insight in the development of the theory of dynamos in 
stars. It appears to be in a large part a well-ordered deductive theory, however, 
the more nonlinear processes are dominating and, consequently, nonlinear theory 
is needed for an appropriate description the picture becomes rather entangled. It 
is, indeed, the actual problem to build a passable street in the jungle of nonlinear 
phenomena by a cooperation of observation and theory. 
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