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Abstract

Sum-free sets may be used to colour the edges of a complete graph in such a way as to avoid
monochromatic triangles. We discuss the automorphism groups of such graphs. Embedding of
colourings is considered. Finally we illustrate a way of constructing colourings using block designs.

1. Introduction

Suppose G is a finite graph. A proper r-colouring of G is an assignment of
r colours to the edges of G in such a way that the resulting coloured graph
contains no monochromatic triangle. A proper r-colouring is equivalent to a
decomposition of G into r edge-disjoint subgraphs G^d, •••,Gr—the
monochromatic subgraphs, G, consisting of all the edges with colour i —none
of which contains a triangle.

We write Kn for the complete graph on n vertices. It is clear from
Ramsey's Theorem that, given r, there exists an integer /?3(3,2), or simply Rr,
such that Kn has a proper r-colouring if and only if n < Rr. (See Wallis, Street
and Wallis (1972).) The numbers Rr are not easily calculated. It is well known
that i?2 = 6 and it has been proved (Greenwood and Gleason (1955)) that
i?3=17. We know of R4 only that 51=SJR 4 S65 ; see Chung (1973, 1974),
Folkman (1967), Whitehead (1973).

We can construct proper colourings of graphs using sum-free sets. If H is
any group, a subset S of H is called sum-free if and only if it does not contain
elements x, y, z which satisfy xy = z. A sum-free r-partition of H means a
partition of the set H* of non-identity elements of H into r sets, each of which
is sum-free.

Suppose that H = {x\,x2, • • -,xn} is a group of order n and that a sum-free
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36 A. Penfold Street and W. D. Wallis [2]

r-partition of H into the sets Hi, H2, • • -,Hr is known. With each element of Hh

we associate the fth colour. A proper r- colouring of Kn may be constructed as
follows. First, the elements of H are ordered in some way; for example,

Xi <X2< • • • < Xn.

Then the vertices of Kn are labelled xu x2, • • •, xn in some fashion. Finally, if
Xi <Xj in the given ordering, then edge (x,,x,) is coloured with the colour
associated with XjX,7'; in the terminology of the decomposition into subgraphs,
the graph Gk consists of all edges (x,,x;) such that xf < x, and JWC,-' belongs to
the set Hk. If the induced colouring were to contain a monochromatic triangle
with vertices JC,-, xhxk, where x, < x; < xk, then we would have x&J1, XiXl1 and
XjXk' all belonging to the same set H, of the partition, which is impossible
because

but Hi is a sum-free set. So the colouring is proper.
This use of sum-free partitions to construct proper colourings has been

widely studied in the case of abelian groups (whence the word "sum-free"
rather than "product-free") whose orders are prime to 3. A sum-free partition
of H is called symmetric if and only if x and x~l always belong to the same set
H. If a sum-free partition is symmetric, then x,x7' and x,xT' always belong to
the same set, and the induced colouring is independent of the ordering imposed
on the group. However, if 3 divides n, symmetric sum-free partitions cannot
exist, because H must contain at least one element, say y, of order 3, and
yy = y ', so a set containing both y and y"1 cannot be sum-free. Therefore it is
interesting to discuss non-symmetric cases also.

It should be observed that not every proper r-colouring of Kn comes from
a sum-free r-partition of a group of order n. The first example of this
phenomenon occurs among the proper 2-colourings of K4. There are two such
colourings possible, as shown in Figure 1. There are two groups of order 4,
namely Z4 = <x |x"= 1) and Z2xZ2 = (a,b | a2 = b2 = [a,b] = 1).

Figure 1
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There is only one sum-free 2-partition of Z4, namely

{x,x3}, {x2},

and there are three such partitions of Z2 x Z2, all of which are isomorphic to

{a,b}, {ab}.

In both cases the partitions are symmetric and give rise to the colouring of
Figure l(a).

Thus the colouring of Figure l(b) does not arise from a partition of a group of
order 4; however, it does arise in the following way. Consider

which has only one sum-free 2-partition, namely

{x,x<},{x2,x3}.

This partition is also symmetric and leads to the colouring of Figure 2(a).

Figure 2

Deletion of any vertex and the four edges incident with it gives the colouring of
K4 shown in Figure 2(b), which is isomorphic with that in Figure l(b). This
raises the following interesting question.

Suppose we have a proper r- colouring of Kn, not induced by a sum-free
r-partition of a group of order n. Is it always possible to embed this in a proper
5-colouring of Km, for some s g r and for some m > n, which is induced by a
sum-free s- partition of some group of order ml Or (less hopefully) under what
circumstances is such an embedding possible and what can we say about s and
m as functions of r and n?

In Section 2, we discuss the proper 3-colourings of K,6, the largest
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complete graph for which three colours are sufficient. In a subsequent paper,
we shall discuss the proper 3-colourings of K6, the smallest complete graph for
which three colours are necessary; at present we merely note that there are 332
non-isomorphic 3-colourings, 75 of which are induced by sum-free 3-partitions of
the groups of order 6.

In Section 3, we consider the automorphism group of coloured graphs with
colourings induced by sum-free partitions; in Section 4, we look briefly at the
possibility of embedding a proper r-colouring of Kn in a proper r-colouring of
Kn+\ and finally in Section 5, we discuss some relationships between block
designs and proper colourings.

2. The proper 3-colourings of K16

Kalbfleisch and Stanton (1968) have shown that there exist precisely two
non-isomorphic proper 3-colourings of Kl6; their edge-colourings are listed in
Table's 1 and 5. We refer to them as X and Y respectively.

(a) The colouring X.
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13 14 15 16

Table 1
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The colouring X was originally studied by Greenwood and Gleason (1955),
who showed that it could be induced by a sum-free 3-partition of (Z2)

4, the
additive group of GF[24]. If we consider GF[24] as the set of polynomials in x
over GF[2], modulo x" = x + 1, then the correspondence between the labelled
vertices in Ki6 and the field elements is given in Table 2 and the sets of the
sum-free partition are the cyclotomic classes with respect to the cubic residues,
so that

5R = Co = {l,x

xSR = SG = C, = {x,x

x2SR = 5B = C2 = {x2,x

x,x3 + x2 + x + 1},

\,x2 1},

1}.

x' + x'

+ x

+ x

9

10

11

12 + x

X + 1

+ 1

13 j t ' + Jt

14 j t '

15 x2

16

+ 1

+ 1

0

Table 2

More recently, Whitehead (1975) has shown that the group

( 4 , 4 | 2 , 2 ) = <r,s \r4 = s4 = (rs)2 = (r~ls)2 = 1)

has a symmetric sum-free 3-partition, with

SR={r,r\s,s\r2s2},

SG={r2,rs\r}s,r2s,r2s'},

and 5B = {s2, rs, r3s \ rs2, r*s2}.

This partition also induces the colouring X of K,6, where the correspondence
of labelled vertices to group elements is given in Table 3.

13

14

8

9

10

11

12

r V

r's

s2

r3s2

Table 3

We calculate Aut(X), the automorphism group of X. Kalbfleisch and
Stanton (1968) have already observed that the following maps belong to
Aut(X):
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(i) i(fa : i H» i + a for each a G GF[24], which is transitive and preserves
colours;

(ii) x:' ""* xi where x generates GF[24] which, considered as a permuta-
tion of vertices, becomes

X =(1,10,14,3,7,11,5,9,13,2,6,15,4,8,12)

and permutes the colours in the fashion (RGB);
(iii) 0 = (1,2,5,4) (6,12,10,14) (7,15,9,11) (8,13) which also stabilises 16

and permutes the colours (BG).
Since Aut(X) is transitive, we concentrate on the stabiliser of 16. By (ii)

and (iii), it is transitive on colours and can move the classes R ={1,2,3,4,5},
G ={6,7,8,9,10}, B ={11,12,13,14,15} in any fashion.

Now we consider the stabiliser of {R,G,B, 16}. Since *3 = (1,3,5,2,4)
(10,7,9,6,8) (14,11,13,15,12), this stabiliser is transitive on B. Hence it is
sufficient to look at the stabiliser of {R,B,G, 11,16}.

Consider the adjacencies to 16 and 11 in X. These are described by Table 4,
where, for example, the entry {3,4} in position (1 IB, 16/?) means that both 3 and
4 are joined to 11 by a blue edge and to 16 by a red edge.

11R

11G

11B

16R

{2,5}

{1}

{3,4}

16G

{6}

{8,9}

{7,10}

16B

{12,15}

{13,14}

Table 4

If p is a vertex permutation which stabilises {/?, G, B, 11,16}, then p must
stabilise every entry of this array. Hence p is a product of some of the
transpositions (2,5), (3,4), (8,9), (7,10), (12,15), (13,14).

Suppose we apply (2,5) but not (3,4) on the edge-colouring array of X in
Table 1. The top left block changes from

-GBBG -GBBG

G-GBB G-BGB

BG-GB to BB-GG

BBG-G BGG-B

GBBG- GBGB-
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and similarly, applying (3,4) but not (2,5) causes a change. So the contribution
from these transpositions to any automorphism must be either (2,5) (3,4) or (1).
Similarly, we must have (7,10) (8,9) together and (12,15) (13,14). Checking the
remaining possibilities shows that the only non-trivial permutation to stabilise
{R,B,G, 11,16} is

I = (2,5) (3,4) (7,10) (8,9) (12,15) (13,14).

Then Aut (X) has order 16 • 6 • 5 • 2 = 960 and is generated by «/>„, x, <& and £,.
It is doubly-transitive in its natural permutation representation on the vertices.
Since X contains 80 trichromatic and 480 bichromatic triangles, Aut(X) cannot
be triply transitive (for this would force all triangles in X to be chromatically
identical). So the group is precisely doubly-transitive.

The Sylow 2-subgroups of Aut (X) are of order 64. We consider one such
subgroup, H, where H = (if/,, if/x, i/>,*, ij/x>,<f>). H has three subgroups of order 32,
namely

L =(il/,,i(ix,il/x2,i{ix>,<f)2),

M = <)/»,, l/r,, 1/^,0)

and N = (<l>i,*l>x,iltx*,<lnlfx>).

H contains 16 elements of order 8 (all of which belong to N and none of which
belongs to L or M), 28 elements of order 4 and 19 of order 2. The six subgroups
of H of order 16 are as follows:

<0,, 4fx, ^,4>2) = LnMC\N = Z2x D4;

A = (i//,, i//x'+x, i//x>, <£2) =s Z 2 x D 4 = B = (</»,, I^J + X ,

C = <0,, «/r,, &», <^>,»> = (4,412,2) as

D = (i/f,,i/^+x, i/fxj, <j>2ipx);

(Here D4 is the dihedral group of order 8 and Z2 x D4 denotes its direct product
with Z2.) Each subgroup of order 16 is contained in L; the only subgroup of
order 16 contained in M or N is the Frattini subgroup <!>(//).

(b) The colouring Y.
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1
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R
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R
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R
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R
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R

R
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R
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R
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R
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R

R
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R

R
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R
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G

G

R
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R

G

G

B

12

R

G R

B B B

13 14 15 16

Table 5

The colouring Y shown in Table 5 was initially found by Kalbfleisch and
Stanton (1968) who worked directly with the graph of K,6. It was subsequently
pointed out by Whitehead (1971) that it could be induced by the sum-free
3-partition of Z4 x Z4, where

SR = {22,32,23,21,12}, 5G ={02,33,30,10,11} and SB ={20,01,13,31,03},

with the correspondence of labelled vertices to group elements given in Table
6.

22

32

23

21

12

02

33

30

10

11

12

10

20

01

13

31

03

00

Table 6

More recently, Whitehead (1975) has shown that the same colouring is induced
by the sum-free 3-partition of Z2 x D4, where
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Z2 x D4 = {a, b, c | a * = b2 = c2 = [a, c ] = [b, c) = 1, ba3 =

and SR = {a 2c, ac, a 2bc, a 2b, a 3c},

Sc = {c, a *bc, a, a*,ab}

and SB = {a2, fe, afcc, a 3bc, be}.

43

afe),

Table 7 gives the correspondence of vertices to elements.

a2bc

a2b

a'bc

10

11

12

ab

abc

a'b

be

Table 7

The following maps belong to Aut(y):

(i) ip,,: i •-» i + a for each a G Z4 x Z4, which is transitive;
(ii) /3 : xy >-» ( - y)x, where the vertex is labelled with the group element

xy GZ4xZt, which may be written in terms of permutation of vertices as
(2,3,5,4) (6,11) (7,13,10,14) (8,15,9,12) and acts on the colours (GB);

(iii) y = (1,11) (2,13,5,14) (3,12,4,15) (7,8,10,9) which permutes the colours
(RB).

Since Aut(y) is transitive, we concentrate on the stabiliser of 16. This
contains both /3 and y and is therefore transitive on the colours. It can have at
most two orbits on vertices, namely {1,6,11} and {2,3,4,5,7,8,9,10,12,13,14,15};
since a search shows that no element of Aut(y) stabilises 16 and maps 1 >-» 2,
these two orbits do in fact exist, so Aut(Y) has rank 3 and is not doubly-
transitive.

If we now consider the stabiliser of {1,6,11,16}, we find (as in the discussion
of Aut (X)) that the only non-trivial permutation in this stabiliser is the map £
defined previously. Hence Aut(V) has order 16 • 6 • 2 = 192 and is generated by
«/<„, /3 and y. (Since £ = j82 = y2, we may omit it from the set of generators.)

Again the Sylow 2-subgroups of Aut(V) have order 64. We consider one
such subgroup P = (tfil0, i/rOi,/3), which has 44 elements of order 4 and 19
elements of order 2. P. has two subgroups of order 32, namely

<?=<«^io,^oi,f> and R=<«Jr,,,«fl»M,/3>.

The six subgroups of P of order 16 are as follows:
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T, = <</r20, V02, /3> = (4,412,2) = T2 = (t/̂ o, iAo2, /3<M;

£/ = <i/»10, I/»OI> = Z, x Z4.

The subgroups <P(P), 5,,S2 and (7 are contained in Q; *(P), T, and T2 are
contained in R. S, is conjugate to S2 in P and T, to T2.

A computer check run by Whitehead (1975) showed that of the groups of
order 16, only (Z2)

4, Z*xZ4, Z2xD* and (4,412,2) have sum-free 3-partitions.
All the partitions are symmetric.

3. Concerning automorphism groups

Suppose G is a group of order n, with elements x,,x2, • • -,xn which has a
sum-free r- partition

G* = G,UG2U--- Uft.

Let K denote a copy of Kn in which vertices are labelled with the elements of
G. Consider the proper colouring of K induced by the given partition and the
ordering

Xt <X2< • • • <Xn.

The effect of the vertex map <j>g: x, »-» Xig, where g is any element of G, is to
transform the proper colouring into the one induced by the ordering

xlg<x2g<--<xng.

But these two colourings are the same since

This means that <}>g is an automorphism of the colouring. As {<fo, | g £ G) = G, it
follows that the automorphism group of the colouring must contain a subgroup
isomorphic to G.

In the last section, we computed the subgroups of order 16 in Aut(X) and
Aut(Y), where X and Y are the proper 3-colourings of K,6. We found only
four groups, namely (Z2)

4, Z4 x Z4, Z2 x D4 and (4,412,2), confirming the result
of Whitehead (1975) that no other group of order 16 has a sum-free 3-partition.

It should be noted that our observations do not bar the possibility that a
partition of Z2 x D4 could give rise to the colouring X, or a partition of (4,412,2)
to the colouring Y. However, neither of these in fact occurs.
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4. Embedding

As was pointed out in the Introduction, we would like to know when it is
possible to embed a proper colouring of a given graph in a proper colouring of a
larger graph. This seems to be a difficult question: even in a case as small as K4,
one of the two proper colourings can be embedded in a proper colouring of K5,
while the other cannot.

Most of the results so far obtained have hinged on elementary analysis of
the monochromatic subgraphs, as in the following proof.

THEOREM. Suppose that a proper r-colouring of Kn is induced by the
symmetric sum-free r-partition

(1) G* = 5 ,U5 2 U ••• US,,

where G is a group of order n and G * the set of its non-identity elements. Then
this colouring may be embedded in a proper r-colouring of Kn+, if and only if
there exists an associated r-partition

(2) G = T, U • • • U Tr,

such that (T, - Tt) D S< = <f>, i = 1,2, • • -, r.

PROOF, (a) Suppose that the associated partition (2) exists. Label as 00 the
(n + l)st vertex in Xn+, and complete the colouring of Kn+, by assigning the
colour i to the edge (°°,JC) if x G T,.

If the monochromatic graph in colour i contains a triangle, it must be of
the form {<*>,x,y}, for the colouring of Kn is proper. Since the edges (=»,x) and
(00, y) are coloured 1, we have x, y e T). Hence x - y ETt - Thso x - y£ S,. But
this means that (x,y) is not /-coloured, so we have a contradiction.

(b) Suppose the embedding exists and that the (n + l)st vertex of Kn+l is
labelled 00. Define the set T,QG by

Ti: = {x I x e G,(°°,x) is coloured with colour i}.

Since no triangle is monochromatic, we see that if (°°, x) and (°°, y) are coloured
1, then (x, y) is coloured in some other colour, or in other words, if x, y €E T)
then x - y£ S,. This completes the proof.

As an application of the Theorem, we consider two non-isomorphic
symmetric sum-free 3-partitions of Z)3 and the non-isomorphic proper 3-
colourings of Ku which they induce, neither of which can be embedded in a
proper 3-colouring of Kl4.

Our first partition P consists of the sets
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SR ={1,5,8,12},

SB ={2,3,10,11},

So = {4,6,7,9}.

These sets are isomorphic to each other (since 2SG = SR and 2SR = SB), not in
arithmetic progression and in each case

Si+Si= Si,

so that | Si | = 4, | Si + Si | = 9. Hence if the associated 3-partition exists, we
have

and \T,-T,\S9, i =R, B, G.

By the Cauchy-Davenport theorem [Wallis, Street and Wallis (1972), p. 187,
Theorem 6.4] we know that

2| T, | - 1 =i | Tt - T | g 9,

so that | T,; | g 5, and by Vosper's theorem [Wallis, Street and Wallis (1972), p.
188, Theorem 6.9] this implies that | 7) | = 5 if and only if Ti is in arithmetic
progression. But T in arithmetic progression implies that TI - Ti is also in
arithmetic progression; if | T) | = 5, then T) - T = S, which forces Sf and hence
Si to be in arithmetic progression. But this is false for each of the given sets.
Hence | T \ ^ 4 and | TR | + | TB \ + | Ta \ S 12, which is a contradiction.

So we see that P induces a proper 3-colouring of K,3 which cannot be
extended to a proper 3-colouring of Kl4. In particular, if we consider a
monochromatic subgraph of P, say the red graph, then at most four of its
vertices can be joined by red edges to the extra vertex, », without forming a
monochromatic triangle.

Our second partition, IT, consists of the sets

SR ={1,4,9,12},

ZB ={2,3,10,11},

SG = {5,6,7,8}.

2B = SB is not in arithmetic progression, but 2G and SR are isomorphic to each
other and both are in arithmetic progression (SG = 5SR). So w is certainly not
isomorphic to P. If we have an associated 3-partition rR U TB U TG, then by the
previous argument we have

TB I =i 4, I TR I =i 5, To I =§ 5,
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but since | TR | + | TB | + | TG | = 13, we must have either | TR | = | TG | = 5, | TB | = 3,
or | TR | = | TB | = 4, | TG | = 5 (without loss of generality).

Since | TG | = 5, we must have TG - rG = SG, and by Wallis Street and
Wallis (1972), p. 191, Lemma 6.11, this implies that

TG = {a, a + 1, a + 2, a + 3, a + 4}

for some a £ Z B . Hence for b = a + 5, we have

TR U T B ={*>,& + l, • • • ,&+7}.

If | TR | = 5, then TR - TR = 2R, and the same argument shows that

TR ={c,c +5,c + 10, c + 15, c + 20}

= {c, c + 2, c + 5, c + 7, c + 10}

for some c E Zn. Since no such set is contained in TR U TB, we must have
|TH | = | T B | = 4. Suppose X G T R . Then x + \,x + 4,x + 9,x + 12 £ TR. If x +
1 £ TB, then x=b +1, so that fo + 3, fo + 6 G TB. But (b + 6) - (b + 3) = 3 G 2 B

which is a contradiction, so x + 1 G TB. If also JC + 4 G TB, then again 3 G
(TB - TB) n S B SO JC + 4 g! TR U TB. Hence x=b+4orb+5orb+6. But in any
of these cases, x + \2GrB also, so that (x + 1 ) - ( x + 12) = 2G(T B - T B ) D S B ,
again a contradiction. Hence no such partition exists.

Again IT induces a proper 3-colouring of K,3 which cannot be extended to a
proper 3-colouring of K,4, but the colouring induced by TT is not isomorphic to
that induced by P. For the red graph, in this second colouring, can have five of
its vertices joined by red edges to the extra vertex, <», without forming a
triangle.

5. Block designs and proper colourings

A (balanced incomplete) block design with parameters v, b, r, k,\ is a way
of selecting b subsets each of size k from a u-set of objects so that every
object occurs in r sets and every pair of objects occurs together in A sets. If we
interpret the objects as vertices and each k- set as the complete graph on the k
vertices, then the union of all the fc-sets is the complete graph on v vertices.
Moreover, if A = 1, this interpretation of a block design is equivalent to a
decomposition of the complete graph Kv into edge-disjoint complete subgraphs
Kk.

We consider the following method of constructing proper colourings.
First, a block design with A = 1 and first parameter v is found. Second, the Kk

representing each /c-set is properly coloured in r colours. Finally, the union is
taken of these b copies of Kk. The result is an r- colouring of Kv. The colouring
may not be proper, because of interaction between the different copies of Kk

https://doi.org/10.1017/S1446788700013343 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700013343


48 A. Penfold Street and W. D. Wallis

X

I
\

[14]

\

\

\
\

Figure 3

but, if it is proper, then interesting properties may result. In particular, by using
the ways in which block designs give rise to other larger block designs, it may
be possible to use proper colourings to construct proper colourings of larger
graphs.

We have applied this technique to a number of small designs. If we
consider the (7,7,3,3,1) design with 3-sets

g+{1,2,4}, g = 0 , l , - - , 6 (mod7)

and we write (JC, y, z) to mean the 3-coloured K} of Figure 3, then the union

g - 0
(1,2,4) + g, with addition modulo 7,

is the proper 3-colouring shown in Figure 4. This is the same colouring induced
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by the symmetric sum-free 3-partition of Z7, with SR = {1,6}, Sa = {2,5}, SB =
{3,4}. This colouring can be embedded in a proper 3-colouring of K8, by applying
the Theorem of the previous section with, say, TR = {1,3,5}, Ta = {0,6}, TB =
{2,4}.

Similarly, consider the (13,13,4,4,1) design with 4 sets

g +{0,1,3,9}, g = 0 , l , - - , 1 2 (mod 13)

and let [x,y,z,t] denote the 3-coloured K4 shown in Figure 5.

Figure 5

Then the union Ug2_0[0,l,9,3] + g, with addition modulo 13, is the colouring of
Kt, induced by the partition P of Section 4, whereas Ug2.0[2,0,9,3] + g is the
colouring of Kn induced by the partition n. As we have already seen, these
colourings are not isomorphic.

Both the proper colourings of K,6 can be derived from designs. Again let
[x, y,z,t] denote the colouring of Figure 5 and let (x, y,z,t) denote the colouring
of Figure 6.

Then the following coloured graph is isomorphic to X, derived from a
(16,20,5,4,1) block design:

(1,15,2,13) U (5,7,6,3) U (8,10,11,12) U (9,14,16,4)

U (1,12,14,5) U (2,10,4,6) U (13,8,16,3) U (15,11,7,9)

U (1,16,11,6) U (2,9,8,5) U (13,14,10,7) U (15,4,12,3)

U (1,8,7,4) U (2,11,3,14) U (13,12,6,9) U (15,10,5,16)

U (1,9,10,3) U (2,16,12,7) U (13,4,11,5) U (15,14,8,6).
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To obtain Y it is necessary to use both the given colourings of Kt, again with
the (16,20,5,4,1) design:

[1,7,3,9] U [16,10,12,2] U [6,13,15,8] U [11,14,4,5]

U [10,1,5,15] U [7,16,8,4] U [14,6,2,3] U [13,11,9,12]

U [8,12,14,1] U [2,15,7,11] U [5,3,13,16] U [9,4,10,6]

U [4,2,1,13] U [12,5,6,7] U [3,8,11,10] U [15,9,16,14]

U (1,16,11,6) U (7,10,14,13) U (3,12,4,15) U (9,2,5,8).

Y can also be obtained from a (16,16,6,6,2) design. Write [x,y,z, t,u, v] for the
coloured graph in Figure 7. Then Y is

[1,2,8,16,10,14] U [1,2,15,9,11,3] U [1,5,9,16,7,13] U [1,5,12,8,11,4]

U [1,7,15,12,10,6] U [2,4,9,16,6,12] U [2,4,10,13,15,5] U [2,6,13,11,8,7]

U [3,4,14,6,13,1] U [3,5,6,16,8,15] U [3,5,12,14,7,2] U [3,8,12,10,13,9]

U [4,3,7,16,10,11] U [4,9,15,7,14,8] U [5,6,14,11,9,10] U [11,13,15,12,14,16].

Every edge is coloured twice under this formula, but the colour is the same in
every case.
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Figure 7

Finally, we have found a (49,56,8,7,1) design which gives rise to a proper
4-colouring of Ki9. Again we write the elements of Z7 x Z7 in the form xy where
x and y are integers modulo 7. We let [a, b, c, d, e,f,g] denote the colouring of
K7 shown in Figure 4 (with, say, a = 0, b = 1, • • -,g = 6) and {a,b,c,d,e,f,g}
the colouring shown in Figure 8.

Figure 8
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If solid, broken, double-broken and double-solid lines correspond to the
colours d , C2, C3 and C4 respectively, then the union of the 49 graphs

{00,04,12,14,31,32,61} + xy, xy GZ7xZ7,

with the 7 graphs

[00,11,22,33,44,55,66] + Oy, y G Z7,

is precisely the 4-colouring of K49 due to Whitehead (1973) in the form given in
Wallis, Street and Wallis (1972), p. 263.

Added 5 September, 1975

The questions asked at the end of Section 1 about embedding in larger
sum-free colourings have been answered, by Katherine Heinrich and by Anne
Penfold Street. Their papers will appear in the Proceedings of the Fourth
Australian Conference on Combinatorial Mathematics.
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