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ANGULAR DERIVATIVES AND COMPACT 
COMPOSITION OPERATORS ON THE HARDY AND 

BERGMAN SPACES 

BARBARA D. MacCLUER AND JOEL H. SHAPIRO 

1. Introduction. Let U denote the open unit disc of the complex plane, 
and <p a holomorphic function taking U into itself. In this paper we study 
the linear composition operator C^ defined by C^f = / o <p for / 
holomorphic on U. Our goal is to determine, in terms of geometric 
properties of <p, when Cv is a compact operator on the Hardy and Bergman 
spaces of U. For Bergman spaces we solve the problem completely in 
terms of the angular derivative of <p, and for a slightly restricted class of cp 
(which includes the univalent ones) we obtain the same solution for the 
Hardy spaces Hp (0 < p < oo). We are able to use these results to provide 
interesting new examples and to give unified explanations of some 
previously discovered phenomena. 

The boundedness of C^ on Hp is a consequence of Littlewood's 
Subordination Theorem, and it is in the Hp setting that the study of such 
operators has attracted the most attention. In 1968 Nordgren initiated the 
study of spectra of composition operators on Hp [24]. His work was 
carried on by Caughran and Schwartz [8], Kamowitz [16], C. Cowen [12], 
and in the context of the unit ball of C^, by B. MacCluer [18], [19]. 
However in this paper we pursue the line of investigation initiated by Ryff 
[28] and H. J. Schwartz [29], and elaborated by Shapiro and Taylor [30]. 

In [30] Shapiro and Taylor focused particular attention on the 
connection between compactness of C^ and existence of the angular 
derivative of <JP. We say the angular derivative of <p exists at a point f e 3 U 
if there exists co e 3 U such that the difference quotient 

z ~ S 

has a (finite) limit as z tends non-tangentially to f through U. This concept 
will be discussed more fully in Section 2.3. Right now we simply remark 
that its existence at f guarantees several things: (i) that <p itself has a 
non-tangential limit of modulus 1 at f (obvious), (ii) that the complex 
derivative y\z) also has a non-tangential limit at f, and (hi) that <p is in a 
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HARDY AND BERGMAN SPACES 879 

certain sense "conformai" at f, so that it cannot push the unit disc too 
sharply into itself. Shapiro and Taylor proved that if C^ is to be compact 
on Hp then <p cannot have an angular derivative at even a single point of 
dU ( [30], Theorem 2.1, and Theorem 5.3 below). They also gave a useful, 
but very special result in the converse direction; and then asked if 
non-existence of the angular derivative at every point of 3 U might also be 
sufficient for compactness ( [30], page 481). 

We are going to answer this last question affirmatively for weighted 
Bergman spaces (Theorems 3.5 and 5.3) and negatively, but "almost 
positively" for the Hardy spaces Hp with 0 < p < oo (Theorems 3.6 and 
3.10). Our line of attack comprises three major elements. First there is the 
Theorem of Julia and Caratheodory which we use to make quantitative 
sense out of the non-existence of the angular derivative. Then there is the 
equivalence between certain Hardy, Bergman, and Dirichlet spaces. This 
allows us to treat these spaces in a unified way, and to use known facts 
about composition operators on the smaller spaces as a means for 
ascertaining their behavior on the larger ones. Finally there is the 
characterization, recently exploited in higher dimensions by MacCluer 
[20], of compact composition operators in terms of certain Carleson 
measures. 

The plan of the rest of the paper is as follows. The next section is 
preparatory: its goal is to keep the rest of the paper reasonably self 
contained. Here we assemble, mostly without proof, some widely scattered 
facts about Hp spaces, composition operators, and angular derivatives. We 
also include a brief discussion of the intuition behind the compactness 
problem. In the third section we state our main results (Theorems 3.5 and 
3.10) and derive their major consequences. Our positive result about 
compact composition operators on Hp (Theorem 3.10) involves the 
behavior of C^ on certain weighted Dirichlet spaces. We introduce these 
spaces, as well as their Bergman counterparts in Section 3. 

The relationship between composition operators and Carleson measures 
is developed in Section 4. In the following section our main results are 
proved in the setting of weighted Dirichlet spaces: the versions given in 
Section 3 being derived as corollaries. 

In the final section we shift our attention from the unit disc to the unit 
ball B of C for N > I. Here the situation is complicated by the fact that 
composition operators need not be bounded on the Hardy or Bergman 
spaces of B, in sharp contrast with the case N = 1. However we are able to 
show that a certain reasonable class of holomorphic maps <p.B —» B does 
induce bounded composition operators, and we characterize the compacts 
among these in terms of an "angular derivative". We give a class of 
examples which show that in general however, non-existence of this 
angular derivative does not imply compactness, even on the weighted 
Bergman spaces of the ball. 

https://doi.org/10.4153/CJM-1986-043-4 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1986-043-4


880 B. D. MacCLUER AND J. H. SHAPIRO 

2. Background. Here we collect some known facts about Hp spaces, 
composition operators, and angular derivatives. We also discuss some 
of the intuition behind the compactness problem for composition 
operators. 

2.1. Hp spaces. A good general reference for this material is [13], 
Chapters 1-3. For 0 < p < oo we denote by Hp the space of functions/ 
holomorphic in U for which 

\\f\t = sup -1- P " \f(reie) fd6 < oo. 

We denote by H°° the space of bounded holomorphic functions on U, 
taken in the supremum norm: 

ll/lloo = SUP |/(Z)|. 
| z |< l 

These are all complete linear topological spaces in their natural metrics, 
and of course they are Banach spaces when/? ^ 1 ( [13], page 37). 

If/belongs to Hp(p < oo) then for each z in [/, 

l/(z)|^21/"ii/n/,(i -\z\y
u". 

It is this inequality which yields the completeness of Hp: it shows that the 
unit ball of Hp is a normal family, and that the functionals of evaluation at 
the points of U are all continuous on Hp ( [13], Lemma, page 36). 

Another important result is Fatou's Radial Limit Theorem ( [13] 
Theorems 2.2, 2.6): if 0 < p ^ oo a n d / e Hp then the radial limit 

/>(?) = lim /(rf) 
r - » l -

exists for almost every f G 3[/, and the m a p / ^ / * is a linear isometry of 
Hp onto a closed subspace of Lp(dU). We remark that throughout this 
paper "almost everywhere" refers to linear Lebesgue measure on 3 U. The 
radial convergence in Fatou's Lemma can be replaced by "non-tangential 
convergence": for each / i n Hp, for almost every f in dU the limit of / (z) 
exists as z —» f through any triangle A in U with a vertex at f ( [13], 
Theorem 2.2). 

2.2. Composition operators on Hp. According to Littlewood's Subordina­
tion Theorem ( [13], Theorem 1.7, page 10), if <p is holomorphic on U with 
<P(U) c £/ and <p(0) = 0, then for each 0 < p < oo and 0 ^ r < 1 : 

fj \fWre9) ) m ^ j]" \f(reld) fdO 

for every function / holomorphic in U. Thus the induced composition 
operator C^ is bounded on Hp, with norm ^ 1 ( = 1 actually, since C^ fixes 
constant functions). It is easy to check that each conformai automorphism 
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of U induces a bounded composition operator on Hp\ so every <p 
holomorphic on U with <p(£/) c U induces a bounded composition 
operator on Hp even if <p(0) ^ 0, (see [28], [29], Chapter III; and [11], 
Theorem 2.1 for estimates of the norms of such operators). 

2.3. Compact composition operators. By definition C^ is compact on Hp if 
and only if it takes the unit ball of Hp, which is not compact, into a set 
whose closure is compact. Our problem is to relate this property to the 
manner in which cp takes the unit disc into itself. To consider an extreme 
case, suppose <p(U) has compact closure in U\ that is, <p(U) c rU for some 
0 ^ r < 1. Then C^ is compact on Hp, even if p = oo. This follows easily 
from the fact that the unit ball of Hp is a normal family (Section 2.1). It is 
also easy to see that for H°° these are the only functions <p which induce 
compact composition operators ( [29] Theorem 2.8, page 28). Thus from 
now on we consider only the case p < oo, where the situation is much 
more interesting: now <p can have radial limits of modulus one and still 
induce a compact composition operator. This will be the case if, for 
example, <JP maps U onto (or into) a polygon inscribed in the unit circle 
( [30], Corollary 3.2); and even into a region with a little smoothness where 
it touches the boundary (see [30], Corollary 4.4 and Corollary 3.10 of this 
paper). However too much smoothness, even at just one point, is not 
allowed: for example the map q>(z) = (1 + z)/2 maps [/onto a region in 
U which touches the unit circle at just one point, yet it induces a 
non-compact composition operator ( [29], page 23). In Section 3 of this 
paper we give a single result (Corollary 3.10) which explains all these 
examples. What is important right now is their intuitive message: "C^ will 
be compact on Hp if and only if <jp squeezes the unit disc rather sharply 
into itself". 

Our goal in this paper is to make quantitative sense out of this intuitive 
principle. As we have already mentioned, the crucial link between the 
geometry of <p and the compactness of C^ turns out to be the angular 
derivative of <JP, to which we turn next. 

2.4. The angular derivative. We previously defined <JP to have an angular 
derivative at J e 8 U if there exists ai <= 8 U such that the limit 

where z —> f non-tangentially through U, exists and is finite. When this 
happens it is clear that <p has non-tangential limit co at f. Thus the angular 
derivative of <p has a chance to exist only at those points on 8 U at which <p 
has an angular limit of modulus one. What is not so obvious is that the 
existence of the angular derivative of <p at f is equivalent to the existence of 
the angular limit of the complex derivative <pr(z) a t ?• This forms part 
of the Julia-Caratheodory Theorem, to which we turn next. In order to 
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state this result efficiently we need some notation. For f e 3 U let 

d(Ç) = lim inf 

*-* i - \A 
where z is allowed to tend unrestrictedly to f through U. By the Schwarz 
Lemma d(f) > 0 (if <p(0) = 0 it is ê 1). 

2.5. The Julia-Caratheodory Theorem. Suppose f G 9 L7 is fixed. Then the 
following three conditions on <p are equivalent: 

(i) d(0 < oo. 
(ii) <p has an angular derivative at f. 

(iii) <p' has an angular limit at f, and <JP itself has an angular limit of 
modulus 1 at f. 

Moreover the quantities in (ii) and (iii) coincide when they exist. If (i) 
holds (so in particular <p has an angular limit co of modulus 1 at f ) and if <p 
is normalized so that co = f ; then in addition the quantities in (i), (ii), and 
(iii) coincide. 

Proofs of this result can be found, for example, in section 5.3 of [23], 
and (for the unit ball of C^) in [27] Section 8.5. The heart of the proof is a 
geometric result known as Julia's Lemma, which we will also need in 
the sequel. It is a sort of Schwarz Lemma, but with a boundary point 
playing the role of the origin. For its statement we need some notation. 
If 0 < a < oo and f e W, let 

K(S, a) = {z e U:\S - z\2 < a(\ - \z\2) }. 

A little calculation shows that K(Ç, a) is the disc of radius a/(\ + a) in U 
that is tangent to 8 U at J. 

2.6. JULIA'S LEMMA ([4], page 8, [6]). Suppose J G dU and 
d = d(Ç) < oo. Then for every 0 < a < oo: 

q{K(S, a) ) c K& ad). 

The second part of the Julia-Car atheodory Theorem insures that if <p has 
an angular derivative at f, then it carries any curve in U which ends 
non-tangentially at f into another non-tangential curve ending at <p*(f) 
and making the same angle with 3 U as the original curve. That is, <p must 
be "conformai" at f : it cannot therefore move points near the unit circle in 
the vicinity of f too far from that circle. For example <p cannot map U into 
a polygon with a vertex at J. This is the intuition behind the necessary 
condition for compactness discovered by Shapiro and Taylor: 

2.7. PROPOSITION ([30], Theorem 2.1). Suppose 0 < p < oo. If C^ is 
compact on Hp then the angular derivative of <p exits at no point of 3 U. 

Thus the existence of the angular derivative at even a single point of the 
unit circle is enough to defeat compactness. In Section 5 we will give a 
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different proof of this result in a more general setting. For the most part 
however we will be concerned with its converse. 

We close this section by recording a well known reformulation of the 
definition of compactness for composition operators. Its proof, which we 
omit, follows directly from the fact that bounded subsets of Hp are normal 
families. 

2.8. PROPOSITION ( [29], Theorem 2.5). Necessary and sufficient for the 
compactness of C on Hp is the following: for every sequence (fn) bounded in 
Hp and convergent to zero uniformly on compact subsets of U, the image 
sequence (fn o <p) converges to zero in the Hp metric. 

3. Main results: statements and applications. In this section we 
introduce the weighted Bergman and Dirichlet spaces of functions 
holomorphic in U, state our main results, and derive their major 
consequences. Proofs of the main results (Theorems 3.5 and 3.10) will be 
given in Section 5. The purpose of this section is to show how they extend 
and simplify earlier work, and how they lead to the construction of 
examples which illustrate the different nature of the compactness problem 
for Hp and for Bergman spaces. 

3.1. Notation. Here X will denote normalized Lebesgue area measure on 
U\ and for a > — 1, Xa will denote the finite measure defined on U by 

d\a(z) = (1 - \z\2fd\(z). 

3.2. Bergman and Dirichlet spaces. For a > — 1 and 0 < p < oo the 
weighted Bergman space Ap

a is the collection of functions/holomorphic in 
U for which 

ii/iç,- = S ^dX« < °°-
The weighted Dirichlet space Da(a > — 1) is the collection of / 
holomorphic in U for which the complex derivative/ ' belongs to Aa. It 
is well known that Ap

a is a complete linear metric space for all values of 
p, a Banach space ifp ^ 1, and a Hilbert space if/? = 2. The space Da 

is a Hilbert space in the norm \\-\\D defined by: 

\\f\\la = 1/(0) I2 + Su l/'!2Ar 
For all of these spaces the unit ball is a normal family, and point 
evaluation is continuous. A standard power series computation using 
integration in polar coordinates and the orthonormality of the monomials 
zn in L (dU) shows that a function/(z) = 2 anz

n holomorphic in U 
belongs to A2

a if and only if 

2 ( * + irl-°\an\
2 < oo, 
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and to Da if and only if 

2(« + i ) ' - X I 2 < ^ 
and that the series above define norms equivalent to the original ones. 
Thus we have: 

3.3. PROPOSITION. DX = H2 and if a > —1 then Da+2 = A2
a. In these 

equalities there is also equivalence of norms. If-\<a<\ then Da c H2, 
the injection map being continuous. 

The next result follows upon integrating both sides of the inequality in 
Littlewood's Subordination Theorem (Section 2.2), and making the 
appropriate remarks about automorphisms of U. 

3.4. PROPOSITION. Every composition operator C^ is bounded on Ap
afor all 

0 < p < oo and a > — 1. 

By Propositions 3.3 and 3.4, every composition operator on Da is 
bounded as long as a ^ 1. However for a < 1 this is no longer the case: 
now Da is properly contained in H2, and an obvious necessary condition 
for Cy to be bounded on Da is that <p itself belong to Da (since C^ takes the 
identity map on U to <p). Not all <p's have this property, and even some that 
do fail to induce bounded operators on Da. We will say more about this 
problem at the end of Section 3. Right now we proceed to state our 
principal results. 

3.5. THEOREM. Suppose 0 < p < oo and a > — 1 are given. Then C^ 
is compact on Ap

a if and only if <p has no angular derivative at any point 
ofdU. 

According to this result the compactness of C^ on Ap
a depends neither 

on/7 nor a. In fact the independence of p is an important step in the proof 
of Theorem 3.5: it allows us to concentrate on the case/? = 2 and exploit 
the equation Da+2 = Aa (Proposition 3.3). This phenomenon of indepen­
dence of p was first noted for Hardy spaces in the disc by Shapiro and 
Taylor ( [30], Theorem 6.1) who proved it by classical methods having no 
counterparts in either Ap or the Hardy spaces in special variables. Our 
technique involves Carleson measures (Section 4): it was first introduced 
by MacCluer [20] to get the same result for the Hp spaces of the unit ball 
in C . Thus the surprising aspect of Theorem 3.5 is not so much that 
compactness on Ap

a does not depend on /?, but rather that it does not 
depend on a. 

Theorem 3.5 allows us to construct examples which illustrate the 
differences between the compactness problems for Ap

a and for Hp. Before 
presenting our first one we recall that an inner function is a holomorphic 
function on U with modulus ^ 1 every where on U and radial limit of 
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modulus 1 at almost every point of 3 U. It is well known, and not difficult 
to prove, that no inner function can induce a compact composition 
operator on any Hp space (see Proposition 3.7). This stands in sharp 
contrast with the next result. 

3.6. Example. There exists an inner function <p such that C^ is compact 
on Ap

a for all 0 < p < oo and a > — 1. 

Proof. Our example will be a singular inner function ( [13], page 24) 

f z + ? 
(1) <p(z) = exp Jw-—LdpiS) 

where ji is a positive finite Borel measure on 3[/ that is singular with 
respect to linear Lebesgue measure. A theorem of M. Riesz ( [25]; see also 
[3], Theorem 2, page 117) asserts that such a function q> has an angular 
derivative at the point co e 3 U if and only if 

(2) L Ô < oo. 

Thus, in view of Theorem 3.5, we will be done if we can construct a fi 
which fails inequality (2) at every w G 3(/. 

This is not difficult. Choose positive numbers (fiw) such that 2 /*„ < oo, 
but 2 V/^ = °°- Let (In ) be a sequence of consecutive arcs on 3 U with 
length In = V/V a n d let fw be the center of In. The measure we seek is the 
positive atomic measure 

/i = 2 MA 
where S„ is the unit mass at fM. To see that jit fails property (2) at each 
(o G 3(/we need only observe that each such co belongs to infinitely many 
intervals Ini hence 

for infinitely many «, so the series 

diverges since infinitely many terms are > 1. But this series is just the 
integral on the left-hand side of (2), so the proof is complete. 

As we mentioned previously, C^ will never be compact on Hp when <p is 
an inner function. The above example therefore furnishes a negative 
answer to the question of Shapiro and Taylor about the possibility of a 
converse to Proposition 2.7. What is behind all of this is yet another 
necessary condition for //^-compactness of Cv. This one is due to Schwartz 
( [29], Theorem 3.6). In the interests of completeness we will also sketch 
the proof. Recall that <p*(f) is the radial limit of <p at f G dU. 
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3.7. PROPOSITION. Fix 0 < p < oo. If C^ is compact on Hp then 
lv*(f) I < ^ for almost every Ç Œ dU. 

Proof Suppose C^ is compact, and let E be the set of points 
? e W such that |v*(f) | = 1. Define en <= # ' for « = 1, 2, 3, . . . by 

*„(*) = 2" (z €= £/). 

So | | e j | = 1 and en —> 0 uniformly on compact subsets of [/. By 
Proposition 2.8, C ew = yn tends to zero in the Hp norm. Since this norm 
can be computed on the boundary of U we have (letting m be normalized 
Lebesgue measure on dU): 

m(E) ê fdu W*rdm = \W% -> 0, 
hence m(£') = 0, as desired. 

In view of Example 3.6 and Proposition 3.7 it appears that Shapiro and 
Taylor should have asked if non-existence of the angular derivative and 
radial limits of modulus < 1 a.e. might characterize compactness. It 
would not have helped: this too is false, as shown by the following 
example. 

3.8. Example. There exists <p such that C is non-compact on each Hp 

space, yet such that: 

(i) <p has an angular derivative at no point of 8 £/, and 
(ii) | v*(f) | < 1 for a.e. £ in dU. 

Proof. Let ^0 denote the atomic inner function constructed in example 
3.6. Let a = i//(0), and consider the inner function 

Kz) = (a- * 0 (*)) / ( l " 5*o(*)) (z e U)9 

which takes the origin to itself. We claim that the function <p defined by 

cp(z) = (1 + iK*))/2 (z e U) 

is the desired example. Clearly |«p*(f) | < 1 for almost every f in 3f/, even 
though Ĥ Hoo = 1. To see that C^ is not compact on Hp, write 

<P = x o i// where x(^) = (1 + z)/2. 

Then C^ = C.C (note the order of the factors). As we have commented 
several times, C is not compact on Hp (Proposition 2.7, for example), so it 
takes the unit ball of Hp into a set A whose closure is not compact. But 
since xp is an inner function which fixes the origin, C, is an isometry of Hp 

into itself (see, for example, [24], page 443), so C^(A) does not have 
compact closure either. But C^(A) is the image under C^ of the Hp unit 
ball, hence C^ is not a compact operator on Hp. 

On the other hand, Theorem 3.5 asserts that any <p with no radial limit 
of modulus 1 must induce a compact operator on Bergman spaces: 
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3.9. COROLLARY. Ifq> has no radial limit of modulus 1 then C^ is compact 
on Ap

a for all 0 < p < oo and a > — 1. 

Proof Recall that if <p has an angular derivative at f e 3C/, then 
lv*(f) 1 = 1- Thus the hypothesis of the Corollary asserts that <p has an 
angular derivative at no point of the unit circle; and the result follows 
from Theorem 3.5. 

The above results show that for arbitrary <p the compactness problem for 
Cy on Hp is quite different from that on Bergman spaces. However our 
next result shows that a slight additional restriction on <p causes all these 
differences to disappear. It is here that we encounter for the first time the 
weighted Dirichlet spaces Da defined in Section 3.2. Recall that if a < 1 
then Da is properly contained in H2, and not every qp induces a bounded 
composition operator on such a Da. 

3.10. THEOREM. Suppose the angular derivative of y exists at no point of 
dU. If in addition C^ is bounded on Da for some — 1 < a < 1, then Cv is 
compact on Hp for all 0 < p < oo. 

The change of variable formula for multiple integrals shows that if <p is 
univalent, or just of bounded multiplicity, then C^ is a bounded operator 
on Z>0, the standard unweighted Dirichlet space. So the most natural 
examples <p do satisfy the additional restriction of Theorem 3.10, and for 
them the characterization of ^-compactness of Cv is the same as 
for Bergman spaces. As a result, the main sufficient condition for 
compactness employed by Shapiro and Taylor ( [30], Theorem 2.4) can 
now be replaced by a precise and easily employed geometric criterion. 

3.11. COROLLARY. Suppose £2 is a domain in U whose boundary is a 
Jordan curve which touches the unit circle only at the point 1. Suppose 
that in some neighborhood of 1 the boundary of Q has Cartesian equation 1 
— x = h(y) with h positive and continuous for 0 < | y| < S. Suppose <p 
maps U univalently onto Œ with <p(l) = 1. Then C^ is compact on Hp if and 
only if 

j -8 y~2h(y^dy = °°-
Remark. Here the statement "cp(z) = 1" is not ambiguous, because <p 

extends (uniquely) to a homeomorphism of the closed unit disc onto the 
closure of Î2 (see for example [26], Section 14.19 and 14.20). The corollary 
itself follows immediately from the boundedness of C^ on Z)0, Theorem 
3.10, and the angular derivative criterion of Tsuji ( [32], Theorem IX. 10, 
page 377), translated from the upper half-plane to the unit disc. 

As an illustration of the usefulness of this last result, note that it yields 
all the known results mentioned in Section 2.3. The importance of 
univalent maps <p in the study of composition operators is this: if <p 
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is univalent and C^ compact on Hp (or Ap
a for that matter) then so is C^ 

for any \p holomorphic on U with \p(U) c <p(U). The reason is that 
\p = <p o to where co = <p_1 o \p is holomorphic on U with co(£/) c U. Thus 
C^ = C^Cy where Cw is bounded and C^ compact, hence C^ itself is 
compact. 

The following example shows that there is no corresponding result for 
non-compactness: we can have <p(U) D $(U) W l t n ^ univalent and 
C^ non-compact, yet C^ may be compact; even if \p(z) = z. 

3.12. Example. There exists <p such that <p(£/) = U, yet C^ is compact on 
Hp for all p < oo. 

Proof. Let £2 be an infinite curvilinear strip in the left half-plane whose 
boundaries are asymptotic to the positive j-axis. It is not difficult to 
arrange 2 so that the exponential map takes it onto £/\{0} while covering 
each point of this set no more than a fixed number of times; say twice. Let 
F be a univalent map of U onto fi. Then <p0 = eF is almost the function we 
want: it maps [/onto f/\{0} with multiplicity at most 2, and has no radial 
limit of modulus 1. Thus by Theorem 3.10, the operator C^ is compact 
on Hp. 

We complete the proof by modifying <p0, without destroying the 
compactness of C^ , to include the value 0. Let a e £/\{0} be fixed, and 
set 

VI — az' 

Then \p maps U onto itself with multiplicity two, and 

KU\{0})=U. 

Let <p = xp o <p0. Then <p(U) = U and C^ = C C^ is the product of a 
compact and a bounded operator, so it is compact. 

Theorem 3.10 raises the question of determining when C^ is bounded on 
Da for — 1 < a < 1. The results we have just proved show that this 
problem is not a trivial one. 

3.12. PROPOSITION. There exists a function <p in 

n{Da:a > 1/2} 

for which C^ is bounded on no space Da for a < 1. 

Proof. Our example is the function cp constructed in example 3.6, with 
the weights \in chosen so that 

2 /i" < oo for each a > 1/2. 

Ahern [1] has made a definitive study of the Da classes to which such 
atomic inner functions can belong. Upon translating his Lemma 4.1 and 
Theorem 4.2 (page 333) into our notation we see that the singular inner 
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function <p associated with the atomic measure JU above belongs to Da for 
every a > 1/2. But it cannot belong to Dxn by the main result of [3] and 
by Lemma 4.1 of [1]. So certainly C^ is not bounded on Da for a ^ 1/2. 
The same is true for 1/2 < a < 1, for if not then by Theorem 3.10 the 
operator C^ would be compact on H since <p is constructed to have 
angular derivative at no point of 3 U. But this contradicts the fact that <p is 
an inner function (Proposition 3.7). 

It remains for us to prove Theorems 3.5 and 3.10. This will be the 
subject of the next two sections. 

4. Carleson measures for Ap
a. In this section we study the relationship 

between compact composition operators on Ap
a and a special class of 

measures on the unit disc. Such Carleson measures have already been 
employed in [20] to study compact composition operators on the Hp 

spaces of the unit ball of C^ for TV > 1, and have in addition proven their 
utility in a variety of different situations in complex analysis (see [7], [17], 
[22], and [31] for example). 

4.1. Notation. For 0 < 8 ë 2 and f e dU let 

S($, 8) = {z e U: \z- S\< 8}. 

The Admeasure of the semidisc S(Ç, 8) is easily seen to be comparable with 
8a + (a > —1). This furnishes some motivation for the definitions 
below. 

4.2. Definitions. Suppose /x is a finite positive Borel measure on U, and 
a > — 1. We call \i an a-Carleson measure if 

ML = supMStf, ô))/ôa+2<oo, 
where the supremum is extended over all f G dU and 0 < 5 ^ 2. If in 
addition 

lim sup ju(S(f, S) )/8a+2 = 0, 

then we call fx a compact a-Carleson measure. 

Informally then, JLI is a-Carleson if 

li(S) = 0(\a(S) ) for all S = Stf, 8), 

and compact if " 0 " can be replaced by "o". The next result explains the 
connection between these measures and the spaces Ap

a. 

4.3. THEOREM. Fix 0 < p < oo and a > — 1, and let /x be a finite positive 
Borel measure on U. Then: (a) ii is an a-Carleson measure if and only if 
Ap

a c LP(IL). In this case the identity map 

Ia.A"a -* IfQi) 
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is a bounded linear operator with norm comparable with ||/i||a. 
(b) If ju is an a-Carleson measure then Ia is compact if and only if /xa is 

compact. 

Remarks. Part (a) was proved first for the case a = 0 by Hastings [15], 
and for general a by Stegenga ( [31], Theorem 1.2). A general method for 
proving the "only if" direction has been provided by Luecking [17]. Part 
(b) occurs in the context of Hp spaces in several variables in [20], and it 
has occurred in the work of several authors ( [10], [21], [33] for example) as 
a device for studying compact Toeplitz operators on Bergman spaces in 
both one and several variables. The proof below of part (b) is presented 
more in the interests of completeness than originality. 

Proof of Part (b). Suppose Ia is a compact operator from Ap
a into 

Lp(ix). Fix any / ? > ( « + 2)/p and for each 0 < 8 < 1 and f G 3[/ 
define 

sP-(a + 2)/p 

Uz) = a - (i - 8)Zf 
Then a routine calculation shows that these functions form a bounded 
subset of Ap

a. Clearly they tend to zero uniformly on compact subsets of U 
as 8 —> 0. Reasoning as in the proof of Proposition 3.7 we conclude that 
the compactness of Ia forces 

(1) e(S) = j u \fsfdn -» 0 

as S -> 0. Suppose S = S(Ç, 8) for 0 < S < 1. Then 

If - ( 1 - S)z\ < 25, 

on S, so on that set, 

\fs(z)f> 1/(2&V + 2) 

hence 

M^)/(2^Ôa + 2) S j s \ftfdn â e(S). 

This last inequality and (1) above show that /i is a compact a-Carleson 
measure. 

Suppose conversely that \i is such a measure. We wish to prove that Ia is 
compact. By now — familiar reasoning it is enough to show that each 
bounded sequence (fn) in Ap

a that is convergent to zero uniformly on 
compact subsets of U must be norm-convergent to zero in Lp(p). Fix 
0 < 8 < 1 and let /iô be the restriction of the measure /x to the annulus 
1 — 8 < \z\ < 1. Then it is easy to see that "a-Carleson norm" of [i8 is 

(2) ||M5||a ^ tfsup/i(S«\ 0 ) / ' a + 2 
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where the supremum is extended over all 0 < / < 8 and f e 9f/; and Kis 
a positive constant which depends only on a. 

Since ju, is a compact a-Carleson measure, the right-hand side of (2) 
tends to zero as 8 —> 0. Denoting it by e(S) we have 

X^*-X,<,-al//*+Xl//*« 
^ o(l) + Ke(S)\\fn\la 

as 8 —> 0, where Kis another constant depending only on a and/?. Here the 
estimate of the first term comes from the uniform convergence of (fn) to 
zero on \z\ ^ 1 — §, and the estimate of second from part (a) of the 
present theorem. Since e(8) —> 0 as 8 —» 0, we are done. 

Here is the Carleson measure characterization of the compact 
composition operators on the spaces Ap

a. 

4.4. COROLLARY. Fix 0 < p < oo and a > — 1. Then Cv is a compact 
operator on Ap

a if and only if the measure \a<p is a compact a-Carleson 
measure. 

Proof By the change of variable formula of measure theory (see [14], 
Theorem C, page 163) we have for each fin Ap

a 

(2) ^ |/o „|>A, = f\ffd\a<f-1 

where Xa<p is the measure which assigns mass \a{<p~l(B) } to each Borel 
set B of the unit disc. Recall that each C^ is a bounded operator on 
Ap

a (Proposition 3.4), so by Theorem 4.3 and equation (2) we know that 
Xft<3P-1 is an a-Carleson measure. 

Now let X denote the (usually incomplete) space Ap
a taken in the met­

ric of Lp(ka<p~l). By equation (2) the operator C^ sets as an isometry C^ of 
X into Ap

a. Thus C^ = Cv/a is compact if and only if Ia is. This observation 
and Theorem 4.3 complete the proof. 

We have already commented on the importance of the next result, 
whose proof is an obvious consequence of Corollary 4.4. 

4.5. COROLLARY. Fix a > —\. If Cv is compact on Ap
a for some 

0 < p < oo then it is compact on Ap
afor all such p. 

As we have mentioned previously, this result allows us to concentrate on 
the case/7 = 2, where Proposition 3.3 asserts that everything can be done 
in the context of weighted Dirichlet spaces. 

5. Composition operators on Da. The main result of this section 
(Theorem 5.3) concerns compact composition operators on the Dirichlet 
spaces Da. It yields as a consequence the as yet unproven Theorems 3.5 
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and 3.10 about Hardy and Bergman spaces. We begin with the analogue 
for Dirichlet spaces of Corollary 4.4: the Carleson measure characteriza­
tion of compact composition operators. As always, <P(U) C U. 

5.1. PROPOSITION. Suppose a > — 1 and <p e Da. Let \ia be the measure 
defined on U by 

dK(z) = W(z) \2dXa(z) 

= W'(z)\2(l ~ \z\2fd\{z). 

Then C^ is a bounded {respectively, compact) operator on Da if and only if 
]Uaqp is an a-Carleson {respectively, compact a-Carleson) measure in U. 

Since the proof of this result is entirely similar to that of Corollary 4.4, 
we leave it to the reader; except to note that the new factor \<p'(z) |2 in the 
measure arises from the derivative in the definition of the Da norm and 
the chain rule. 

Although the next result is not required for the proof of Theorem 5.3, it 
does help to illuminate both the hypotheses and the proof of that theorem. 
It is also of independent interest. 

5.2. COMPARISON THEOREM. Suppose - 1 < a < /? and C^ is a bounded 
{respectively: compact) operator on Da. Then the same is true of C^ on Dp. 

Proof. Suppose first that C^ is compact on Da. We may without loss of 
generality assume that CJP(0) = 0, since each conformai automorphism of U 
induces an isomorphic composition operator on Da. By the Schwarz 
Lemma: 

(1) 1 - W{z)\2 ^ 1 - \z\2 {z'mU). 

Now recall the measure jUa of Proposition 5.1. According to that 
Proposition our hypothesis on C^ says that / v p - is a compact a-Carleson 
measure. Thus we have for all f G dU and 0 < 8 ^ 2: 

(2) M a V - ' ( S ( f , « ) ) â e ( 8 ) f i 0 + 2 

where 0 < e{8) —* 0 as 8 —-> 0. Our goal is to prove the same sort of 
inequality with a replaced on both sides by /?. 

Fix S = S{Ç, 8). By inequality (1) we know that 

(3) <p(z) e S =* 1 - \z\ < 8, 

so by the definition of u^: 

P09~\S) = l-l(S) W(z)\\l - \z\2fd\(z) 

= ~̂" L-\s) w^z) |2(1 ~ ̂ "dX^ <by <3> ) 
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^e(8)oP+2 (by (2)). 

Thus jjip<p~] is a compact a-Carleson measure, hence by Proposition 5.2, C^ 
is a compact operator on Dp. 

For boundedness the same proof applies, but now e(8) = constant. 

5.3. MAIN THEOREM. Suppose a > — 1. 
(a) If Cy is a compact operator on Da then <p does not have an angular 

derivative at any point of dU. 

(b) Suppose conversely that the angular derivative of <p fails to exist at each 
point ofdU. If in addition C^ is bounded on D for some — 1 < y < a, then 
Cy is compact on Da. 

Remarks. Since Dx = H , Theorem 3.10 for/? = 2 is just a restatement 
of Theorem 5.3 for the case a = 1. The same is true of Theorem 3.5 once 
we recall that if y ^ 1 then C^ is always bounded on Dy( = Ay_2 if 
y > 1 and H2 if y = 1). The fact that compactness of C^ on Hp or Ap

a does 
not depend on the index/? (Theorem 4.5 and [30], Theorem 6.1) finishes 
the proofs of Theorems 3.5 and 3.10. 

We have already remarked that the case a = 1 of Theorem 5.3(a) has 
occurred in the work of Shapiro and Taylor ([30], Theorem 2.1). For 
a = 2 it is due to D. M. Boyd ( [5], Theorem 3.4). Here we give a different, 
more geometric, proof. 

Proof of theorem, (a) Suppose that <p has an angular derivative at some 
point f G 3[/. We will show that C^ is not compact on Da. By rotating the 
disc if necessary we may assume that <p*(f) = f, so by the second part of 
Theorem 2.5, q/(f) = d with 0 < d < oo. Julia's Lemma (Theorem 2.6) 
now asserts that 

(1) V-\K($, ad)) D Ktf, a) 

for each a > 0, where we recall that K(Ç, a) is the open disc in U of radius 
a/(\ + a) that is tangent to W at f. 

Now suppose 0 < 8 ^ 1 is fixed, and write S = S(Ç, 8). Our goal is to 
show that for some constant c > 0 which does not depend on 8, 

(2) M « » _ , ( S ) â cSa+2. 

This, by Proposition 5.1, will establish the non-compactness of C . 
To this end, fix a triangle A, lying entirely in U except for a vertex at f, 

on which |cp'| > d/2. Such a triangle exists by Theorem 2.5(iii): of course 
its choice does not depend on 8. Let a = 8/(2 — 8) and let K0 = AT(f, a), 
so S 3 AQ. Let ^ = i^(f, a/d) so by (1) above, 
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v \K0) D K. 

Using successively these containments and the lower bound for |<p'| 
on A: 

nvT'cs) â Ma«p_1(̂ o) ^ va(K) ^ va(K n A) 

= ^ / 2 > 2 XnA <! " lzl2)VX(z)-
Now for 2 G A we have 1 — \z\2 ^ c|l — z|, where the constant c depends 
only on the geometry of A. To simplify notation, let c from now on denote 
a positive constant, which may change with each occurrence, but which is 
always independent of 8. The last two inequalities yield: 

(3) pa9-\S) * c fKnii\l -z\ad\(z). 

The integral on the right side of inequality (3) is easily evaluated for 8 
small enough by changing to polar coordinates, say p and 0, with the 
origin at the point f, so now |1 — z\ = p. The resulting calculation, 
the details of which we leave to the reader, shows that this integral is ^ 

^(diameter of K)a+2 ^ c8a+2. 

The last two inequalities yield (2), which completes the proof of 
part (a). 

(b) Suppose now that the hypotheses of part (b) are satisfied. For 
0 < 8 < 2 define 

M*) = sup( * " \Z[ 2:1 - \z\ ^s). 
V 1 — |<p(z) | J 

By Theorem 2.5 (Julia-Caratheodory), the hypothesis of non-existence of 
the angular derivative is equivalent to 

(4) lim h(8) = 0. 

Without loss of generality we may assume that <p(0) = 0: in particular this 
implies h(8) ^ 1 for all 8, and it provides the following refinement of 
inequality (3) which appeared in the proof of the last theorem. Fix 
S = S(Ç7 8) and suppose <p(z) e S. Then by the Schwarz Lemma, as 
before: 

8 ^ 1 - W(z) | ^ 1 - |z|. 

Thus the definition of h{8) implies: 
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(5) 1 - \z\l Ê (1 - |<P(Z) \z)h(8) ^ 28h(8) 

whenever z £ <jp~ (S), so we have 

paV-](S) = / - . ( 5 ) l ^ ) l 2 ( l - \z\2fd\(z) 

â (28h(8) f-" jf_1(S) |„'(z) |2(1 - |z|2)VA(z) (by (5) ) 

= £ ( 5 ) 8 » " ^ - ' ( 5 ) 

where 

€(S) = [2h(8)]a~y ->0 a s S ^ O 

by (4) and the fact that a > y. Now we use the hypothesis that Cv is 
Dy-bounded, so by Proposition 5.1 there exists a constant K independent 
of f and S such that 

Thus 

and since e(8) —> 0 as ô —> 0, fia is therefore a compact a-Carleson measure. 
Thus Cy is compact on Z)a by Proposition 5.1, and the proof is complete. 

We note in closing that the sort of argument used to prove part (a) of 
Theorem 5.3 also yields quite simply an important known result about 
functions <p which induce compact composition operators. 

5.4. THEOREM. If a > — 1 and C^ is compact on Da, then <JP has a fixed 
point in U. 

Proof. Suppose that y has no fixed point in U. Then the "approximate 
fixed point" argument which initiates the proof of the Denjoy-Wolff 
Theorem (see [6], for example) shows that there exists a point f G [/ and a 
sequence (zn) in U such that zn —» f, y{zn) —» f, and 

am -— = a ë 1. 
» 1 - \Z„\ 

Thus Julia's Lemma applies, and as in the proof of Theorem 5.3 (a), the 
measure / v p - 1 is not a compact a-Carleson measure. 

This result was first proved for H (the case a = 1 here) by Caughran 
and Schwartz [8], and by MacCluer [19] for the Hp spaces of the unit ball 
of CN. Both these proofs rely on the full strength of the Denjoy-Wolff 
Theorem: our contribution is to point out that only Julia's Lemma is 
needed. The result itself plays an important role in the description of the 
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spectrum of a compact composition operator. The proof given here works 
as well for the Hardy, Bergman, and Dirichlet spaces of the unit ball: the 
situation which we consider in the next section. 

6. Results in several variables. In this final section we shift the setting 
from the unit disc to the open unit ball BN of C^ when N > 1. Here <p 
denotes a holomorphic map from BN into itself, and the composition 
operator C^ acts on complex valued functions holomorphic on BN. 
Unfortunately C^ need no longer map the Hardy and Bergman spaces of 
BN into themselves: see [19], Section 2; and Corollary 6.9 below. In fact 
Cima and Wogen [11] have constructed holomorphic homeomorphisms of 
BN into itself which induce unbounded composition operators on HP(BN) 
for p < oo. Their examples even extend homeomorphically to the closed 
ball. Thus it is already a major unsolved problem to decide which maps <p 
induce bounded operators on these spaces. 

Initial progress on the boundedness problem has been made by 
MacCluer [20] and Cima, Stanton, and Wogen [9]. MacCluer studies 
mappings q> which take BN into Koranyi approach regions. These are the 
regions 

Da(£) = {z e *„: |1 - <z, £> | < ^(1 - |z|2)} 

in BN, where a > 1 and f (the "vertex") <E dBN. In the function theory of 
BN these regions play the role of the non-tangential approach regions used 
in the study of boundary behavior of holomorphic functions on the unit 
disc (see [27], Chapter 5). In fact the intersection of Da(Ç) with the 
complex line through f is just such a non-tangential approach region; 
however in the complex directions orthogonal to f the region looks like a 
sphere tangent to dB at f ( [27], Section 5.4.1). 

The main result of [20] is that there exists a critical "aperature" a(N) 
such that: (i) C^ is bounded on HP(BN) (0 < p < oo) whenever 

<p(BN) c Da(N)(Ç) for some f; 

(ii) Cy is compact on HP{BN) (0 < p < oo) if 

<P(BN) c Z)fl(f) for some 1 < a < a(N); 

and (iii) these results are sharp in the sense that non-compact C '̂s exist in 
case (i), and if a > a(N) then there exist maps <p such that <p(Z?) c Da(Ç) 
yet Cy is not bounded on any HP(BN) (0 < p < oo). 

Carleson measure arguments play a crucial role in [20], as they do here; 
and they are also employed there to show that boundedness or 
compactness of C^ on HP(BN) does not depend on 0 < p < oo. Cima, 
Stanton, and Wogen [9] prove that C^ is bounded for univalent maps 
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<p with bounded Fréchet derivative and Jacobian bounded away from zero 
in BN. Unfortunately the restriction of boundedness on <p\ just as in the 
case N = 1, does not allow C^ to be compact (see Theorem 6.6 below). In 
the first part of this section we obtain the conclusion of Cima, Stanton, 
and Wogen for the Hardy, Bergman, and certain of the Dirichlet spaces of 
BN under the weaker hypothesis that the inverse of <p have bounded 
Fréchet derivative on <P(BN). For such <p we characterize the compactness 
of Cy as in the case of the unit disc: in terms of the non-existence of the 
"angular derivative". 

The situation for general <p differs markedly however from that in one 
variable. In the second half of this section we present a class of examples 
which show that non-existence of the angular derivative need not imply 
compactness, or even boundedness, for C^ on the weighted Bergman 
spaces Ap

a(BN)\ and certainly not on HP(BN). We show in addition that for 
different values of a these Bergman spaces have different classes of 
compact composition operators, again in contrast with the situation for 
N = 1 (Theorem 3.5). 

6.1. Notation. We follow primarily the notation of [27]. In particular (,) 
denotes the complex inner product on CN, o the rotation-invariant Borel 
probability measure on dB, and v the normalized Lebesgue volume 
measure on BN itself. For a > — 1 write va for the weighted measure 

dva(z) = (1 - \z\2fdv(z) 

on BN. The weighted Bergman space Ap
a(BN) (0 < p < oo, a > — 1) is 

the collection of functions holomorphic on BN which belong to Lp(va). 
For / holomorphic on BN we write V/(z) for the complex gradient 

off at z: 

V/(z) = (Dj(z),...9DNf(z)) 

where D- = d/dzj. The weighted Dirichlet space Da(BN) is the collection 
of functions holomorphic in BN for which VF belongs to A2

a(BN). All of 
these spaces are metrized exactly as in the case N = 1 (Section 3.2); and 
we continue to employ the notation ||-|La for the norm of Ap

a(BN), 
and \\-\\D for that of Da. In the same vein we use the symbol ||-|| to denote 
the norm in both HP(BN) and in If(o) = Lp(dBN). As in the case N = 1, 
the Hardy and Bergman spaces of BN are, for p = 2, special cases of 
Dirichlet spaces. 

6.2. PROPOSITION. Supposef is holomorphic on BN andf = 2 / ^ is the 
expansion of f in a series of holomorphic homogeneous polynomials: f of 
degree s (s = 0, 1, 2, . . . ). Then 

( a ) / G A2
a(BN) if and only if 
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oo 

2 (s+ l)"'"a||/,ll?<cx>, 
4 = 0 

and 

( b ) / e Da(BN) ifand only if 

OO 

2 (s+ o'-TO^oo. 
5 = 0 

In particular, Proposition 3.3 remains true for N > 1. 

6.3. Carleson measures. We note without proof that the Carleson 
measure conditions for boundedness and compactness of C^ on Ap

a and Da 

remain true in several variables, with va in the role of Xa, and now 

S(f,8) = {z Œ BN:\\ - (z ,f>l < ô } 

(see [10] and [17], for example). The corresponding results for HP(BN) 
have been developed by MacCluer [20]. In particular the notions of 
boundedness and compactness for a composition operator C^ on HP(BN) 
or Ap

a(BN) are independent of p < oo. We can now state our main result 
on boundedness. 

6.4. THEOREM. Suppose y'.BN —» BN is univalent, and that the Fréchet 
derivative of<p is bounded on <p(BN). Then for every a > 0 the composition 
operator C^ is bounded on Da(BN). For a > — 1 and 0 < p < oo it is also 
bounded on HP(BN) and Ap

a(BN). 

Proof. By our remarks about Carleson measures we need only prove the 
Bergman and Hardy space results for/? = 2, so in view of Proposition 6.2 
it is only Dirichlet spaces which need to be considered. Because <p is 
univalent we will not have to use Carleson measures to prove the result for 
Da(BN). 

Let cjpr denote the Fréchet derivative of <p. We may without loss of 
generality suppose that <p(0) = 0 since, as in the case TV = 1, the 
biholomorphic mappings of BN onto itself act transitively and induce 
bounded composition operators (see [27], Chapter 2 and Section 5.6.3). 
Thus f o r / e Da(BN): 

(1) HC^Hi, =1/(0) |2 + f W(f-<f)\2dva. 

Just as in the case Af = 1, the linear functional of evaluation at a point of 
BN is continuous on Da, so we need only estimate the integral on the right 
side of equation (1), which we denote by / . By the Chain Rule: 

1 = )BN W W Z ) W(*)l2(l - \z\2fdv(z) 
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- XjV/(<p(z)) |2 | | , /(z) | |2(l - \z\2fdv(z) 

where <p'(z) is the Fréchet derivative of <p at z, operating as a linear 
transformation on C^, and \\<p'(z) || is its Hilbert-Schmidt norm (the square 
root of the sum of the squares of its matrix entries D^Az), where <p, is the 
ix coordinate function of the mapping <p). 

Let J<p(z) be the determinant of <p'(z), i.e., the complex Jacobian of <p. 
Since <p is univalent, J<p is never zero on BN. Write 

(2) Û(z) = \W(z)\\2/\Mz)\2 (z G BN). 

Then by the last inequality on the integral / and the change of variable 
formula: 

i^ jf^aorVDlv/Mfo - w-\w)\2fdv{W) 

- X*„)^ v _ 1 ( w ) ) | v / ( w ) | 2 *« ( w ) 

where the last inequality follows from the Schwarz Lemma for BN ( [27], 
Section 8.1), our hypothesis <p(0) = 0, and the fact that a ^ 0. Thus we 
need only prove that Q is bounded on B. 

It is here that we use the boundedness of (<JP-1). Let w = <p(z) and 
^ = <p_1, so z = *Kw). By the chain rule 

f ( w ) " 1 = g/(z) 

so J\p(w) = \/Jy(z). Thus 
B(z) = | / «w) \2\W(w)-x\\2 (z e BN, w = v (z ) ) . 

Let yl denote the matrix of i//(w) with respect to the standard basis of C^, 
and Atj the (/, y )-cofactor of A. Thus 

SO 

(3) |Q(z)| = Idet^l2!!^"1!!2 

N 

= 2 n/ 
^ JV2(max |a;/.| )

2 < ^ _ 1 ) (1 S i,y S AT) 

= ^2 | |^(w)l |2 ( A ' -1 ) . 

Our hypothesis is that ||;//|| is bounded on <P(BN). Thus £2 is bounded on 
i?^, and our proof is complete. 

Remark. The proof above works, of course under the formally weaker 
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hypothesis that £2 be bounded on BN, and the same will be true of the 
compactness result to follow. It might therefore be of interest to study 
further the significance of the condition that Q be bounded. When N = 2, 
equation (3) shows that it is actually equivalent to the boundedness of 
(<P_1)r, since the cofactor matrix (A ••) is then just a signed rearrangement 
of A. 

For operators of the sort discussed in the theorem above, our next result 
characterizes compactness in terms of the "angular derivative" of <p. We 
say that <p has an angular derivative (perhaps "admissible derivative" 
would be more appropriate) at f G dBN if there exists œ G dBN such that 
the difference quotient 

has a limit as z —> J through every Koranyi approach region Da(f) (i.e., has 
an admissible limit in the language of [27], Chapter 5). As in the case 
N = 1, existence of the angular derivative at J implies that the complex 
derivative of <p in the direction J has a limit as z tends to f in an 
appropriately restricted manner, and there is also a quantitative criterion 
for the existence of the angular derivative. All this is set out in [27], 
Theorem 8.5.6. We state here only the part of this result which is needed 
for the proof of our theorem. 

6.5. LEMMA. Suppose f G dBN. If 

lim 1 - |<p(z) |2 

>? 1 - \z 2 < oo 

where z tends unrestrictedly through BN to f, then the angular derivative of y 
exists at f. 

For the composition operators appearing in Theorem 6.4 we now 
characterize those which are compact. 

6.6. THEOREM. Suppose q> is univalent and <p has bounded derivative on 
<p(BN). Fix a = 0. Then C^ is compact on Da if and only if the angular 
derivative of <p exists at no point ofdBN. The same result holds for HP(BN) 
and Ap

a(BN) for 0 < p < oo and all a > — 1. 

Proof As before, we need only consider Da(BN). Suppose <p has no 
angular derivative on BN. For w G dBN define 

h(w) 
— 2 (W G <p(BN) ) 

1 - M 
0 (w G BN\<p(BN) ). 

Even though this is not quite the function h which occurs in the proof of 
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Theorem 5.3, it will play the same role. Since <p has no angular derivative it 
follows from Lemma 6.5 that h is continuous on BN and that h(w) —> 0 as 
\w\ —> 1 — . Now we proceed exactly as in the proof of Theorem 6.4, but 
we use the definition of h instead of the Schwarz Lemma to compare 
1 - I ? " 1 ! » |2 with 1 - \w\2. The result is: 

\\Cj\\2
Da ^ | /(0) |2 + JBNQ(V-\w))\Vf(w)\2h(w)adpa(w) 

^ | /(0) |2 + HfilL JBN |V/(w) \2h{wfdva{w\ 

for each / e Da(BN). Here Î2 is the function used in the proof of Theorem 
6.4, and HQH^ is its supremum over BN, which is finite by the last part of 
the proof of that theorem. The Schwarz Lemma insures that h is also 
bounded on BN (we may, as before, assume <p(0) = 0), and so h e C0(B). 
An easy estimate now shows that if ( / ) is a sequence of functions in the 
unit ball of Da(BN) which converges to zero uniformly on compact subsets 
of BN, then 

ii<yiiDa-»o. 

Thus Cy is compact on Da(BN) by the analogue for that space of 
Proposition 2.8. 

The converse is in fact more general: for any map <p, existence of the 
angular derivative at just one point of dB insures that C^ is not compact on 
Da(BN). This was essentially proved for HP(BN) by MacCluer ( [19], 
Lemma 1.6 and Theorem 1.7), and that proof can be made to work in the 
Dirichlet setting. Alternatively the Carleson measure argument employed 
to get the corresponding part of Theorem 5.3 works in the present 
situation with no essential changes, since an appropriate generalization of 
Julia's Lemma (Section 2.6) is available in higher dimensions (see [27], 
Theorem 8.5.3). We leave the details to the reader. 

6.7. Complications in higher dimensions. We close this paper by showing 
that Theorems 6.4 and 6.6 do not hold for general holomorphic self-maps 
of BN. Our counter-examples also show that for different values of a the 
Bergman spaces Ap

a(BN) have different classes of compact composition 
operators, in sharp contrast with the situation in the unit disc (Theorem 
3.5). 

The operators we are going to produce are constructed from the 
holomorphic monomial 

TT(Z) = NN/2ZXZ2 ...ZN 

where z = (zh . . . , zN) e C . The Arithmetic-Geometric Mean 
Inequality shows that 77 maps B onto U and B onto £/, with 7r~\dU) the 
torus 
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|z,| =...= \z„\ =N~U2 

in dBN. The properties of this monomial, viewed as a mapping of BN onto 
U were studied by Ahem [2], who used it to transfer the bad boundary 
behavior of functions in the Bergman spaces of U to members of HP(BN) 
near the above-mentioned torus in dBN. 

For 0 < ft < 1 define the conformai map \pp of U into itself by 

jPf/iw) = 1 - (1 - wf (w e U). 

It is easy to check that \pp(U) is a non-tangential region in [/with vertex at 
the point 1, whose boundary curves make an angle IT ft/2 at 1 with the unit 
interval. 

The composition operators we consider here are the ones induced by the 
holomorphic maps 

Vp:BN ~^ BN 

defined by 

<^(z) = (^(77(Z)),0') 

where 0' denotes the origin of C ^ - 1 . Clearly <pp does not have an angular 
derivative at the point (1, 0') of dBN, and since this is the only boundary 
point at which <pa has length 1, it follows that «p̂  has an angular derivative 
at no boundary point of BN. Our main result about composition operators 
induced by the maps œg is stated in terms of the critical index 

(jB - l-)(N + 1) - 1 

a0 = a0(N, P) = — — . 

Note that a0 may be ^ — 1 for small values of 0 < /? < 1. What is 
important for our purposes is that this does not happen for 

(N + l)/2N < 13 < 1. 

6.8. THEOREM. For N > 1, 0 < B < 1, and 0 < p < oo: C is bounded 
on Ap

a(BN) if and only if a ~ a0. It is compact if and only if a > a0. 

Since for N > 1 the index aQ(N, /?) covers the interval (— 1, oo) as (1 
ranges from (N + \)/2N to 1, this theorem yields immediately: 

6.9. COROLLARY. Suppose N > 1, 0 < p < oo and a > — 1. Then there 
exists a map <p with no angular derivative at any point ofdBN such that C^ is 
bounded on Ap

a(BN) but not compact. There also exists such a ^for which C^ 
is not bounded on Ap

a(BN). Moreover, for different values of a the spaces 
Ap

a(BN) have different classes of compact composition operators. 

The proof of Theorem 6.8 is a calculation involving Carleson measures. 
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We have already defined the TV-dimensional "Carleson regions" S(Ç, 8) in 
Section 6.3. In the unit ball the notions of "a-Carleson measure" and 
"compact a-Carleson measure" are the same as those for the disc 
(definition 4.2), except that 5 a + 2 is replaced by 8a+N+l on the right side 
of the inequality in those definitions. The reason for this is: 

6.10. LEMMA. va(S($, 8) ) - 8a+N+] for a > - 1 . 

The notation here means that there exists 0 < K = K(a) < oo such 
that 

K~l8a+N+l ^ pa(S($, 8)) ^ K8a+N+l 

for all 0 < 8 ^ 2. Note that va(S(Ç, 8) ) does not depend on J e dBN since 
va is rotation-invariant. In the sequel we will use the " ~ " notation to 
describe a variety of situations involving functions and measures, leaving 
it to the reader to supply the exact meaning. 

Proof of lemma. For f e dBN and 0 < 8 ^ 2 let 

Q(L8) = {ri G WN:\\ - (S,v)\<S) 

and 

M, ô) = {z G BN:\ - \z\ < 8/2 and z/\z\ G Q(l 8) }. 

Then 

S(f, 8/2) c /(f , 5) c S(f, 38/2) 

so it is enough to consider instead the regions,/^, ô). The result now 
follows immediately from the formula for integration over BN in polar 
coordinates ( [27], Section 1.4.3), and the fact that 

([27], Proposition 5.1.4). 

We will prove Theorem 6.8 by analyzing the "Carleson" nature of the 
measure vaq)~p , that is, by estimating the quantity 

as f ranges through dBN and 8 through (0, 2]. In order to do this we need 
two more preliminary results. The first one, due to Ahern ( [2], Theorem 
1), identifies the measure om~ on U (recall that the monomial TT(Z) 
defined in Section 6.7 maps B onto U). 

6.11. PROPOSITION. OTT~X — \N-2>)/ifor N > 1. 

We are going to use this result of Ahern to estimate l y r - . This will 
require the following. 
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6.12. LEMMA. Suppose a, y > — 1. If f is continuous on the closed unit 
interval, then 

= £ ( « + 1 , 7 + \) j\f(t)(\ - t)a+y+'dt, 

where B (,) is the beta function. 

Proof. Write the integral on the left as an iterated integral with the 
^-integration done first. In this inner integral make the substitution 
t = xy, interchange the order of integration, and in the new inner integral 
introduce the new variable of integration s defined by 1 — y = (1 — t)s. 
The result then follows immediately. 

6.12. Proof of Theorem 6.8. By our previous remarks on the relationship 
between Carleson measures and composition operators, the theorem is 
equivalent to the estimate 

(4) va<pj;\S&8))~8y 

where y - (a + (TV + 3)/2)/0. 
Since <P(BN) lies in a Koranyi approach region with vertex at ev it 

follows from Lemma 2.1 of [20] that we need only consider f = ex in (4). 
Now 

^ W „ 8 ) ) = "~V(S,(1,8)) 
= 9 T - 1 ( S 1 ( 1 , « / * ) ) 

where Sx(\, 8) is the intersection of U and the open disc of radius 8 
centered at 1 ( = 5(1, 8) in the notation of Sections 4 and 5). Thus 

(5) vaVp\S(ei, «)) = v r - ' W l , Ô1//?)). 

We are going to show that 

(6) va7T-] ~ K + (N-\)/2 on [z e B:\/2 ^ \z\ < 1}, 

which, in view of equation (5) will yield (4) for 0 < 8 < 1/2 which will, of 
course, be enough for our purposes. 

To prove (6) let g be a continuous function on the closed unit ball which 
vanishes on the closed ball 

{z G B: \z\ ^ 1/2}. 

This will allow us to freely alter powers of r in the calculation below at the 
expense of changing equal signs to " ~ " . Letting the index y of Lemma 
6.12 be (TV - 3)/2: 
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fBNg(ir(z))(\ - \z\2fdv(z) 

~ I l f u g ( r w ) ( l - IH)Y^A(W)(1 - r)<Vr 
(by Proposition 6.11) 

~ / ô " { /ô J[s{rpée){\ - p)\\ - rfp^dpdrjddiw = pé%. 

Now we can apply Lemma 6.11 to the integral in braces to obtain: 

jB g o *dva ~ J]" f\ g(tel6)(l - tT^xdtdO 

~ Jugd\a+y+{. 

The constants hidden in the notation above to not depend on the function 
g, so the estimate (6) holds, and the proof is complete. 

7. Additional remarks. Regarding Example 3.6, Kenneth Stephenson 
{Isometries of the Nevanlinna Class, Indiana Univ. Math. J. 26 (1977), 
307-324, Lemma 5.9) has given essentially the same construction of an 
atomic singular inner function for which the angular derivative exists at no 
point of the unit circle. 

For more information on concepts related to the notion of Carleson 
measure, see Daniel Luecking's paper. Forward and reverse Carleson 
inequalities for functions in Bergman spaces and their derivatives, American 
J. Math 107 (1985), 85-111. 
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