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Abstract

Analysis of solar magnetic fields using observations as well as theoretical interpretations of the scattering polarisation
is commonly designated as a high priority area of the solar research. The interpretation of the observed polarisation
raises a serious theoretical challenge to the researchers involved in this field. In fact, realistic interpretations need detailed
investigations of the depolarising collisions.

The goal of this paper is to determine new relationships which allow the calculation of any collisional rates of the
d-levels of ions by simply determining the value of n∗ and Ep without the need of determining treating the collisional
problem.

In this work, we applied our collisional code to a large number of cases involving complex and simple ions. After that,
the results are injected in a genetic programming code in order to infer original relationships which will be of great help
to solar applications. We discussed the accuracy of our collisional rates in the cases of complex atoms and atoms with
hyperfine structure.

We compared the results obtained through the new relationships with the results obtained directly by running our code
of collisions. The percentage of error is about 10% in the average value.

Keywords: line: formation, polarization – Sun: atmosphere – Sun: magnetic fields

1 INTRODUCTION

The second solar spectrum (SSS) is the spectrum of the scat-
tering linear polarisation observed close to the limb of the
quiet Sun where the anisotropy of the radiation is maximum.
The SSS is depolarised by turbulent solar magnetic fields
via the Hanle effect and by isotropic collisions with neu-
tral hydrogen. The Hanle depolarisation allows diagnostics
of the magnetic fields by confronting the discrepancy be-
tween the polarisation modelled in the absence of magnetic
fields and the observed polarisation (e.g. Stenflo 1982; Landi
Degl’Innocenti 1983; Sahal-Bréchot, Malinovsky, & Bom-
mier 1986; Stenflo 2004; Trujillo Bueno, Shchukina, & Asen-
sio Ramos 2004; Derouich et al. 2006; Faurobert et al. 2009).

The study of the widths, shifts, and (de)polarisation of
spectral lines under the influence of collisions with neutral
perturbers has already been the subject of numerous stud-
ies (e.g. Lemaire, Chotin, & Rostas 1985; Baird, Eckart, &
Sanderman 1979; Monteiro et al. 1988; Chambaud & Lévy
1989; Anstee & O’Mara 1991; Spielfiedel et al. 1991; Krsl-
janin & Peach 1993; Leininger, Gadéa, & Dickinson 2000;

Derouich et al. 2003b; Derouich, Radi, & Barklem 2015,
see also Barklem 2016 and references therein). In addition,
Anstee, Barklem and O’Mara (ABO) developed a powerful
semi-classical theory during the 1990s for collisional line
broadening by neutral hydrogen (Anstee & O’Mara 1991,
1995; Anstee 1992; Anstee, O’Mara, & Ross 1997; Barklem
1998; Barklem & O’Mara 1997; Barklem, Anstee, & O’Mara
1998). The ABO theory has been generalised successfully
by Derouich, Sahal-Bréchot, and Barklem (DSB) to obtain
the depolarisation and polarisation transfer rates by colli-
sions with neutral hydrogen (see, for example, Derouich et al.
2003b and Derouich 2004).

In this context, we developed an original collisional code
which enables us to provide a large amount of the collisional
depolarisation and polarisation transfer rates (e.g. Derouich
et al. 2015, Derouich et al. 2003b). As done in most semi-
classical collisional approaches, the approximation of the rec-
tilinear trajectories is adopted in the collisional method of this
work. This approximation was validated by several works
(see, for example, Smith, Vidal, & Cooper 1969; Allard &
Kielkopf 1982). Furthermore, we assume that the impact
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2 Derouich et al.

approximation is valid where we consider only the binary
collisions which are well separated and uncorrelated. This
approximation is well satisfied in the solar conditions (see,
e.g., Derouich et al. 2003b and Derouich 2004).

The DSB and ABO theories allowed us to obtain
widespread collisional data for neutral atoms (Derouich et al.
2015). Therefore, depolarisation and polarisation transfer
rates can be determined from general relationships without
the requirement to utilise the collisional numerical code level
by level. Unfortunately, this is not possible to do for ionised
atoms where one must proceed level by level. Thus, any calcu-
lation of the depolarisation and transfer of polarisation rates
is limited to a given level of a given ionised atom.

Recently, Derouich (2017) removed this limitation in the
case of p-levels of ions. In this paper, we intend to extend the
results of Derouich (2017) to the case of d-states.

The paper is organised as follows. Section 2 states the prob-
lem to be treated. In Section 3, we describe the numerical
work and provide the general relationships for the d-states
of simple ions. Atoms with hyperfine structure and complex
atoms are presented in Sections 4 and 5. Finally, the conclu-
sions of the paper are presented in Section 6.

2 STATEMENT OF THE PROBLEM

For neutral atoms, the Unsöld energy Ep has a constant value
Ep = −4/9 a.u. (see, e.g., Anstee 1992, Barklem & O’Mara
1998; Derouich et al. 2003b). The constant Ep = −4/9 a.u. is
used in the expression of the interaction potential which, in
turn, is used to calculate the collisional rates for any level on
any atom. On the other hand, for ionised atoms, the Unsöld
energy is not constant and one has to determine the value
of Ep for each case (Derouich, Sahal-Bréchot, & Barklem
2004). After that the code of collisions should be run to get
the collisional rates level by level. This is a strong restriction
which hinders the generalisation of the DSB results published
in Derouich et al. (2004). That restriction has been removed
for the p-states of ions in the recent paper of Derouich (2017).
The model presented in Derouich (2017) is extended here to
d (l = 2) ionic levels.

We can summarise the calculations of the collisional de-
polarisation rates for the levels of ionised atoms in two main
stages. In the first stage, one calculates the value of Ep for the
ionic state under study. This calculation requires summation
over values of the dipole oscillator strengths of all transitions
to the level of interest for the perturbed ion and to the ground
state for the neutral hydrogen atom (see Derouich et al. 2004
and references therein). Then, in the second stage, the cal-
culated value of Ep is injected in the code of collisions to
determine the interaction potential. Once the interaction po-
tential is obtained, it is introduced in the formalism treating
the dynamics of collisions in order to calculate the probabil-
ities of collisions on the tensorial basis [see equation (10) of
Derouich, Sahal-Bréchot, & Barklem (2003a)]. Depolarisa-
tion rates are obtained after integrating the probabilities of
collisions, firstly over the impact-parameter b and secondly

over a Maxwell distribution of velocities f (v ), for a local
temperature T of the solar atmosphere.

In practise, solar physicists can obtain the value of Ep

(stage 1) but it is difficult for them to determine the interac-
tion potential and treat the dynamics of collisions in order to
obtain the collisional depolarisation rates (stage 2). Our prob-
lem can be stated as how to use powerful numerical methods
in order to overcome the difficulty raised in the stage 2. The
essential contribution of this paper is to allow solar commu-
nity to compute easily the collisional rates for the d-states of
any ion by completing only stage 1.

3 GENERAL RELATIONSHIPS FOR d-STATES
OF SIMPLE IONS

3.1 Definitions and notations

Polarisation of atomic levels quantifies the population dif-
ferences and the interferences between the magnetic sub-
levels. The values of the polarisation of J-levels are typically
presented by the values of the elements Jρk

q of the density
matrix—the index k gives the tensorial order inside the level
where 0 ≤ k ≤ 2J and q concerns the interferences between
the sublevels, −k ≤ q ≤ +k.

The tensorial order and thus the polarisation of atomic
levels can be generated by anisotropic illumination. Conse-
quently, one receives polarised light emitted by ions contain-
ing these levels. To obtain theoretically the Stokes parameters
characterising the radiation (I , Q, U , and V ), one needs to
solve the radiative transfer problem coupled to the statistical
equilibrium equations (SEE) for the elements Jρk

q (see, e.g.,
Landi Degl’Innocenti & Landolfi 2004). The elements Jρk

q
at each point of the LOS are the unknowns of the problem.
To obtain these elements precisely, one must solve the SSE
and take into account all relevant processes intervening in
the time of the polarised line formation. These processes are
mainly the collisional interactions, magnetic fields effects,
and radiative transfer effects.

As it is showed in equation (1) of Derouich et al. (2004),
the variation of ρk

q (J ) due to isotropic collisions is

[d ρk
q ( J )

dt

]
coll

= −
[ ∑

J ′ �=J

ζ (J → J ′) + Dk (J )
]

× ρk
q (J )

+
∑
J ′ �=J

Ck (J ′ → J ) × ρk
q (J ′), (1)

where ζ (J → J ′) are the fine structure transfer rates given by
[equation (2) of Derouich et al. (2003a)]

ζ (J → J ′) =
√

2J ′ + 1

2J + 1
× C0(J → J ′). (2)

In the absence of the polarisation, k = 0 and q = 0 and us-
ing the general density matrix formalism one shows that the
unknowns of the problem become ρ0

0 (αJ ) which are simply
proportional to the populations of the levels as in spectro-
scopic studies (e.g., Asplund 2005).
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In the solar photosphere where the SSS is originated, the
isotropic collisions with neutral hydrogen dominate any other
kind of collisions. These collisions occur inside the same
electronic ionic level. The depolarisation and polarisation
transfer rates are q-independent because the collisions are
isotropic (e.g., Sahal-Bréchot 1977; Derouich et al. 2003b).

We denote the depolarisation rates due to purely elastic
collisions occurring in only one J-level by Dk (J ); the expres-
sion of Dk is given by equations (7) and (9) of Derouich et al.
(2003b). The Ck (J → J ′) indicate the polarisation transfer
rates due to collisions between the initial level (J ) and the
final level (J ′) (see Equation (3) of Derouich et al. 2003a).

Our results are concentrated on the d-states with orbital
momentum l=2. The spin of the optical electron is s=1/2.
The total angular momentum is J = l+s and thus one has
J=3/2 or J=5/2. As a result, there are two fine structure
states 2DJ= 3

2
and 2DJ= 5

2
.

Throughout this paper, all the collisional rates are given in
s−1. In the framework of the impact approximation, the rates
are proportional to the neutral hydrogen density in cm−3 de-
noted by nH and they depend on the temperature T given
in Kelvins. We showed in our previous works that the colli-
sional rates can be expressed as (e.g., Derouich et al. 2003a;
Derouich et al. 2004)

Dk (J, T ) = Dk (J, T = 5 000K) ×
(

T

5 000

) 1−λ
2

(3)

Ck (J → J ′, T ) = Ck (J → J ′, T = 5 000K) ×
(

T

5 000

) 1−λ
2

,

(4)

where T = 5 000K and λ is the so-called velocity exponent.
Both DSB and ABO found that collisional rates have typical
temperature dependence of T 0.38 which means that λ � 0.25.

3.2 Numerical results

The numerical code of collisions is updated in order to make it
useful for calculations of large number of collisional rates of
ionic d-states. Using this code, collisional rates are obtained
at T = 5 000 K for effective principal quantum number n∗

in the interval [2.5, 4]. Furthermore, we computed for each
value of n∗, grids of collisional rates for each Unsöld energy
Ep which is in the typical interval [−2, −0.6] (in atomic
units). We adopt a step size of 0.1 in the variation of n∗ and Ep.
Consequently, we obtain three-dimensional tables containing
the collisional rates with the parameters n∗ and Ep.

Based on these tables, we used our Genetic Program-
ming (GP) method of fitting in order to provide analytically
general relationships between collisional rates, n∗ and Ep.
This method has been used successfully in Derouich et al.
(2015) and in Derouich (2017). The GP method minimises
the summed square of the difference between the tabulated
rates and rates obtained from the GP relationships. The re-
lationships predicted by the GP-based model are compared

with the available data of the d-states of the Ca II, Ba II, and
Sr II in order to estimate their precision.

The following equations show the relationships between
the collisional depolarisation/transfer of polarisation rates of
the left-hand side and the n∗ and Ep in the right-hand side. Let
us recall that, for J = 3

2 , 0 ≤ k ≤ 3 and for J = 5
2 , 0 ≤ k ≤ 5.

In particular, by definition, Dk=0(J )=0. In the following, we
provide the non-zero depolarisation and polarisation transfer
rates associated to the levels 2DJ= 3

2
and 2Dj= 5

2
.

3.2.1 Depolarisation rates of the level 2DJ= 3
2

•

D1

(
3

2

)
(T = 5 000 K)/(nH × 10−9)

= 3./Y − (1. + Y )

(X + 1.)/(X − 2.) + (X − 2.)

+ 2. × X

(8. − X )
× (2. × X + X/3. − 3.), (5)

where X = n∗
p and Y = −Ep > 0.

In order to compare with published results, let us
consider the case of the d-state of the Ca II where
n∗

d = 2.315 and Ep=−1.2. According to the equa-
tion (14) of Derouich et al. (2004), the reference
value of D1( 1

2 )(T = 5 000 K)/(nH × 10−9)=1.9904
s−1=Dreference. The GP methods provide equation
(2) which implies that D1( 1

2 )(T = 5 000 K)/(nH ×
10−9)=1.98365 s−1=DGP. Thus, the relative error is

re(Ca II) = |Dreference − DGP|
Dreference

× 100 = 0.5% (6)

which demonstrates how good is the precision of the GP
method of fitting.

•

D2

(
3

2

)
(T = 5 000 K)/(nH × 10−9)

= X 2 − 3. + 5./Y − X

(3. − Y ) + 5./X

− 2.

[(3. × X − 3.) + (Y − 3.)/X ]
. (7)

With respect to the reference value given in equation (14)
of Derouich et al. (2004), re(Ca II) � 10%, in the case
of the d-state of the Ca II. In addition, in the case of the
d-state of the Sr II, re(Sr II) � 23%. For the Ba II of the
d-state, re(Ba II) � 7%. To determine the error bars for
the Sr II and Ba II, we compared with the results obtained
by Derouich (2008) and Deb & Derouich (2014).

•

D3

(
3

2

)
(T = 5 000 K)/(nH × 10−9)

= X 2

(2. × X + 2. × Y )
+ [X − (1. + Y )] ×

[
(X − 2.)

14.

]

+ X − 2. (8)
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4 Derouich et al.

By comparing with the reference value of D3( 3
2 )(T =

5 000 K) given in equation (14) of Derouich et al. (2004),
we get re(Ca II) % � 0.25%.

3.2.2 Depolarisation rates of the level 2DJ= 5
2

•

D1

(
5

2

)
(T = 5 000 K)/(nH × 10−9)

= [6./(1. + Y ) + 6. − X ] × (X − 2.)

+ 2. × X − 4. − 2./(1. + X )

5. × (3. × X/2. − 7./2.)
. (9)

At T = 5 000 K, re(Ca II) � 11% for the level 2D5/2 of
the Ca II.

•

D2

(
5

2

)
(T = 5 000 K)/(nH × 10−9)

= (4./5. − 7./X + 3. × X )

− 3. × X

X 2 − 3. + X
− (5. − X/Y )

(7./3. + 2./Y )
. (10)

We find that, re(Ca II) � 20% for Ca II, re(Ba II) � 12%
for Ba II, and re(Sr II) � 1.3% for Sr II.

•

D3

(
5

2

)
(T = 5 000 K)/(nH × 10−9)

= 11./80. × X 2 × (X + 2.)

− Y

(X − Y/7. − 7./(X × 4.))
, (11)

where re(Ca II) is less than 0.1%.
•

D4

(
5

2

)
(T = 5 000 K)/(nH × 10−9)

= 1./Y + (X − 2.) × (6. − X/3.)

−
5.

(5.×X−Y ×X )×(Y/5.+5.)
(Y −7.)

5.
+ 2. × X 2 − 4. × X

(12)

with re(Ca II) � 5%.
•

D5

(
5

2

)
(T = 5 000 K)/(nH × 10−9)

= −18

5.
− Y

X
+ 13.

7.
× X + X 2

5.
(13)

and re(Ca II) is less than 3%.

3.2.3 Polarisation transfer rates between the levels
2DJ= 3

2
and 2DJ= 5

2

Concerning the non-zero polarisation transfer rates between
the levels 2DJ= 3

2
and 2DJ= 5

2
, only the rates C0( 3

2 → 5
2 ),

C1( 3
2 → 5

2 ), C2( 3
2 → 5

2 ), and C3( 3
2 → 5

2 ) are non-zero.

•

C0

(
3

2
→ 5

2

)
(T = 5 000 K)/(nH × 10−9)

=
(

X 2 − 83.

20.

)
× 3.

X
+ (1. − X ) × Y 2 × X

49.

+ 5. × (X 2 − Y − 3.)

(X − Y ) × X
× (Y + 2.)

(X × (5. + X ) × Y 2)
.

(14)

By comparing to the reference value ofC0( 3
2 → 5

2 )(T =
5 000 K)) given in equation (17) of Derouich et al.
(2004), we found that re(Ca II) � 2%, re(Ba II) � 19%,
re(Sr II) � 4%. Note that in Derouich et al. (2004),
the polarisation transfer rates are denoted by Dk (J ′ →
J, T ) instead of the notation Ck (J ′ → J, T ) adopted
here.

•

C1

(
3

2
→ 5

2

)
(T = 5 000 K)/(nH × 10−9)

= 7.

5.Y (X + 2.)
× (X − 2.) + 2.X − 7.

X
(15)

We notice that re(Ca II) � 1%.
•

C2

(
3

2
→ 5

2

)
(T = 5 000 K)/(nH × 10−9)

= 2. × X − Y

3.
− 3. − (X − 3.)

(7. − Y )
(16)

−
7.

X 2

(−2. + X ) × ( Y
2.

+ X ) × (Y + 2.)
. (16)

We notice that re(Ca II) � 5%, re(Ba II) � 3%, and
re(Sr II) � 26%.

•

C3

(
3

2
→ 5

2

)
(T = 5 000 K)/(nH × 10−9)

=
8.×X

7.
− 2.(

Y
3.

+ 1.

2.

) × [(X + Y ) × X
5.

+ 7.
2.

(X+Y ) ]

+ X − 2. (17)

When we compare a direct calculation of C3( 3
2 → 5

2 )
and its calculation via equation (17), we find that
re(Ca II) � 7%.

Only the excitation collisional transfer rates C0( 3
2 → 5

2 ),
C1( 3

2 → 5
2 ), C2( 3

2 → 5
2 ), and C3( 3

2 → 5
2 ) are given here.

However, it is straightforward to retrieve the values of the de-
excitation collisional ratesC0( 5

2 → 3
2 ),C1( 5

2 → 3
2 ),C2( 5

2 →
3
2 ), andC3( 5

2 → 3
2 ) by applying the detailed balance relation:

Ck (Ju → Jl , T )

= 2Jl + 1

2Ju + 1
exp

(
EJu − EJl

kBT

)
Ck

I (Jl → Ju, T ), (18)
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where Jl=3/2 (lower level) and Ju=5/2 (upper level); EJ being
the energy of the level (J) and kB the Boltzmann constant.

Thanks to the relationships given here, any collisional rates
can be obtained by simply determining the value of n∗ and
Ep.

4 HYPERFINE STRUCTURE COLLISIONAL
RATES

The procedure for calculating the hyperfine structure rates
consists of following steps:

• Determination of the hyperfine eigenstates after diago-
nalisation of the Hamiltonian.

• Calculation of the interaction potential which is ex-
pressed in the basis of the set of the hyperfine eigen-
states.

• Calculation of the collisional scattering matrix in
the same hyperfine structure basis by solving the
Schrödinger equation.

• Finally, one must perform the integrations over the im-
pact parameters and the relative velocities.

This is what we will call ‘direct method’. There is also an
‘indirect’ and more practical method that allows the calcula-
tion of the hyperfine depolarisation and polarisation transfer
rates via the values of the collisional rates associated to the
fine structure, Dk (J ) and Ck (J → J ′).

4.1 On the possibility of the direct method of the
calculations of the hyperfine structure rates

There are two types of problems in the direct calculations of
the hyperfine collisional rates, first one corresponds to the
zero-magnetic field case and second one corresponds to non-
zero magnetic field case.

1. Zero magnetic field case: Giving a real numerical pre-
diction in the cases where the coherences (interferences)
between different hyperfine levels are taken into account
is a complicated problem which would be taken up in the
future. In fact, one needs a full study based on accurate
interaction potentials and close coupling dynamical de-
scription that fully accounts for the collision channels
associated to the hyperfine levels and the coherences be-
tween them. In particular, the interaction potential, the
wavefunctions, and the Hamiltonian must be expressed
in a basis vectors formed from the complete set of hyper-
fine eigenstates which take into account the coherences.
The fact that the magnetic field is zero implies that the
basis is uniquely determined and the good quantum num-
bers of the basis remain unchanged1 which makes the

1 We recall that J is said to be a good or conserved quantum number if
every eigenvector remains an eigenvector with the same eigenvalue, as time
evolves. The total angular momentum J is not a good quantum number of

calculations of the hyperfine structure rates possible but
rather complicated.

2. Non-zero magnetic field case: In a magnetised medium
like the solar atmosphere and especially in the so-called
Paschen–Back effect regime, the hyperfine eigenstates
of the total Hamiltonian can be changed according to
the value of the magnetic field. Thus, total Hamiltonian
should be diagonalised for each magnetic field to yield
the hyperfine eigenstates (e.g., Landi Degl’Innocenti &
Landolfi 2004) and, after that, the interaction potential
and the dynamics of collisions have to be treated in the
basis of the set of the obtained hyperfine eigenstates2.
Inversion of the scattering polarisation including a proper
treatment of elastic and inelastic collisions in the pres-
ence of strong magnetic field cannot be performed at
least in the near future. The main reason is that the mag-
netic field is unknown before the interpretation of the
scattering polarisation and thus cannot be considered in
the collisional problem. In fact, the magnetic field is typ-
ically invoked as free fitting parameter to superpose the-
oretical Stokes profiles to observed ones; however, the
collisional rates have to be obtained and introduced in
the SEE before the fitting.
A possible solution of this problem is to perform the
calculations of the collisional rates for expected range of
magnetic field values in order to determine an empirical
law of the variation of the collisional cross-section as a
function of the magnetic field (e.g., Volpi & Bohn 2002).
The solar physicist should be aware that using collisional
rates calculated in zero magnetic field are suitable only
for the Hanle effect regime. It should be sufficient to ob-
serve that magnetic-induced crossing interferences in the
2P3

2
level of Na I would set on for ∼10 Gauss implying

the change of the eigenstates of the total Hamiltonian.
It is worth noting that Kerkeni & Bommier (2002) un-
awarely used collisional rates for the 2P3

2
level of Na I

which are calculated in the limit of zero magnetic field.
This would induce errors in their modelling of the atomic
polarisation of the 2P3

2
level considering that the strength

of magnetic fields in the quiet Sun can be tenths of
Gauss.

4.2 Calculation of the hyperfine structure rates by
using the indirect method: the frozen nuclear
spin approximation

It is worth noticing that the indirect method can be used only
for zero magnetic field case.

the total Hamiltonian if the magnetic field B �= 0. The total Hamiltonian
should be diagonalised for each magnetic field to yield the energies and
the eigenfunctions of the collision channels.

2 Interactions with magnetic fields could perturb the internal hyperfine struc-
ture of the colliding particles, induce couplings between states otherwise
uncoupled, break the symmetry of the problem and couple the motion of
the centre of mass with the relative collision dynamics (e.g., Beigman &
Lebedev 1995; Krems & Dalgarno 2004; Bivona et al. 2005).
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6 Derouich et al.

The (de)polarisation rates obtained in this paper (i.e., Dk (J )
and Ck (J → J ′)) can be utilised only in zero magnetic field
case or in Hanle effect regime. In addition, we do not obtain
directly the collisional rates for the hyperfine levels. We ne-
glect the effect of the hyperfine structure during the collision.

In the DSB approach, our aim was to propose a general
method, i.e., which can be applied to any ion. Thus, we tried
to neglect, whenever possible, the parts of the interaction po-
tential which are specific to a given ion. We compared our re-
sults to those obtained with quantum chemistry methods and
showed that the precision of the DSB method is sufficient for
correctly studying the SSS (see Derouich et al. 2003b, Der-
ouich et al. 2004). We notice that those quantum-chemistry
methods take into account spin–orbit interactions but not the
hyperfine structure effects.

Our numerical results are obtained for the depolarisation
and polarisation transfer rates for fine structure J-levels. In
order to obtain the collisional rates for the hyperfine levels,
the frozen nuclear spin approximation must be applied. The
frozen approximation means that during the collision the nu-
clear spin of the perturbed ion is conserved. This would be
the case if

τ �EHFS 	 1, (19)

�EHFS is the energy of the hyperfine structure and τ is the
typical time duration of a collision. Equation (19) is typically
satisfied in the solar conditions (e.g., Derouich et al. 2003b).

In the typical solar conditions, it is easy to show that 1/τ ∼
1013 s−1 (i.e., 1/τ ∼ 334 cm−1). In these conditions, the hy-
perfine splitting is usually much smaller than 1/τ and there-
fore one can assume that the nuclear spin is conserved during
the collision. It is important, however, to not confuse this
condition with the fact that the SEE must be solved for the
hyperfine levels when the inverse of the lifetime of the level is
smaller than the hyperfine splitting, i.e., the hyperfine levels
are separated.

Our relationships given by the equations (2)– (17) can be
used to easily derive the hyperfine depolarisation rates and
polarisation transfer rates for any singly ionised atom. This is
the indirect method which is based on the frozen core approx-
imation. According to this method, the hyperfine collisional
rates are given as a linear combination of the fine structure
rates, first obtained by Nienhuis (1976) and Omont (1977).

5 COMPLEX ATOMS

5.1 Why treating complex atoms?

The important aspect of the DSB method is its extension to the
cases of complex atoms and ions. Originally, this extension
was presented and explained in detail by Derouich, Sahal-
Bréchot, & Barklem (2005b). Its importance appeared espe-
cially in the atlas of the linearly polarised solar-limb spectrum
published by Gandorfer (2000, 2002, 2005), where the linear
polarisation of the lines of complex atoms/ions is particularly
interesting. In fact, among atomic polarised lines presented

in Gandorfer (2000), there are 38% of polarised Fe I lines
and 13% for Ti I. The observations of the linear polarisation
reported by Gandorfer (2000, 2002, 2005) show polarisation
peaks in many spectral lines of complex ions, e.g., Nd II

5249 Å, Eu II 4129 Å, Ce II 4062 Å, Ce II 4083 Å, Zr II

5350 Å, etc. (e.g. Manso Sainz, Landi Degl’Innocenti, &
Trujillo Bueno 2006).

Depolarising collision rates of complex ions are vital for a
reliable interpretation of such lines and can be theoretically
obtained only via our semi-classical theory with good accu-
racy. It is important to notice that it is very difficult or even
impossible to treat collisional processes, involving complex
neutral and ionised atoms, by standard quantum chemistry
methods. Our results allowed us to calculate, for the first time,
the (de)polarisation rates of the levels associated to complex
atoms (Derouich et al. 2005b).

5.2 Accuracy of the calculations

The results given by the equations (2)–(17) are concerned
with simple atoms. The electronic configuration of the com-
plex ion has one optical electron above an incomplete (i.e.,
open) subshell which has a non-zero angular momentum. To
derive the collisional rates of levels of complex ions from
those of simple ions, we consider that only the valence elec-
tron can undergo perturbations due to collisions with hy-
drogen atoms. This is the frozen core approximation. This
approximation has been adopted in our calculations of the
depolarisation and polarisation transfer rates, but also it has
been used by ABO semi-classical theory for collisional line
broadening by neutral hydrogen.

ABO have tested the results for both complex atoms like Fe
I (Multiplets 1146 and 1165) and simple atoms (Multiplets 7,
9, and 11 of Mg I; Multiplet 4 of Na I; Ca II infrared triplet).
They estimated the accuracy of their theory to be around 20%
or better (Barklem 1998).

ABO used two methods in testing the collisional rates.
The rates were used to fit the spectrum of selected solar lines
and the derived abundance was compared with meteoritic
abundance of the emitting atoms or the solar abundance ob-
tained by other authors. Alternatively, they adopted mete-
oritic abudance or previously determined solar abudance to
obtain empirically collisional broadening cross-sections by
fitting the line profile. In either method, a single parameter is
adjusted to achieve the best possible match between the ob-
served solar spectrum and the synthesised spectrum (Barklem
1998).

In the description of the complex or simple atom/ion,
we adopt the same description used by ABO. For example,
calculations of (de)polarisation rates and broadening rates
associated with Fe I lines are based on the same interac-
tion potential and the same dynamics of collisions. There
are no additional conceptual approximations to extend the
ABO theory to the calculations of the depolarisation rates
performed by DSB. Thus, the conclusions of ABO concern-
ing the accuracy remain valid for the case of (de)polarisation
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rates. This means that for complex atoms/ions, the accu-
racy of the (de)polarisation rates must be around 20% or
better.

The main idea which allowed the extension of the results
obtained for simple atoms/ions to complex atoms/ions is the
use of the frozen core approximation. This allows treatment
of heavy and/or complex atoms/ions like Fe I, Ti I, Nd II,
Eu II, Ce II, Zr II, etc., whose collisional rates cannot be
presently calculated via quantum chemistry methods. The
spectral lines of such atoms/ions show significant polarisation
peaks in many spectral lines (see the atlases by Gandorfer
2000, 2002, 2005).

In Section 2 of Derouich et al. (2005b), the DSB model
for complex atom/ion was explained. According to the DSB
model, the electronic coonfiguration of a complex atom/ion is
composed of three parts which were fully explained by Der-
ouich et al. (2005b). As a result, it was possible to show how
to derive the depolarisation and polarisation transfer rates of
complex ions from the rates associated to simple ions—the
(de)polarisation rate of a complex atom can be written as
a linear combination of the (de)polarisation rates of simple
atom. Thus, the relationships given in this paper are easily
applicable to the case of complex ions.

6 CONCLUSIONS

This paper completes the previous work of Derouich (2017)
which was devoted to the case of the polarisation of the
p-states of ions. The scattering polarisation profiles of the so-
lar ions have been (and are still) widely investigated both from
theoretical and observational points of view. To gain complete
understanding of the scattering polarisation in the photo-
sphere of the Sun, one should obtain collisional rates for ion–
hydrogen interactions. Calculations of the (de)polarisation
collisional rates affecting the levels of the solar ions, first
require the calculation of the atomic wavefunctions and in-
teraction potentials. Second, the time-dependent Schrödinger
equations have to be solved on the basis of the set of eigen-
functions. This is a complicated problem which we show that
could be avoided by applying general relationships provided
in this paper.

In fact, in this paper, we provide useful relationships which
allow the calculations of any depoalrisation and polarisation
transfer rates of the d-states of complex and simple ions. The
hyperfine levels are also treated in this work. The establish-
ment of the relationships was possible, thanks to the general
nature of the DSB approach, but also to the very powerful GP
methods.
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Å (Zurich: Hochschulverlag AG an der ETH Zurich)

Kerkeni, B., & Bommier, V. 2002, A&A, 394, 707
Krems, R. V., & Dalgarno, A. 2004, in Fundamental World of Quan-

tum Chemistry, Vol. 3, eds. Kryachko, E., & Brandas, E. (Dor-
drecht: Kluwer), 273

Krsljanin, V., & Peach, G. 1993, in Spectral Line Shapes, Vol. 7,
eds. Stamm, R., & Talin, B. (New York: Nova Science), 527

Landi Degl’Innocenti, E. 1983, SoPh, 85, 33

PASA, 34, e018 (2017)
doi:10.1017/pasa.2017.8

https://doi.org/10.1017/pasa.2017.8 Published online by Cambridge University Press

https://doi.org/10.1017/pasa.2017.8
https://doi.org/10.1017/pasa.2017.8


8 Derouich et al.

Leininger, T., Gadéa, F. X., & Dickinson, A. S. 2000, JPhB, 33
1805

Lemaire, J. L., Chotin, J. L., & Rostas, F. 1985, JPhB, 18 95
Manso Sainz, R., Landi Degl’Innocenti, E., & Trujillo Bueno, J.

2006, A&A, 447, 1125
Nienhuis, G. 1976, JPhB, 9, 167
Omont, A. 1977, PQE, 5, 69
Sahal-Bréchot, S. 1977, ApJ, 213, 887
Sahal-Bréchot, S., Derouich, M., Bommier, V., & Barklem, P. S.

2007, A&A, 465, 667

Sahal-Bréchot, S., Malinovsky, M., & Bommier, V. 1986, A&A,
168, 284

Smith, E. W., Vidal, C. R., & Cooper, J. 1969, Classical path meth-
ods in line broadening, I. Classical path approximation, JRNBS,
389, 73A(4)

Stenflo, J. O. 1982, SoPh, 80, 209
Stenflo, J. O. 2004, Nature, 430, 304
Trujillo Bueno, J., Shchukina, N., & Asensio Ramos, A. 2004, Na-

ture, 430, 326
Volpi, R., & Bohn, J. L. 2002, PhRvA, 65, 052712

PASA, 34, e018 (2017)
doi:10.1017/pasa.2017.8

https://doi.org/10.1017/pasa.2017.8 Published online by Cambridge University Press

https://doi.org/10.1017/pasa.2017.8
https://doi.org/10.1017/pasa.2017.8

	1 INTRODUCTION
	2 STATEMENT OF THE PROBLEM
	3 GENERAL RELATIONSHIPS FOR d-STATES OF SIMPLE IONS
	3.1 Definitions and notations
	3.2 Numerical results

	4 HYPERFINE STRUCTURE COLLISIONAL RATES
	4.1 On the possibility of the direct method of the calculations of the hyperfine structure rates
	4.2 Calculation of the hyperfine structure rates by using the indirect method: the frozen nuclear spin approximation

	5 COMPLEX ATOMS
	5.1 Why treating complex atoms?
	5.2 Accuracy of the calculations

	6 CONCLUSIONS
	ACKNOWLEDGEMENTS
	REFERENCES

