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Abstract

It has been conjectured that for any union-closed set &/ there exists some element which is contained in
at least half the sets in &7 It is shown that this conjecture is true if the number of sets in 2 is less than
25. Several conditions on a counterexample are also obtained,
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1. Introduction

A union-closed set & is defined as a non-empty finite collection of distinct, non-empty
finite sets, closed under union (that is, if S € @ and T € & then SUT € &).
The following conjecture is rephrased from [1].

CONJECTURE. Let & = {A|, A,, ..., A,} be a union-closed set. Then there exists
an element which belongs to at least [ 5] of the sets in &, where
[n _l ~ % if niseven
21~ 1
2 & er if n is odd.

In this paper we generalize results due to Sarvate and Renaud and to Norton and
Sarvate. In particular we establish some inequalities involving the A;’s and n which
must hold for any counterexample and prove that the conjecture is valid when n < 24.
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2. Preliminaries and notations

We denote the union-closed set & = {A,, A,, ..., A,} by &/(n). Assume, for
convenience, that |[A;| = w;, w; Sw, <--- <w,=¢q,and A, =1, ={1,2,...,q}.

The support size of an &7 (n) is defined to be the number ¢ = w,. Let A(n, q)
denote the set of possible & (n) with support size g. Theorems 2 and 3 in [4] show
that the conjecture holds when &/ (n) € A(n, ¢), g < 6.

Let & (n) € A(n, q) andlet x € I,. Define &/, (n) to be the set of A; in &7 (n) which
contain x and let |/, (n)| = d(x). Assume ¥, (n) to be the set of A; in &/ (n) not
containing x and let C, = U{A; : A; € ¥, (n)}. Set & = {A;, — {x}: A, € ' (n)};
it is clear that & is a union-closed set with support size g — 1.

3. Restrictions on the set sizes

Theorem 2 in [5] shows that the conjecture holds whenever w; + w, > ¢. This can
be improved by the following result:

THEOREM 1. The conjecture holds whenever
@) w3+ wep >4, if nis odd,
(ii) Ws + Wagt > ¢, if n is even.
PROOF. (i) Suppose d(x) < (n — 1)/2 for all x € I,. This implies that

n—1
2

wyt+w,+ s+ W +g < q

and so

wi+ wy + (w3 + weg) + (Ws + wags) + -+ -+ (Wenr + w,) <
n-3

n—3
Sw1+w2+T(w3+w#)§—2—q,

hence w; + wass < g, a contradiction.
(ii) Theorem 1 in [4] shows the validity of the conjecture for odd n leads to its
validity for n + 1, then the proof is similar to the previous case.

4. Smallest counterexample

Let nq be the minimum value of 7 taken over all the counterexamples to the union-
closed conjecture. By Theorem 1 of [4], assume ng = 2t + 1. Let & (ny) € A(nog, qp)
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be a counterexample to the conjecture with minimal support size q,. We have the

following:
THEOREM 2.
i) | & | < |2 (no)l foreachx € I,.
(ii) & (ng) # &, (ng) foreachx,y € I,,,x #y.

PROOF. (i) Suppose & € &, (1o, go — 1) for some xo € I,,. By the minimality
of g, there exists an element z in (¢ + 1) sets of .Q/:O, hence in (¢ + 1) sets of & (ny),
a contradiction.

(ii) It is enough to consider that o7, (no) = &,(no) implies || = |&]| =
| (no)|.

THEOREM 3. For any x € I, there exists A; € & (no) such that A; € & (ny) and
Ai - {X} € (fx(nO)'

PROOF. Suppose, on the contrary, there is xo € I,, such that A; — {x,} ¢ &/ (n,) for
every A; containing x, in &/ (ng). This implies |-d:0| = |7 (ny)| contradicting (i) of
Theorem 2.

COROLLARY 1. Forany x € I, C, U {x} € & (ny).

PROOF. Let A; € &, (ng) such that A; — {x} € ¥,(ny). Then A, — {x} € C, and
Cx U Ai = Cx U {X} € .!2{(71()).

THEOREM 4. If x, y € I, then d(x) < d(y) implies y € C..

PROOF. Suppose, on the contrary, y ¢ C,. For every A; € & ,(n) it follows that
x € A; (otherwise y € A; € C,), hence d(x) = d(y) and then &, (ng) = &, (ny),
contradicting (ii) of Theorem 2.

COROLLARY 2. Ifd(x) =Min{d(y) : y € I,,} then C, = I, — {x}.

PROOF. Immediate from the theorem.

Letx,y € I,. By Theorem 4, x € C, or y € C, and so we have the following.

COROLLARY 3. C, # C,, forevery x,y € I,.

PROOF. Assume d(x) <d(y),theny e C,and y ¢ C,.
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THEOREM 5. ny > 2qo + 1.

PROOF. In [2], Theorem 2.1, it is proved that, in any counterexample &/ =
{A1, Ay, ..., A,} to the conjecture with » minimal, there are at least three dis-
tinct elements, each of which appears in exactly (n — 1)/2 of the A;’s. Assume
d(qo) = (ng — 1)/2. By Theorem 3 ¢, € C;, foreveryi = 1,2,...,(go — 1), and
qo € I, = A,,. It follows that go < (1o — 1)/2. This completes the proof.

THEOREM 6. There are at least three distinct elements xy, X,, X3 € I, such that

Co=1I,—{x}i=1223

PROOF. Letd(x;) = min{d(x) : x € I, }. Corollary 2 implies that C,, = I,, —{x,}.
It is easy to see that there exists an A; € &/, (no) such that A; # I,,. Let A; =
Iy —{y,y2....,y) thenx, € A; € Cy, C I, —{y}. Uy, = I, —{y} we put
X, = y, otherwise C,, = I, — {y1,21,22,..., 2z} and so x; € A; € C, U{y} C
C,,. Obviously, continuing this process, we find an x, € I, (x # x;) such that
C,, = I, — {x2}. Let A;,» be a set of minimal cardinality containing x; (( = 1, 2).
Certainly A, U A, # I, (otherwise, since & = {A,, A, ..., Ay} — (A, Al }is
union-closed, there would exist an element z in at least ¢ sets of #(n, — 2) and hence
in at least (¢ + 1) sets of &7 (ng)). Arguing as above we can easily complete the proof.

Let d(1) = min{d(x) : x € I} and let # = & (no) — &/ ,(ny). Obviously & is a
union-closed set. Foreachz € I,,,put |{B € #:z € B}| =d*(z). Letx; = 1, x5, x3
be as in Theorem 6. We have the following.

THEOREM 7. d(1) > 5.

PROOF. Obviously d(1) > 3. Suppose d(1) = 4. By Theorem 6, we have
& (no) = {I, I, — {x2}, I, — {x3}, B;} and so there exists a z € [, — {1} with
d*(z) > (ny — 3)/2, hence d(z) = (ny + 1)/2, a contradiction.

THEOREM 8. C,, D I, — {x3, x4}, for some x4 € 1, x4 ¢ {x1, X2, x3}.

PROOF. Case (1) Either A, U A,, C I,, — {x3} or A, U A,, C I, — {x;} for
some A, € &, (no), i = 1,2,3. Without loss of generality, we may suppose that
A, UA,, C I, — {x3}. Proceeding as in Theorem 6, we getthat A, U A,, € C,, and
Cy, 2 Iy — {x3, x4}.

Case (2) Note that A, U A,, 2 I,, — {x3} and A,, U A,, 2 I, — {x,} for all
A, € &, (no), i = 1,2,3. We prove that Case (2) is not possible. Let A;l be a set of
minimal cardinality containing x;, i = 1,2, 3. For j = 2, 3, let z; be an element of
1,, which belongs to at least (no — 1)/2 of the sets in & (np) — {A, A;j}. It is easy
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to see that z, = x3 and z; = x; and so d(x;) = d(x;3) = (ny — 1)/2. By Theorem
7 there exists x; ¢ {x;, X2, X3} such that x4 ¢ A;I. Since A;] UA,, 2 I — {x;} for

each A,, € &,,(ny), it follows that &, (ny) S &7,,(ny), hence & ,,(ny) = &, (no)
contradicting Theorem 2.

Let I,, = {1,2,...,q0} withd(1) < d(2) < --- < d(qy). By Theorem 4 and
Corollary 3, it follows that |C;| € {wy, wa, ..., Wy}, |Cs| = go—s and w,,—; > go—5,
foreach s € I,,. Theorems 6 and 8 say that w,,_4 > o — 2, Wy,—3 = Wpy—2 = Wny—) =
go — 1 and so, by a similar argument to that used in Theorem 1, we can prove the
following.

COROLLARY 4. w;o + Wz < go.
PROOF. Note that

wy w2+ W+ Wae—s + (g0—7) + (g0—6) + (g0—5) +

n
+ (g0—2) +3(qo—1) + go < ———qo.
Then 17 17

n02 (w10+wm2£)—235 o

(wy + -+ wy) + 9o,

hence wip + Wp+3)2 < Go.

THEOREM 9. d(1) > 9.

PROOF. By Theorem 7, we need to consider the following cases.

Case d(1) = 5. Let &(no) = {I,, I, — {x2}, I, — {x3}, By, By}, with I
{x3, x4} € By € I, — {x4}, and let z € I, — {1} such that d*(z) = (ny — 5)/2.
Necessarily, By = I, — {x3, X4}, z = x3, x3 ¢ B, and d(x3) = (no — 1)/2. Since
x4 € (Igg—{x3, x4))UA,,, foreach A,, € &, (ny), it follows that &7, (no) € &,,(n,),
hence & ,,(ny) = &,,(n), contradicting Theorem 2.

Case d(1) = 6. Similar to the previous case.

Case d(1) = 7. Let & (no) = {1, I,, — {x2}, 1,, — {x3}, By, By, B3, Bs} with
I, — {x3,x4} € By € I, — {x4} and let z € I,; — {1} such that d*(z) = (no — 7)/2.
Necessarily z € {x,, x3, x4}.

Suppose By = I, — {x4}, thenz ¢ B, U B; U B,. We can assume z = x,. If there
exists B; (i = 2,3,4)suchthaty ¢ B; U {x,, x3, x4}, then B; U A,, D [,, — {x3} or
B;UA,, 21, — {x;}andso y € A,,, hence & ,(no) = & ,,(no), a contradiction.

If B, D 1,) — {x3, x3, x4}, foreach i = 2, 3, 4, then

&\ (no) = {1, Ipy — {x2}, Iy — {3}, Iy — {xa},

Iqo - {x25 x3}’ Iqo - {x2v X4}, Iqo - {x29 X3, x4}}'
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Let A;z be a set of minimal cardinality containing x,. Obviously & = &/ (no) —
{1 (ng) U {A'Xz} is a union-closed set and so there exists an r in (ny — 7)/2 sets of &,
a contradiction.

Suppose B, = I, — {x3, x4} and, obviously, I, — {x;} ¢ & (no).

Let z = x,. Necessarily x, ¢ B, U B; U By, d(x;) = (ny — 1)/2 and there exists a
B; (i =2,3,4)suchthat y ¢ B; U {x;, x3, x4}, otherwise

'Q{l(nO):{Iquqo_ {XZ}’]qo_ {x:;}, Iqo_ {x31x4}7 Iqo_ {X2,X3},Iqo“' {x2’x4}y Iqo— {X2,X3,X4}}.

and so (I, — {x2, x4}) U (Ig, — {x3, x4}) = I,y — {xs} ¢ &1(ny). We again obtain
&, (ng) = & ,,(no), which is a contradiction.

Let z = x4. This is similar to the case z = x,.

Let z = x3. Necessarily d(x3) > (no ~ 3)/2. Since I, — {x3, x4} U A3 = I,
it follows that &,, C &,,. If d(x3) = (ng — 1)/2 then & ,,(ny) = &,,(ng), a
contradiction. If d(x3) = (no — 3)/2 then d(x4) = (no — 1)/2 and I, — {x3} is the
only set of & (n,) containing x, but not x; and so Id; (no)l = no— 1. Letr € I,
such that r is contained in (no — 1) /2 sets of & :3 (no). Obviously r € I,) — {x3}, hence
d(r) = (ng + 1)/2, a contradiction.
Case d(1) = 8. Similar to the previous case.

Letd, = |{x € I,, : d(x) = r}|. Obviously > d, = go. For each element x;
counted in dy we have C,, containing I, — {x;} by Theorem 4, hence |C,,| = g, — 1.
For each x; contained in d;, we have C,, containing all elements x; such thatd(x;) = 10
except x; itself, hence |C,,| > g9 — dy — 1. Counting in this way, Theorem 2 of [4]
and Theorem 9 lead to this inequality:

Go+do(qo — 1) +dio(go — 1 —do) +di1(go — 1 —dy —dyo) + -+

+dui(qo—1—dy—dio—-+- —duz)+3ng—qo— 1) <
np—1
< 9dy + 10d;o + - -+ + —>—dn1,
and then
ngp—1
@) g5 —3g0+ 300 — 1) = Y did; < 9do + 10dyg + -+ + ——dugr.

THEOREM 10. ny > 25.
PROOF. Theorem 4 in [5] shows that ny > 19.

For ny = 19, (*) leads to g2 — 12¢ + 54 < 0 which never holds.
For ny = 21, (*) gives g5 — (13 + ds)qo + (dg + ds + 60) < 0 which never holds.
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For ny = 23, (*) gives:
g5 — (14 + do + dio)qo + (dy + diy + dodyg + 2dy + dyg + 66) < 0

which never holds.
This completes the proof of the theorem.
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